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Abstract 

Software effort estimation is a critical task for successful software development, which is necessary for appropriately 

managing software task assignment and schedule and consequently producing high quality software. Function Point 

(FP) metrics are commonly used for software effort estimation. To build a good effort estimation model, independent 

explanatory variables corresponding to FP metrics are required to avoid a multicollinearity problem. For this reason, 

previous studies have tackled analyzing correlation relationships between FP metrics. However, previous results on 

the relationships have some inconsistencies. To obtain evidences for such inconsistent results and achieve more 

effective effort estimation, we propose a novel analysis, which investigates causal-effect relationships between FP 

metrics and effort. We use an advanced linear non-Gaussian acyclic model called BayesLiNGAM for our causal-effect 

analysis, and compare the correlation relationships with the causal-effect relationships between FP metrics. In this 

paper, we report several new findings including the most effective FP metric for effort estimation investigated by our 

analysis using two datasets.  

 

Keywords- Software effort estimation, Function point (FP) metrics, Causal-effect analysis, Correlation analysis, 

Linear non-Gaussian acyclic model (LiNGAM), BayesLiNGAM.  

 

 

 

1. Introduction 
Software effort estimation is an important task in software development, which predicts a 

necessary development cost to meet a scheduled deadline of software release. In real industrial 

situations, however, many software projects fail on accurate effort estimation, and thus exceed 

cost and the scheduled deadline. For instance, the chaos report (The Standish Group, 1994) 

points out that on average 89% of companies are exceeding the estimated costs. In addition, 

Molokken and Jorgensen (2003) report that the development time delay reaches approx. 30% 

and up to 40% of the scheduled time.  

 

To address such problems and achieve more accurate effort estimation, many effort estimation 

models have been studied so far (Wen et al., 2012). Effort estimation models are often regression 

models (e.g. linear regression models), and use metrics to estimate efforts. Among such metrics, 

the most widely-used ones are FP (Function Point) metrics.  

 

On the other hand, Kitchenham et al. (2007) indicate that some studies show inconsistent results 

in effort estimation. For instance, Jeffery et al. (2000) report that using Cross-Company Datasets 
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(CC) are worse than using Within-Company Datasets (WC) in effort estimation. Differently from 

(Jeffery et al., 2000), Briand et al. (1999) and Mendes et al. (2005) report that CC is as good as 

WC. Kitchenham et al. (2007) present a systematic review to summarize such reports. However, 

it cannot determine which of WC or CC is better. 

 

To remedy the inconsistencies among the results of different researchers, it is important to 

analyze the relationships among metrics for effort estimation. The reason is that in an effort 

estimation model (e.g. a linear regression model) using metrics, we get a misleading result due to 

the multicollinearity problem (Farrar and Glauber, 1967) if explanation variables corresponding 

to the metrics (e.g. FP metrics) are not independent. So far, a lot of studies (Kitchenham and 

Känsälä, 1993; Jeffery and Stathis, 1996; Lokan, 1999; Uzzafer, 2016) have investigated the 

relationships between FP metrics using correlation analysis. However, they have also reported 

inconsistent results that the explanation variables can be either dependent or independent (Jeffery 

and Stathis, 1996; Kitchenham and Känsälä, 1993).  

 

In this paper, we propose a novel analysis that investigates causal-effect relationships between 

FP metrics and effort in addition to correlations between FP metrics. Causal-effect relationships 

could provide us additional information on relationships among metrics such that a certain 

correlation is a spurious correlation, and some metrics do not have a correlation, however, have 

causal-effect relationships with other metrics. In our study, we assume that FP metrics and effort 

are modeled using a Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006). In 

particular, we adopt an advanced LiNGAM called BayesLiNGAM (Hoyer and Hyttinen, 2009) to 

identify the causal-effect relationships between FP metrics and effort.  

 

We address the following three research questions and obtain findings for each of them: 

 

RQ1. Are correlation coefficients between FP metrics in our dataset similar to those in 

previous research? 
The correlation coefficients in our dataset are similar to the majority results in previous 

research. Previous researches (Kitchenham and Känsälä, 1993; Jeffery and Stathis, 1996; 

Lokan, 1999; Uzzafer, 2016) investigate relationships between FP metrics, however, they 

have reported inconsistent results. Thus, we investigate the correlation in our datasets. 

 

 

RQ2. How many bootstrap samples should we use? 

A sufficient sample size is 100. BayesLiNGAM occasionally extracts wrong causal-effect 

relationships. To overcome this deficiency, we adopt a general random resampling approach, 

called bootstrap sampling (Efron, 1992). Thus, we investigate this RQ to select the sufficient 

number of samples for bootstrap sampling. 

 

 

RQ3. What are causal-effect relationships between FP metrics and Effort? 

The strengths of the causal-effect relationships are similar to those of the correlation 

relationships, however, the directions of the causal-effect relationships depend on datasets.  
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The main contributions of our paper are as follows: 

 We present the first investigation of the causal-effect relationships between FP metrics and 

effort using two datasets. 

 We show that the causal-effect relationships can provide additional relationships between FP 

metrics and effort. 

