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Abstract 

Spatial regression, particularly the Spatial Error Model (SERM), was utilized in prior studies to analyze Human Development Index 

(HDI) modeling. However, the studies were unable to determine which dimension among the three defined by the UN and BPS 

had the significant impact on HDI, as they constructed models based on the indicators used for the interpretation of the dimensions. 

Therefore, a comprehensive analysis combining spatial regression and Structural Equation Modeling (SEM), known as spatial 

SEM, was deemed necessary. This is the reason the current study aimed to develop SERM-SEM modeling holistically. The model 

parameters were estimated using the Generalized Method of Moments (GMM). To assess spatial dependency, the Lagrange 

Multiplier (LM) method was employed, with a distinct model error distribution compared to the error distribution of the traditional 

spatial model. The result of the LM test development showed that, under the null hypothesis, the LM test statistics followed a 

distribution. The results of the SERM-SEM model development were applied to HDI modeling using data in 2022 with three latent 

variables, namely a Long and Healthy Life (LHL), Knowledge (Know_L), and a Decent Standard of Living (DLS) (based on UN 

standards). The assessment of the outer model in SEM was based on the loading factor values that exceed 0.5 and their significance. 

This evaluation aimed to identify indicators that effectively explained or measured latent variables, so it got the revised model in 

SEM. These indicators are LHL2 and LHL 4 to form LHL. DLS1 and DLS3 are indicators to make up DLS, and for Know_L, they 

are K2 and K3. The revised SEM model was analyzed using spatial. The results of the spatial dependency test showed that the HDI 

model significantly led to the SERM-SEM model. Knowledge and a decent standard of living variables significantly influence HDI. 

 

Keywords- Structural equation modeling, Spatial, Spatial error model, Human development index, Spatial SEM. 

 

 

 

1. Introduction  
The Human Development Index (HDI) was determined by the United Nations (UNDP, 2022) based on 

three main components, namely a long and healthy life, knowledge (measured by two indicators), and a 

decent standard of living. It is crucial to acknowledge that these same components are also used to measure 

HDI in Indonesia (BPS, 2022a). Studies on HDI modeling and its relationship with various indicators are 
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based on these three dimensions (BPS, 2022a; UNDP, 2022). Some of these studies have utilized spatial 

analysis because it is believed that HDI exhibits spatial interdependence among regions.  

 

Wati & Khikmah (2020) developed the HDI modeling using the Spatial Error Model (SERM), which 

considered five indicators, including poverty, student-teacher ratio, school participation rate, inflation, and 

open unemployment. In modeling HDI, Darsyah et al. (2018) employed spatial analysis with four 

independent variables such as life expectancy, expected length of school, average school duration, and real 

per capita consumption. The study revealed the superiority of SERM over the Ordinary Least Square (OLS) 

and Spatial Autoregressive Model (SAR), as evidenced by the lowest Akaike Information Criterion (AIC) 

score. In addition, Pramesti & Indrasetianingsih (2018) investigated the factors influencing HDI at the 

district level in East Java, Indonesia, utilizing four indicators, which are per capita expenditures, morbidity, 

the percentage of impoverished people, and mean years of schooling. The results of the spatial dependency 

test led to both SAR and SERM, with the SERM yielding the lowest AIC score. Rahma (2020) carried out 

spatial modeling with five indicators believed to impact HDI. The indicators were life expectancy, expected 

years of schooling, the number of impoverished people, per capita expenditure, and the open unemployment 

rate. The spatial dependency test, employing the Lagrange Multiplier (LM), supported the suitability of the 

SERM model. Niranjan (2020) investigated spatial disparities in human development using eleven 

indicators, including the number of doctors per 1,000 people, the proportion of anemic pregnant women, 

the proportion of underweight children born, the proportion of malnourished children, male labor force 

participation rate, urbanization, the rate of school dropouts, per-capita spending on health care, and average 

rainfall. Consequently, it was discovered that the LM spatial dependency test led to the SAR model. 

 

None of the studies mentioned above provide answers regarding the particular dimension that truly affects 

HDI among the three defined by UN and BPS, as they constructed models based on the indicators used. 

Jeong & Yoon (2018) recognized a limitation, which relied on spatial regression with an indicator-based 

approach to identify vulnerability factors influenced by natural disasters. This viewpoint seemed to be at 

odds with the goal of the study, which was to determine the effects of the economic losses brought on by 

natural disasters on the aspects of the economic, social, and environmental vulnerability in 230 South 

Korean local communities. Each aspect represented a latent variable measured through several indicators. 

However, an indicator-based spatial regression hindered the ability to pinpoint which variables or aspects 

influenced this vulnerability. Ahmed et al. (2022) proposed a solution, suggesting the regression of 

components resulting from Principal Component Analysis (PCA). However, this method had its 

weaknesses, including the absence of an evaluation of the contribution of each indicator suspected of 

forming the components or latent variables. 

 

Dimensions or components represent manifestations of several indicators that cannot be directly measured. 

These dimensions, which are also known as latent variables, can be modeled optimally by using Structural 

Equation Modeling (SEM). SEM will be used to address at least two significant questions. First, SEM will 

empirically confirm the construct's suitability based on indicators conceptualized as measurable variables 

of the construct (Joreskog & Sorbom, 1993). Second, SEM estimates the causal relationship among latent 

variables, which are then expressed in specific structural equations and shown in a path diagram (Joreskog 

& Sorbom, 1996). However, it is important to note that SEM comprising spatial data remains a relatively 

unexplored area. 

 

Anselin (1988) developed a spatial model using cross-section data. At least three models have been 

developed, namely the Spatial Autoregressive Model (SAR), the Spatial Error Model (SERM), and the 

Spatial Autoregressive Moving Average (SARMA). Numerous methods for estimating spatial model 

parameters have been widely used. The estimation method of Generalized Methods of Moment (GMM) is 
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used to overcome the biases associated with maximum likelihood estimation (MLE) (Anwar et al., 2020; 

Januardi & Utomo, 2017). The generalized spatial two-stage least square (GS2SLS) estimation method is 

used to obtain a consistent estimator (Saputro et al., 2019). Nevertheless, there is a paucity of studies 

utilizing location sample units that are hypothesized to have both spatial influence and involve causal 

relationships among latent variables. 

 

This study offers a unique perspective, considering that HDI was influenced by three dimensions or latent 

variables, measured through appropriate indicators, with the sample unit being location. The analysis 

combines spatial regression and SEM, creating what is known as spatial SEM. 

