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Abstract 

Effective microgrid control for system recovery and restoring normal operation necessitates fast event detection and 

implementation of remedial action (if need arises). However, fast and reliable event detection in microgrids is challenging because 

of low observability and inconsistencies in measurements. A novel technique is proposed in the present work for the real-time event 

detection and to identify the various emerging abnormalities in the microgrid. The continuous energy signature using TKEO 

(Teager-Kaiser Energy Operator) of the continuous varying voltage and frequency signal are extracted through μPMU. REII 

(Robust Event Identification Index) is constructed from these energy signatures and based on its abrupt post-event deviation from 

the nominal values an event is flagged in the proposed method. The proposed method is data–driven and only depends on the real-

time inputs through μPMUs thus it automatically adapts the uncertainties associated with the intermittent sources of energy in the 

microgrid under different operating conditions. The traditional event detection techniques fail in identification of abnormalities for 

a microgrid connected to the transmission systems and equipped with multiple DERs such as PVDG, WG etc. To address this 

challenge, an integrated microgrid with multiple DERs viz. PVDG, WG and a SG (Synchronous Generator) is first developed in 

this work. The complexity of simultaneous operation of a static generator i.e. PVDG along with a rotor-based generator such as 

WG and SG is handled by the modeling the dynamic controllers of PVDG and WG for their frequency and voltage control. The 

simulation results depict the efficiency, accuracy and robustness of the proposed technique in terms of estimation time, event 

accuracy and applicability in all types of events. Moreover, the presented methodology is also compared with the four AI/ML based 

methods to highlight the superiority of the method. 

 

Keywords- Distributed generation, Microgrid protection, Event detection, Event diagnosis, Teager-Kaiser energy operator. 

 

 

 

1. Introduction 

Advancement and development in DG (distributed generation) is attracting the attention of both researchers 

and industries towards microgrids (Parhizi et al., 2015). The requirement of microgrids is increasing these 

days mainly due to the rise in demand and the increased attention towards the green and clean energy 

(Reddy et al., 2016). Microgrids are capable in both types of operations viz. islanded mode as well as when 

connected to the main grid (Salkuti, 2019a). The additional amount of the power requirement(s) is fulfilled 

by the transmission system for a grid–connected mode and remaining is supplied by the DGs. Moreover, if 

the main grid encounters any turbulence due to faults, voltage fluctuations and frequency deviations etc. 

then microgrid becomes an island and continues to operate independently. In islanded mode of microgrids, 

the critical loads can also be fulfilled without a utility grid by the contribution of DGs connected at the 

load–side (James et al., 2019; Ray and Salkuti, 2020). The security and reliability of the microgrid is 

improved by the sustainable and environment-friendly power generation through DGs (Colmenar-Santos 

et al., 2016; Mahmoud et al., 2015). However, besides the numerous benefits, protection due to high 

penetration of DGs remains one of the major challenges in microgrids. The bidirectional and dynamic fault 

currents are produced in the system based on the location, type, and penetration level of DGs (Telukunta et 

al., 2017). Nevertheless, the standard setting of protection systems based–on overcurrent relays have been 

affected significantly through topological transformations in microgrid operation such as islanding to grid–

connected mode and vice-versa (Chandra et al., 2021; Nimpitiwan et al., 2007). Moreover, as the direct 

coupling of DGs is infeasible in microgrids hence, the synchronized integration of DGs in microgrids is 

achieved with the implementation of power electronics converters (Kroposki et al., 2010; Abdelgawad et 

al., 2019). However, severe protection challenges arise due to this interfacing mainly in IIDGs enabled 

microgrids. It is because the fault current is affected insignificantly due to the drop in the converter output 

current which emasculates the accuracy and feasibility of the microgrid protection based-on overcurrent 
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relays (Chandra et al., 2021; Nimpitiwan et al., 2007). Therefore, to enhance the selectivity and to overcome 

the dynamic changes in the fault current, the directional and adaptive attributes have also been included in 

the overcurrent relay based conventional protection schemes (Coffele et al., 2015; Mahat et al., 2011; 

Ojaghi et al., 2013). 

 

In literature various intelligent and fast event detection methods are proposed by the researchers to 

overcome the aforesaid challenges and issues associated with the microgrid operation. A decentralized 

energy scheduling mechanism is proposed for the various consumers and producers of energy that handles 

the trading of energy not only within a microgrid as well as through multiple microgrids (Meghana et al., 

2022). A novel recursive matrix pencil method is proposed in (Deshmukh et al., 2023) based on a sliding 

window index for the fault detection in microgrids. It is well efficient in grid–connected as well as islanded 

mode however; HIFs must be taken into account for its successful operation. An event detection technique 

using secondary control for islanded microgrids is proposed in (Jamali et al., 2023) to enhance the 

communication efficiency of the microgrids connected to both DESSs and DERs. A controller for event 

detection in microgrids connected with DERs and batteries is proposed in (Irmak et al., 2023) to control the 

island operation of microgrids. An unsupervised event detection technique using Gaussian Process 

Regression tool is proposed in (Choi et al., 2023) that does not depends on the fixed threshold for the event 

detection. 