 

From our results, the correlation coefficients in our dataset are similar to the majority results in 

previous research. In addition, the existence of the causal-effect relationships is similar to that of 

the correlation relationships, however, the directions of the causal-effect relationships depend on 

datasets. Interface, one of the FP metrics, often does not have strong correlation coefficients and 

causal-effect relationships with other FP metrics. However, interestingly, Interface has the 

causal-effect relationships to effort. This means Interface is an independent metric. Therefore, if 

we use Interface as an explained variable for an effort estimation model, Interface does not cause 

a multicollinearity problem. In addition, other FP metrics except Interface have both the causal-

effect relationships and the correlation relationships with each other. Those metrics may lead a 

multicollinearity problem. 

 

The organization of this paper is as follows: Section 2 introduces related work and 

BayesLiNGAM. Section 3 explains the experimental setup and used datasets. Section 4 presents 

research questions and answers. Section 5 gives discussions on questions arise from the 

experiment results. Section 6 describes threats to validity. Section 7 presents a conclusion and 

future work.  

 

2. Background 

2.1 Motivating Example 
To analyze a relationship between factor (e.g. FP metrics) using only a correlation coefficient 

involves a risk. We describe a risk using the following example: In the software development, a 

project sometimes falls into a runaway status (Takagi et al., 2005). An expert developer who has 

a long experience is often employed to extinguish a runaway project. Then, the high effort 

projects that fall into a runaway status and the projects that the expert developer belongs to are 

strongly correlated, when we analyze if an effort of a project that the expert developer belongs to 

is either high or low. Such a correlation can lead a misunderstanding such that the project 

requires a high effort due to the expert developer, and thus we may take a wrong solution (e.g. 

removing the expert developer from the project).  

 

Therefore, it is risky to determine the reason of a high effort project using a correlation analysis 

only. If we investigate a causal-effect relationship between the expert developer and the high 

effort projects, we may not conclude the wrong solution. This is a motivation to use not only a 

correlation analysis but also a causal-effect analysis in our approach.  

 

2.2 Related Work 

2.2.1 Effort Estimation  
Software effort (shortly, effort) is a measure to indicate whole working time for the software 

development. So far, various studies (Molokken and Jorgensen, 2003; Wen et al., 2012; 

Jorgensen and Shepperd, 2007) have proposed effort estimation approaches. FP metrics 

(Albrecht and Gaffney, 1983) are common metrics to build an effort estimation model, which are 

provided by the International Function Point Users Group (IFPUG) to measure the size of 
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software. For instance, Albrecht is the first person who developed a methodology of FP metrics 

in IBM and (Albrecht and Gaffney, 1983) originally propose adopting FP metrics for effort 

estimation. Ahn et al. (2003) present adopting FP metrics for effort estimation of software 

maintenance.  

 

FP metrics measure five elementary function types to estimate a size of software; two data 

functions types — internal logical files (File) and external interface files (Interface) — and three 

transactional function types — external inputs (Input), external outputs (Output), and external 

inquiries (Enquiry). These function types are used as explanatory variables for an effort 

estimation model in a hypothesis that large-sized software requires large effort (Abran et al., 

2002).  

 

In general, the estimation model (e.g. a regression model) needs an assumption that explanatory 

variables are independent (Farrar and Glauber, 1967). To confirm the assumption, many studies 

(Lokan, 1999; Jeffery and Stathis, 1996; Kitchenham and Känsälä, 1993; Uzzafer, 2016) have 

reported correlations between FP metrics. For instance, Kitchenham and Känsälä (1993) report 

FP metrics have correlations with each other, and are not well-formed. In addition, Lokan 

(Lokan, 1999) indicates that results of existing research have an inconsistency.  

 

In this paper, we first perform a correlation analysis that means, we calculate correlation 

coefficients between FP metrics in our datasets, to compare with previous research. We next 

calculate causal-effect relationships between FP metrics and effort for a more detailed analysis.  

 

Finally, Kitchenham and Känsälä (1993) and Jeffery and Stathis (1996) report Pearson 

correlation coefficients between FP metrics and Effort. For instance, Kitchenham and Känsälä 

analyze the coefficients and use stepwise multivariate regression to build the effort estimation 

model. Jeffery and Stathis report the coefficients between FP metrics and Effort, and those 

between Unadjusted Function Points (UFP) and Effort. There are some inconsistent results 

between Kitchenham et al. and Jeffery and Stathis differently from their work, in this paper, we 

use Kendall’s tB  (Sprent and Smeeton, 2016) to analyze correlation coefficients between FP 

metrics, and focus on causal-effect relationships between FP metrics and Effort. 

 

2.2.2 Causal Discovery 
A causal-effect relationship is an important relationship in an engineering to estimate and solve 

an industrial problem. To solve the industrial problem needs to decide if each metric is either an 

explanatory variable or an objective variable to build an estimation model. The causal-effect 

relationship can support the decision.  

 

In addition, if we find out causal-effect relationships correctly, we can control values of arbitrary 

metrics using an interpretation (Pearl, 2002). The interpretation is that when a variable in a 

certain probability model is changed by a disturbance effect, we can observe an effect for the 

whole probability model by considering a direct effect by the variable (Pearl, 2002). 

Consequently, in the interpretation, we can consider the probability model whose variable can be 

intentionally changed by a disturbance effect, although a correlation is a result of analyzing data, 

and cannot consider a change by a disturbance effect.  