 

There are two options for incorporating spatial weights into SEM, namely at the structural or measurement 

model levels. Incorporating spatial weights at the measurement model level generally consists of the 

analysis of multivariate spatial data (Wang & Wall, 2003), as variables often exhibit correlations when 

measured within the same spatial area. Each variable tends to correlate with its location due to similar 

geographic characteristics. However, this approach differs from earlier explorations, which primarily focus 

on multivariate spatial data within the measurement model (Christensen & Amemiya, 2002; Hogan & 

Tchernis, 2004; Wang & Wall, 2003). Some studies have modeled regression relationships among latent 

variables, including spatial weights in a structural model (Congdon, 2008; Liu et al., 2005; Oud & Folmer, 

2008). 

 

Oud & Folmer (2008) proposed an enhanced approach to the spatial dependence model, advocating the 

placement of spill-over effects within the structural model. This modeling offered greater flexibility and 

information richness than the conventional practice of assigning spatial weights to the measurement model. 

Parameter estimation was carried out through the Full Information Maximum Likelihood (FIML) method. 

It presented computational complexity. The methodology did not include a spatial dependency test and the 

estimation of latent variables. In a separate study, Anekawati et al. (2017) explored education quality 

modeling by estimating latent variables using the Partial Least Square (PLS) method, performed parameter 

estimation via the Maximum Likelihood Estimation (MLE), and conducted spatial dependency tests using 

the Lagrange Multiplier (LM). During the LM test, the model error distribution was assumed to match the 

spatial model of Anselin (1988). As a result, this modeling result ultimately yielded the SAR-SEM. 

 

The benefit of this research is that it contributes significantly to the existing literature by comprehensively 

developing the SERM-SEM. Given the predominant focus of prior HDI modeling studies on the SERM 

model, this study endeavors to comprehensively develop the SERM-SEM, namely a spatial model in the 

form of the Spatial Error Model (SERM), which involves analyzing the relationship among latent variables 

(SEM). In this context, parameter estimation employs the generalized method of moments (GMM), and the 

spatial dependency test is executed through the Lagrange Multiplier (LM) method. It is noteworthy that the 

LM test necessitates knowledge of the model error distribution. Consequently, this study presents a new 

perspective in SERM-SEM modeling by using the model error distribution, distinct from the error 

distribution of the traditional spatial model. In SERM-SEM, the variables are substituted by the factor 

scores that the latent variable estimation results from SEM. These latent variables were estimated using the 

weighted least squares (WLS) method and subsequently integrated into the spatial framework. The error 

distribution of SERM-SEM was derived from the result of latent variable estimation in SEM, which is 

distinct from Anselin (1988). This SERM-SEM model will be instrumental in addressing issues pertaining 

to the aforementioned HDI modeling challenges, namely HDI modeling based on dimensions, no longer 

based on indicators. 
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2. Materials and Methods  
This section covers associated literature studies Structural Equation Modeling (SEM), spatial model, spatial 

SEM, latent variable estimation and research methodology. 

 

2.1 Structural Equation Modeling (SEM)  
Bollen (1989) introduced Structural Equation Modeling (SEM) as comprising two fundamental models, 

including the measurement and structural. In the measurement model, the relationship between manifest 

variables (indicators) and exogenous variables is shown in Equation (1) and the relationship with 

endogenous variables is written in in Equation (2). On the other hand, the structural model describes the 

interactions among latent variables as in Equation (3). 

1A



 = +xx Λ ξ δ                                                                                                                                             (1) 

1B



 = +yy Λ η ε                                                                                                                                            (2) 

1q



 = + +η Bη Γ ξ ζ                                                                                                                                       (3) 

 

where, 𝛅∗ ∼ 𝑁(𝟎,𝚯𝛿) and 𝛆* ∼ 𝑁(𝟎,𝚯𝜀∗). η  notation is a vector of endogenous random variables, ξ  

represents a vector of exogenous random variables, B  denotes a coefficient matrix that shows the effect of 

the relationship between endogenous latent variables on other endogenous, and 
Γ  indicates a coefficient 

matrix showing the effect of the relationship between exogenous latent variables ( ξ ) on endogenous ( η ). 

Meanwhile ζ  refers to a random error vector, with an expectation score of zero. The q  index depicts the 

number of endogenous latent variables and p  index is its exogenous numbers.  

 

y  and x notations are vectors of the observed variables, while yΛ  and xΛ  are coefficient matrix indicating 

the relationship between y  and η  as well as x  and ξ . 
*
ε and 


δ notations are error vectors determined 

from the measurement of y  and x . This error is the addition of a component representing the imperfection 

of the indicators in measuring the related latent variables. 

 

The indicators number of the i-th exogenous latent variable is 
ia  where 1,2,3, ,i p= . The total number 

of indicators on the exogenous latent variables is calculated as follows 
1

p

i

i

a A
=

= , where A  denotes the 

outcome. Generally, the covariance matrix of the measurement error from the observed variables x  with 
p  exogenous latent variables and the total number of indicators A  is determined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1 1 2 1 1 1 1 2 2 2 2 2 1 2

2 2 2 2 2 2 2 2 2, , , , , , , , , , , ,
a a p p ap pA A diag                  =Θ . 

 

The indicators number of the j-th endogenous latent variable is denoted by jb , where 1,2,3, ,j q=  

1,2,3, ,j q=  and the total number is calculated using 
1

q

j

j

b B
=

= . In general, the covariance matrix of the 

measurement error from the observed variables y  with the number of endogenous latent variables is one, 

while the total number of indicators B  is ( )* * *
1 2

2 2 2

* , , ,
B

B B diag   
   =Θ . 

 

The measurement model describes the relationship between a group of indicators and its latent variable. 

There are three ways to build relationships between the latent variable and its indicators (Trujillo, 2009): 
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the formative model, reflective, and multiple effect indicators for multiple causes (MIMIC). The formative 

model forms latent variable relationships caused or formed by each indicator. The reflective model creates 

a relationship where the latent variable is considered the cause of the indicators, or the indicators reflect or 

manifest the latent variable. Meanwhile, the MIMIC model is a combination of formative and reflective 

models. This study uses a reflective measurement model. Trujillo (2009) wrote the reflective measurement 

model equation as Equation (1) and Equation (2). 