 

Recently, data–driven based approaches are proposed by various researchers for phase and/or event 

detection in the microgrids. Random forest and decision tree are the most widely used methods for the event 

detection in islanded as well as grid–connected microgrids (Casagrande et al., 2013; Kar et al., 2017; Mishra 

et al., 2016). Other techniques such as k–nearest neighbors and support vector machines etc. are AI based 

ML approaches and have also been implemented to detect the events in microgrids (James et al., 2019; 

Casagrande et al., 2013). These data–driven approaches are capable of satisfactory event detection and 

classification due to their high computational speed in real–time. The relevant data about microgrid is 

required in these approaches for the examination of relation between input and output variables to identify 

an event. This required data is collected through PMU measurement points and it has to be processed 

through machine learning or signal processing approaches for the situational awareness of the events in the 

microgrids (Casagrande et al., 2014; Som et al., 2022). Moreover, extraction and analysis of time-frequency 

characteristics has been achieved by pre-processing the input signal with the adoption of DSP approaches 

viz. DFT and DWT etc. microgrids (Casagrande et al., 2013; James et al., 2019;). An unsupervised ML 

method is proposed in (Aligholian et al., 2021; Shahsavari et al., 2019) for clustering and event detection 

in microgrids. To detect and localize the multiple events in microgrids, a signal processing approach is 

proposed in (Negi et al., 2017; Yadav et al., 2019). The techniques proposed in (Aligholian et al., 2021; 

Negi et al., 2017; Shahsavari et al., 2019; Yadav et al., 2019) for event detection in microgrids need an 

exhaustive training of several PMU measurement factors as well as the situational awareness is essential 

for the events to achieve in the microgrids. However, only 0.04% of PMU based approaches are able to 

evidence any event in the microgrid as per the current studies, it is because the events generally occurs 

rarely (Aligholian et al., 2020). Also, the cases of identifying false events due the abnormalities in PMU 

factors are not addressed by any of these approaches proposed in (Aligholian et al., 2020; Aligholian et al., 

2021; Negi et al., 2017; Shahsavari et al., 2019; Yadav et al., 2019). 

 

The hierarchical control approach is proposed in (Guerrero et al., 2011) for the stand-alone microgrids with 

DERs. For optimal operation of microgrid and to alleviate steady–state errors, communication–based 

tertiary and secondary levels of hierarchical control are respectively essential. To improve the frequency 

regulation of microgrids in islanded mode, load fluctuations in the system are identified with the PMU 

based proposed schemes in (Rodrigues et al., 2019; Rodrigues et al., 2021). The secondary voltage and 
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frequency fluctuations as per the IEEE standards (Generation and Storage, 2020) can only be achieved 

through accurate PMU and hence, the outliers of PMUs have to be identified and filtered out. To control 

reactive power sharing within DERs in a microgrid, an event-triggered-based (ETB) approach is developed 

in (Gupta et al., 2020). ETB based approach to control secondary frequency and voltage in a microgrid is 

discussed in (Ding et al., 2017; Khayat et al., 2020). The possibility of false measurements in PMUs must 

be identified, detected and replaced before utilization in ETB approaches for microgrid control as ETB 

schemes depend on accurate algorithms of event detection. A tertiary control technique is adopted in the 

schemes proposed in (Gao et al., 2018; Wang et al., 2020) to optimize the power flow in microgrids among 

multiple DERs. False measurements in PMUs may results in non–optimal power flow because the 

information about load and generation is collected through PMUs network by the microgrid energy 

management system for tertiary control. Recently, some researchers have considered the inaccuracies in 

PMU measurements and proposed the event detection techniques for microgrid systems with multiple 

DERs. The combination of network parameters and PMU measurements is utilized and the source of events 

in microgrids is localized in the approach presented in (Farajollahi et al., 2018). However, the approach is 

a combination of model-based and data-based methods. System behavior-based modelling-free analysis for 

event detection and for any variations in the topology of the network is proposed in (Mayo-Maldonado et 

al., 2020). The complete observability of the system is essential in the method proposed; however 

knowledge about the initial parameters of the system network is not required. The collective outlier 

detection approach is proposed through the techniques presented in (Zhou et al., 2019; Gholami et al., 2019) 

for the detection of events based on physics as well as for all types of PMU measurements outliers. To 

prevent the false event alarms due to the abnormalities in PMU measurements, a forest-based online 

isolation event detection method is proposed in (Wu et al., 2021). However, a huge number of set-points 

and one-time training is essential in the methods proposed in (Zhou et al., 2019; Gholami et al., 2019; Wu 

et al., 2021). Moreover, the impact of DGs is not considered with the capability of voltage control in any 

of these approaches for the detection of microgrid events and analysis. 

 

It has been observed from the literature review that the event detection schemes in the microgrid require 

further improvements and there is a pressing need for a more feasible solution for the protection of 

microgrid under different events. Some recently developed and proposed schemes are not able to detect the 

type of event properly and its location hence, these methods cannot be adopted in real-time as it focuses 

only in the low-power applications. On the other hand, injection-based or travelling-wave techniques are 

well suitable to detect event type and/or location in AC microgrids (Che et al., 2014; Mohanty et al., 2015). 

However, they have their own challenges such as communication links of travelling-wave require 

synchronized data because it suffers from the discrimination and detection issues in reflected-wave. Hence, 

accurate event detection and its location are not achieved in islanded mode of microgrids operation. 

Meanwhile, some other techniques e.g. injection-based techniques are suitable for radial networks as they 

are only limited to line-to-ground faults (He et al., 2010; Jafarian and Sanaye-Pasand, 2010). 

