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Abstract 

This paper considers two classical age-based replacement models within a discrete-time framework: a standard age replacement 

model and an opportunistic age replacement model. Specifically, our analysis incorporates the concept of replacement priority in 

situations where failure replacement and preventive replacement occur at a given age or opportunity. We explore two priority 

cases within each replacement model. First, we formulate optimal preventive replacement policies aimed at minimizing the 

associated expected cost rate in the age replacement model and the opportunistic age replacement model by the familiar renewal 

reward argument.  Next, we extend the findings presented earlier to scenarios involving discounting. We develop formulations 

for the expected total discounted costs over an infinite time horizon and obtain optimal preventive replacement policies 

minimizing these total expected costs. Additionally, we explore unified models incorporating probabilistic priority. To provide 

practical insights, we present numerical illustrations using real failure data from pole air switches, comparing the performance of 

these optimal preventive policies. 

 

Keywords- Age replacement, Opportunistic replacement, Replacement option priority, Discrete-time models, Probabilistic 

priority. 

 

 

 

1. Introduction 
For stable operations of industrial systems, it is quite important to plan the maintenance schedules with 

economic justification. The preventive maintenance models play a significant role to give the solutions by 

keeping balancing between the corrective replacement and the pre-scheduled replacement cost. In more 

detail, the corrective (failure) replacement is that if the industrial system breaks down, it is promptly 

renewed with a new one. For another thing, the pre-scheduled replacement refers that the non-failed 

system is replaced preventively in advance. Typically, the cost of pre-scheduled replacement is lower than 

that of corrective replacement. Especially, the age replacement model shave received much attention to 

trigger the proactive failure management in industry. Nevertheless, opportunistic age replacement models 

have not been extensively explored, except in certain specific cases where opportunities for preventive 

replacement occur randomly. Given the advancements in supply chain network and the constraints on 

transportation time for spare parts, there is often the possibility to acquire spare parts at more cost-

economic prices a tun predictable timings. In other words, opportunistic replacement is making 
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preventive replacements at a randomly occurring opportunity. In such a background, some researchers 

have developed several opportunity-based replacement models. The early models were supported by the 

relevant works (Radner and Jorgenson, 1963; Berg, 1978; Pullen and Thomas, 1986; Zheng, 1995; Zheng 

and Fard, 1991; Dekker and Smeithink, 1991, 1994; Dekker and Dijkstra, 1992; Iskandar and Sandoh, 

1999; Jhang and Sheu, 1999). More concretely, Radner and Jorgenson (1963) first considered the 

opportunity arrival in age replacement model. Based on Radner and Jorgenson (1963), the preventive 

replacement models consisting of multiple units were studied by Berg (1978), Pullen and Thomas (1986) 

and Zheng (1995). Dekker and Dijkstra (1992), Dekker and Smeitink (1991) and Dekker and Smeitink 

(1994) took an opportunity consideration into the age and block replacement models and developed the 

classical control-limit policies. Iskandar and Sandoh (1999) also considered the opportunity-based age 

replacement model and analyzed impact of the warranty in replacement policy. Jhang and Sheu (1999) 

extended opportunistic age replacement policies with major and minimal repairs. Recently, different 

opportunistic age replacement models were developed by Cavalcante et al. (2018), Laggoune et al. (2010), 

Wang et al. (2021), Najafi et al. (2021). For instance, Cavalcante et al. (2018) examined the impact of 

opportunities in a maintenance model that integrates inspection and replacement. Their finding suggests 

that opportunities can enhance performance in maintenance planning. Similarly, Wang et al. (2021) 

investigated imperfect maintenance policies in a complex system, formulating condition-based and age-

based maintenance policies, respectively. 

 

It is worth mentioning that almost existing opportunity-based age replacement models just focused on 

continuous-time models. In practice, the discrete-time modeling is quite useful in scheduling the 

preventive replacement. For instance, some Japanese electrical power companies often reported their 

failure data of pole air switches by month or year. So, the continuous-time models may not work for such 

an annual maintenance planning. Nakagawa and Osaki (1977) first considered age replacement model in 

discrete-time setting as an analogy of the common continuous-time model. Since the seminal work in 

Nakagawa and Osaki (1977), more preventive replacement models in discrete time (see, e.g., Nakagawa 

1984, 1985) were investigated from the viewpoints of their optimality structures. Castro and Alfa (2004) 

discussed the optimal discrete time preventive policy from two approaches; replacing the unit and 

repairing the unit. Eryilmaz (2021) revisited age replacement models when the lifetime of the system is 

modeled by a discrete phase-type distribution. Chien (2012) also formulated a discrete-time age 

replacement models and examined the impacts of a free-repair warranty in replacement policies. 

 

It is noted that discrete-time replacement models face a technical challenge in formulation, as there is a 

probability that two or more replacement options may arrive simultaneously. For example, in the standard 

age replacement model in Nakagawa and Osaki (1977), two replacement options; pre-scheduled re 

placement and failure (corrective) replacement, may occur simultaneously at the same time. In this case, 

the authors only considered that the corrective replacement is prioritized to the pre-scheduled replacement, 

because the failure replacement is considered as are active action for the failure event. On the other hand, 

if the replacement options are selective, then the preventive replacement with cheaper replacement cost 

will be justified economically rather than the failure replacement with a more expensive replacement cost. 

Hence, in discrete-time model setting, the priority of replacement options has to be clarified in advance, 

and strongly decided on the calculation of the expected costs. For the challenge problem in discrete-time 

replacement modeling, Dohi et al. (2005) introduced the concept of replacement option priority and 

reformulated an opportunistic age replacement model. More concretely, replacement option priority is 

defined that if two or more replacement options occur simultaneously, our model will choose the option 

with higher priority. Recently, Wu et al. (2024) extended the above model by taking account of 

replacement first and last disciplines introduced by Zhao and Nakagawa (2012). However, we should note 

that the standard age-based replacement models have not been yet considered by taking into account of 
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the replacement priority. This fact penalizes us to apply the existing discrete-time replacement models in 

practice. Our motivation in this paper is to reformulate two standard age-based replacement models in 

discrete-time, taking into account of the replacement priority.  

 

Most optimal policies in the preventive maintenance models above are formulated by optimizing the 

expected costs rate. In other words, the time value of cost is not considered. Nowadays, since the global 

economic environment is strongly unstable, the net present value (NPV) method is accurate to estimate 

the maintenance cost. Fox (1966) was the first work on the age replacement model with NPV method. 

Nakagawa and Osaki (1977) explored the age replacement model with discounting in discrete time. Chen 

and Savits (1988) formulated age and block replacement policies with discounting and discussed their 

interrelationship. In comprehensive surveys, Nakagawa (2005, 2014) summarized age, periodic, block, 

and random replacement models with discounting using the NPV approach. van den Boomen et al. (2018) 

introduced a modified NPV method to calculate age and interval replacement models. Marais and Saleh 

(2009) developed an analytical framework to capture the NPV in a multi-states failure system. Zhang et al. 

(2023) analyzed the impact of mission and discounted rate in replacement first and last models. 

Unfortunately, almost all models mentioned above are formulated in continuous time, except Nakagawa 

and Osaki (1977). 

 

On the one hand, Nakagawa and Osaki (1977) and Nakagawa (1984, 1985) implicitly assume that failure 

replacement is always chosen when both failure replacement and pre-scheduled replacement occur 

simultaneously. However, this assumption is valid in only rare cases, as the cost of pre-scheduled 

replacement is typically lower than that of failure replacement. In this paper, we introduce the concept of 

replacement priority to prioritize between these two replacement policies in discrete time. Additionally, 

we extend the application of the replacement priority concept to the discrete-time opportunistic age 

replacement model, building upon the work of Dekker and Dijkstra (1992). On the other hand, the 

contemporary economic environment is characterized by instability due to economic shocks. Existing 

opportunity-based models, including those by Dekker and Smeithink (1991, 1994), Dekker and Dijkstra 

(1992), Iskandar and Sandoh (1999), Jhang and Sheu (1999), and Laggoune et al. (2010), do not account 

for the time value of cost. These circumstances motivate us to analyze the models using the Net Present 

Value (NPV) method. In comparison with existing models, we briefly summarize the main contributions 

of this paper as follows: 

(i)   The concept of replacement option priority is introduced to the discrete-time replacement model. 