 

Assumptions that must be met in the structural Equation (1), Equation (2), and Equation (3) include 

( )E =η 0 , ( )E =ξ 0 , ( )E =ζ 0 , ( )E  =ε 0  ( )E  =ε 0 , ( )E  =δ 0 , ( )'E =ξζ 0 , where ξ  is not correlated 

with ξ  and the matrix ( )−I B  is nonsingular. 

 

2.2 Spatial Model  
Anselin (1988) developed a spatial model using cross-section spatial data, expressed as follows: 

1T  

 = + +y Xβ Wy u                                                                                                                                   (4) 

 

with 1T  = +u Mu ε  and ( )2,N ε 0 I . From the above equation, 


y  represents a vector of endogenous 

variable with partial dependency, x is the exogenous variable matrix, β  denotes the parameter vector of 

regression model, and   indicates the autoregressive spatial coefficient with value 1  . Furthermore,   

is the spatial coefficient in error ε  with its value 1  , Wand M  are the spatial weighting matrix of the 

diagonal elements zero, u  is the regression error vector assuming it has random spatial effects and 

autocorrelated errors, and ε  signifies the error vector. T  index is the number of observation or locations 

(t=1, 2, 3, …, T), while p  is the number of variables x . 

 

In instances where 0 =  and 0 = , an OLS linear regression model is obtained, which is devoid of spatial 

effects. Subsequently, when 0 =  and 0  , SAR is obtained with 1T  

 = + +y Xβ Wy u . If 0   and

0 = , then it is used to gain SERM, which is 1T



 = +y Xβ uor   = + − +y My Xβ MXβ ε . When 0   

and 0  , the obtained SARMA is determined using Equation (4). 

 

2.3 Spatial Structural Equation Modeling (Spatial SEM) 
The formulation of a latent spatial lag (SAR) by Oud & Folmer (2008) consisted the regression of latent 

variables measured through multiple indicators within the Multiple Indicators Multiple Causes (MIMIC) 

framework. In this transformation, the variable y , signifying the vector with observations on the dependent 

variable, was replaced with η  and latent variable =ξ x , thereby introducing spatial dependency into the 

structural model. The equations used to establish SAR and SERM were written as  = + +η Wη Γ x ζ  and 

= +η Γ x ε , respectively, with  ( )
1


−

= −ε I M ζ .  

 
The SEM incorporated latent variables that cannot be directly measured. In the spatial SEM, these latent 

variables are substituted with factor scores. Additionally, both endogenous and exogenous factor scores are 

derived from the estimation results of the respective latent variables. This article references the spatial SEM 

model outlined in the study conducted by Oud & Folmer (2008). Still, it presents different things for several 

purposes, including (i) estimating the factor scores of latent variables through WLS, (ii) excluding the use 

of MIMIC, (iii). introducing spatial dependence to latent variables (structural model), and (iv). employing 
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the W  matrix-sized T T , indicating spatial dependence between observations or locations. The spatial 

SEM is generally expressed in accordance with the notation adapted to the model in section 2.2, as follows: 

1T  = + +β W ul K l , where 1T  = +u Mu ε   or  ( )
1

1T 
−

 = −u I M ε .  

 
l  is a vector of the endogenous factor score that has spatial dependence, K signifies the matrix of the 

exogenous factor score, β  represents a vector of the parameter regression, and   denotes an autoregressive 

spatial coefficient with the value 1  . Furthermore,   is a spatial coefficient in error with the value 

1  , W  and M  are a spatial weighting matrix with diagonal elements zero, u  denotes a regression 

error vector, assumed to have both random spatial effect and spatially autocorrelated errors, ε  indicates an 

error vector. The T  index is the number of observations or locations (t=1, 2, 3, …, T), and p  is the number 

of K variables.  

 

When 0 =  and 0  , the spatial autoregressive model on the SEM (SAR-SEM) be expressed as 

1T  = + +β W εl K l . This model assumes that the autoregressive model is only on the endogenous factor 

score ( l ). When 0   and 0 = , the SERM-SEM is obtained as follows: 

1T = +β ul K                                                                                                                                                   (5) 

 

SEM is usually a two-step procedure, namely the Exploratory Factor Analysis (EFA) and Confirmatory 

Factor Analysis (CFA). In order to find latent variables based on indicators, EFA classifies data items into 

matching latent variables accurately and without the need for a predefined hypothesis (Li et al., 2021). The 

spatial SEM focuses more on the measurement model, namely, to determine which indicators to use for 

construct measurement, so it involves EFA. Hair et al. (2021) explained that the measurement theory 

described how to use indicators to measure constructs. After the measurement model is confirmed, it doesn’t 

move on to testing the structural theory. Latent variables are estimated and modeled in a spatial model. As 

a result, in spatial SEM modeling, it is essential to build a measuring model based on conceptual theories. 

In addition, the relationships among latent variables must also be built based on strong theoretical concepts. 

The relationship among latent variables must be derived from theory and logic (Hair et al., 2021) 

 

The assumptions in the spatial SEM model are: 1) the spatial weight matrix 
T T=W M ; 2) ddiagonal 

elements of the spatial weight matrix 
TW  are zero; 3) the matrix ( )T−I W  and ( )T−I W  are nonsingular 

with 1   and 1  ; 4) i  has identical distribution (has property of independent); and 5) model has 

property of linear in variables. 

 

2.4 The Estimation of Latent Variables 
Estimation of latent variables is based on a measurement model that has been evaluated so that the indicators 

that form the latent variable are valid. The measurement model uses a reflective model as in Equation (1) 

and Equation (2). Estimation of latent variables, both endogenous and exogenous latent, uses weighted least 

squares (WLS). The estimation results of latent variables using the WLS method indicated that the equation 

of measurement model for the exogenous latent variable is in line with Equation (1), where 𝛅* ∼ 𝑁(𝟎,𝚯𝛿) 

assuming xΛ  and Θ were constants. Therefore, the vector distribution of the observed variable x  was 𝐱 ∼

𝑁(𝚲𝐱𝛏,𝚯𝛿). The estimation results of ξ  by using the WLS method was expressed as follows:  
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( ) ( )
1

' 1 ' 1

1 1

ˆ
T T

t x x x t

t t

 

−
− −

= =

= ξ Λ Θ Λ Λ Θ x                                                                                                                 (6) 

 

From the equation above, matrix ( )' 1

x x

−
Λ Θ Λ  is a diagonal matrix with an element value of zero. Meanwhile, 

the distribution of the observations random matrix from the observed variable vector x  is 𝐗 ∼