 

In this paper a microgrid consisting of PVDG, WG and SG connected to the main grid is considered for 

implementing the proposed methodology. The simultaneous operation of these energy sources is 

complicated and rarely implemented. The intermittent power is generated through the integration of PVDG 

and WG because both depend on the metrological and climatic conditions (Battula et al., 2021). Because 

of highly intermittent generated voltage through PVDG and WG, they cannot be connected directly to the 

main utility grid (Salkuti et al., 2019b). As a result, the simultaneous operation and control of grid–

connected microgrid with PVDG, WG and SG is more complex and challenging (Salkuti, 2023). Therefore, 

firstly a static IIDG (inverter-interfaced DGs) such as PVDG along with a rotor-based generator such as 

WG and SG in the same microgrid is modelled. In the next stage, a new technique has been developed 

based on the TKEO (Teager-Kaiser Energy Operator) to identify the event in real-time. A novel index 
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namely Robust Event Identification Index (REII) is developed to identify an emerging event in the 

developed microgrid. This new index developed is based on the real-time voltage and frequency signals 

available through µPMUs. The developed REII quantify the event signature by using TKEO and alerts the 

system operator during abrupt operating conditions. The major highlight of the proposed method is its 

dependence only upon the real-time voltage and frequency signals therefore it is essentially capturing the 

uncertainties associated with intermittent sources of energy in the microgrid. Moreover, it can identify the 

event immediately after the actual occurrence of the event. The presented methodology is also compared 

with the four Artificial Intelligence based methods viz. SVM, MLP, Random Forest and AdaBoost to 

highlight the superiority of the method.  

 

The major contributions of the presented work include: 

(i) The modeling of an eight bus, 60Hz microgrid system with three DGs viz. a PVDG, a SG and a WG 

in DIgSILENT PowerFactory® 2020. In which the successful simultaneous operation and control of 

grid–connected microgrid with multiple DERs is accomplished. All the eight buses are equipped with 

μPMU to capture the continuous real–time variations in the bus voltage and frequency signals. 

(ii) A novel event detection technique based on the TKEO (Teager-Kaiser Energy Operator) is proposed 

for the real-time event detection in the microgrid under various operating conditions. The continuous 

real-time energy signatures are calculated using TKEO for the voltage and frequency signals received 

through μPMU. These signatures are used to construct proposed index i.e. REII (Robust Event 

Identification Index) and based on its abrupt post-event deviation from the nominal values an event is 

flagged. 

(iii) The proposed event detection technique is a data–driven approach and will therefore work on real-

time data extracted through μPMUs. The method will thus automatically capture the on-going system 

conditions i.e. sudden variations in the output of renewable energy sources under different operating 

conditions. Therefore, it is well efficient under uncertainties caused by the renewable energy sources. 

(iv) Moreover, the presented methodology is also compared with the four Artificial Intelligence based 

methods viz. SVM, MLP, Random Forest and AdaBoost to highlight the superiority of the method. It 

has been observed that the efficiency of the proposed methodology meets expectations when compared 

with the efficiency of AI/ML based methods with 100% accuracy. 

 

Simulation studies have been carried out under different events including faults in the system. These events 

include islanding operations due to outage of distribution line(s) or transformers(s) and non-islanding 

operations due to load change(s), outage of distribution line(s), outage of load(s) and short circuit fault at 

distribution line(s) etc. It has been observed that the frequency and voltage both varies non–linearly 

whenever an event occurred in the system. However, the magnitude of variation in both frequency and 

voltage w.r.t. time under the nominal variation in the system such as load change (increase or decrease) is 

minimal, and the system regains its stable operation within few cycles. Based-on the system response under 

nominal events viz. load change from ±10% to ±50% of the base load, the minimum and maximum 

threshold values for REII are estimated. It has been noticed in the simulation studies that REII violates the 

thresholds for either bus voltage or bus frequency only when there is an event occurred either at grid side 

or DG side and the thus event is successfully detected within first few cycles. 
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Figure 1. General outline of the proposed method. 

 

The manuscript is organized as; literature review and major contributions of the proposed work are 

discussed in section 1. Section 2 illustrates the system modeling, wherein, proposed methodology for the 

detection of an event is explained in section 3. Section 4 is dedicated to the simulation results demonstration 

and analysis, whereas, performance and comparative analysis of the proposed methodology in different 

operating conditions is presented in section 5. The work is concluded in section 6 highlighting the efficacy 

of the proposed method. The block diagram representation of the proposed scheme is shown in Figure 1. 

 

2. System Modeling 
Single line diagram of balanced 8 Bus, 60Hz, 100MVA microgrid system with DERs is presented in Figure 

2. A utility grid of 120kV is connected to a 25kV Bus with two parallel connected step-down transformers 

(TFR01 and TFR02) in the designed microgrid. DL01, DL02 and DL03 are the three distributed lines 

originate from the 25kV bus and load LD04 and C (2MVar capacitor) are also connected to 25kV bus. 

Three 25kv/575V delta–star step–down transformers (TFR03, TFR04 and TFR05) are used to connect DGs 

and loads (constant impedance loads) to the radial distribution network. It consists of three DGs viz. a 

PVDG, a WG and a SG. 

 

The system in (Sankar and Sunita, 2021) has been modified and the details of the distribution lines, 

transformers, loads and DGs are given in Table 1. In the developed 8 Bus grid–integrated microgrid with 

DERs, the primary objective is successful operation of a static IIDG i.e. PVDG along with a WG and a SG. 

 

It is challenging to integrate different DERs in the microgrid because WG and SG produce an inertia in the 

system due to their rotational mechanism for the power generation but PVDGs are static generators 

connected via inverter and do not produce an inertia. Therefore, the combination of these different types of 

generators leads to system instability as the frequency and voltage variations do not remain under control. 

The successful co-ordination between their operations is achieved by the dynamic modeling and 

implementation of PVDG’s controllers to control their frequency and voltage in RE integrated microgrids 

(Lammert et al., 2016). The dynamic modeling of controllers for PVDG and WG has also been developed 

in the designed microgrid test system as per the architecture proposed in (Lammert et al., 2016). The system 

has been tested and successful operation of all the DGs has been observed in the load flow analysis under 

steady state as well as various disturbances. 
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The circuit breaker relays at the event location acquires the current and voltage information at 64samples/s. 

DIgSILENT PowerFactory® 2020 software has been used to develop and simulate the system under 

different operating conditions and MATLAB ® 2020a software has been used for the analysis of simulation 

results. 