(ii) The NPVs in the fundamental age replacement and opportunistic age replacement models are 

analyzed. 

(iii) The optimal preventive replacement policies in each model are compared comprehensively. 

 

This rest of paper is organized as follows. Section 2 describes two discrete-time age-based replacement 

models: a standard age replacement by Nakagawa and Osaki (1977) and an opportunistic age replacement 

model by Dekker and Dijkstra (1992). We introduce the priority of two replacement options in discrete 

time and derive the optimal replacement policies with/without discounting via the renewal reward and 

NPV approaches. In section 3, we introduce the probabilistic priority and unify two replacement options 

in each age-based replacement model, where each replacement option may occur with a probability. 

Section 4 compares the optimal preventive replacement times and their related expected cost rate with 

replacement priority through numerical examples. In these examples, we consider a real-world 

replacement problem involving pole air switches in a Japanese power company. Finally, section 5 ends 

the paper with some conclusions. 

 

 



Wu et al.: Two Discrete-time Age-based Replacement Problems with/without… 
 

 

388 | Vol. 9, No. 2, 2024 

2. Model Formulation 

2.1 Assumptions 
In discrete-time setting, we revisit the classical age replacement model and the opportunistic age 

replacement model, separately. It is general that the lifetime of the system, Y, is integer-value and 

independent and identically distributed (i.i.d.) random variable shaving the common probability mass 

function (p.m.f.) ( )Yf n ( 1,2, )n = with the survivor function Pr{ } ( 1)YY n F n = − . In the classical age 

replacement problem, if the failure occurs before time ( 1,2 )on = , the failed item is renewed at the 

failure point, otherwise, it is renewed by new one at time on .It is general that ( ) 1 ( )G G= − and 

( ) 1 ( )F F= − .On the other hand, in the opportunity-based age replacement problem, we assume that the 

arrivals of replacement opportunity arrival, X, arise obeying the i.i.d. geometric distribution 
1Pr{ } ( ) (1 )x

XX x g x p p −= = = − ( 1,2 ;0 1)n p=   . Even if the opportunities arrive before time on , the 

pre-scheduled replacement is not performed. However, if the failure does not occur before time on , the 

pre-scheduled replacement is made at the first arrival of the replacement opportunity after the time on . In 

this case, if the failure occurs before time on , the failure replacement is carried out. All the notations are 

shown in Table 10 in the Appendix. 

 

The cost parameters in our modeling are given by: 

1  c : failure (corrective) replacement cost for each failed item, 

2c : preventive replacement cost at a pre-scheduled time,  

3c : preventive replacement cost at a random opportunity. 

 

For the above notations, we suppose that: 

 

Assumption 1: 1 2 3c c c  . 

It is noted that one of two options; failure replacement aF or pre-scheduled replacement cS  (or 

opportunistic replacement pO ), may occur as a simultaneous event in discrete-time setting. We introduce 

the definition of the replacement option priority. 

 

Definition 1: The option P has a priority to the option Q, if P Q . 

From this definition, we know that if two replacement options occur simultaneously, the option with 

higher priority should be chosen. In this study, the following four different models should be considered: 

(i) Model 1:
c aS F , 

(ii) Model 2:
a cF S , 

(iii) Model 3: p aO F , 

(iv) Model 4: a pF O . 

 

Nakagawa and Osaki (1977) implicitly assumed Model 2 in their age replacement in discrete time. For 

another thing, if the replacement option is selective, it may be better to consider Model 1 because the pre-

scheduled replacement with cheaper cost is prioritized to the failure replacement. In general, the 

simultaneous occurrence of aF and cS is a rare event and may not be selective in actual maintenance 

management. Hence, it would be valuable to consider two priority cases; Model 1 and Model 2 (Model 3  
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and Model 4) in the age replacement (opportunistic replacement) in discrete time. 

 

2.2 Renewal Reward Approach 

We define the discrete-time age replacement (AR) model. In this model, we consider two replacement 

options. If the item fails at time n , it is promptly replaced. Otherwise, a non-failed item is replaced at a 

pre-scheduled time   an n=  with a new unit. The decision involves a tradeoff between the cost of replacing 

failed units and the cost of pre-scheduled replacements. The objective in this problem is to find the 

optimal pre-scheduled replacement time   an n=  that minimizes the expected cost per unit time in a steady 

state (expected cost rate). The discrete-time AR model is illustrated in Figure 1. 

 


an

an

failure replacement  

pre-scheduled replacement  

 : failure replacement  

: pre-scheduled replacement  
 

 

Figure 1. The discrete-time AR model. 

 

For Model 1 and Model 2, we can calculate the probability that an item is renewed by new one at time 

( 1,2 )n =  as 

( ), 1 1

( ) ( 1),

0, 1

Y a

a j Y a

a

f n n n

h n F n n n

n n

  −


= − =
  +

                                                                                                                      (1) 

where, 
1

( ) 1aj

n

h n


=

= ( 1,2)j = . 

 

Let ( )aj aA n ( 1,2)j = denote the meantime lengths during one cycle. Obviously, they are exactly the same 

in the two models, where, 
1

1

1

( ) ( ) ( 1)

( 1)

a

a

n

aj a Y a Y a

n

n

Y

n

A n n f n n F n

F n

−

=

=

= + −

= −




                                                                                                               (2) 

 

The total expected costs of one cycle, ( )aj aB n , for Model j ( 1,2)j = , are given by, 

1

1 1 2

1

2 1 2

( ) ( ) ( 1)

( ) ( 1)

an

a a Y Y a

n

Y a

B n c f n c F n

c c c F n

−

=

= + −

= + − −

                                                                                                               (3) 



Wu et al.: Two Discrete-time Age-based Replacement Problems with/without… 
 

 

390 | Vol. 9, No. 2, 2024 

2 1 2

1

2 1 2

( ) ( ) ( )

( ) ( )

an

a a Y Y a

n

Y a

B n c f n c F n

c c c F n

=

= +

= + −

                                                                                                                   (4) 

 

Based on the renewal reward theorem (Ross, 2013), the expected cost per unit time in the steady state 

(expected cost rates) ( )aj aC n  for Model j ( 1,2)= are formulated as, 

( )E[total cost (0, ]on ]
( ) lim

( )

aj a

aj a
n

aj a

B nn
C n

n A n→
= =                                                                                                 (5) 

 

and our interest is to find the optimal 
*

an minimizing ( )aj aC n . 

 

Define the non-linear functions: 

1

1

( ) ( ) ( 1) ( 1)
an

a a Y a Y Y a

n

q n R n F n F n
=

= − − −                                                                                                       (6) 

2

1

( ) ( 1) ( 1) ( )
an

a a Y a Y Y a

n

q n r n F n F n
=

= + − −                                                                                                       (7) 

where, ( ) ( ) / ( )Y a Y a Y aR n f n F n= . 

 

For more detailed relationship between ( )Y aR n  and ( )Y ar n , see Lemma 1 in the Appendix. 

 

Theorem 2.1 (i) If the lifetimeY  is strictly increasing failure rate (IFR), then ( )ajq n  (j= 1,2) is strictly 

increasing in n . 

• In addition to (i), if 2 1 2( ) / ( )ajq c c c  − , then it has at least one (at most two) optimal AR time

* * (1 )a an n   satisfying 
*

2 1 2( 1) / ( )aj aq n c c c−  − and *

2 1 2   ( ) / ( )aj aq n c c c −                                                                                     (8) 

 

• In addition to (i), if 2 1 2( ) / ( )ajq c c c  − , then the optimal AR time is
*  an → , and the decision-maker 

only select the failure replacement. 

 

(ii) If the lifetime Y is decreasing failure rate(DFR), then ( )ajq n  (j=1,2) is decreasing in n , and the 

optimal AR time is given by
*   1an = or

*  an → . 

 

To access the proof of Theorem 2.1, consult the Appendix. Theorem 2.1 highlights distinctions between 

our models and those proposed by Nakagawa and Osaki (1977). Notably, Model 1 demonstrates greater 

economic efficiency compared to Model 2. This is attributed to the lower cost associated with pre-

scheduled replacement when contrasted with failure replacement expenses. Furthermore, our study delves 

into scenarios where the lifetime follows a decreasing failure rate (DFR). We find that it is different from 

the continuous age model, because 
*   1an = or 

*  an →  should be considered. 