𝑁𝐴,𝑇(𝚲𝐱𝛏𝐭𝐞
', 𝚯𝛿 ⊗ 𝐈𝑇), where ( )

'

1 1, ,1T =e . When Equation (6) is turned into a matrix-formed equation 

with each contain x  and ̂ , as well as assumed matrix 

11 12 12

'21 22 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

T

p T

p p pT

  

  

  



 
 
 

= 
 
 
 

K , then Equation (6) can 

be simplified into ( ) ( )
1

' ' 1 ' 1

p T  

−
− −

 = x x xΛ Θ Λ Λ Θ XK , thereby producing the distribution of K  as  

K𝑇×𝑝 ∼ 𝑁𝑇,𝑝 (𝐞𝛏𝑡
' , 𝐈𝑇 ⊗ (𝚲𝐱

' 𝚯𝛿
−1𝚲𝐱)

−1
)                                                                                                             (7) 

 

The equation of measurement model with endogenous latent variables was determined using Equation (2) 

with the assumptions yΛ  and *
ε

Θ  constant. Consequently, the distribution of observed variable vector y  

was 𝐲 ∼ 𝑁(𝚲𝐲𝜂, 𝚯𝜀∗). The estimation results of   by using WLS method calculated in Equation (8) as 

follows. 

( )
1

1

1 1

ˆ
T T

t t

t t


 

−
−

= =

= *

' -1 '

y y yε
Λ Θ Λ Λ Θ y                                                                                                                    (8) 

 

The distribution of the observations random matrix from the observed variable vector y  is 𝐘 ∼

𝑁𝐵,𝑇(𝚲𝑦𝜂𝑡𝐞
', 𝚯𝜀∗ ⊗ 𝐈𝑇) , where ( )

'

1 1, ,1T =e . When Equation (7) is re-written into a matrix form 

assuming ( )'

1 1 2
ˆ ˆ ˆ

T T  =l , where ( )
1

' 1 ' 1

1 T y  

−
− −

 = '

y yΛ Θ Λ Λ Θ Yl , the distribution of l  was obtained as shown 

in Equation (9). 

l𝑇×1 ∼ 𝑁𝑇 (𝐞𝜂𝑡 , (𝚲𝐲
' 𝚯𝜀∗

−1𝚲𝐲)
−1
𝐈)                                                                                                                       (9) 

 

2.5 Methodology 

The development process for SERM-SEM model consisted of the following steps (Figure 1).  

 

The first step is the process of obtaining the error distribution for the SERM-SEM model. The error 

distribution is obtained based on the expectation value and variance of the model in Equation (5). The 

second step is the process of estimating SERM-SEM model parameters. Parameter estimation uses the 

GS2SLS procedure in the second stage, namely the generalized method of moments (GMM). At this stage, 

it will obtain the first, second, and third-moment equations and then minimize the sum of squared residuals. 

The third step is the process of developing the spatial dependency test using the LM test. This step needs 

the ln likelihood function with the error distribution of the resulting model in step 1. Breusch & Pagan 

(1980) defined the LM test statistic as ' 1ˆ ˆˆLM −= Dψ D , where 
1ˆ −

ψ is the element of the information matrix 

inverse. The information matrix is obtained from the first and second derivatives of the ln likelihood 

function for each parameter. The value of ˆ
D is obtained from the first derivative of the ln likelihood 
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function to  . 

 

 
 

Figure 1. The steps of SERM-SEM model development.  

 

 

The last step is the application of the SERM-SEM model for HDI modeling. The latent variables that 

influence HDI are determined based on UNDP (2022) and BPS (2022a), namely Long and Healthy Life 

(LHL), Knowledge (Know_L), and Decent Living Standard (DLS). The indicators used to build each latent 

variable are based on previous research. Prior to estimating latent variables, estimating the parameters of 

the SERM-SEM model, and testing the spatial dependency, the outer model in SEM is evaluated first. It's 

because latent variables that are constructed using reliable and valid indicators are given priority by the 

model. 

 

3. Results  
In this section, the study's results will be presented to obtain mathematical formulas related to model error 

distribution, parameter estimation, and spatial dependency testing. The error distribution of the SERM-

SEM model is obtained based on the value of expectation and variance. Parameter estimation of the SERM-

SEM model uses the GS2SLS procedure in the second stage, namely the generalized method of moments 

(GMM). Spatial dependency testing using the Lange Multiplier test. 

 

3.1 The Error Distribution of SERM-SEM 
SERM-SEM, as represented by Equation (5) with a corresponding distribution of K and l indicated in 

Equation (7) and Equation (9) can be rewritten as:  

( )
1

1T 
−

 = + −β I W εl K                                                                                                                                 (10) 

 

This model is spatial regression with l  representing the response variable and K  indicating the random 

independent variable, resulting in l  is ( )f l K . This suggests that the variable K  is now fixed rather 

than random. The error matrix from Equation (10) is ( )( )1T  = − −ε I W βl K , and the distribution is 

formulated based on the value of expectation and variance, namely ( ) ( )( )E  = − −I W eη βK  and 

( ) ( )( ) ( )
1 '

var  
−

= − −*

' -1

y yε
ε I W Λ Θ Λ I I W . As a result, the error distribution of SERM-SEM is expressed 

as follows:  
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𝛆 ∼ 𝑁𝑇,1 ((𝐈 − 𝜌𝐖)(𝐞𝛈 − K𝛃),𝚯𝜌)                                                                                                             (11) 

 

where, notation of I  is an identity matrix,  is a spatial coefficient in error, W  is a spatial weighting 

matrix, e  is a vector whose members are all 1, namely ( )
'

1 1, ,1T =e , η  is a vector of endogenous random 

variables, K  signifies the matrix of the exogenous factor score, β  represents a vector of the parameter 

regression, and Θ  is a matrix of variance-covariance, namely ( )( ) ( )
1 '

  
−

= − −*

' -1

y yε
Θ I W Λ Θ Λ I I W . The 

notation of yΛ  is coefficient matrix indicating the relationship between y  and η . *
ε

Θ  is the covariance 

matrix of the measurement error from the observed variables y . Θ  is assumed that the variable K  is not 

correlated with ε  (error) and ( )cov ,  0l K .  