 

 
 

Figure 2. Simulated 8 bus grid integrated microgrid test system with DERs. 

 

 

Table 1. Elements parameters/specifications of modified 8 bus system. 
 

Sr. No. Element Parameters/Specifications 

1. Utility Grid Rated short circuit MVA is 2500MVA, 60Hz, Vgrid = 120kV and base power is 100MVA 

2. 
Distribution Lines: DL01, 
DL02 and DL03 

22km, 60Hz, 3-ϕ, π–sections, C1 = 10.1766nF/km, C0 = 4.5nF/km, L1 = 1.1mH/km, L0 = 3.47mH/km, 
R1 = 0.125Ω/km and R0 = 0.447Ω/km 

3. Load: LD01 and LD03 60Hz, Vϕ–ϕ = 575V, 8MW and 1.75MVar linear constant impedance loads 

4. Load: LD02 60Hz, Vϕ–ϕ = 575V, 2.5MW and 0.75MVar linear constant impedance load 

5. Load: LD04 60Hz, Vϕ–ϕ = 25kV, 12MW and 2.8MVar linear constant impedance load 

6. Capacitor (C) 25kV and 2MVar 

7. Generator: DG01 SG of 9MVA, 60Hz and 575V 

8. Generator: DG02 WG of 9MW, 575V and 60Hz with 6 parallel units of 1.5MW DFIG (doubly fed induction generator) 

9. Generator: DG03 PVDG of 3.2MW, 60Hz and 575V. 

10. TFR01 and TFR02 32MVA, 60Hz, 120kv/25kV with L1 = L2 = 0.08pu, R1 = R2 = 0.0026pu, Rm = 1200pu and Xm = 600pu. 

11. TFR03 5MVA, 60Hz, 25kv/575V with L1 = L2 = 0.08pu, R1 = R2 = 0.0026pu, Rm = 1200pu and Xm = 600pu. 

12. TFR04 and TFR05 12MVA, 60Hz, 25kv/575V with L1 = L2 = 0.08pu, R1 = R2 = 0.0026pu, Rm = 1200pu and Xm = 600 pu. 

 

3. Proposed Methodology 

3.1 TKEO (Teager-Kaiser Energy Operator) 
Kaiser in 1990 developed TKEO for the energy measurement of single continuous time-varying signal 

(Kaiser et al., 1990). To detect power supply oscillations by estimating the instantaneous frequency in the 

transient signals, TKEO has been applied to the electrical systems for the event(s) diagnosis (Rodriguez et 

al., 2013). 
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The TKEO energy signature [ψ(f(t))], for a time-varying continuous signal [f(t)] is given by Equation (1) 

as (Rodriguez et al., 2013): 

𝜓[𝑓(𝑡)] = [𝑓̇(𝑡)]
2
− 𝑓̇(𝑡) × 𝑓̈(𝑡)                                                                                                                        (1) 

 

where, 𝑓̇(𝑡) =
𝑑𝑓

𝑑𝑡
 is the first derivative and 𝑓̈(𝑡) =

𝑑2𝑓

𝑑𝑡2
 is the second derivative of f(t). The discrete form of 

this signal which has been used in this work to calculate continuous time signals of frequency and voltage 

is given by Equation (2) as (Tran et al., 2014): 
 

𝜓[𝑓(𝑘)] = [𝑓(𝑘)]2 − 𝑓(𝑘 − 1) × 𝑓(𝑘 + 1)                                                                                                         (2) 

 

Here in Equation (2), time derivatives of f(t) are approximated and replaced by the time differences. In this 

technique, no band–pass filter is used to extract the TKEO of AM signal for the diagnosis of event (Li et 

al., 2009). 

 

The TKEO can directly be applied to the raw vibration signal f(t) i.e. in Equation (2) and can detect event(s) 

more effectively. Therefore, an effective discrimination in energy signature of f(t) can be expected between 

the event bearing and normal conditions. The advantages of direct TKEO computation for f(t) signal are as 

follows: 

(i) Since, there is no band-pass filter used; hence, the estimation of an appropriate central frequency and 

band-width of band-pass filter is also not required. 

(ii) The energy signatures using TKEO requires only three continuous adjacent samples at each time instant 

for the energy computation of the continuous time-varying signal hence, its implementation is 

computationally efficient and effortless.  

 

Therefore, this method is easy to operate, time efficient with straightforward implementation and captures 

the information about the energy fluctuations directly. 

 

3.2 Proposed Event Detection Technique 
The manifestation of an event during time domain analysis is detected in the proposed methodology with 

REII indices of the energy signatures of bus voltage ψ[V(t)] and bus frequency ψ[f(t)] at all the 8 buses 

using TKEO. The buses in the developed system are equipped with μPMU which provides real–time 

variation of bus voltage and frequency signals. Moving sets of three continuous real–time samples in pu 

(per unit) for bus voltage and bus frequency are considered to compute energy signatures as shown in 

Equation (3) and Equation (4):  
 

𝜓𝐵1[𝑓(𝑡1)] = [𝑓(𝑡2)]
2 − 𝑓(𝑡1) × 𝑓(𝑡3)                                                                                                     (3) 

 
 
Here, ψB1[f(t1)] is the energy content of frequency for Bus 01 at time sample t1 and f(t1), f(t2) and f(t3) are 

the bus frequencies of Bus 01 at time samples t1, t2, and t3 respectively. The next energy content for bus 

frequency is given by Equation (4) as: 
 

𝜓𝐵1[𝑓(𝑡2)] = [𝑓(𝑡3)]
2 − 𝑓(𝑡2) × 𝑓(𝑡4)                                                                                                     (4) 

where, ψB1[f(t2)] is the energy content of frequency for Bus 01 at time sample t2 and f(t2), f(t3) and f(t4) are 

the bus frequencies of Bus 01 at time samples t2, t3, and t4 respectively. In this manner the REII indices are 

generated for the frequency signal of all eight buses.  