 

The following result is straight forward from Theorem 2.1. 
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Theorem 2.2 For Model j(=1, 2), if lifetime Y  is strictly IFR and 2 1 2( ) / ( )ajq c c c  − . Then the 

minimum expected cost rates
*( )aj aC n can be obtained as 

* * *( 1) ( ) ( )aj a aj a aj aU n C n U n−                                                                                                                        (9) 

 

where, 

1 1 2( ) ( ) ( )a a Y aU n c c R n= −                                                                                                                              (10) 

2 1 2( ) ( ) ( 1)a a Y aU n c c r n= − +                                                                                                                         (11) 

 

Next, the opportunity-based age replacement (OR) model is considered. In the above AR model, the 

assumption was made that replacement is viable at any given moment. However, in practical scenarios, 

especially during busy periods, replacement may not always be readily available. In such instances, 

replacement commonly occurs at random intervals or trimmings. Dekker and Dijkstra (1992) explored an 

OR model where replacement opportunities follow a Poisson process. Their OR model demonstrates that 

a control-limit policy is optimal, ensuring replacement is triggered when the first opportunity arises just 

after a pre-scheduled replacement time limit 
0n n= . Here, we reformulate the OR model in discrete-time 

setting. The discrete-time OR model is depicted in Figure 2. 

 


on

on

failure replacement  

pre-scheduled replacement  

 : failure replacement  

: pre-scheduled replacement  

: arrival of replacement  opportunity  
 

 

Figure 2. The discrete-time OR model. 

 

For Model 3 and Model 4, we can give the probability that an item is renewed at time n ( 0,1, )= as, 

1

( ), 0
( )

( )(1 ) (1 ) ( 1), 1o o

Y o

oj n n n n

Y Y o

f n n n
h n

f n p p p F n n n
− − −

 
= 

− + − −  +
                                                                 (12) 

where, 
0

( ) 1oj

n

h n


=

= ( 3,4)j = . 

 

In this model, ( )oj oA n is the meantime lengths of one cycle, for Model j (= 3, 4), i.e.,  

1

0 1

1

1 1

( ) ( ) ( )(1 ) (1 ) ( 1)

( 1) ( 1)(1 )

o

o o

o

o

o

o

n
n n n n

oj o Y Y Y

n n n

n
n n

Y Y

n n n

A n n f n n f n p p p F n

F n F n p


− − −

= = +


− −

= = +

 = + − + − − 

= − + − −

 

 

                                                   (13) 
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( )oj oB n are the expected total costs of one cycle in Model j (= 3, 4), where, 

1

3 1 1 3

0 1 1

3 1 3

1

( ) ( ) ( )(1 ) (1 ) ( 1)

( ) ( ) ( )(1 )

o

o o

o o

o

o

n
n n n n

o o Y Y Y

n n n n n

n n

Y o Y

n n

B n c f n c f n p c p p F n

c c c F n f n p

 
− − −

= = + = +


−

= +

= + − + − −

 
= + − + − 

 

  



                                           (14) 

 

1 1

4 1 1 3

0 1 1

1

3 1 3

1

( ) ( ) ( )(1 ) (1 ) ( )

( ) ( ) ( )(1 )

o

o o

o o

o

o

n
n n n n

o o Y Y Y

n n n n n

n n

Y o Y

n n

B n c f n c f n p c p p F n

c c c F n f n p

 
− − − −

= = + = +


− −

= +

= + − + −

 
= + − + − 

 

  



                                             (15) 

 

The expected costs rate, ( )oj oC n , for Model j (=3,4) are  

( )E[total cost (0, ]on ]
( ) lim

( )

oj o

oj o
n

oj o

B nn
C n

n A n→
= =                                                                                            (16) 

 

It is of interest to obtain the pre-scheduled replacement time limit 
*

on minimizing ( )oj oC n . Define the 

non-linear functions: 

3 3

1

( ) ( ) ( ) ( ) ( )(1 ) o

o

n n

o o o o o Y o Y

n n

q n H n A n F n f n p


−

= +

 
= − + − 

 
                                                                         (17) 

1

4 3

1

( ) ( 1) ( ) ( ) ( )(1 ) o

o

n n

o o o o o Y o Y

n n

q n h n A n F n f n p


− −

= +

 
= + − + − 

 
                                                                  (18) 

 

where, 

1

1

( )(1 )

( )

( )(1 )

o

o

o

o

n n

Y

n n

o
n n

Y

n n

f n p

H n

F n p


−

= +


−

= +

−

=

−




                                                                                                                 (19) 

1

1

( 1)(1 )

( 1)

( )(1 )

o

o

o

o

n n

Y

n n

o
n n

Y

n n

f n p

h n

F n p


−

= +


−

= +

+ −

+ =

−




                                                                                                       (20) 

 

For additional information regarding the monotonic relationship between ( )YR n  ( ( )Yr n ) and ( )H n  ( ( )h n ), 

refer to Lemma 2, Lemma 3, and Corollary 1 in the appendix. The following theorem describes the 

optimal pre-scheduled replacement time limit 
*

on minimizing the expected costs rate, ( )oj oC n , for Model 

j(= 3,4), where the proof is given in the appendix. 
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Theorem 2.3 (i) If the lifetimeY  is strictly IFR, then ( )ojq n  (j=3,4) is strictly increasing in n . 

• In addition to (i), if 3 1 3( ) / ( )ojq c c c  − , then it has at least one (at most two) optimal OR time limit

* * (0 )o on n   satisfying 
*

3 1 3( 1) / ( )oj oq n c c c−  −  and *

13 3( ) / ( )oj oq n c c c −                                                                                   (21) 

 

• In addition to (i), if 3 1 3( ) / ( )ojq c c c  − , then the optimal OR time limit is
*  on →  and the decision-

makers only select the failure replacement. 

 

(ii) If the lifetimeY is DFR, then ( )ojq n  (j=3,4) is decreasing in n , and the optimal OR time limit is 

*   0on = or
*  on = . 

 

Compared with the classical model in Dekker and Dijkstra (1992), we further study the relationship 

between ( )YR n  ( ( )Yr n ) and ( )H n  ( ( )h n ) and related corollaries. We also study the case that the lifetime 

is DFR. 

 

Theorem 2.4 For Model j(=3,4), if the lifetime Y  is strictly IFR and ( )ojq   3 1 3/ ( )c c c− . Then the 

minimal expected cost rates
*( )oj oC n  are given by  

* * *( 1) ( ) ( )oj o o ojoj oU n C n U n−                                                                                                                      (22) 

 

where, 

3 1 2( ) ( ) ( )o o oU n c c H n= −                                                                                                                               (23) 

4 1 2( ) ( ) ( 1)o o oU n c c h n= − +                                                                                                                            (24) 

 

2.3 NPV Approach 
We denote the discount factor  (0 1)   to represent the expected NPV of the unit cost. We first 

derive the preventive replacement policies in AR model. In the NPV formulation, the expected total 

discounted costs over an infinite time horizon, ( , )aj aC n  , for Model j(= 1, 2) are given by 

1

1 2

1

( , ) ( , ) ( ) ( , ) ( 1)
a

a

n
nn

aj a aj a Y aj a Y a

n

C n c C n f n c C n F n    
−

=

   = + + + −                                                 (25) 

 

From a few algebraic manipulations, we can obtain, 

( , )
( , )

1 ( , )

aj a

aj a

aj a

B n
C n

A n





=

−
                                                                                                                           (26) 

 

where, the function ( , )aj aA n  ( 1,2)j = is the NPV of one unit cost during the renewal cycle. i.e.,  

1

1
( , ) ( 1)

an
n

aj a Y

n

A n F n


 
 =

−
= −                                                                                                                (27) 

 

The functions ( , )aj aB n   for Model j (=1,2) are the expected total discounted costs during the renewal 
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cycle and they can be calculated by  
1

1 1 2

1

( , ) ( ) ( 1)
a

a

n
nn

a a Y Y a

n

B n c f n c F n  
−

=

= + −                                                                                                (28) 

2 1 2

1

( , ) ( ) ( )
a

a

n
nn

a a Y Y a

n

B n c f n c F n  
=

= +                                                                                                    (29) 

 

It is evident from the well-known L’Hopital’s theorem that 

1
( ) lim(1 ) ( , )aj a aj aC n C n


 

→
= −                                                                                                                     (30) 

 

Next, we define the non-linear functions for a fixed  : 

( )

( )
 1 2

1 2 1 1( ) ( ) 1 ( , ) ( , )
1

a a Y a a a a a

c c
q n R n c A n B n  



 −
= − − − 

−  

                                                                  (31) 

( )

( )
 1 2

2 2 1 2( ) ( 1) 1 ( , ) ( , )
1

a a Y a a a a a

c c
q n r n c A n B n


 




 −
= + − − − 

−  

                                                          (32) 

 

In the NPV formulation, the optimal AR polices can be obtained (see for the proof in Appendix).  