 

3.2 The Parameter Estimation of SERM-SEM 

The estimation of parameters in spatial SEM employed a procedure called the GS2SLS developed by 

Kelejian & Prucha (1998; 1999). The parameter estimation for SERM-SEM was conducted using GMM 

method, building upon the result of SAR-SEM. The result of SAR-SEM model was represented by il  score, 

namely 1
ˆ ˆ
T = +Zδ εl  and  

( ) ( ) ( )
' 1

' ' '

2 1
ˆ ˆ ˆ ˆ ˆ ˆ

p


−

+ 
= =δ β ZZ Z l                                                                                                                                (12) 

 

where, 
( )2

ˆ
T p +

= HZ P Z , 
( ) ( )2T p +

=Z WK l , ( )
1

' '

T T

−

=HP H H H H , and 
( ) ( )2 1T p +

=H WK K . 

 

The residual value, designated as û , which serves as an observation vector for the random variable u  on 

the SERM-SEM, where ˆ
i i= −u l l . The error equation of SERM-SEM model in Equation (11) is used to 

obtain the value of = −ε u Wu . When =u Wu , the error is written = −ε u u . The equation of first 

moment is obtained by squaring = −ε u u  and then divided by T  for all elements. The second-moment 

equation is obtained by multiplying each element in = −ε u u  with W . By taking =ε Wε  and =u Wu , 

the result obtained is = −ε u u , which is then squared, and each element is divided byT . The third-

moment equation is obtained by multiplying = −ε u u , followed by dividing each element by T . The 

three moment equations are written into the matrix as follows  

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

1 ' 1 ' 1 '

1 ' 1 ' ' 2 1 '

1 ' ' 1 ' 1 '

2 1 0

2 0

00

T E T E T E

T E T E Tr T E

trT E T E T E





− − −

− − −

− − −

   −             − − =              + −      

u u u u u u

u u u u W W u u

Θu u u u u u u u

. This expression can be 

summarized as − =Γα γ 0 . 

 

One estimator that required determination is  , while Θ  contains   obtained from Γ  and γ . From this 

previous equation, G  is computed as the Γ  estimator, which is expressed in Equation (13) and Equation 

(14). 
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( )

( )

1 ' ' '

1 ' ' 2 ' 2 ' 2 '

1 ' 2 ' ' ' ' 2

ˆ ˆ ˆ ˆ2 1

ˆ ˆ ˆ ˆ ˆ2 ( )

ˆ ˆ ˆ ˆ ˆ ˆ 0

T T

T T Tr

T T

−

−

−

 −
 
 = = −
 
 + −
 

u Wu u W Wu

Γ G uWW u u W W u WW

u W u u W Wu u W W u

                                                            (13) 

'

' '

'

ˆ ˆ
1

ˆ ˆ ˆ

ˆ ˆ
T

 
 

= =  
 
 

u u

γ g uWWu

u Wu

                                                                                                                                    (14) 

 

The estimator of γ  is denoted as g . The residual value can be re-written as 1
ˆˆ

T = −u l l  or 1
ˆˆ

T = −u Zδl . 

The value of δ̂  is consistent with Equation (12) and 
( ) ( )2T p +

=Z WK l . The empirical equation of 

moment condition can be re-written as follows: 

3 1 = −g Gα v                                                                                                                                                (15) 

 

The definition of GMM in this case is the outcome of minimizing the sum of squared residuals, abbreviated 

as 
'

v v . The value of 3 1 = −v Gα g  is obtained from Equation (15) leading to the determination of residual 

squares, expressed as ' ' ' ' ' ' '

1 1 = − − +v v αGGα αGg gGα gg , where 
' '
αGg  denoted symmetrical scalar, 

resulting in ( )
'

' ' ' ' '

1 1 2 = − +v v αGGα G g α g g . The estimated value of α  is determined by minimizing 

residual squares, namely 
'

0


=


v v

α
, where the estimated value of α  is  

( )
1

' '

3 1
ˆ

−

 =α GG G g  or ( ) ( )
' 1

2 ' '

3 1
1 3

ˆˆ ˆ ˆ tr  
−




 = =
 

α Θ GG Gg                                                               (16) 

 

The notation of α  is a vector that contains parameters, namely ( )( )
'

2 tr   Θ ,   is a spatial coefficient 

in error, Θ is a matrix of variance-covariance, namely ( )( ) ( )
1 '

  
−

= − −*

' -1

y yε
Θ I W Λ Θ Λ I I W . G  matrix 

value is determined by following Equation (13) and g  matrix value through Equation (14).  

 

3.3 The Spatial Dependency Test of SERM-SEM 

Theorem: If SERM-SEM model and the error distribution, as represented by Equation (5) or Equation (10), 

and Equation (11), then Langrange Multiplier test is 
( )

2
'

LM
p

D
 =

εWε
 and under the null hypothesis, the 

LM test statistics followed a distribution of 𝐿𝑀𝜌 ∼𝜒(1)
2  where ( )

1 1

' 1

*p 

−= y yΛ Θ Λ , 

( ) ( )
'

1 1
ˆ ˆˆ ˆ

t tD   = − −e β WW e βK K , and ( )1
ˆ

T = −ε βl K . 

 

Proof: In Equation (10) SERM-SEM is accompanied by the error equation ( )( )1T  = − −ε I W βl K . When 

( )T T  = −A I W , the Jacobian for the equation is J 


= = − =


ε
I W A

l
. By employing the Gaussian 

function, the likelihood l  in SERM-SEM can be obtained by substituting ε  and multiplying by the 
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Jacobian, as follows: ( ) ( ) ( ) ( )
11/2 ' '1

, , ; exp
2

L p
−−  

= − − − 
 

β Θ Θ A A A β AA A A βl l K l K . On the other hand, 

the function of ln likelihood for SERM-SEM is:  

( ) ( ) ( ) ( )
1' '1 1

, , ; ln ln
2 2

p
−

= − + − − −β Θ Θ A A A β AA A A βL l l K l K                                                       (17) 

 

with 1 '

T T p−

 =Θ AA , ( )
1 1

' 1

y yp
 

−= Λ Θ Λ , yΛ  is coefficient matrix indicating the relationship between y and 

η , *
ε

Θ is the covariance matrix of the measurement error from the observed variables y , and 

( )T T  = −A I W . 