 

The REII indices of bus voltages are also calculated using moving sets of three consecutive samples window 

of the μPMU output in real–time as represented in Equation (5) and Equation (6):  

𝜓𝐵1[𝑉(𝑡1)] = [𝑉(𝑡2)]
2 − 𝑉(𝑡1) × 𝑉(𝑡3)                                                                                                    (5) 
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𝜓𝐵1[𝑉(𝑡2)] = [𝑉(𝑡3)]
2 − 𝑉(𝑡2) × 𝑉(𝑡4)                                                                                                    (6) 

 

Here ψB1[V(t1)] and ψB1[f(t2)] are the energy content of voltage for Bus 01 at time sample t1 and t2 

respectively. The real–time REII indices for bus frequency and voltages are computed under different 

events through μPMU output.  
 

𝜓[𝑓(𝑡)]𝐵(𝑘)[𝑓(𝑡𝑛)][𝑓(𝑡)]𝑡ℎ_𝑚𝑎𝑥𝑡ℎ_𝑚𝑖𝑛
                                                                                                      (7) 

𝜓[𝑉(𝑡)]𝐵(𝑘)[𝑉(𝑡𝑛)][𝑉(𝑡)]𝑡ℎ_𝑚𝑎𝑥𝑡ℎ_𝑚𝑖𝑛
                                                                                                     (8) 

 

 
 

Figure 3. Flow chart of the proposed event detection methodology. 

 

 

The real-time REII indices of bus frequency and voltage for all the 8 buses are then compared with the 

threshold energy signatures as given by Equation (7) and Equation (8) respectively and the event is detected 

eventually when the REII index violates the threshold limits. The threshold values for ψ[V(t)] and ψ[f(t)] 

are shown in Table 2 for different energy signatures. 
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Table 2. Threshold values of REII indices for ψ[V(t)] and ψ[f(t)]. 
 

Energy Signatures Threshold Values (pu) 

𝜓[𝑓(𝑡)]𝑡ℎ_𝑚𝑎𝑥 0.0045 

𝜓[𝑓(𝑡)]𝑡ℎ_𝑚𝑖𝑛 -0.0118 

𝜓[𝑉(𝑡)]𝑡ℎ_𝑚𝑎𝑥 0.0238 

𝜓[𝑉(𝑡)]𝑡ℎ_𝑚𝑖𝑛 -0.0229 

 

 

It has been observed under the various events that the REII indices varies with a small magnitude under the 

nominal events such as load change from ±10% to ±50% of the base load and system regain its stable 

operation within few cycles. Therefore, load change events are considered as the nominal operating 

conditions for the microgrid. The extremities of variation in REII indices for both frequency and voltage 

with ±50% load variation are considered as the threshold values for ψ[V(t)] and ψ[f(t)]. 

 

The flow chart of the proposed event detection methodology is shown in Figure 3. In implementing the 

proposed algorithm first step is to get the real-time bus data from the system viz. frequency [f(t)] and voltage 

[V(t)] variations using μPMU. The continuous energy signatures are then computed for both [f(t)] and [V(t)] 

simultaneously for each instant of time using TKEO to develop REII indices. The real-time REII indices 

are then compared with the threshold values as given in Table 2. If REII index violates the threshold limits 

then an event is flagged off or else, if the variation REII index is within the threshold limits then no event 

is detected. 
 

4. Results Demonstration and Analysis 
The simulation studies have been carried out using MATLAB® 2020a and DIgSILENT PowerFactory® 

2020. The various events considered for non–islanding and islanding operations of the grid–connected 

microgrid system are given below: 

(i) Islanding operation: 

a)  Islanding due to transformer switching of TFR01 and TFR02 together. 

b) Islanding due to sudden outage of distribution lines DL01 and DL02 simultaneously. 

(ii) Non–islanding operation: 

a) Outage of DL01 or DL03. 

b) Outage of DG01 or DG02. 

c) Sudden load change of LD01 or LD02 up to ±50%. 

d) Sudden outage of load LD01 or LD03. 

e) Transformer switching of TFR01. 

f) Short-circuit fault at distribution line (DL01 or DL02 or DL03) and cleared after 12 cycles. 

g) Short-circuit fault at DL01 or DL02 and cleared after 12 cycles with a cascaded event of load outage 

LD01 or LD02 respectively. 

Six different cases are presented in this section to examine robustness and effectiveness of the method 

proposed. These cases include severe as well as nominal events occurred in the microgrid including non-

islanding and islanding operations. The details of the events are given below: 

(i) Case A: Islanding due to sudden outage of distribution lines DL01 and DL02 simultaneously at t=1.0s. 

(ii) Case B: Non–islanding due to short circuit fault at DL02 at t=1.0s and cleared at t=1.2s after 12 cycles 

with outage of DL02 from the microgrid. 

(iii) Case C: Load LD01 reduced to -50% of its rated load i.e. from 8MW to 4MW at t=1.0s. 

(iv) Case D: Load LD01 increased to +50% of its rated load i.e. from 8MW to 12MW at t=1.0s. 

(v) Case E: Load LD01 suddenly became out of service at t=1.0s and after 12 cycles synchronous generator 

DG01 also became out of service t=1.2s.  
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(vi) Case F: Load LD01 reduced to -50% of its rated load i.e. from 8MW to 4MW at t=1.0s and load LD02 

increased to +50% of its rated load i.e. from 2.5MW to 3.75MW after 12 cycles at t=1.2s. 