 

To identify causal-effect relationships, we typically use a counterfactual thinking or structural 

causal models (Holland et al., 1985; Robins, 1986; Hernán, 2004; Heinze-Deml et al., 2017; 
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Pfister et al., 2017; Shimizu et al., 2006; Hoyer and Hyttinen, 2009). Counterfactual thinking 

uses a contrary fact. For instance, in counterfactual thinking, we consider two facts to identify 

causal-effect relationships: she did well on exam because she was coached by her teacher, and 

she did not well on exam because was not coached by her teacher. Then, we compare these two 

facts to identify that the study is causal to the result of the exam or not for her. However, it is 

difficult to compare the two facts (Holland et al., 1985). Structural causal models are defined on 

numerical models. For instance, Shimizu et al. (2006) use Linear, Non-Gaussian, Acyclic Model 

to solve causal discovery. 

 

In this paper, we use a type of structural causal models. The proposed approach uses a Directed 

Acyclic Graph (DAG) (Pearl, 2002) to describe causal-effect relationships between factors 

(metrics). To identify DAG is difficult, however, Shimizu et al. (2006) report that DAG is 

identifiable when we assume a non-Gaussian disturbance density instead of Gaussian for DAG. 

 

 

Fig. 1. Example causal-effect relationships among chocolate consumption, Nobel laureates and GDP 

 

 

Finally, we illustrate two more motivating examples in the causal discovery. Messerli (Messerli, 

2012) studies correlation relationships between chocolate consumption and Nobel laureates; 

there is a strong linear correlation (r=0.791, p-value<0.0001). If we only use the correlation 

analysis, we should eat more chocolate to get Nobel laureates. However, if we use the causal 

discovery, we can find out other results (Fig. 1). Causal-effect relationships between factors are 

represented in DAG, a structural causal model. From Fig. 1, eating much chocolate does not 

cause Nobel laureates, and therefore, does not produce Nobel laureates. On the other hand, 

improving GDP can cause both Nobel laureates and eating much chocolate, since GDP is causal 

to Nobel laureates and chocolate consumption (interpretation).  

 

The other causal discovery example is the study by Green et al. (2017). They report causal-effect 

relationships between social transitions (e.g. getting job) and both smoking and drinking. In 

addition, causal discovery is often applied to medical field (e.g. finding the adverse effects of 

drugs) (Kleinberg, and Hripcsak, 2011). 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 3, No. 2, 90–112, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.2-008 

95 

2.3 Linear Non-Gaussian Acyclic Models (LiNGAM)  
Previously, it has been considered that causal-effect relationships cannot be extracted from only 

observed data that have no time information. However, recent studies (Shimizu et al., 2006) 

show that causal-effect relationships can be extracted from only observed data under certain 

assumptions. One of such assumptions is the use of a Linear Non-Gaussian Acyclic Model 

(LiNGAM). LiNGAM is a data-generating model satisfying the following three properties:  

 

1. A Directed Acyclic Graph (DAG) represents a one-to-one mapping between observed 

variables .  

2. The value assigned to each variable xi  is a linear function of the values already assigned to 

the variables, plus a disturbance (noise) term ei , and plus a constant term ci , that is  

 

                                                                                                   (1) 

 

 

where k(i)  is a causal order. LiNGAM calculates all possible causal orders. Thus, if we consider 

many variables, the number of causal orders is explosively increased. We’ll discuss more details 

of this problem in discussion section 5.6.  

 

3. The disturbances ei  are all continuous random variables. The ie  are generated by non-

Gaussian distribuions of non-zero variances. The ie  are independent of each other, i.e. 

 i iini epeep )(),,(  .  

 

2.4 Bayesian Discovery of Linear Acyclic Causal Models  
In our approach, we extract causal-effect relationships by using the simple Bayesian inference on 

LiNGAM (BayesLiNGAM) (Hoyer and Hyttinen, 2009). BayesLiNGAM calculates posterior 

probabilities of possible DAGs from only given data. Posterior probabilities are calculated as 

follows:  

 

 

                                                                                                (2) 

 

 

where  is the different possible DAGs, and N  is the number of data samples. 

D=
 
is the observed dataset. Here P(D)  is a constant that simply normalizes the 

distribution. P(Gm ) is the prior probability distribution over DAGs and incorporates any domain 

knowledge that we have. When we do not have any knowledge, we assume a uniform prior 

probability distribution over all DAGs. The marginal likelihoods are calculated as follows:  
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where q  consists of all the parameters (i.e. the coefficients bij , the constants ci , and the 

disturbance densities pi(ei )). p(q |Gm)  is calculated when we assume three assumptions that 

bij  is a standard Gaussian distribution with zero-mean and unit variance, ci  is zero, and pi(ei ) 

models a parameterization of the densities. pi(ei )  implements the two quite basic 

parameterizations: a simple two-parameter exponential family distribution combining the 

Gaussian and Laplace distributions, and a finite mixture of Gaussian density family. The integral 

is calculated by the Laplace approximation. We use this approach (Hoyer and Hyttinen, 2009) 

for our experiment. Here we need to compute an approximation to (3). By the definition of 

LiNGAM (Hoyer and Hyttinen, 2009), p(D |q,Gm ) is transformed to  

 

 

                                                                             (4) 
 

 

 

 
 

Fig. 2. Example extraction of a causal-effect relationship by BayesLiNGAM  

 

 

 

2.5 Outputs of BayesLiNGAM  
We describe outputs of BayesLiNGAM to understand analyzed data. Fig. 2 shows an example of 

an output of BayesLiNGAM. First, we input two observed variables, Metric A and Metric B, to 

BayesLiNGAM. Each variable has N samples data. Then, BayesLiNGAM calculates posterior 

probabilities of causal-effect relationships to the all possible combinations of metrics. Posterior 

probabilities provide us which causal-effect relationship has the strongest possibility. In this 

example, two metrics have three possible combinations of metrics; Metric A is a cause of Metric 

B, Metric B is a cause of Metric A, and no cause. 

