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Abstract 

This paper introduces a novel computational approach utilizing the quartic B-spline method on a uniform mesh for the numerical 

solution of non-linear singularly perturbed delay differential equations (NSP-DDE) of second-order with a small negative shift. 

These types of equations are encountered in various scientific and engineering disciplines, including biology, physics, and control 

theory. We are using quartic B-spline methods to solve NSP-DDE without linearizing the equation. Thus, the set of equations 

generated by the quartic B-spline technique is non-linear and the obtained equations are solved by Newton-Raphson method. The 

success of the approach is assessed by applying it to a numerical example for different values of perturbation and delay parameter 

parameters, the maximum absolute error (MAE) is obtained via the double mesh principle. The convergence rate of the proposed 

method is four. Obtained numerical results are compared with existing numerical techniques in literature and observe that the 

proposed method is superior with other numerical techniques. The quartic B-spline method provides the numerical solution at any 

point of the given interval. It is easy to implement on a computer and more efficient for handling second-order NSP-DDE.  

 

Keywords- Singularly perturbed delay differential equations, Non-linear, Quartic B-spline method, Newton-Raphson method. 

 

 

 

1. Introduction 
Time delay is often observed in a variety of models, generally in the systems involving feedback analysis. 

Such systems give rise to differential-difference equations (DDEs). A negative shift in these equations is 

also called as delay. The time delay can have different significances, such as delay in transport, incubation 

time, response time, etc. The DDEs involving perturbation parameter 휀 with the highest order derivative 

term are called “singularly perturbed differential-difference equations” (SPDDEs). The word singular 

indicates the abrupt change in behavior of the solution as 휀 → 0. The occurrence of DDEs and SPDDEs can 

be observed in the mathematical modeling of different scientific and engineering phenomena (Derstine et 

al., 1982; Glizer, 2000; Liao, 2005; Mackey and Glass, 1977; Stein, 1965). Kyrychko and Hogan (2010) 

have conducted a survey of applications of time delay in the area of engineering. SPDDEs also arise in 

optics and psychology (Longtin and Milton, 1988; Mallet-Paret and Nussbaum, 1989).  

 

Lange and Miura (1982, 1994a, 1994b) were the first to introduce the analytical approach for SPDDEs. 

They studied a class of second-order equations and observed that even a tiny change in the delay parameter 

increases the width of the oscillation. The popular approach to deal with singularly perturbed differential 

equations (SPDEs) and SPDDEs is to obtain approximate solutions using different numerical methods. The 
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most famous methods are the finite difference method (FDM), finite element method (FEM), spline 

techniques, etc. Farrel et al. (2000) have discussed different difference methods, such as central difference 

scheme, upwind difference scheme, and fitted operator method for various convection-diffusion problems. 

For an approximation of second-order SPDEs, Kadalbajoo et al. (2008) carried out a comparative analysis 

using fitted mesh FDM, B-spline technique, and FEM. Kadalbajoo and Gupta (2010) surveyed numerical 

methods used in the literature for SPDEs from 2000 to 2009. Malge and Lodhi (2022) have presented a 

review of the analytical and numerical techniques applied for SPDDEs based on the recent literature. Roos 

et al. (2008) also have discussed FDM and FEM for second-order singular boundary value problem (BVP), 

elliptical and parabolic initial-boundary value problems, and the incompressible Navier-Stokes equation. 