 

The analysis of aforesaid cases is discussed briefly for highlighting the effectiveness of the presented 

methodology. 

 

4.1 Case A (Sudden Outage) 
In Case A, an islanding event occurred at t =1.0s with sudden outage (switching off) of distribution lines 

DL01 and DL02 simultaneously. The real–time variation of REII indices for frequency is presented in 

Figure 4(a) and voltage in Figure 4(b) for case A. 

 

 
(a) 

 

 
(b) 

 

Figure 4. REII indices of (a) Bus frequency and (b) Bus voltage for case A. 

 

The event occurred at t=1.0s and it has been noticed in Figure 4(a) that the REII index of bus frequency for 

bus 3 violated the maximum threshold at t=1.04s and the event is detected within 0.04s. Also, the REII 

index of bus voltage for bus 4 violated the minimum threshold at t=1.01s just after 0.01s from the event 

time in Figure 4(b).  

 

So, the proposed technique is found well efficient in this case to detect the event with REII indices of bus 

voltage within 0.01s after the occurrence of an event. 
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4.2 Case B (with Severe Event of Cascaded Nature) 
In Case B, more severe event of cascaded nature is studied i.e. a non-islanding event occurred at t=1.0s i.e. 

short-circuit fault at DL02 and cleared after 12 cycles at t=1.2s with DL02 switched off. One more event 

also occurred at t=1.2s i.e. LD02 switched off from the distribution network. The real–time variation of 

REII indices for frequency is presented in Figure 5(a) and voltage in Figure 5(b) for case B. Here, first 

event i.e. a short–circuit fault occurred at t=1.0s and cleared at t=1.2s with line outage. 

 

 

(a) 
 

 
(b) 

 

Figure 5. REII indices of (a) Bus frequency and (b) Bus voltage for case B. 

 

It has been noticed in Figure 5(a) that the REII index of bus frequency for bus 4 violated the maximum 

threshold at t=1.02s and the fault has been detected within 0.02s. Also, the REII index of bus voltage for 

bus 4 violated the maximum threshold at t=1.01s and detected the fault just after 0.01s from the fault time 

as shown in Figure 5(b). Hence the short-circuit fault is identified with the REII index of bus voltage within 

0.01s. 

 

Second event occurred at t=1.2s in which line DL02 switched off and load LD02 disconnected from the 

network. In this event, it is noticed from Figure 5(a) that the REII index of bus frequency for bus 4 violated 

the maximum threshold at t=1.25s and identified the event after 0.05s. But, in case of bus voltage, REII 

index of bus voltage for bus 4 violated the minimum threshold at t=1.22s and detected the event just after 

0.02s as shown in Figure 5(b). Hence, the clearance of fault and the second event are identified with the 

REII index of bus voltage within 0.02s. So, it can be concluded in this case that the fault and event in 

cascaded events are successfully detected with the proposed method. 
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4.3 Case C (Sudden Load Decrease of -50%) 
In Case C, a sudden load variation of -50% from the rated load is considered. The real-time variation of 

REII indices for frequency is presented in Figure 6(a) and voltage in Figure 6(b) for case C. Here, load 

LD01 reduced to -50% of its rated value i.e. from 8MW to 4MW at t=1.0s.  

 

 
(a) 

 

 
(b) 

 

Figure 6. REII indices of (a) Bus frequency and (b) Bus voltage for case C. 

 

The REII indices for both bus frequency and bus voltage neither violated the maximum threshold nor the 

minimum threshold and the variation occurred within the threshold limits as seen in Figure 6. It is due to 

the fact that the load variation is not considered as an event in electrical power system, and it is a regular 

practice. Hence, the system regained its stable operation at t=1.065s just after 0.065s of the load change and 

status of the microgrid is predicted correctly by the presented method. 
 

4.4 Case D (Sudden Load Increase of +50%) 
In Case D, the load has suddenly increased by +50% from its rated load in LD01 (from 8MW to 12MW) at 

t=1.0s.  
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(a) 

 

 
(b) 

 

Figure 7. REII indices of (a) Bus frequency and (b) Bus voltage for case D. 

 

The real–time variation of REII indices for frequency is presented in Figure 7(a) and voltage in Figure 7(b) 

for case D. The REII indices for both bus frequency and bus voltage are obtained and it is observed that 

these values neither violated the maximum threshold nor the minimum threshold as seen in Figure 7. The 

system regained its stable operation at t=1.065s just after 0.065s of the load change and no event is detected 

by the proposed method accurately. 

 

4.5 Case E (Multiple Events of Cascaded Nature) 
In Case E, events of cascaded nature are studied i.e. a non–islanding event occurred at t=1.0s i.e. load outage 

of LD03 and after 12 cycles at t=1.2s generation outage of DG01.  
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(a) 

 

 

(b) 
 

Figure 8. REII indices of (a) Bus frequency and (b) Bus voltage for case E. 

 

 

The real-time variation of REII indices for frequency is presented in Figure 8(a) and voltage in Figure 8(b) 

for case E. Here, first event i.e. a load outage occurred at t=1.0s, it has been noticed in Figure 8(a) that the 

REII index of bus frequency for bus 6 violated the maximum threshold at t=1.023s and the fault has been 

detected within 0.023s. Also, the REII index of bus voltage for bus 6 violated the minimum threshold at 

t=1.01s and detected the event just after 0.01s from the event time as shown in Figure 8(b). Hence the load 

outage event is identified with the REII index of bus voltage within 0.01s. 

 

Second event occurred at t=1.2s in which line DG001 switched off from the network. In this event, it is 

noticed from Figure 8(a) that the REII index of bus frequency for bus 6 violated the maximum threshold at 

t=1.22s and identified the event after 0.02s. But, in case of bus voltage, REII index of bus voltage for bus 

6 violated the maximum threshold at t=1.21s and detected the event just after 0.01s as shown in Figure 8(b). 