 

The first derivative of the ln likelihood function, as in Equation (17) to   is 

( )
( ) ( )

' 1

1 1

, , ;
p





−




= − −



β Θ
β A W β

L l
l K l K                                                                                                     (18) 

 

and the first derivative of the ln likelihood function to β is ( )

( )

( )'

1 1

, ;

p

p


+ 


= −



β,Θ
β

β

L l
K l K . The second 

derivative of the ln likelihood function to   and β , respectively, is 

( )
( ) ( )

2
' 1 1

2

1 1

, ;
p





− −




= − − −



β,Θ
β A WA W β

L l
l K l K                                                                                         (19) 

( )

( )

( )
2

' 1

'

1 1

, ;
2

p

p




−

 +


= − −

 

β,Θ
β A W

β

L l
l K K                                                                                                       (20) 

( )

( ) ( )

2

'

'

1 1

, ;

p p

p


+  +


= −

 

β,Θ

β β

L l
K K                                                                                                                    (21) 

( )

( )

2

1 1

, ;

p




 


=

 

β,Θ
0

β

L l
                                                                                                                                 (22) 

 

Breusch & Pagan (1980) defined the LM test statistic as ' 1ˆ ˆˆLM −= Dψ D , where 
1ˆ −

ψ  is the element of the 

information matrix inverse, ψ , with size p p . The information matrix contains elements which are the 

expectation value of the second derivative for each parameter estimated as follow: ( )2

'

L
E



 

 
=  

  
ψ . The 

information matrix for SERM-SEM at 0 =  is  β

'

 




 
=  
 β ββ

ψ ψ
ψ

ψ ψ
. The elements of the information matrix 

determined by the expectation value of the second derivative in Equation (19), Equation (20),  Equation 

(21), and Equation (22),  as well as when 0 =  are as follows: ( ) ( )
'

1 1 t tp   = − −ψ e β WW e βK K , 

( ) ( )
'

ββ 1 1p p
p

+  +
=ψ K K , 

( ) ( )
'

β 1 1
2 tp

p 
 +

= −ψ e β WK K , and 
( )β 1 1p + 

=ψ 0 . The inverse element of the 

information matrix in the first row and column is  ( )
1 1

11 1

     


−− −= −ψ ψ ψ  and when simplified, it 

becomes ( ) ( )
1 1

1
'1 1

t tp  


−
− −  = − −

 
ψ e β WW e βK K . 
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The statistic value of the LM test for SERM-SEM is ' 1ˆ ˆˆLM   

−=D ψ D . The test is carried out based on H0, 

leading to the value of ˆ
D  representing the first derivative of the ln likelihood function to   as in Equation 

(18) with 0 = , as follows: ( ) ( )
1 1

'
ˆ ˆD̂ p 

= − −β W βl K l K . Since ( )− βl K  represents an error from the OLS 

regression, then ( ) 1
ˆ

T− =β εl K  and 
1 1

'D̂ p 
= εWε . The statistic value of the LM test is expressed as 

( )

( ) ( )

2
'

'
LM

ˆ ˆˆ ˆ
t t

p


 
=

− −

εWε

e β WW e βK K

. By assuming ( ) ( )
'

1 1
ˆ ˆˆ ˆ

t t D  − − =e β WW e βK K , the statistic value of the LM 

test can be written as: 

( )
2

'

LM
p

D
 =

εWε
                                                                                                                                        (23) 

 

where, ( )ˆ= −ε βl K , ( ) ( )
'

ˆ ˆˆ ˆ
t tD  = − −e β WW e βK K , l  is a vector of the endogenous factor score that has 

spatial dependence, K signifies the matrix of the exogenous factor score, β  represents a vector of the 

parameter regression, e  is a vector whose members are all 1, namely ( )
'

1 1, ,1T =e , η  is a vector of 

endogenous random variables, and W  is a spatial weighting matrix.  

 

The statistic of LM test was defined by Breusch & Pagan (1980), as follows: 
' 1LM −=Dψ D . When H0: 

', , 0   = α , it imply that the p parameters from α  are related with non-constraints. Anselin (1988) 

established that 
' 1LM −=Dψ D  followed a distribution of 

( )
2

2 p


+
, hence, the SERM-SEM model with H0: 

0 =  obtained 𝐿𝑀𝜌 ∼𝜒(1)
2  or 

𝑝(𝛆̃'𝐖𝛆̃)
2

𝐷
∼ 𝜒(1)

2 . 

 

4. Discussion and Applying SERM-SEM on HDI Modeling  
Figure 2 is the SEM model for HDI, which connects latent variables with their indicators and among latent 

variables. The relationship among latent variables must be derived from theory and logic (Hair et al., 2021). 

Hence, this study developed an HDI model based on three latent variables as generally measured by UNDP 

(2022) and BPS (2022a), namely Long and Healthy Life (LHL), Knowledge (Know_L), and Decent Living 

Standard (DLS). The latent variables must be built by indicators based on strong theoretical concepts. In 

consequence, in this study, each latent variable comprised multiple indicators drawn from previous studies, 

namely Darsyah et al. (2018), Niranjan (2020), Pramesti & Indrasetianingsih (2018), Rahma (2020), and 

Wati & Khikmah (2020). The Long and Healthy Life (LHL) is constructed by four indicators. The 

Knowledge (Know_L) is constructed by six indicators. The Decent Living Standard (DLS) is constructed 

by three indicators. The full HDI model can be seen in Figure 2. 
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Figure 2. Full model of HDI. 

 

The indicators, notations, sources for each dimension or variable are shown in Table 1.  

 
Table 1. Variable, notation, and source for HDI model. 

 

Dimension/Latent Variable Notation Indicator Notation Source 

Namely Long and Healthy Life LHL Life Expectancy  LHL1 BPS (2023a) 

The Percentage of Individuals with Health 

Insurance  

LHL2 BPS (2022b) 

The Percentage of Access to Clean Drinking Water 

in Households  

LHL3 BPS (2023a) 

The Percentage of Feasible Sanitation Access in 

Households 

LHL4 BPS (2023a) 

Knowledge Know_L Mean Years of Schooling K1 BPS (2023a) 

Expected Years of Schooling K2 BPS (2023a) 

The Pure Participation Rate for High School K3 Kemendikbud-Ristek (2023) 

The Percentage of Literacy Rate Among the 

Population Aged 15 And over 

K4 BPS (2022b, 2023a, 2023b), 

Kemendikbud-Ristek (2023) 

The Percentage of The Population Aged 7-24 

Years with Schooling Status 

K5 BPS (2022b) 

The student-Teacher Ratio in High School K6 BPS (2023a) 

Decent Living Standards DLS Average Expenditure Per Capita Per Month DLS1 BPS (2022b) 

Percentage of The Non-Poor Population DLS2 BPS (2023a) 

Average Net Salary of Employees Per Month DLS3 BPS (2023b) 

Human Development Index HDI Human Development Index HDI BPS (2022b, 2023a, 2023b) 

Kemendikbud-Ristek (2023) 

 
 

 
Table 2. Code and regency/city of east Java province. 