 

An added advantage of the spline techniques is that they give the solution at any interval point, and the 

higher-order splines provide a better order of convergence. As a result, we found many spline methods 

applied for SPDEs and SPDDEs. Kadalbajoo and Arora (2009) have employed the cubic B-spline method 

for second-order SPDE. An SPDDE with a turning point is solved using the cubic B-spline collocation 

method (Kumar, 2018). Kanth and Kumar (2020) have applied a method that included spline in tension for 

the boundary region and midpoint approximation in the inner region for a second-order SPDDE. Vaid and 

Arora (2019b) have used the trigonometric B-spline technique. Flaherty and Mathon (1980) introduced 

polynomial and tension spline for SPDE. A fourth-order SPDE was approximated by Lodhi and Mishra 

(2018). An FDM with cubic spline in tension was developed by Chakravarthy et al. (2017) for SPDDE with 

a large delay. Vaid and Arora (2019a) applied the quintic-trigonometric spline method for third-order 

SPDDE. Goh at el. (2012) approximated SPDE using the quartic B-spline method. Prasad et al. (2022) 

applied the exponential spline method for NSP-DDE of order two with large delay using a special mesh. 

Roul and Kumari (2022) have solved a nonlinear singular BVP. After modifying it at singular points, the 

authors have applied the quartic trigonometric B-spline method. A variety of other spline techniques are 

applied by researchers for different types of BVPs (Ersoy Hepson, 2021; Mittal et al., 2020; Rani et al., 

2022; Tamsir et al., 2022). By using a de Boor-like algorithm, one frequency trigonometric splines are 

constructed and analyzed by Albrecht et al. (2023). 

 

Non-linear SPDEs and SPDDEs are mathematical models that describe many critical real-world phenomena, 

from chemical reactions to population dynamics (Chang and Howes, 2012; Kruthika et al., 2017). There 

has been growing interest in studying these equations in recent years due to their ability to capture the 

intricate dynamics of systems with delays and non-linearities. Quasilinearization is a common method to 

convert non-linear BVPs into a series of linear BVPs (Bellman et al., 1965a; Bellman, 1965b) and solve it 

by applying a suitable numerical method. To manage the delay term, researchers often use Taylor's series 

expansion. This process converts a SPDDEs into a SPDEs. Kadalbajoo and Kumar (2010) treated NSP-

DDE using the cubic B-spline method, and Kanth and Murali (2018) used an exponentially fitted spline 

method for the same BVP. Lodhi and Mishra (2017) found the approximate solution of non-linear SPDE 

by the quintic B-spline method. The exponential polynomial single step method was applied by Fadugba et 

al. (2022) for an NSP-DDE of first order with fixed delay.  

 

The study of NSP-DDE is still under exploration and very little literature is available particularly for the 

second order NSP-DDE. In this study, we have used the quartic B-spline method (QBSM) on a uniform 

mesh to treat NSP-DDEs of the retarded kind. The main objective behind applying the QBSM is to obtain 

a more accurate solution with a higher convergence rate. This method generates a set of equations that are 

solved by Newton-Raphson method. Our approach is similar to the one applied by Roul and Thula (2019). 

Here, the authors have found approximate solutions to Bratu-type and Lane-Emden problems. Kadalbajoo 

and Kumar (2010) have discussed the same NSP-DDE. Authors have first converted non-linear equation 

into a series of linear equations by means of quasi linearization. Further it is solved using cubic B-spline 
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collocation method which is proved to have almost second order convergence. 

 

This article is organized as follows. Problem statement with all the constraints is given in section 2. The 

basics of B-spline function, QBSM and the derivation of the technique for NSP-DDE are explained in 

section 3. Error estimates are discussed in section 4. Section 5 determines the method's efficiency by 

applying it to a numerical problem. The findings of this research are presented in the final section. 

 

2. Problem Statement 
Consider the following second order NSP-DDE: 

휀𝑥″ = 𝑔(℘, 𝑥, 𝑥′(℘ − 𝛿)), 0 < ℘ < 1                                                                                                      (1) 

𝑥(℘) = 𝜑(℘), on −𝛿 ≤ 𝑡 ≤ 0, 𝑥(𝑏) = 𝛾                                                                                                   (2) 

 

where, 0 < 휀 << 1, 𝛿is a delay parameter with 𝛿 = 𝑜(휀). It is considered that the solution of Equations 

(1)-(2) is continuous on [0,1]  and differentiable on (0,1).  If 𝑅 = {(𝑤1, 𝑤2, 𝑤3): 0 ≤ 𝑥 ≤ 1,−∞ <
𝑤2, 𝑤3 < ∞}  then the function 𝑔(𝑤1, 𝑤2, 𝑤3)  is smooth on region 𝑅.  It also satisfies the following 

conditions. 