 

Theorem 2.5 (i) If the lifetime Y  is strictly IFR, then ( )aj aq n   (j=1,2) is strictly increasing in n . 

• In addition to (i), if ( ) 0ajq   , then it has at least one (at most two) optimal AR time
* * (1 )a an n 

, satisfying 
*( 1 ) 0aj aq n −   and *  ( ) 0aj aq n                                                                                                                (33) 

 

• In addition to (i), if ( ) 0ajq   , then the optimal AR time is 
*

an →  and the decision-makers only 

perform the failure replacement. 

 

(iii) If the lifetime Y  is DFR, then ( )aj aq n   (j=1,2) is decreasing in n , and the optimal AR  time 

becomes
* 1an = or

*

an → . 

 

Theorem 2.6 For Model j (=1,2), if the lifetime Y  is strictly IFR and ( ) 0ajq   . Then the minimum

*( )aj aC n  for a fixed  are given by 

* * *( 1 ) ( ) ( )aj a aj a aj aU n C n U n −                                                                                                           (34) 

 

where, 

( )

( )
1 2

1 2( ) ( )
1

a a Y a

c c
U n R n c



−
= −

−
                                                                                                                 (35) 

( )

( )
1 2

2 2( ) ( 1)
1

a a Y a

c c
U n r n c





−
= + −

−
                                                                                                         (36) 

 

Next, we calculate the OR model with NPV approach. The expected NPV value of one unit cost during 
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the renewal cycle, ( , )oj oA n  , for Model j (=3,4) are obtained as 

1

0 1

( , ) ( ) ( )(1 ) (1 ) ( 1)
o

o o

o

n
n n n nn n

oj o Y Y Y

n n n

A n f n f n p p p F n  


− − −

= = +

 = + − + − −                                              (37) 

 

The expected total discounted costs during one cycle, ( , )oj onB  , for Model j (=3,4) are given by, 

1

3 1 1 3

0 1 1

( , ) ( ) ( )(1 ) (1 ) ( 1)
o

o o

o o

n
n n n nn n n

o o Y Y Y

n n n n n

B n c f n c f n p c p p F n   
 

− − −

= = + = +

= + − + − −                            (38) 

1 1

4 1 1 3

0 1 1

( , ) ( ) ( )(1 ) (1 ) ( )
o

o o

o o

n
n n n nn n n

o o Y Y Y

n n n n n

B n c f n c f n p c p p F n   
 

− − − −

= = + = +

= + − + −                              (39) 

 

Then, we obtain the NPV value of expected total costs ( , ) ( , ) / 1 ( , )oj o oj o oj oC n B n A n   = −   for Model 

j (=3,4). 

 

It is evident to check that 

1
( ) lim(1 ) ( , )oj o oj oC n C n


 

→
= −                                                                                                                    (40) 

 

Define the non-linear functions for a fixed  : 

( )
 1 3

3 3 3 3( ) ( , ) 1 ( , ) ( , )
1

o o o o o o o

c c
q n H n c A n B n   



 − 
= − − − 

− 
                                                              (41) 

( )
 1 3

4 3 3 4( ) ( 1, ) 1 ( , ) ( , )
1

o o o o o o o

c c
q n h n c A n B n


   



 − 
= + − − − 

− 
                                                       (42) 

 

where, 

1

1

( ) (1 )

( , )

( ) (1 )

o

o

o

o

n nn

Y

n n

o
n nn

Y

n n

f n p

H n

F n p








−

= +


−

= +

−

=

−




                                                                                                          (43) 

1

1

( 1) (1 )

( 1, )

( ) (1 )

o

o

o

o

n nn

Y

n n

o
n nn

Y

n n

f n p

h n

F n p








−

= +


−

= +

+ −

+ =

−




                                                                                                  (44) 

 

For additional information regarding the monotonic relationship ( )YR n  ( ( )Yr n ) and ( , )H n  ( ( , )h n  ), 

refer to Lemma 4 and Corollary 2 in Appendix. In the NPV formulation, the optimal OR policies can be 

described as follows (see the proof in Appendix).  

 

Theorem 2.7 (i) If the lifetimeY  is strictly IFR, then ( )ojq n  ( 3,4)j = is strictly increasing in n . 

• In addition to (i), if ( ) 0ojq   , then it has at least one (at most two) optimal OR time limit
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* * (0 )o on n  , satisfying 
*( 1 ) 0oj oq n −   and *( ) 0oj oq n                                                                                                               (45) 

 

• In addition to (i), if ( ) 0ojq   , then the optimal OR time limit is 
*

on →  and the decision-maker 

only choose failure replacement. 

 

(ii) If the lifetimeY  is DFR, then ( )ojq n  ( 3,4)j =  is decreasing in n , and the optimal OR time limit is

* 0on = or
*

on → . 

 

Theorem 2.8 For Model j (=3,4),if the lifetime Y  is strictly IFR and ( ) 0ojq n   .Then the minimum

*( )oj oC n  for a fixed  are given by 

* * *( 1 ) ( ) ( )oj o oj o oj oU n C n U n  −                                                                                                          (46) 

 

where, 

1 3
3 3( ) ( , )

1
o o o

c c
U n H n c




−
= −

−
                                                                                                               (47) 

( )1 3

4 3( ) ( 1, )
1

o o o

c c
U n h n c


 



−
= + −

−
                                                                                                     (48) 

 

3. Unified Models with Probabilistic Priority 
In the preceding section dealing with discrete-time age-based preventive replacement policies with 

renewal rewards and NPV approaches, we categorized two potential replacement priorities and 

determined the optimal pre-scheduled replacement times and pre-scheduled replacement times time limits 

for each case. Nevertheless, it is essential to acknowledge that the replacement option priority may not 

always be deterministic. In other words, the occurrence of priority may be probabilistic and subject to 

change at each decision point for replacement. For instance, if the decision-maker randomly selects one of 

the replacement options, this scenario holds true.  We assume that each priority associated with Model j

( 1,2,3,4)=  happens with probability  (0 1)j jp p  , where 1 2 1p p+ =  and 3 4 1p p+ = . 

3.1 Renewal Reward Approach 
First, we calculate discrete-time AR model with probabilistic priority. In unified model, the expected time 

length with probability jp can be calculated by 3( ) ( )a a aj aA n A n=  in Equation (2). In addition, the expected 

total cost of one cycle,
3( )a aB n ,with the probabilistic priority is given by 

2

3 1
( ) ( )a a j aj aj

B n p B n
=

=  with 

Equations (3) and (4). The underlying problem is simply formulated as 3 3min ( ) ( ) / ( )
an a a a a aj aC n B n A n= .  

 

Define 
2

13 ( ) ( ) ( ) ( )a a aj a a aj aj aj jq n U n A n B np
=

= − with Equations (10) and (11). Then it can be seen that 

2

3 3 1
( 1) ( ) { ( 1) ( )} ( 1)a a a a j aj a aj a aj aj

q n q n p q n q n A n
=

+ − = + − + . Hence, for   0jp  , necessary conditions 

of strictly increasing ( )aj aq n  are to hold all conditions in Theorem 2.1. 
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Theorem 3.1 If the lifetime Y  is strictly IFR and 3 2 1 2( ) / ( )aq c c c  − . Then the optimal
3( )a aC n in 

unified model with probabilistic priority is obtained as 
* * *

3 3 3( 1) ( ) ( )a a a a a aU n C n U n−                                                                                                                     (49) 

 

where, 
2

3

1

( ) ( )a a j aj a

j

U n p U n
=

=                                                                                                                                 (50) 

 

Next, the discrete-time OR model with probabilistic priority is consider. We have the expected time 

length 5 ( ) ( )o o oj oA n A n=  in Equation (13) and the expected total cost during one cycle 

4

5 3
( ) ( )o o j oj oj

B n p B n
=

=  with Equation (14) and (15). Define 
4

35 5( ) ( ) ( ) ( )ojo o oj o j o oj oq n U np A n B n
=

= −
with Equation (23) and (24). Then, one has 

4

5 5 3
( 1) ( ) { ( 1) ( )} ( 1)o o o o j oj o oj o oj oj

q n q n p q n q n A n
=

+ − = + − + .We calculate the underlying model

5 5 5min ( ) ( ) / ( )
on o o o o o oC n B n A n= and derive those necessary conditions of strictly increasing 5( )o oq n  are 

to hold all conditions in Theorem 2.3. 