 

Code Regency/City Code Regency/City Code Regency/City Code Regency/City 

3501 Pacitan 3511 Bondowoso 3521 Ngawi 3572 Blitar 

3502 Ponorogo 3512 Situbondo 3522 Bojonegoro 3573 Malang 

3503 Trenggalek 3513 Probolinggo 3523 Tuban 3574 Probolinggo 

3504 Tulungagung 3514 Pasuruan 3524 Lamongan 3575 Pasuruan 

3505 Blitar 3515 Sidoarjo 3525 Gresik 3576 Mojokerto 

3506 Kediri 3516 Mojokerto 3526 Bangkalan 3577 Madiun 

3507 Malang 3517 Jombang 3527 Sampang 3578 Surabaya 

3508 Lumajang 3518 Nganjuk 3528 Pamekasan 3579 Batu 

3509 Jember 3519 Madiun 3529 Sumenep   
3510 Banyuwangi 3520 Magetan 3571 Kediri   
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The data for this study were collected from the Central Bureau of Statistics of the Republic of Indonesia 

and the Ministry of Education, Culture, Research, and Technology. The sample is East Java province, which 

includes 38 regencies/cities, as shown in Table 2. 
 

 

The assessment of the outer model in SEM, as shown in Figure 2, is based on the outer loading values and 

their significance. The evaluation of the outer model used Smart-PLS Software. This evaluation aimed to 

identify indicators that effectively explained or measured latent variables, with results summarized in Table 

3. 

 
Table 3. Loading factor and P-value for outer model. 

 

Indicator <- Latent Variable Loading Factor P -values Updated Model 

DLS1 <- DLS 0.955 0.000 Maintained  

DLS2 <- DLS 0.395 0.013 Removed 

DLS3 <- DLS 0.932 0.000 Maintained 

K1 <- Know_L 0.492 0.033 Removed 

K2 <- Know_L 0.798 0.008 Maintained 

K3 <- Know_L 0.868 0.000 Maintained 

K4 <- Know_L 0.392 0.073 Removed 

K5 <- Know_L 0.15 0.513 Removed 

K6 <- Know_L 0.488 0.001 Removed 

LHL1 <- LHL 0.161 0.566 Removed 

LHL2 <- LHL 0.925 0.000 Maintained 

LHL3 <- LHL 0.016 0.956 Removed 

LHL4 <- LHL 0.74 0.001 Maintained 

 

 

An indicator was considered valid if it exhibited a loading factor exceeding 0.50 (Hair et al., 2010). Strong 

convergent validity requires that every indicator under a latent variable have high loadings of greater than 

0.6. (Dash & Paul, 2021; Hair et al., 2017; Shi & Maydeu-Olivares, 2020). Indicators with loading factor 

values below 0.60 are excluded from the model, resulting in the revised model shown in Figure 3. Figure 3 

contains three latent variables, namely Long and Healthy Life (LHL), Knowledge (Know_L), and Decent 

Living Standard (DLS). The Percentage of Individuals with Health Insurance (LHL2) and The Percentage 

of Feasible Sanitation Access in Households (LHL4) are the two indicators that make up The Long and 

Healthy Life (LHL). Two indicators make up the Knowledge (Know_L): Expected Years of Schooling (K2) 

and The Pure Participation Rate for High School (K3). The two indicators that make up The Decent Living 

Standard (DLS) are Average Expenditure Per Capita Per Month (DLS1) and Average Net Salary of 

Employees Per Month (DLS3). The model employed next is the revised version shown in Figure 3. 

 

Figure 4 shows the HDI levels in East Java Province, Indonesia. Sampang Regency has the lowest HDI 

index (63.39), while Surabaya City has the highest (82.74). HDI levels are categorized into four clusters: 

low, medium, high, and extremely high levels with progressively darker color gradations. Nine 

cities/regencies are part of the low HDI level cluster, eleven cities/regencies comprise the medium cluster, 

eleven cities/regencies are part of the high cluster, and seven cities/regencies are part of the very high cluster. 
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Figure 3. Updated model of HDI. 

 

 

 

 
 

Figure 4. HDI Level in East Java province. 

 

 

The next step is the estimation of exogenous and endogenous latent variables as in Equation (6) and 

Equation (8) using MATLAB Software. The SERM-SEM model employing queen contiguity weights is 

formulated using Equation (10). The spatial dependency test for SERM-SEM is conducted using the 

following Equation (23), and the calculation result is shown in Table 4. This value is compared to the chi-

square distribution with one degree of freedom and an alpha value of 5%, leading to SERM-SEM. The 

testing process used MATLAB Software. 

 

 
Table 4. Lagrange multiplier test result. 

 

Test LM  Result 

LM (SERM-SEM) 4,61E+24 reject the null hypothesis 
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The estimation parameters of SERM-SEM, as in Equation (12) and Equation (16) using MATLAB Software, 

can be seen in Table 5. The values are compared to the t-distribution with thirty-seven degrees of freedom 

and an alpha value of 5%, resulting in significant results, except for The Long and Healthy Life (LHL) 

variable. Decent Living Standard (DLS) has a significant effect on HDI. The findings of this study 

corroborate those of Arriani and Chotib (2021), which found that the variables of poverty, GDRP per capita, 

and unemployment had a significant impact on HDI and spatial effects. Combining variables of poverty, 

GDRP per capita, and unemployment describes a Decent Living Standard (DLS). Knowledge (Know_L) 

has a significant effect on HDI. Knowledge has a significant effect on HDI. This result corroborates the 

findings of Wafitrah et al. (2023), which found that an educated workforce influenced HDI but that 

government spending on education did not. A Long and Healthy Life (LHL), as represented by The 

Percentage of Individuals with Health Insurance (LHL2) and The Percentage of Feasible Sanitation Access 

in Households (LHL4), has a significant no effect on HDI. For a number of cases in developing countries, 

like Indonesia, LHL does not support HDI. Obstacles to health insurance (LHL2) exist in developing 

countries, including administrative issues in Indonesia (Banerjee et al., 2021) and tax issues in a number of 

developing nations (Jamal et al., 2022). Watson et al. (2021) conclude that health insurance is not a magic 

bullet for enhancing equity in the health sector, based on publications spanning 20 developing countries. 