(i) 𝑔𝑤2(𝑤1, 𝑤2, 𝑤3) ≥ 0and 𝑔𝑤3(𝑤1, 𝑤2, 𝑤3) ≤ 0. 

(ii) 𝑔𝑤2(𝑤1, 𝑤2, 𝑤3) − 𝑔𝑤3(𝑤1, 𝑤2, 𝑤3) ≥ 𝜆 > 0 where, 𝜆 is constant. 

(iii) 𝑔𝑤2(𝑤1, 𝑤2, 𝑤3) = 𝑂(|𝑤3|
2) as 𝑤3 → ∞ for all 𝑤1 ∈ [0,1] and all real 𝑤2 and 𝑤3. 

 

where, 𝑔𝑤2(𝑤1, 𝑤2, 𝑤3) and 𝑔𝑤3(𝑤1, 𝑤2, 𝑤3) are partial derivatives of the function 𝑔(𝑤1, 𝑤2, 𝑤3) with 

respective to 𝑤2 and 𝑤3. If 𝛿 = 0 and the above conditions are satisfied then BVPs (1)-(2) possess a unique 

solution (Lange and Miura, 1991). 

 

We approximate the delay term using Taylor’s expansion as: 

𝑥′(℘ − 𝛿) = 𝑥′(℘) − 𝛿𝑥″(℘)                                                                                                                      (3) 

 

Equations (1)-(2) becomes: 

(휀 + 𝛿𝑝(℘))𝑥″ = 𝑞(℘, 𝑥(℘), 𝑥′(℘)), 0 < ℘ < 1                                                                                    (4) 

𝑥(0) = 𝜑(0) and 𝑥(1) = 𝛾                                                                                                                          (5) 

 

3. Method Description 

In this section, we have presented the basis of B-spline function, quartic B-spline method and the QBSM 

to solve Equations (4) and (5). 

 

3.1 Basics of B-spline Method 
B-splines are polynomial interpolation functions commonly used to find approximate solutions of various 

BVPs. A B-spline of degree 𝑘 is a linear combination of 𝑘 + 1 basis functions of degree 𝑘 − 1. Define a 

partition of [0,1] as 𝛱𝑁: ℘0 = 0 < ℘1 < ℘2 < ⋯ ,℘𝑚,⋯ < ℘𝑁−1 < ℘𝑁 = 1 , where ℘𝑚 = ℘0 +𝑚ℎ , 

ℎ = 1/𝑁  and define a set 𝑃𝑘,𝛱𝑁 of all polynomials of degree ≤ 𝑘 in the interval [℘𝑚, ℘𝑚+1]for 𝑚 =

0: 1:𝑁of 𝛱𝑁. Then 𝑃𝑘,𝛱𝑁 forms a linear space, and the set 𝑆𝑘 of all functions 𝑟(℘) ∈ 𝑃𝑘,𝛱𝑁 ∩ 𝐶
𝑘−1[0,1] is 

a subspace of 𝑃𝑘,𝛱𝑁. 
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B-Spline of order 0 is defined as 

ß𝑚,0(℘) = {
1,℘ ∈ ℘𝑚, ℘𝑚+1)
0,otherwise

. 

 

The B-splines of order 𝑘 ≥ 1 are derived from the recurrence relation:  

ß𝑚,𝑘(℘) =
℘−℘𝑚

℘𝑚+𝑘 −℘𝑚
ß𝑚,𝑘−1(℘) +

℘𝑚+𝑘+1 −℘

℘𝑚+𝑘+1 −℘𝑚+1
ß𝑚+1,𝑘−1(℘),  ℘𝑚 ≤ ℘ ≤ ℘𝑚+𝑘+1. 