 

Theorem 3.2 If the lifetime Y  is strictly IFR and 5 3 1 3( ) / ( )oq c c c  − . Then the optimal *

5( )o oC n in 

unified model with probabilistic priority is given by  
* * *

5 5 5( 1) ( ) ( )o o o o o oU n C n U n−                                                                                                                     (51) 

 

where, 
4

5

3

( ) ( )o a j oj o

j

U n p U n
=

=                                                                                                                                 (52) 

 

3.2 NPV Approach 
Since the expected NPV of one unit cost during the renewal cycle and the expected total cost during one 

cycle are given by 3( , ) ( , )a a aj aA n A n =  in Equation (27) and 
2

3 1
, ,( ) ( )a a j aj aj

B n p B n 
=

=  with 

Equation (28) and (29).We define 
2

13 ( ) ( ) ( ) ( ),, , ,a a aj ajj aj a aj apq n U n A n B n   
=

= −  with Equation (35) 

and (36). Then it can be seen that 
2

3 3 1
, ,( 1, ) ( ) { ( 1, ) ( )} ( 1, )a a a a j aj a aj a aj aj

q n q n p q n q n A n  
=

+ − = + − + . Hence, for   0jp  , necessary 

conditions of strictly increasing ( ),aj aq n   are to hold all conditions in Theorem 2.5. 

 

Theorem 3.3 If the lifetimeY  is strictly IFR and 3 ( ) 0aq   . Then the minimum *

3( )a aC n  for a fixed 

 is obtained as: 
* * *

3 3 3( 1 ) ( ) ( )a a a a a aU n C n U n  −                                                                                                        (53) 

 

where, 
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2

3

1

( ) ( )a a j aj a

j

U n p U n 
=

=                                                                                                                        (54) 

 

Finally, we formulate the OR model with discounting. The expected NPV value of one unit cost and the 

expected total cost are given by 5 ( , ) ( , )o o oj oA n A n =  in Equation (37) and 
4

5 3
( , ) ( , )o o j oj oj

B n p B n 
=

=  

with Equation (38) and (39). Define 5

4

5 3
( ) ( ) ( ) ( , ), , ,o o oj o ojj oj o oq n U n A np B n   

=
= −  with Equation (47) 

and (48). Then, one has 
4

5 5 3
( 1, ) ( ) { ( 1, ) ( , )} ( 1, ),,o o o o j oj o oj o oj oj

q n q n p q n q n A n    
=

+ − = + − + and 

derives those necessary conditions of strictly increasing 
5 ( )o oq n   are to hold all conditions in Theorem 

2.7. 

 

Theorem 3.4 If the lifetimeY  is strictly IFR and 5 ( ) 0oq   . Then the optimal *

5 ( )o oC n  for a fixed   

is given by: 
* * *

5 5 5( 1 ) ( ) ( )o o o o o oU n C n U n  −                                                                                                         (55) 

 

where, 
4

5

3

( ) ( )o a j oj o

j

U n p U n 
=

=                                                                                                                       (56) 

 

4. Numerical Illustrations and Discussion 
Holland and McLean (1975) conducted an empirical study on the preventive replacement of electrical 

devices within a continuous-time framework. Dohi et al. (2005) addressed a discrete-time optimal 

preventive replacement problem concerning section switches equipped with telegraph poles over a 

predetermined time period. More recently, Wu et al. (2024) expanded upon the above model, 

incorporating the replacement last discipline introduced by Zhao and Nakagawa (2012). Here, we 

computed the optimal AR time 
*

an satisfying the inequalities (9) and (35), the optimal OR time limit
*

on

satisfying the in Equations (23), (47) and their related *( )aC n  and *( )oC n for section switches equipped 

with telegraph poles. Following we suppose that ( )Yf n is a discrete Weibull p.m.f. with 0.9995r = , 

2.8547 = and MTTE=E[Y]=13.4: 

( 1)( ) n n

Yf n r r
 −= −                                                                                                                             (57) 

 

where, 1,2,n = .Based on the above parameters, the corresponding survival function and failure rate 

function are shown as  
( 1)( 1) n

YF n r
−− =                                                                                                                                      (58) 

 

and 
( 1)( ) 1 n n

Yr n r
 − −= −                                                                                                                               (59) 

 

Furthermore, suppose that ( )Xg n is a geometric p.m.f. 1( ) 0.05(1 0.05)n

Xg n −= − . Other model parameters 

are set as
2 1.0c = ,  3 0.4,1.0c  and  1 1.5,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0c  . In our unified models 
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with probabilistic priorities, we set 
1 2 3 40.4, 0.6, 0.5p p p p= = = = .The discount factor is set as 0.6, =

0.9 . 

 

Tables 1-3 present the optimal AR time 
*

an and the optimal OR time limit 
*

on , and their associated 
*( )aC n  

and 
*( )oC n for Model 1 to Model 4. We also give the results for the unified models. From these results, we 

obtain the following lessons learned from the numerical illustrations.  

 

Lesson (1): When 1c  increases, both the optimal AR time 
*

an and the optimal OR time limit 
*

on become 

small. This is because the preventive replacement tends to be set earlier if the corrective replacement cost 

is higher. 

 

Lesson (2): When 2 3c c= , AR policy is better than OR policy. In addition, AR time is larger than OR time 

limit, i.e.,
* *

oan n . 

 

Lesson (3): When 2 3 c c , OR policy is better than AR policy in some cases where 1c  is relatively 

smaller. For example, when 
1 1.5c = , it is easy to confirm that OR policy is better than AR policy. In our 

actual application, under the assumption of
2 32c c= , if

2 1 21.5c c c  , the decision-maker should consider 

opportunity in the preventive replacement, otherwise, i.e.,
2 21.5c c , the decision-maker should consider 

only AR policy instead of OR policy.  

 

Lesson (4): In most cases, the optimal preventive replacement times for each priority model tend to 

converge to the same values. This phenomenon arises from the discretization of replacement times into 

integer values and the relatively subtle differences in replacement priorities. 

 

Lesson (5): Comparing Tables 1 and 2 with Table 3, notable discrepancies in the preventive replacement 

times are not evident. Moreover, the associated expected costs tend to converge towards similar values. 

 

 

Table 1. Optimal 
*

an , 
*

on and their related *( )aC n  and *( )oC n between Model 1 and Model 3, when 

0.9995r = , 2.8547 = and 0.05p = . 

 

 

C1 

C3= 0.4 C3= 1 

AR OR AR OR 

*

an  
*

1( )a aC n  
*

on  
*

3 ( )o oC n  
*

an  
*

1( )a aC n  
*

on  
*

3 ( )o oC n  

1.5 15 0.1083 4 0.1016 15 0.1083 11 0.1132 

2.0 12 0.1296 3 0.1313 12 0.1296 8 0.1465 

3.0 10 0.1575 2 0.1900 10 0.1575 5 0.2088 

4.0 8 0.1769 2 0.2482 8 0.1769 4 0.2690 

5.0 8 0.1926 2 0.3064 8 0.1926 3 0.3283 

6.0 7 0.2049 1 0.3644 7 0.2049 3 0.3871 

7.0 7 0.2166 1 0.4223 7 0.2166 2 0.4458 

8.0 6 0.2264 1 0.4802 6 0.2264 2 0.5041 

9.0 6 0.2345 1 0.5381 6 0.2345 2 0.5623 

10.0 6 0.2427 1 0.5960 6 0.2427 2 0.6205 
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Table 2. Optimal 
*

an , 
*

on and their related *( )aC n  and *( )oC n between Model 2 and Model 4, when r = 0.9995,  

β = 2.8547 and p = 0.05.
 