Hence, the second event is identified with the REII index of bus voltage within 0.01s. So, it can be 

concluded in this case that the events in cascaded event are successfully detected with the proposed method. 
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4.6 Case F (Multiple Events of Cascaded Nature) 
In Case F, events of cascaded nature are studied i.e. a non–islanding event of load change occurred at t=1.0s 

in which LD01 reduced suddenly reduced to 50% of its rated demand and after 12 cycles at t=1.2s another 

load change event occurred in which LD03 suddenly increased to 150% of its rated demand. The real–time 

variation of REII indices for frequency is presented in Figure 9(a) and voltage in Figure 9(b) for case F. 

 

 
(a) 

 

 
(b) 

 

Figure 9. REII indices of (a) Bus frequency and (b) Bus voltage for case F. 

 

Here, first event i.e. a load variation occurred at t=1.0s and it has been noticed in Figure 9(a) that the REII 

index of bus frequency for bus 8 violated the minimum threshold at t=1.01s and the event has been detected 

within 0.01s. Also, the REII index of bus voltage for bus 8 violated the minimum threshold at t=1.01s and 

detected the event just after 0.01s from the event occurrence time as shown in Figure 9(b). Hence the load 

variation event is successfully identified by both the signatures i.e. frequency and voltage within the same 

duration of time i.e. 0.01s. 
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The second event occurred at t=1.2s in which line LD03 suddenly increased to 150% of its rated demand. 

In this event, it is noticed from Figure 9(a) that the REII index of bus frequency for bus 6 violated the 

minimum threshold at t=1.215s and identified the event after 0.015s. But, in case of bus voltage, REII index 

of bus voltage for bus 6 violated the maximum threshold at t=1.21s and detected the event just after 0.01s 

from Figure 9(b). Hence, the second event is successfully identified with the REII index of bus voltage 

within 0.01s. So, it can be concluded in this case that the events in cascaded event are successfully detected 

with the proposed method. 

 

5. Performance Analysis of Proposed Method Under Different Operating Conditions 
The study of different types of events to identify the robustness of the proposed technique is also performed 

under different operating conditions. There are 21 different types of events considered that include islanding 

as well as non–islanding operations as discussed above. It has been assumed that the time of occurrence for 

all the events in the system is identical i.e. t=1.0s and in the cases when there is a fault, the respective fault 

is cleared after 12 cycles. The analysis and discussion of all these events are presented in Table 3 which 

shows the event detection through the proposed method in different operating conditions. 

 
Table 3. Analysis of the proposed method under different operating conditions. 

 

Operating Conditions. Case Details 
Event Occurred 

Actual Estimated 

Condition# 01 Steady State Analysis without any Disturbance No No 

Condition# 02 Islanding: DL01 and DL02 out of service at 1s Yes Yes 

Condition# 03 Islanding: DL01 and DL03 out of service at 1s Yes Yes 

Condition# 04 TFR01 out of service Yes Yes 

Condition# 05 DL01 out of service Yes Yes 

Condition# 06 DL03 out of service Yes Yes 

Condition# 07 DG01 out of service Yes Yes 

Condition# 08 DG02 out of service Yes Yes 

Condition# 09 LD01 reduced to 50% of rated load(8MW) No No 

Condition# 10 LD02 reduced to 50% of rated load(2.5MW) No No 

Condition# 11 LD01 increased to 150% of rated load(8MW) No No 

Condition# 12 LD02 increased to 150% of rated load(2.5MW) No No 

Condition# 13 S/C at DL01 at 1.0s, cleared at 1.2s with DL01 out of service Yes Yes 

Condition# 14 S/C at DL02 at 1.0s, cleared at 1.2s with DL02 out of service Yes Yes 

Condition# 15 S/C at DL03 at 1.0s, cleared at 1.2s with DL03 out of service Yes Yes 

Condition# 16 LD01 out of service at 1.0s and DG02 out of service at 1.2s Yes Yes 

Condition# 17 LD03 out of service at 1.0s and DG01 out of service at 1.2s Yes Yes 

Condition# 18 S/C at DL02 at 1.0s, cleared at 1.2s with DL02 and LD02 out of service Yes Yes 

Condition# 19 S/C at DL01 at 1.0s, cleared at 1.2s with DL01 and LD01 out of service Yes Yes 

Condition# 20 LD01 reduced to 50% at 1.0s and LD03 increased to 150% at 1.2s Yes Yes 

Condition# 21 LD04 reduced to 50% at 1.0s and LD02 increased to 150% at 1.2s Yes Yes 

 

 

It is observed that in five cases for a nominal variation of frequency/voltage due to normal variation in the 

load (±20%-±30%) proposed method correctly classifies these changes as a normal operation. However, in 

all other cases when an actual event occurred in the system then the proposed method efficiently detected 

the event and estimated the event time. 

 

The proposed methodology has been found robust and well efficient as per the studies performed in all 

types of events under different operating conditions in the microgrid system connected to the main grid 

with different DERs. Moreover, the comparative analysis is presented in Table 4 to validate that the 

proposed method is also well efficient when compared with the available well established event detection 

approaches (Sankar and Sunita, 2021). 
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Table 4. Comparative analysis of various event detection techniques. 
 