 

For 𝑁 + 1 B-splines, there are 𝑁 + 𝑘 + 1 knots. Thus, depending on value of k, few knots are added on 

both sides of partition 𝑃𝑘,𝛱𝑁 . B-splines have the following properties (Schumaker, 2007): 

• The basis functions ß𝑚,𝑘(℘) > 0 on ℘𝑚 ≤ ℘ ≤ ℘𝑚+𝑘+1, 𝑘 ≥ 1 and 0 otherwise. 

• ∑ ß𝑚,𝑘(℘)
𝑁
𝑖=0 = 1,  ℘ ∈ [0,1]. 

• ß𝑚,𝑘(℘) are piecewise polynomials functions having knots at ℘𝑚′𝑠. 

• ß𝑚,𝑘(℘) is bell shaped curve symmetric about ℘ = ℘𝑚. 

• ß𝑚,𝑘(℘) are 𝑘 − 1 times continuously differentiable functions. 

 

3.2 Description of Quartic B-spline Method 

Here, we discuss the QBSM to solve Equations (4) and (5) on a uniform mesh. For this, consider the 

partition defined by𝛱𝑁.  Let 𝑆4  denotes the space of all quartic B-splines having knots at .m s 𝑆4 =

{𝑝(℘)|𝑝(℘) ∈ 𝐶3[0,1]is a polynomial of degree 4 on Π𝑁}. 
 

Quartic B-spline are defined as: 
𝑄4,𝑚(℘) =

1

24ℎ4

{
  
 

  
 
(℘ − ℘𝑚−2)

4,  ℘ ∈ [℘𝑚−2, ℘𝑚−1]

ℎ4 + 4ℎ3(℘ − ℘𝑚−1) + 6ℎ
2(℘ − ℘𝑚−1)

2 + 4ℎ(℘ − ℘𝑚−1)
3 − 4(℘ − ℘𝑚−1)

4,  ℘ ∈ [℘𝑚−1, ℘𝑚]

11ℎ4 + 12ℎ3(℘ − ℘𝑚) − 6ℎ
2(℘ − ℘𝑚)

2 − 12ℎ(℘ − ℘𝑚)
3 + 6(℘ − ℘𝑚)

4,  ℘ ∈ [℘𝑚, ℘𝑚+1]

ℎ4 + 4ℎ3(℘𝑚+2 −℘) + 6ℎ
2(℘𝑚+2 − ℘)

2 + 4ℎ(℘𝑚+2 − ℘)
3 − 4(℘𝑚+2 − ℘)

4,  ℘ ∈ [℘𝑚+1, ℘𝑚+2]

(℘𝑚+3 − ℘)
4,  ℘ ∈ [℘𝑚+2, ℘𝑚+3]

0,otherwise

         (6) 

 

One can easily observe that each 𝑄4,𝑚(℘)is a fourth-degree piecewise polynomial having knots at 𝛱𝑁. Add 

four knots on each side of the partition 𝑃𝑁  as ℘−4 < ℘−3 < ℘−2 < ℘−1and ℘𝑁+1 < ℘𝑁+2 < ℘𝑁+3 <

℘𝑁+4. Then 𝑄 = {𝑄4,−2, 𝑄4,−1, 𝑄4,0, 𝑄4,1, … , 𝑄4,𝑁+1} is linearly independent on [0,1]. The vector space 

𝑄 ∗ (𝑃𝑁) of all linear combinations of quartic B-splines in 𝑄 is of dimension 𝑁 + 4and 𝑄 ∗ (𝑃𝑁) = 𝑆4 

(Prenter, 1975). Table 1 gives the values of quartic B-splines and its derivative at the mesh points. 

 
Table 1. Values of quartic B-splines at nodal points. 