 

 
C1 

C3= 0.4 C3= 1 

AR OR AR OR 

*

an  
*

2 ( )a aC n  
*

on  
*

4 ( )o oC n  
*

an  
*

2 ( )a aC n  
*

on  
*

4 ( )o oC n  

1.5 16 0.1111 4 0.1045 16 0.1111 13 0.1139 

2.0 12 0.1367 3 0.1356 12 0.1367 9 0.1488 

3.0 9 0.1716 2 0.1969 9 0.1716 5 0.2141 

4.0 8 0.1968 2 0.2578 8 0.1968 4 0.2769 

5.0 7 0.2175 2 0.3186 7 0.2175 3 0.3389 

6.0 7 0.2352 2 0.3795 7 0.2352 3 0.4005 

7.0 6 0.2503 1 0.4397 6 0.2503 2 0.4618 

8.0 6 0.2638 1 0.5003 6 0.2638 2 0.5527 

9.0 6 0.2773 1 0.5608 6 0.2773 2 0.5835 

10.0 5 0.2893 1 0.6213 5 0.2893 2 0.6444 

 

 

 

Table 3. Optimal 
*

an , 
*

on and their related *( )aC n  and *( )oC n with unified models, when r = 0.9995, β = 2.8547  

and p = 0.05.
 

 

 

C1 

C3= 0.4 C3= 1 

AR OR AR OR 

*

an  
*

3 ( )a aC n  
*

on  
*

5 ( )o oC n  
*

an  
*

3 ( )a aC n  
*

on  
*

5 ( )o oC n  

1.5 16 0.1095 4 0.1131 16 0.1095 13 0.1135 

2.0 12 0.1323 3 0.1335 12 0.1323 9 0.1476 

3.0 9 0.1623 2 0.1934 9 0.1623 5 0.2114 

4.0 8 0.1849 2 0.2530 8 0.1849 4 0.2730 

5.0 7 0.2029 2 0.3125 7 0.2029 3 0.3366 

6.0 7 0.2170 2 0.3720 7 0.2170 3 0.3938 

7.0 6 0.2310 1 0.4310 6 0.2310 2 0.4538 

8.0 6 0.2413 1 0.4918 6 0.2413 2 0.5284 

9.0 6 0.2517 1 0.5495 6 0.2517 2 0.5729 

10.0 6 0.2620 1 0.6087 6 0.2620 2 0.6325 

 

Tables 4-6 present the optimal AR time 
*

an and OR time limit
*

on , and their expected total discounted costs 
*( )aC n  and *( )oC n   for Model 1 to Model 4, when the discounted factor is given by α = 0.90. By 

observing the results carefully, we could obtain the following findings:  

 

Lesson (6): The lessons (1)~(5) always hold in models with discounting. 

 

Lesson (7): In terms of the optimal time in AR and OR policies, the optimal replacement time with 

discounting is longer than that without discounting. That is, when the economic environment is unstable, 

the decision-makers will shorten the replacement times for their equipment.  

 

Lesson (8): When the discount factor is relatively small, such as 0.90 = , the optimal preventive 

replacement times for each priority model often converge to similar values in most cases. In this scenario, 

the discount factor has a minimal impact on the optimal replacement times. 

 

 

 



Wu et al.: Two Discrete-time Age-based Replacement Problems with/without… 
 

 

401 | Vol. 9, No. 2, 2024 

Table 4. Optimal 
*

an , 
*

on  and their related *( )aC n  and *( )oC n  between Model 1 and Model 3, when r = 0.9995, 

β = 2.8547, p = 0.05 and α = 0.90.
 

 

 

C1 

C3= 0.4 C3= 1 

AR OR AR OR 
*

an  *

1( 0.9)a aC n  
*

on  
*

3( 0.9)o oC n  
*

an  *

1( 0.9)a aC n  
*

on  
*

3( 0.9)o oC n  

1.5 18 0.5800 5 0.5411 18 0.5800 15 0.5828 

2.0 14 0.7410 4 0.6965 14 0.7410 10 0.7679 

3.0 11 0.9802 3 0.9971 11 0.9802 7 1.1100 

4.0 9 1.1548 2 1.2910 9 1.1548 5 1.4312 

5.0 8 1.2968 2 1.5825 8 1.2968 4 1.7413 

6.0 8 1.4195 1 1.8715 8 1.4195 3 2.0464 

7.0 7 1.5190 1 2.1585 7 1.5190 3 2.3341 

8.0 7 1.6131 1 2.4454 7 1.6131 3 2.6418 

9.0 6 1.7028 1 2.7323 6 1.7028 2 2.9361 

10.0 6 1.7706 1 3.0192 6 1.7706 2 3.2276 

 

 

 

Table 5. Optimal 
*

an , 
*

on  and their related *( )aC n  and *( )oC n  between Model 2 and Model 4, when r = 0.9995, 

β = 2.8547, p = 0.05 and α = 0.90.
 

 

 

C1 

C3= 0.4 C3= 1 

AR OR AR OR 

*

an  
*

2 ( 0.9)a aC n  
*

on  
*

4 ( 0.9)o oC n  
*

an  
*

2 ( 0.9)a aC n  
*

on  
*

4 ( 0.9)o oC n  

1.5 22 0.5834 7 0.5672 22 0.5834 20 0.5835 

2.0 15 0.7560 5 0.7366 15 0.7560 12 0.7748 

3.0 11 1.0523 4 1.0597 11 1.0523 7 1.1346 

4.0 9 1.2736 3 1.3732 9 1.2736 5 1.4732 

5.0 8 1.4559 2 1.6817 8 1.4559 4 1.7998 

6.0 7 1.6182 2 1.9882 7 1.6182 4 2.1196 

7.0 7 1.7511 1 2.2939 7 1.7511 3 2.4339 

8.0 7 1.8839 1 2.5958 7 1.8839 3 2.7465 

9.0 6 1.9933 1 2.8978 6 1.9933 2 3.0568 

10.0 6 2.0973 1 3.1998 6 2.0973 2 3.3634 

 

 

 

Table 6. Optimal 
*

an , 
*

on  and their related *( )aC n  and 
*( )oC n   in unified models, r = 0.9995, β = 2.8547, p = 

0.05 and α = 0.90.
 

 

 

C1 

C3= 0.4 C3= 1 

AR OR AR OR 

*

an  
*

3( 0.9)a aC n  
*

on  
*

5 ( 0.9)o oC n  
*

an  
*

3( 0.9)a aC n  
*

on  
*

5 ( 0.9)o oC n  

1.5 19 0.5818 6 0.5500 19 0.5818 15 0.5835 

2.0 14 0.7512 5 0.7172 14 0.7512 11 0.7716 

3.0 11 1.0090 3 1.0289 11 1.0090 7 1.1223 

4.0 9 1.2023 2 1.3330 9 1.2023 5 1.4522 

5.0 8 1.3604 2 1.6321 8 1.3604 4 1.7705 

6.0 8 1.4991 2 1.9311 8 1.4991 4 2.0830 

7.0 7 1.6118 1 2.2261 7 1.6118 3 2.3890 

8.0 7 1.7214 1 2.5206 7 1.7214 3 2.6942 

9.0 6 1.8190 1 2.8150 6 1.8190 2 2.9964 

10.0 6 1.9013 1 3.1095 6 1.9013 2 3.2955 
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Tables 7-9 present the optimal AR time 
*

an and OR time
*

on , and their expected total discounted costs 
*( )aC n  and *( )oC n   for Model 1 to Model 4, when the discounted α = 0.60. 

 

Lesson (9) The discount factor is not sensitive in our example with 0.90 =  which is almost unity. 

However, if the discount factor is much smaller (i.e., α = 0.60), two expected costs with/without 

discounting give the remarkable differences. More specially, when the discount factor is relatively smaller, 

such as α = 0.60, the optimal times in Model 1 (or Model 3) is much bigger than ones in Model 2 (or 

Model 4).  

 

The Figure 3 graphically presents the difference between the AR models without discounting and with 

discounting. 

 

The Figure 4 graphically presents the difference between the OR models without discounting and with 

discounting. 
 

Table 7. Optimal 
*

an , 
*

on  and their related *( )aC n  and *( )oC n   between Model 1 and Model 3, when r = 0.9995, 

β = 2.8547, p = 0.05 and α = 0.90.
 