Even though the availability of sanitation facilities might improve a decent life, there were challenges to 

Feasible Sanitation Access (LHL4) in developing countries, particularly in Indonesia (Budiono & Purba, 

2022). 

 
Table 5. The estimation results of parameter and spatial error-SEM coefficient. 

 

Variable Coefficient Result 

Spatial Error-SEM -   -0.387 Valid 

0  8.002 Valid 

Decent Living Standards (DLS) - 1  0.226 Valid 

Knowledge (Know_L) - 2  0.053 Valid 

Long and Healthy Life (LHL) - 3  0.001 Invalid/No Effect 

 
 

In general, HDI modeling in SERM-SEM can be expressed as follows: 
38

1,

0.053 _ 0.001 0.8.002 0.226 387 ij jii i

j i j

iHDI DLS Know L LHL uW
= 

+= + + −  . 

 

HDI model for several regencies/cities are as follow:   

(i) Pemekasan Regency has two neighbors, namely Sampang and Sumenep Regency 

           ( )3528 3528 3528 3528 3527 3529
0.053 _8.002 0. 2 0.001 0.32 876HDI DLS Know L LHL u u= + ++ −+  

 

(ii) Bangkalan Regency has one neighbor, namely Sampang Regency 

         3526 3528 3526 3526 3527
0.053 _ 0.001 0.38.002 0. 7226 8HDI DLS Know L LHL u= ++ −+  

 

(iii) Kediri Regency has five neighbours, namely, Kediri city, Jombang, Tulungagung, Blitar, and Nganjuk 

       

         ( )
3506 3528 3506 3506

3504 3505 3517 3518 3571

0.053 _ 0.001

      

8

         

.002 0

 0

.226

.387

HDI DLS Know L LHL

u u u u u

= + ++

+ + + +−

+
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In Figure 4, the HDI level is classified into four levels: very high, high, medium, and low. Visually, a 

regency/city with a very high HDI category has neighboring regencies/cities with very high or high HDI 

categories. On the other hand, a regency/city with a low HDI category has neighboring regencies/cities with 

low or medium HDI categories. It aligns with the SERM-SEM model, in which the model error value of 

each adjacent neighbor influences each model in a regency /city. Therefore, each region/city has a close 

relationship that mutually influences neighboring regencies/cities intersecting at a point or line. 

 

The spatial error coefficient is negative. It suggested the reverse of the typical spillover effect (Anekawati 

et al., 2020). A regency/city gets spillover spatial effects (not giving) from neighboring regencies/cities. 

For instance, as shown in Figure 4, the City of Mojokerto with a high HDI level gets an overflow of HDI 

effects from the regencies /cities that intersect with it, namely Sidoarjo (very high-HDI level), Gresik (high-

HDI level), Lamongan (high-HDI level), Jombang (high-HDI level), Batu (high-HDI level), and Pasuruan 

(medium-HDI level). Therefore, this finding encourages collaborative action among regencies /cities to 

improve the HDI level. It supports Arriani and Chotib (2021) conclusion that cooperative action was needed 

to improve the HDI of Central Java's regions and cities and strengthen the SDGs' implementation. 

 

5. Conclusion 
In conclusion, this study comprehensively developed the SERM-SEM, namely a spatial model in the form 

of the Spatial Error Model (SERM), which involved analyzing the relationship among latent variables 

(SEM). This model was developed to address the limitations of earlier studies by developing HDI modeling 

based on indicators rather than dimensions or latent variables. In the SERM-SEM, the variables in the 

SERM were substituted by the factor scores that the latent variable estimation resulted from SEM. These 

latent variables were estimated using the weighted least squares (WLS) method and subsequently integrated 

into the spatial framework. The SERM-SEM gave a new perspective by using the model error distribution, 

distinct from the error distribution of the traditional spatial model. The error distribution was formulated 

based on the value of expectation and variance from the SERM-SEM model. As a result, the error 

distribution of SERM-SEM was 𝛆 ∼ 𝑁𝑇,1 ((𝐈 − 𝜌𝐖)(𝐞𝛈 − K𝛃), 𝚯𝜌). Parameter estimation in this context 

employed the generalized method of moments (GMM), which yielded parameter estimations of 

( ) ( ) ( )
' 1

' ' '

2 1
ˆ ˆ ˆ ˆ ˆ ˆ

p


−

+ 
= =δ β ZZ Z l  and ( ) ( )

' 1
2 ' '

1 3
tr  

−



  =
 

Θ GG Gg . As a consequence, the SERM model 

was formed from the result of estimating latent variables in SEM, and a new error distribution was obtained. 

It is noteworthy that the LM test necessitates knowledge of the model error distribution. In this study, the 

spatial dependency test for the SERM-SEM used the new error distribution. The development of the spatial 

dependency test using LM for SERM-SEM with H0: 0 =  led to 
𝑝(𝛆̃'𝐖𝛆̃)

2

𝐷
∼ 𝜒(1)

2 .  

 

The results of developing mathematical formulas for the SERM-SEM model were applied to HDI modeling. 

This study developed an HDI model based on three latent dimensions, namely long and healthy life (LHL), 

knowledge (Know_L), and decent living standards (DLS). Each latent variable comprised multiple 

indicators drawn from previous studies. The assessment of the outer model in SEM was based on the outer 

loading values and their significance. This evaluation aimed to identify indicators that effectively explained 

or measured latent variables, so it got the revised model in SEM. The revised SEM model was a model that 

had latent variables LHL, DLS, and Know_L, each of which had two valid and significant indicators. The 

revised SEM model was modeled into the SERM model using steps of the results of developing the SERM-

SEM model, namely estimating latent variables, constructing the SERM-SEM model, estimating model 

parameters, and testing spatial dependency. The HDI modeling produced the SERM-SEM model denoted 
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as 
38

1,

0.053 _ 0.001 0.8.002 0.226 387 ij jii i

j i j

iHDI DLS Know L LHL uW
= 

+= + + −  .  

 

6. Limitation and Recommendation 
The limitation of this study is that a significant test has yet to be developed simultaneously. 

Recommendations for future research are to develop a significance test simultaneously using the maximum 

likelihood ratio test (MLRT). This study estimated latent variables using GMM (parametric statistics). 

Another recommendation for future research is that the model parameters estimation employs the maximum 

likelihood test (MLE) to be in sync with the latent variable estimation method, both of which use parametric 

statistics. 
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