 
 

Table 1. Description of analyzed projects 
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3. Experimental Setup  
For experiments, we use two types of datasets called China Dataset and Finnish Dataset. Table 

1 summarizes the number of samples, the number of all metrics, and the metrics adopted in our 

analysis for each dataset.  

 

3.1 China Dataset  
China dataset is a dataset in PROMISE data repository (Menzies, et al., 2016) obtained from 

499 software development projects. It has 19 metrics. Among them, we use five FP metrics—

Interface, Output, Enquiry, Input, File—and a metric for effort, Effort.  

 

 
            (a) China dataset        (b) Finnish dataset 

Fig. 3. Histograms for effort  

 

 

 

 
(a) China dataset      (b) Finnish dataset 

Fig. 4. Boxplots for FP metrics 
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3.2 Finnish Software Effort Dataset  
Finnish Software Effort Data Set (Sigweni et al., 2015) is a dataset obtained from many 

companies in Finland. It has 46 metrics. Among them, we use the mostly used five FP metrics — 

IntFP, OutFP, InqFP, InpFP, EntFP — and a metric for effort, Worksup.  

 

The metrics have different names but have same meaning in China dataset and Finnish dataset. 

In this paper, we translate the names of FP metrics for Finnish dataset into the names of the 

corresponding FP metrics for China dataset as follows: IntFP corresponds to Interface, OutFP 

corresponds to Output, InqFP corresponds to Enquiry, InpFP corresponds to Input, EntFP 

corresponds to File, and Worksup corresponds to Effort.  

 

There are some different points between China and Finnish datasets. For instance, China dataset 

has many smaller projects with smaller efforts than Finnish dataset does. Finnish dataset has 

many larger projects with larger efforts than China dataset does. Fig. 3 shows histograms of 

values of Effort in both China and Finnish datasets. We can observe China dataset has more 

projects than Finnish dataset in small effort values, and Finnish dataset has more projects than 

China dataset in large effort values. Note that China dataset has approx. 100 more projects than 

Finnish dataset has. 

 

 
Table 2. Pearson’s moment coefficient of skewness 

 

 

In addition, values of FP metrics are similar in China and Finnish dataset. Each FP metric is 

skewness data, and they have many outliers. Fig. 4 shows boxplots of FP metrics in China and 

Finnish dataset. Each boxplot has a median value not located in the center of a box. Table 2 

shows Pearson’s moment coefficient of skewness (skewness) (You, 2016). The skewness is a 

measurement of symmetry as follows: 

 

 

 

 

                                                     (4) 

  

 

 

In summary, all values in Table 2 are positive values, and therefore, it is reasonable to support 

that FP metrics are skew in these datasets.  
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4. Results 

4.1 RQ1: Are correlation coefficients between FP metrics in our dataset similar to 

those in previous research? 

4.1.1 Motivation  
We first need to analyze and confirm the correlation coefficients between FP metrics for our 

datasets. As mentioned before, Lokan (Lokan, 1999) reports that correlation coefficients between 

FP metrics have inconsistency in previous results. For instance, Kitchenham and Känsälä (1993) 

report that Output is significantly correlated with Input, Inquiries and Files. However, Jeffery 

and Stathis (1996) report that they have no significant correlation.  

 

We use Kendall’s tB  (Sprent and Smeeton, 2016) to analyze the correlation coefficients between 

FP metrics for our datasets. Kendall’s tB  is the tB  version of Kendall’s t  that takes ties into 

accounts. Kendall’s t  is used to measure a correlation for ordinal data, which is also used in the 

previous studies compared with ours.  

 

 

 

 

4.1.2 Approach  
Kendall’s tB  observes the rank correlation, and therefore, can calculate correlation coefficients 

even when projects have outliers or skewed data. Since China and Finnish datasets have many 

outliers and skewed FP metrics, Kendall’s tB  is effective for evaluation.  

 

In addition, we do not perform preprocessing to data since Kendall’s tB  is a non-parametric test, 

and we do not need to assume a distribution of data.  

 

Correlation coefficients for our datasets are compared with those in the previous research. We 

collect the results of previous research are collected from the literature by Lokan (Lokan, 1999). 