 

 ℘𝒎−𝟑 ℘𝒎−𝟐 ℘𝒎−𝟏 ℘𝒎 ℘𝒎+𝟏 ℘𝒎+𝟐 

𝑄4,𝑚(℘) 0 1/24 11/24 11/24 1/24 0 

𝑄4,𝑚
′(℘) 0 1/6ℎ 3/2ℎ −3/2ℎ −1/6ℎ 0 

𝑄4,𝑚
′′(℘) 0 1/2ℎ2 −1/2ℎ2 −1/2ℎ2 1/2ℎ2 0 

𝑄4,𝑚
′′′(℘) 0 1/ℎ3 −3/ℎ3 3/ℎ3 −1/ℎ3 0 
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By using Table 1 values, we get, 

𝕊(℘𝑚) =
1

24
𝛼𝑚−2 +

11

24
𝛼𝑚−1 +

11

24
𝛼𝑚 +

1

24
𝛼𝑚+1                                                                                      (7) 

𝕊′(℘𝑚) = −
1

6ℎ
𝛼𝑚−2 −

1

2ℎ
𝛼𝑚−1 +

1

2ℎ
𝛼𝑚 +

1

6ℎ
𝛼𝑚+1                                                                                  (8) 

𝕊″(℘𝑚) =
1

2ℎ2
𝛼𝑚−2 −

1

2ℎ2
𝛼𝑚−1 −

1

2ℎ2
𝛼𝑚 +

1

2ℎ2
𝛼𝑚+1                                                                               (9) 

𝕊‴(℘𝑚) = −
1

ℎ3
𝛼𝑚−2 +

3

ℎ3
𝛼𝑚−1 −

3

ℎ3
𝛼𝑚 +

1

ℎ3
𝛼𝑚+1                                                                                (10) 

 

Lemma 3.1: The quartic B-splines {𝑄4,𝑚}𝑚=−2
𝑁+1

 satisfy the following inequality: 

∑ |𝑄4,𝑚(℘)|
𝑁+1
𝑚=−2 ≤

35

24
. 

 

Proof: Using the values of quartic B-splines form Table 1, at a mesh point ℘ = ℘𝑚, we have 

|𝑄4,𝑚−2(℘𝑚)| =
1

24
, |𝑄4,𝑚−1(℘𝑚)| =

11

24
, |𝑄4,𝑚(℘𝑚)| =

11

24
, |𝑄4,𝑚+1(℘𝑚)| =

1

24
, 

 

and 𝑄4,𝑗(℘𝑚) = 0 for other values of 𝑚. Thus, at a mesh point ℘ = ℘𝑚. 

∑ |𝑄4,𝑚(℘)|
𝑁+1
𝑚=−2 = |𝑄4,𝑚−2(℘𝑚)| + |𝑄4,𝑚−1(℘𝑚)| + |𝑄4,𝑚(℘𝑚)| + |𝑄4,𝑚+1(℘𝑚)| = 1. 

 

Also, if ℘ ∈ [℘𝑚−1, ℘𝑚], then 

|𝑄4,𝑚−3(℘)| ≤
1

24
, |𝑄4,𝑚−2(℘)| ≤

11

24
, |𝑄4,𝑚−1(℘)| ≤

11

24
, |𝑄4,𝑚(℘)| ≤

11

24
, |𝑄4,𝑚+1(℘)| ≤

1

24
. 

 

Thus, 

∑ |𝑄4,𝑚(℘)|
𝑁+1
𝑚=−2 = |𝑄4,𝑚−3(℘)| + |𝑄4,𝑚−2(℘)| + |𝑄4,𝑚−1(℘)| + |𝑄4,𝑚(℘)| + |𝑄4,𝑚+1(℘)| ≤

35

24
. 

 

Hence proved. 