 

 
C1 

C3= 0.4 C3= 1 

AR OR AR OR 
*

an  *

1( 0.6)a aC n  
*

on  *

3( 0.6)o oC n  
*

an  *

1( 0.6)a aC n  
*

on  *

3( 0.6)o oC n  

1.5 25 0.0181 11 0.0181 25 0.0181 23 0.0181 

2.0 20 0.0241 9 0.0241 20 0.0241 19 0.0241 

3.0 15 0.0361 7 0.0359 15 0.0361 13 0.0362 

4.0 12 0.0480 5 0.0474 12 0.0480 10 0.0482 

5.0 11 0.0595 5 0.0588 11 0.0595 9 0.0601 

6.0 10 0.0707 4 0.0699 10 0.0707 8 0.0720 

7.0 9 0.0814 4 0.0810 9 0.0814 7 0.0838 

8.0 9 0.0918 3 0.0919 9 0.0918 6 0.0954 

9.0 8 0.1014 3 0.1027 8 0.1014 6 0.1070 

10.0 8 0.1110 3 0.1134 8 0.1110 5 0.1186 

 

Table 8. Optimal 
*

an , 
*

on  and their related 
*( )aC n  and 

*( )oC n  between Model 2 and Model 4, when r = 0.9995, 

β = 2.8547, p = 0.05 and α = 0.60.
 

 

 
C1 

C3= 0.4 C3= 1 

AR OR AR OR 

*

an  
*

2 ( 0.6)a aC n  
*

on  
*

4 ( 0.6)o oC n  
*

an  
*

2 ( 0.6)a aC n  
*

on  
*

4 ( 0.6)o oC n  

1.5 31 0.0181 16 0.0181 31 0.0181 27 0.0181 

2.0 27 0.0241 12 0.0241 27 0.0241 23 0.0241 

3.0 22 0.0362 9 0.0361 22 0.0362 20 0.0362 

4.0 17 0.0482 7 0.0480 17 0.0482 15 0.0482 

5.0 14 0.0602 6 0.0598 14 0.0602 12 0.0603 

6.0 12 0.0722 5 0.0715 12 0.0722 11 0.0723 

7.0 11 0.0839 5 0.0831 11 0.0839 9 0.0843 

8.0 10 0.0956 4 0.0945 10 0.0956 8 0.0962 

9.0 10 0.1070 4 0.1059 10 0.1070 8 0.1082 

10.0 9 0.1182 3 0.1172 9 0.1182 7 0.1201 
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Table 9. Optimal 
*

an , 
*

on  and their related 
*( )aC n  and 

*( )oC n   in unified models, when r = 0.9995, β = 2.8547, 

p = 0.05 and α = 0.60.
 

 

 

C1 

C3= 0.4 C3= 1 

AR OR AR OR 

*

an  
*

3( 0.6)a aC n  
*

on  *

5 ( 0.6)o oC n  
*

an  
*

3( 0.6)a aC n  
*

on  *

5 ( 0.6)o oC n  

1.5 28 0.0181 13 0.0180 28 0.0181 24 0.0181 

2.0 23 0.0241 10 0.0240 23 0.0241 21 0.0242 

3.0 16 0.0361 7 0.0360 16 0.0361 15 0.0362 

4.0 14 0.0481 6 0.0478 14 0.0481 12 0.0482 

5.0 12 0.0599 5 0.0593 12 0.0599 12 0.0602 

6.0 11 0.0715 4 0.0708 11 0.0715 9 0.0722 

7.0 10 0.0827 4 0.0821 10 0.0827 8 0.0841 

8.0 9 0.0935 4 0.0933 9 0.0935 7 0.0959 

9.0 9 0.1042 3 0.1044 9 0.1042 7 0.1077 

10.0 8 0.1142 3 0.1153 8 0.1142 6 0.1194 

 

 

 
 

Figure 3. The optimal pre-scheduled replacement time in AR model. 
 

 

In this paper, through the experimental results, we can observe the performance differences on various 

replacement strategies under different contexts. We emphasize on lessons (1), (3) and (9). 

 

Firstly, we talk the lesson (1) in more detail. In the engineering perspective, if the cost of replacing an 

industrial asset after it fails is higher with corrective replacement, then there's a tendency to replace the 

asset proactively before it fails with preventive replacement. This is motivated by avoiding the higher 

costs associated with unexpected failures, which could include downtime, repairs, or even safety risks. 

 

Secondly, we pay more attention on lesson (3). Lesson (3) tells us that the age-based replacement strategy 

generally exhibits better performance, in situations with relatively high failure replacement costs. This is 

because, in such cases, extending the equipment's operational lifespan can effectively reduce maintenance 

costs, while opportunistic strategy might lead to premature equipment replacement, thereby increase of 

overall maintenance expenses. In contrast, when failure replacement costs are relatively low, the 
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advantage of opportunistic strategy becomes more pronounced, so the age-based replacement strategy 

might lead to premature equipment replacement, resulting in unnecessary maintenance expenses. 

 

Thirdly, we further analyze the lesson (9). i.e., we further investigated economic discounting in 

preventive replacement policies. When the discount factor is relatively large such as α = 0.90, the 

preventive replacement times for each priority model often tend to align in most cases. This tendency is 

similar to the models without discounting. However, when the discount factor is relatively small such as α 

= 0.60, the optimal replacement time with discounting is longer than that without discounting. This 

implies that decision-makers, in uncertain economic conditions, may decide to postpone equipment 

replacement due to the higher value placed on the present costs and benefits compared to future ones. 

Meanwhile, the optimal pre-scheduled replacement times in Model 2 and Model 4 are much longer than 

the ones in Model 1 and Model 3. So, when the economic environment is not stable, the replacement cost 

should be calculated by the NPV method. 

 

 
 

Figure 4. The optimal pre-scheduled replacement time limit in OR model. 
 

 

5. Conclusion 
We have focused on discrete-time age replacement models and opportunity-based age replacement 

models, considering the prioritization of two replacement options. The optimal pre-scheduled preventive 

replacement times have been determined using the renewal reward and net present value methods. 

Additionally, we have formulated unified age-based replacement models with probabilistic priority by 

introducing probabilistic replacement options. Through numerical illustrations, we compared optimal age 

replacement policies with optimal opportunistic replacement policies in various scenarios. Our 

observations indicate that opportunistic replacement policies outperformed age replacement policies in 

cases where the failure replacement cost is relatively smaller. 

 

It is worth mentioning that there are some limitations in this paper from the following reasons: 

 

(i) The lesson (3) is valid in the engineering perspective when 1 2/ 1.5c c = . In future work, we will further 
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examine the other cases on the cost balance more comprehensively. 

 

(ii) In our experiments, we just used the model parameters in the existing empirical work by Dohi et al. 

(2005). In other words, we did not analyze the other discrete lifetime data in actual applications. More 

detailed statistical properties of the discrete lifetime data should be investigated by checking the 

goodness-of-fit to the discrete Weibull distribution. 

 

(iii) It is important to note that while the several trends were observed in the experiments, real-world 

decision-making often requires to consider other factors, including equipment importance, availability 

requirements, and maintenance cycles. Such complex modeling should be considered in the future 

research. Jhang and Sheu (1999) formulated different opportunistic age replacement policies with major 

and minimal repairs. In our future work, we will reformulate their models in discrete-time setting and 

investigate effects of replacement priorities as well. 

 

Appendix 
Table 10. Notations in this paper. 

 

Y Lifetime of the unit 

Pr{ } ( )YX n f n= =  Probability mass function  

Pr{ } ( 1)YX n F n = −  Reliability function 

Pr{ } ( 1)YX n F n = −  Cumulative probability function 

( ) ( ) / ( 1)YY Yr n f n F n= −  Failure rate function  

( ) ( ) / ( )YY YR n f n F n=  Shifted failure rate function 

(0) 0Yf =  The probability of lifetime at n = 0 

X Interarrival of two successive opportunities, which obeys geometric 

distribution 
1Pr{ } ( ) (1 )n

YX n g n p p −= = = −  Probability mass function 

1Pr{ } ( 1) (1 )n
XX n G n p − = − = −  Survival function 

1Pr{ } ( 1) 1 (1 )n

XX n G n p − = − = − −  Cumulative probability function 

(0) 0Xg =  The probability of opportunity arrival at n = 0 

0 0

0 0
0 1 1

( ) ( )(1 ) / ( )(1 )
n n n n

YYn n n n
H n f n p F n p

 − −

= + = +
= − −   

Failure rate function in discrete-time opportunity-based model 

0 0

0 0
0 1 1

( ) ( 1)(1 ) / ( )(1 )
n n n n

YYn n n n
h n f n p F n p

 − −

= + = +
= + − −   

Shifted failure rate function in discrete-time opportunity-based 
model 

 

Lemma 1. The ( )YR n  is a strictly increasing (decreasing) function of n, then ( )Yr n is a strictly increasing 

(decreasing) function of n . 