Lokan employs results of correlation coefficients by Kitchenham and Känsälä (1993) and Jeffery 

and Stathis (1996). In addition, correlation coefficients are compared by a statistical test. Null 

hypothesis of the statistical test is that a correlation coefficient between two FP metrics has not a 

correlation.  
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Table 3. Results of Kendall’s t  and p-values in previous research and our correlation analysis  

 

 

 

4.1.3 Results 
The correlation coefficients between FP metrics by our analysis are similar to those in the 

previous results by Kitchenham and Känsälä (1993) and Lokan (Lokan, 1999). Table 3 shows 

the correlation coefficients between FP metrics for three previous studies and two new results for 

our datasets with respect to Kendall’s tB . In our results, Interface shows weak correlation with 

other FP metrics (tB  ranges from 0.02 to 0.21). The results of Kitchenham and Känsälä, and 

Lokan also show weak correlation with other FP metrics (tB  ranges from -0.02 to 0.31). Output, 

Enquiry, and Input show relatively stronger correlation with other FP metrics and it is similar in 

the results of Kitchenham and Känsälä, and Lokan. Therefore, we can say that our other 

correlation coefficients are very similar to the results by Kitchenham and Känsälä, and Lokan, 

although our results have some differences from the results by Kitchenham and Känsälä, and 

Lokan, where correlations between FP metrics are statistically significant except the pairs of 

Interface and Enquiry, and Interface and Input.  

 

For our datasets, we agree with the results by Kitchenham and Känsälä (1993) and Lokan 

(Lokan, 1999) on the correlation coefficients between FP metrics. On the other hand, we 

disagree with the result by Jeffery and Stathis (1996) on the correlation coefficients.  
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Fig. 5. Our experiment procedure for RQ2 (focusing on two metrics) 

 

 

4.2 RQ2: How many bootstrap samples should we use? 

4.2.1 Motivation  
In our analysis, we adopt BayesLiNGAM, which is an approach for extracting causal-effect 

relationships, however, occasionally extracts wrong causal-effect relationships. To overcome this 

deficiency, in our previous work (Kondo and Mizuno, 2016), we created 15 new datasets from 

one original dataset by conducting 15 times extracting 150 samples by random sampling. We 

analyzed the new 15 datasets by BayesLiNGAM, and conducted majority voting to decide which 

causal-effect relationship is true. However, there is no evidence to decide the number of new 

datasets, 15.  

 

To get an evidence for the sufficient number of new datasets, in this paper, we adopt a general 

random re-sampling approach, bootstrap sampling (Efron, 1992), to a phase creating new 

datasets. This approach provides us a heuristic solution of how many new datasets are sufficient 

by plotting distribution and confirming if the distribution is smooth or not.  
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4.2.2 Approach 
Bootstrap sampling is a procedure to estimate a sampling distribution of a model to verify the 

model performance in general (Efron, 1992). The sampling distribution is generated by plotting 

performances of the model using bootstrap samples. Bootstrap samples are generated by a 

repeated method extracting N samples allowing overlapping by random sampling from an 

original dataset that has N samples. Bootstrap sampling can be used in outputs of the model are 

underspecified to evaluate a performance of the model in general.  

 

Fig. 5 shows the procedure of our experiments that using BayesLiNGAM, extracts causal-effect 

relationships. The procedure is as follows:  

1. We create two sets (China and Finnish datasets) that consist of M datasets that consist of N 

samples. M means the number of bootstrap samples, and N means the sample size of a 

dataset (i.e. 499 and 407), respectively.  

2. The posterior probabilities of three causal-effect relationships between pairs of metrics are 

calculated from the M datasets by BayesLiNGAM for China and Finnish datasets, 

respectively.  

3. We plot three posterior probabilities of causal-effect relationships using M datasets, and 

check the distributions. 

Here, we define smoothness of the distribution. We define that a distribution of the causal-effect 

relationships is smooth if it satisfies either of the following two conditions under the following 

assumption. 

 

Assumption: 

 We only consider the distribution of the causal-effect relationships that are calculated using 

more than a half of bootstrap samples. 

 

Conditions:  

 Absolute differences of the posterior probabilities (values of x-axis) of the mode and those 

of the second mode are less than or equal to 5 and greater than or equal to 50.  

 Differences of the numbers of the mode entities (values of y-axis) and those of the second 

mode entities are greater than or equal to 10. 

 

The assumption aims at removing the distributions of causal-effect relationships that are not 

calculated on over a half of bootstrap samples. We suppose such causal-effect relationships 

might not true.  

 

The first condition aims at picking up the distributions that have similar posterior probabilities or 

different ones between the mode and the second mode. For instance, if the difference of posterior 

probabilities between the mode and the second mode are very close (i.e., the difference is less 

than or equal to 5), it is reasonable that these values consist of one same distribution and are in a 

peak of the same distribution. On the other hand, the probabilities are very far from each other 

(i.e., the difference is greater than or equal to 50), it is reasonable that these values have a 

different distribution. Otherwise (if the first condition does not hold), the values possibly consist 

of a distribution having two peaks (e.g. mixture model). 

 

The second condition considers the value of the y-axis of a distribution. If the value differences 

of y-axes between the mode and the second mode are small (i.e., the second condition does not 

hold), and the first condition does not hold, it is reasonable that they consist of a distribution 
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having two peaks. For instance, Fig. 6(c) shows a distribution not smooth, because the posterior 

probabilities between the mode and second mode are close and the value difference of y-axes is 

small. 