Technique 
Time for Event 

Detection 
Benefits Limitations Reference 

ANFIS and Passive Technique 0.045s Good accuracy and lesser NDZ Training time Mlakic et al. (2019) 

SVM 0.04s Least false event detection Significant NDZ Baghaee et al. (2020) 

Moving Window PCA Under 2s Relevant for dynamic variables 
Significant NDZ, false detections and Short 

circuit faults not analysed 
Rafferty et al. (2016) 

PCA Under 2s Detection of islanding location 
Not efficient under incomplete outliers, 

significant NDZ and false detections 
Liu et al. (2015) 

Linear PCA Under 2s 
Event type detection using fault 

reconstruction vector 

High false detections and only suitable for 

linear and static data 
Guo et al. (2013) 

Recursive PCA and 

Approximate linear dependence 

condition 

Under 2s Detection of islanding location 
High false detections and Short circuit 

faults not analysed 
Guo et al. (2015) 

PCA 20 ms Lesser NDZ Well suitable for linear variables Muda and Jena (2018) 

Moving window kernel PCA Under 2s 
Well suitable for the non-linear 

voltage characteristics 

Significant NDZ, false detections and Short 

circuit faults not analysed 
Liu et al. (2016) 

Proposed REII Technique Under 0.02s 

100% efficient with great accuracy. 

Applicable under various operating 

conditions with zero false alarms 

Event location not identified (future scope) "NA" 

 

 

5.1 Performance Analysis with State of Art Using Machine Learning Models 
The proposed method works on TKEO based energy signatures of buses voltage and frequency to identify 

the occurrence of an event in the microgrid connected with multiple DERs. In this method the REII indices 

of buses voltage and frequency are calculated in pu and the event is flagged whenever the signatures in 

REII violates either minimum or maximum threshold. This approach makes the proposed method heuristic 

in nature however; the efficiency of the method under different operating conditions and multiple scenarios 

has been found 100%. Therefore, the results obtained for methodology proposed in this work are also 

compared with the results obtained through AI based Machine Learning Models to examine the robustness 

and effectiveness. Four Machine Learning Models are used to compare the results viz. 

a. Support Vector Classifier (SVC) (Perez et al., 2023) 

b. Multi–Layer Perceptron (MLP) (Mandal and Chanda, 2023) 

c. Random Forest (Hola and Czarnecki, 2023) 

d. AdaBoost (Belghit et al., 2023) 

 

The data set of total 200 cases is utilized to assess the efficiency of event identification. The data is first 

shuffled thoroughly and then 80% of the dataset is used for training and rest 20% is utilized for testing the 

trained data mining tools. 

 

The assessment results obtained are presented in Table 5. It has been observed in the assessment results 

that the efficiency through one of the methods i.e. SVC is 90% but through other three machine learning 

methods viz. MLP, Random Forest and AdaBoost is 100% that matches the efficiency and accuracy of the 

methodology proposed in the present work. 

 

 
Table 5. Assessment results of AI/ML tools and proposed method. 

 

Methods Accuracy/Efficiency 

Proposed Method 100% 

Support Vector Classifier 90% 

Multi–Layer Perceptron 100% 

Random Forest 100% 

AdaBoost 100% 
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However, the continuous update of data is essential in AI/ML tools for the assessment which may increase 

the response time which is not required in the proposed methodology. Therefore, the response time is very 

less in the proposed method as it assesses the event through the energy signatures directly that is an 

advantage over AI/ML tools. 

 

6. Conclusion 
In this work successful operation of the gird connected microgrid with multiple DERs has been 

accomplished by the dynamic modeling of controllers for PVDG and WG. The system has been tested for 

successful operation of DERs by performing dynamic simulation under different operating conditions as 

well as under steady–state condition. A novel event detection technique for abnormalities in the microgrid 

operation is also proposed in this paper using TKEO based REII indices. The major highlight of the 

proposed method is its dependence only upon the real-time voltage and frequency signals therefore it is 

essentially capturing the uncertainties associated with intermittent sources of energy in the microgrid. 

Moreover, it can identify the event immediately after the actual occurrence of the event. Simulation studies 

of the proposed method on the designed system have been performed under different operating conditions. 

In the proposed method, a continuous real–time REII index is computed through μPMU output for both bus 

frequency and bus voltage signals using TKEO. Based–on the system response under nominal changes viz. 

load variation from ±10% to ±50% of the rated load, a threshold window for energy signatures is estimated. 

It has been observed in the simulation studies that REII violates the threshold window only when there is a 

severe event occurred either at grid side or DG side and the event is successfully detected within few cycles. 

Different types of operating conditions with various events have been considered to examine the efficacy 

and robustness of the technique proposed. It is found that in case of an actual event only the proposed 

algorithm flagged the event whereas for all other variations REII never violates the threshold boundaries. 

The simulation results depict the robustness and effectiveness of the technique proposed in terms of event 

estimation time which is 0.01s to 0.02s, event accuracy and applicability in all types of events as the system 

is found able to regain its stable operation within 0.5s to 0.65s. Moreover, the presented methodology is 

also compared with the four Artificial Intelligence based methods viz. SVM, MLP, Random Forest and 

AdaBoost and it has been found that it is 100% efficient and accurate. Therefore, it can be concluded that 

the proposed methodology is robust in all types of events under different operating conditions for a 

microgrid connected to the main grid with multiple DERs. The proposed method is well efficient for event 

detection in a balanced microgrid system. This study can be extended for identifying the event location and 

type for the balanced and unbalanced system in the future work. 

 
Nomenclature 

DER Distributed Energy Resources 

DG Distributed Generation 

TKEO Teager–Kaiser Energy Operator 

μPMU Micro-Phasor Measurement Unit 

REII Robust Event Identification Index 

PVDG Photovoltaic Distributed Generator 

WG Wind Farm Generators 

SG Synchronous Generator 

HIF High Impedance Fault 

DESS Distributed Energy Storage System 

DWT Discrete Wavelet Transform 

DFT Discrete Fourier Transform 

IIDG Inverter Interfaced DG 

AI Artificial Intelligence 

ML Machine Learning 
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