Proof. 

1 1

( ) ( 1) ( )
( )

( ) ( ) ( 1)

( 1) ( )
( ) {1 ( )} ( )

( 1)
{ }

Y Y Y
Y

Y Y Y

Y Y
Y Y Y

Y

f n F n f n
R n

F n F n F n

F n f n
r n r n r n

F n

− −

−
= = 

−

− −
= = −

−

                                                                            (60) 

 

Further difference yields, 
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( 1) ( )
( 1) ( )

{1 ( 1)}{1 ( )}

Y Y
Y Y

Y Y

r n r n
R n R n

r n r n

+ −
+ − =

− + −
                                                                                              (61) 

Since ( )0 1Yr n   for 1,2,n = , the proof is completed.  

 

Lemma 2. If ( ) ( )( ) Y YR n r n  is a strictly increasing (decreasing) function of n, then H(n)(h(n)) is a 

strictly increasing (decreasing) function of n. 

Proof. If ( )YR n  is a strictly increasing function of n, then we have, 

( ) ( )

( ) ( )

Y Y

Y Y

f n f n k

F n F n k

+


+
                                                                                                                                      (62) 

 

where, 1k   is an arbitrary integer. Since  

( ) ( ) ( ) ( )Y Y Y Yf n F n k f n k F n+  +                                                                                                                 (63) 

 

we can obtain the following inequality: 

1 1

( ) ( )(1 ) ( ) ( )(1 )k k

Y Y Y Y

k k

f n F n k p F n f n k p
 

= =

+ −  + −                                                                                 (64) 

 

Further, we have 

1 1 1

1 1 1

( ) ( )(1 ) ( )(1 ) ( )(1 )

( ) ( )(1 ) ( )(1 ) ( )(1 )

k k k

Y Y Y Y

k k k

k k k

Y Y Y Y

k k k

f n F n k p f n k p F n k p

F n f n k p f n k p F n k p

  

= = =

  

= = =

+ − + + − + −

 + − + + − + −

  

  
                                                     (65) 

 

From Equation (66), it holds that 

0 1

0 1

( )(1 ) ( )(1 )

( )(1 ) ( )(1 )

k k

Y Y

k k

k k

Y Y

k k

f n K p f n k p

F n k p F n k p

 

= =

 

= =

+ − + −



+ − + −

 

 
                                                                                            (66) 

 

Hence, we have 

( 1) ( )H n H n−                                                                                                                                             (67) 

 

The proof for h(n) is similar to H(n).  

 

From Lemma 1 and Lemma 2, we can obtain the following lemmas directly. 

 

Lemma 3. If the function H(n) is a strictly increasing (decreasing) function of n, then h(n) is a strictly 

increasing (decreasing) function of n. 

 

Lemma 4. If the function ( )( ) ( )Y YR n r n is a strictly increasing (decreasing) function of n, then 

( )( , ) ( , )H n h n  is a strictly increasing (decreasing) function of n. 

Proof. Similar to the proof of Lemma 2. 



Wu et al.: Two Discrete-time Age-based Replacement Problems with/without… 
 

 

407 | Vol. 9, No. 2, 2024 

 

From Lemma 1 and Lemma 4, we can obtain the following lemma without the proofs. 

Lemma 5. If the function ( , )H n  is a strictly increasing (decreasing) function of n, then r(n,α) is a 

strictly increasing (decreasing) function of n. 

 

Corollary 1. If the function ( )Xg n is an arbitrary discrete p.m.f., then Lemma 2 holds. 

 

Corollary 2. If the function ( )Xg n is an arbitrary discrete p.m.f., then Lemma 4 holds. 

 

Proof of Theorem 2.1 

Here, we give the proof for Model. From the inequality 1 1( 1) ( ) 0a a a aC n C n+ −  , we get 

2

1 1 2

( ) ( 1) ( 1)
an

YY a Y a

n

c
R n F n F n

c c=

− − − 
−

                                                                                                    (68) 

 

Let 1( )a aq n denoting the left-hand side of Equation (68) and further taking the difference yield, 

 
1

1 1

1

( 1) ( ) ( 1) ( ) ( 1)
an

Ya a a a Y a a

n

q n q n R n R n F n
+

=

+ − = + − −                                                                             (69) 

 

If the lifetimeY  is strictly IFR, then 1( )a aq n is a strictly increasing function in an , where, 

1 1

1

lim ( ) ( ) ( ) ( 1) 1
a

a a a Y Y
n

n

q n q R F n


→
=

=  =  − −                                                                                              (70) 

 

If 1 2 1 2( ) / ( )aq c c c  − , then it has at least one (at most two) 
*

an  satisfying Equation (8). If

1 2 1 2( ) / ( )aq c c c  − ,the function 1( )a aC n  is monotonically decreasing. Then the optimal Artime 

becomes 
*

an → . 

 

For an, if ( )Y aR n is decreasing, then the function 
1( )a aC n is concave in an . Thus, if 

1 2 1 1

1

(1) ( ) / ( 1)Ya a

n

C c C c F n


=

=   = − , then 
* 1an = , otherwise, *

an → .The proof for Model 2 is similar to 

that for Model 1. 

 

Proof of Theorem 2.3 

Here, we give the proof for Model 3. From the inequality 3 3( 1) ( ) 0o o o oC n C n+ −  , we get 

3
3

1 1 3

( ) ( ) ( ) ( )(1 ) o

o

n n

o o o Y o Y

n n

c
H n A n F n f n p

c c


−

= +

 
− + −  

− 
                                                                          (71) 

 

Denoting the left-hand side of Equation (71) by 3( )o oq n and further taking the difference yield, 

 3 3 3( 1) ( ) ( 1) ( ) ( 1)o o o o o o o oq n q n H n H n A n+ − = + − +                                                                                (72) 

 

If the lifetimeY  is strictly IFR, then the function 3( )o oq n is strictly increasing in on , where, 
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3 3

1

lim ( ) ( ) ( ) ( 1) 1
o

o o o Y Y
n

n

q n q R F n


→
=

=  =  − −                                                                                             (73) 

 

If 3 3 1 3( ) / ( )oq c c c  − , then it has at least one (at most two) 
*

on satisfying Equation (21). If

3 3 1 3( ) / ( )oq c c c  − , the function 3( )o oC n  is monotonically decreasing. Then the optimal OR time limit 

becomes 
*

on → . 

 

For another thing, if
0( )H n is decreasing, then the function 3( )o oC n is concave in on . Thus, if 

3 3(0) ( )o oC C  , then 
* 0on = , otherwise, 

*

on → .The proof for Model 4 is similar to that for Model 3. 

 

Proof of Theorem 2.5 

Consider Model 1. From the inequality 1 1( 1, ) ( , ) 0a a a aC n C n + −  , we have  

( )
 1 2

2 1 1( ) 1 ( , ) ( , ) 0
1

Y a a a a a

c c
R n c A n B n 



 −
− − −  

−  

                                                                                 (74) 

 

Letting
1( )a aq n   denote the left-hand side of Equation (74) and taking the difference yield 

  1 2
1 1 1( 1 ) ( ) ( 1) ( ) 1 ( 1, )

1
a a a a Y a Y a a a

c c
q n q n R n R n A n  



−
+ − = + − − +

−
.                                                (75) 

 

If ( )Y aR n  is a strictly increasing in an , the function 1( , )a aC n   is strictly convex in an for a fixed  . 

Further, if 1( ) 0aq   , then it has at least one (at most two) 
*

an which satisfies Equation (33). 

Conversely, if 1( ) 0aq   , then 1( , )a aC n   is a monotonically decreasing function. Then the optimal 

pre-scheduled time 
*

an  is 
*

an → . 

 

For another thing, if ( )Y aR n  is decreasing, then the function 
1( , )a aC n   is concave in an  for a fixed  . 

Thus, if 1 1(1 ) ( )a aC C   , then 
* 1an = , otherwise, 

*

an → .The proof for Model 2 is similar to that for 

Model 1. 
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