 

Here, we need to decide a disturbance density pi(ei ) for BayesLiNGAM. This density is used to 

calculate the marginal likelihood for BayesLiNGAM. The density indicates an occurrence 

distribution of a disturbance term. We adopt a finite mixture of Gaussian density (MoG) since it 

provides better performance than the Gaussian and Laplace distributions (Hoyer and Hyttinen, 

2009). As the number of mixtures of MoG, we choose five from our experience (Kondo and 

Mizuno, 2016).  

 

We compare two bootstrap sample sizes, 15 and 100. The upper restriction is 100 in our 

experiment. Tantithamthavorn et al. (2017) state that 100 is a sufficient value for bootstrap 

sampling. Thus, we employ the same upper restriction. 

 

 

 

(a) No causal-effect relationship                  (b) Output is causal to Enquiry              (c) Enquiry is causal to Output 

Fig. 6. Distributions of posterior probabilities between Output and Enquiry in China dataset when the 

number of bootstrap samples is 15 

 

 

 

 

 

(a) No causal-effect relationship              (b) Interface is causal to Enquiry              (c) Enquiry is causal to Interface 

Fig. 7. Distributions of posterior probabilities between Interface and Enquiry in Finnish dataset when the 

number of bootstrap samples is 15 
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(a) No causal-effect relationship              (b) Output is causal to Enquiry                 (c) Enquiry is causal to Output 

Fig. 8. Distributions of posterior probabilities between Output and Enquiry in China dataset when the 

number of bootstrap samples is 100  

 

 

 

 

(a) No causal-effect relationship                 (b) Interface is causal to Enquiry                 (c) Enquiry is causal to Interface 

Fig. 9. Distributions of posterior probabilities between Interface and Enquiry in Finnish dataset when the 

number of bootstrap samples is 100  

 

 

 

 

Fig. 10. Our experiment procedure for RQ3 (focusing on two metrics).  
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4.2.3 Results 
As the number of bootstrap samples, 15 is not enough for bootstrap sampling, since the sampling 

distribution for bootstrap sampling using 15 samples is not smooth. Figs. 6 and 7 show three 

sampling distributions of posterior probabilities where M is 15 for China (between Output and 

Enquiry) and Finnish (Interface and Enquiry) datasets. For instance, Fig. 6(c) for “Enquiry is 

causal to Output” does not show a smooth sampling distribution.  

 

From our results, the sufficient number of bootstrap samples is 100 to do bootstrap 

sampling. When bootstrap sampling uses 100 samples, the sampling distribution is smooth. Figs. 

8 and 9 show three sampling distributions of posterior probabilities where M is 100 for China 

and Finnish datasets. For instance, Fig. 8(c) for “Enquiry is causal to Output” shows a smooth 

sampling distribution.  

 

Figs. 8(b) and 9(b) also do not show a clear distribution. However, posterior probabilities are 

distributed to about 0 or 100, and the numbers of datasets in y-axis are similarly between 0 and 

100 of posterior probabilities. Thus, it is reasonable to support BayesLiNGAM that cannot 

identify this causal-effect relationship into one posterior probability, and shows two types of 

posterior probabilities of causal-effect relationships. More details will be discussed in Section 

5.1.  

 

As the number of bootstrap samples, 100 is sufficient to do bootstrap sampling. In addition, 

BayesLiNGAM cannot decide one posterior probability of the causal-effect relationship in some 

cases.  

 

4.3 RQ3: What are causal-effect relationships between FP metrics and Effort? 

4.3.1 Motivation  
The knowledge of correct causal-effect relationships can contribute to building more accurate 

estimation models necessary for software development in the industrial problem. However, so 

far, the causal-effect relationships between FP metrics and Effort for effort estimation have not 

yet been analyzed. 

 

4.3.2 Approach  
To extract causal-effect relationships, we adopt BayesLiNGAM using bootstrap sampling where 

the number of bootstrap samples sets to 100 from the answer of RQ2.  

 

Fig. 10 shows the flow of our experiments. The procedure is as follows:  

1. We create two sets (Finnish and China datasets) that consist of 100 datasets that consist of 

N data. N means the size of a dataset (i.e. 499 and 407), respectively.  

2. The 100 causal-effect relationships between pairs of metrics are calculated from the 100 

datasets by BayesLiNGAM for China and Finnish datasets, respectively.  

3. The causal-effect relationships between pairs of metrics are determined by the majority 

voting of the 100 causal-effect relationships. These causal-effect relationships are referred 

to as #1. The second-largest ones are referred to as #2.  

4. #1 and #2 denote the possibilities of causal-effect relationships  
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Table 4. Results of upper two causal-effect relationships (mixture: 5) and Kendall’s t  and p-values for 

China dataset. Upper triangular indicates causal-effect relationships. Lower triangular matrix indicates 

correlation coefficients  

 

 

 

 

Table 5. Results of upper two causal-effect relationships (mixture: 5) and Kendall’s t  and p-values for 

Finnish dataset. Upper triangular indicates causal-effect relationships. Lower triangular matrix indicates 

correlation coefficients  

 

 

 

4.3.3 Results 
Table 4 shows for China dataset, the directions of causal-effect relationships and the number of 

datasets which indicate the directions for #1 and #2 in an upper triangular matrix, and the 

correlation coefficients in a lower triangular matrix. The symbol “→” means a row metric is 

causal to a column metric. The symbol “←” means a column metric is causal to a row metric. 

“None” means there is no causal-effect relationship between a row metric and a column metric. 

The number in brackets means the number of bootstrap samples. For instance, look at the cells 

for Interface and Output in Table 4. None for #1 indicates there is no causal-effect relationship 

between Interface and Output. The number in the bracket, 46, indicates this result is calculated 

from 46 bootstrap samples. → for #2 indicates Interface is causal to Output. This result is 

calculated from 41 bootstrap samples.  

 

In China dataset, when FP metrics and Effort have small correlation coefficients, there are 

low possibilities of causal-effect relationships, and when FP metrics and Effort have strong 

correlation coefficients, there are high possibilities of causal-effect relationships. Causal-

effect relationships and correlation coefficients have a relationship. For instance, Interface has 

small correlation coefficients with other metrics except Effort, and it has low possibilities for a 

causal-effect relationship with other metrics except Effort. In addition, Output has a smaller 

correlation coefficient with Enquiry than with other metrics, and it also has a low possibility for 

a causal-effect relationship with Enquiry.  
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Table 5 also shows the causal-effect relationships and the correlation coefficients in Finnish 

dataset. Finnish dataset has the similar results with China dataset except for Interface and 

the pair of Output and File. Causal-effect relationships between Interface and other metrics for 

Finnish dataset are different with those for China dataset. For instance, #1 and #2 are different. 

Causal-effect relationships between Output and File are also different.  
 

In China dataset, causal-effect relationships are similar to correlation coefficients. On the other 

hand, in Finnish dataset, causal-effect relationships are similar to correlation coefficients, 

however, some metrics have different directions of causal-effect relationships with China 

dataset. Thus, the causal-effect relationships for some metrics possibly depend on datasets.  

 
 
 

Table 6. The number of datasets on causal-effect relationships between Interface and Input in Finnish dataset  

 

 

 

 

5. Discussion and Findings 
In this section, we give discussions on questions arise from and the findings from the results of 

our analysis. 

 

5.1 The sampling distributions for a few causal-effect relationships have two 

different distributions by bootstrap sampling using 100 samples. 
The sampling distributions by bootstrap sampling sometimes have two different distributions 

(i.e. they do not satisfy the first and the second conditions for smooth distributions in Section 

4.2.2). For example, “Output is causal to Enquiry” and “Interface is causal to Enquiry” as shown 

in Figs. 8 and 9 have two different distributions. Bootstrap sampling typically generates a 

sampling distribution, and therefore, these results are unusual.  

 

However, this circumstance does not affect identifying a causal-effect relationship by 

BayesLiNGAM based on bootstrap sampling. The pairs of metrics that are involved in such 

cases have a clear difference between possibilities of causal-effect relationships. For instance, 

the sampling distribution of “Output is causal to Enquiry” in China dataset has two different 

distributions. Nevertheless, the sampling distribution of no causal-effect relationship for the pair 

of metrics is smooth and has many datasets achieving high posterior probabilities, as in Figs. 

8(a) and 8(b). In addition, the pair of metrics has a high difference between #1 and #2 as shown 

in Table 4.  

 

5.2 A few causal-effect relationships have a small difference between #1 and #2.  
Identifying a causal-effect relationship is difficult when a difference between #1 and #2 is small 

since we could not identify which causal-effect relationships are likelihood in bootstrap 

sampling. For instance, the difference between Interface and Output is small both for China and 
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Finnish datasets. BayesLiNGAM cannot always indicate the correct causal-effect relationships 

for such cases. Investigating a further decision method would be useful to support such a case 

that the difference between #1 and #2 is small, and thus it is difficult to identify a causal-effect 

relationship by BayesLiNGAM.  

 

5.3 BayesLiNGAM sometimes cannot extract a posterior probability for a causal-

effect relationship.  
We have conducted bootstrap sampling, however, BayesLiNGAM cannot calculate a posterior 

probability for a few datasets (bootstrap samples). Table 6 shows the example of the number of 

datasets between Interface and Input in Finnish dataset. BayesLiNGAM successfully calculates 

causal-effect relationships for 93 datasets, but fails the calculation for 7 datasets. Nevertheless, 

we can identify a causal-effect relationship, since we can get the calculation results for almost all 

datasets. In particular, it is more important to identify a causal-effect relationship than to 

calculate and identify all posterior probabilities of bootstrap datasets.  

 

5.4 Causal-effect relationships can explain inconsistent results between WC and CC.  
Kitchenham et al. (2007) indicate that some studies show inconsistent results on whether there 

are differences between WC and CC to estimate effort or not. Our results indicate that causal-

effect relationships are different depending on datasets. The differences of causal-effect 

relationships across both WC and CC can lead to such inconsistent results since different causal-

effect relationships have different tendencies. Therefore, the proposed method can be used to 

analyze relationships across metrics of WC and CC, and to compare estimation results across WC 

and CC. If WC has inconsistent causal-effect relationships like our results, and metrics of CC are 

also inconsistency, we can find out one reason why sometimes WC is better than CC, and for 

other times, WC is as well as CC. If WC has consistent causal-effect relationships and CC does 

not have consistent causal-effect relationships, it indicates that sometimes CC is as well as WC, 

however, CC includes worse points than WC does.  

 

5.5 Interface and Output are the best independent explanatory variables for effort 

estimation and controlling effort, respectively.  
RQ3 is to investigate the directions of causal-effect relationships between FP metrics, and those 

in FP metrics and Effort. From results, the causal-effect relationships between FP metrics are 

inconsistent, and therefore, it is difficult to discuss general findings. On the other hand, causal-

effect relationships between FP metrics and Effort have consistent results. FP metrics is causal to 

Effort metrics in both datasets. Therefore, it is reasonable that every metric can be useful to 

estimate effort as an independent explanatory variable. We only consider multicollinearity 

problem. From this viewpoint, Interface often has neither the causal-effect relationships nor the 

correlation relationships with other FP metrics. Therefore, this is one of the best independent 

explanatory variables for effort estimation. 

 

In addition, we can use the interpretation to control effort using FP metrics since FP metrics have 

causal-effect relationships for effort. In particular, Output metric is a valuable metric using the 

interpretation, since #1 value for Output is high in every dataset. 

 

5.6 How many metrics to which BayesLiNGAM can be applied?  
In this paper, using BayesLiNGAM, we only investigate relationships between two metrics of FP 

metrics and Effort.  BayesLiNGAM can be applied to any number of metrics. However, there is 
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a computational problem such that the number of DAGs (also the number of combinations of 

causal-effect relationships considered) and thus the calculation time increased explosively with 

the number of metrics. Indeed, the implementation of BayesLiNGAM used in our experiment 

shows us a notification that indicates there are too many inputs if we use over five metrics. To 

overcome this problem, Hoyer and Hyttinen (2009) propose an alternative approach, which uses 

the greedy search. Hoyer and Hyttinen (2009). report that their approach can be applied to 

estimate causal-effect relationships with over six metrics while reducing the calculation time. 

Investigating causal-effect relationships among more than two metrics could be an interesting 

future work. 

 

5.7 How do we decide which correlation relationships or causal-effect relationships 

to believe?  
In general, causal-effect relationships are better relationships than correlation relationships. This 

is because correlation relationships are sometimes spurious correlations as shown in Fig. 1. 

Therefore, if there are conflicting results between causal-effect analysis and correlation analysis, 

we should confirm whether correlation relationships are not spurious correlations.  
 

6. Threats to Validity  

6.1 Construct Validity  
We use Kendall’s t  for calculating correlation coefficients instead of Pearson correlation 

coefficients. Kendall’s t  is also adopted in previous studies, and is more powerful to skewed 

data and outliers, and our datasets are skewed and have many outliers. Thus, it is valid to adopt 

Kendall’s t  to calculate correlation coefficients.  

 

For using BayesLiNGAM, we assume that the disturbance density is a finite mixture of Gaussian 

density and the number of mixture is five. That means that we approximate population of data as 

a five mixture of Gaussian density.  

 

For experimental analysis, we use two datasets, China and Finnish datasets, which have been 

adopted previous studies on effort estimation (Sigweni et al., 2016; Bettenburg et al., 2012). 

Thus, it is valid to use these datasets. 

 

6.2 External Validity 
Correlation coefficients between FP metrics already have been investigated in previous studies, 

and our results are similar to the majority of previous results. Therefore, results of correlation 

coefficients are general. 

 

Results of causal-effect relationships are also general since we adopt two types of datasets, and 

adopt bootstrap sampling. Bootstrap sampling supports providing a general result. 

 

6.3 Reliability  
We use BayesLiNGAM (open at https://www.cs.helsinki.fi/group/neuroinf/lingam/bayeslingam/) 

that was implemented by Hoyer and Hyttinen who originally proposed BayesLiNGAM. Thus, 

reliability of results of BayesLiNGAM is high.  

 

In addition, we provide all data and scripts that are used for our study at https://se.is.kit.ac.jp/~m-

kondo/BayesLiNGAM.tar.bz2. Thus, anyone can easily conduct and confirm our analysis. 
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7. Conclusion  
In this paper, we presented a causal-effect analysis between FP metrics and effort using 

BayesLiNGAM. Using the proposed analysis, we can investigate the directions of causal-effect 

relationships among the metrics. Therefore, our analysis can support building a good effort 

estimation model.  

 

From the results of our analysis using two datasets, we confirmed that causal-effect relationships 

between FP metrics are similar to correlation relationships between them, and most of causal-

effect relationships have same directions. However, a few causal-effect relationships have 

different directions in difference datasets.  

 

We also confirmed that when FP metrics and effort have a correlation, they also have causal-

effect relationships. Thus, correlations between FP metrics and effort are not spurious 

correlations.  

 

In addition, from our results, Interface, one of the mostly used FP metrics, does not have strong 

correlation coefficients and causal-effect relationships with other FP metrics. This result 

indicates that Interface is the best FP metric to build an effort estimation model since it then does 

not cause a multicollinearity problem.  

 

Our future work includes extracting new features from original features (e.g. metrics) to solve 

the multicollinearity problem. We could make the new features that can overcome the 

multicollinearity problem by integrating correlated features. Although a stepwise regression 

approach (Mendes and Mosley, 2001) is already proposed to remove correlated features, we plan 

to make the new features that contribute to the performance improvement of an objective task. In 

particular, we are interested in adopting a neural network approach.  
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