 

3.3 Formulation of QBSM for NSP-DDE 

In this part of the paper, we apply QBSM to obtain numerical solution of non-linear SPDDE defined in 

section 2. Define the quartic B-spline function 𝕊(℘), which approximates 𝑥(℘)as follow at the mesh points 

℘𝑚 as: 

𝕊(℘) = ∑ 𝛼𝑚𝑄4,𝑚(℘)
𝑁+1
𝑚=−2                                                                                                                       (11) 

 

The spline function also satisfies the interpolation constraints 

𝕊(𝑘)(℘𝑚) = 𝑥
(𝑘)(℘𝑚),   𝑚 = 0: 1:𝑁 and 𝑘 = 0,1,2,3                                                                             (12) 

 

Substitute (7) in BVP (4)-(5), we get, 

(휀 + 𝛿𝑝(℘))𝕊″(℘) = 𝑞(℘, 𝕊(℘), 𝕊′(℘)), 0 < ℘ < 1                                                                            (13) 

𝕊(0) = 𝜑(0) and 𝕊(1) = 𝛾                                                                                                                       (14) 

 

Discretizing Equation (12) at grid points, we have 

(휀 + 𝛿𝑝(℘𝑚))𝕊
″(℘𝑚) = 𝑞(℘𝑚, 𝕊(℘𝑚), 𝕊

′(℘𝑚)), 𝑚 = 0: 1: 𝑁                                                           (15) 

 

and the boundary conditions (9) yields  

𝕊(℘0) = 𝜑(℘0) and 𝕊(℘𝑁) = 𝛾                                                                                                               (16) 
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The Equations (15)-(16) are a set of 𝑁 + 3  equations in 𝑁 + 4  unknowns; namely, 

℘−2, ℘−1, ℘0, … ,℘𝑁+1. To obtain one more equation, we differentiate Equation (8) and consider its value 

at ℘ = ℘𝑁. This results in a set of 𝑁 + 4 equations with an equal number of unknowns that are stated in 

matrix form as: 

𝐶𝑋 = 𝐷                                                                                                                                                        (17) 

 

where, the matrix 𝐶 is given by, 
 

𝐶 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

24

11

24

11

24

1

24
0 0 0 0 0 0 ⋯ 0 0

𝑃0

2ℎ2
−𝑃0

2ℎ2
−𝑃0

2ℎ2
𝑃0

2ℎ2
0 0 0 0 0 0 ⋯ 0 0

0
𝑃1

2ℎ2
−𝑃1

2ℎ2
−𝑃1

2ℎ2
𝑃1

2ℎ2
0 0 0 0 0 ⋯ 0 0

0 0
𝑃2

2ℎ2
−𝑃2

2ℎ2
−𝑃2

2ℎ2
𝑃2

2ℎ2
0 0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ ⋯
𝑃𝑁−1

2ℎ2
−𝑃𝑁−1

2ℎ2
−𝑃𝑁−1

2ℎ2
𝑃𝑁−1

2ℎ2
0

0 0 0 ⋯ ⋯ 0
𝑃𝑁

2ℎ2
−𝑃𝑁

2ℎ2
−𝑃𝑁

2ℎ2
𝑃𝑁

2ℎ2

0 0 0 ⋯ ⋯
−𝑃𝑁

ℎ3
3𝑃𝑁

ℎ3
−3𝑃𝑁

ℎ3
𝑃𝑁

ℎ3

0 0 0 ⋯ ⋯
1

24

11

24

11

24

1

24 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

and D is the right-hand side matrix, 

𝐷𝑇 = [𝜑(0) 𝐾0 𝐾1 ⋯ ⋯ ⋯ 𝐾𝑁−1 𝐾𝑁 𝐾𝑁
′ 𝛾]. 

 

where, 𝑃𝑚 = 휀 + 𝛿𝑎(℘𝑚), 𝐾𝑚 = 𝑞(℘𝑚, 𝕊𝑚, 𝕊(℘𝑚)),𝑚 = 0: 1: 𝑁and 𝐾𝑁
′ = 𝑞′(℘𝑁, 𝕊𝑁, 𝕊(℘𝑁)). 

 

As the considered BVP is non-linear, we have applied Newton-Raphson method to get the solution of (17). 

 

4. Error Analysis 

Various error bounds on the solution 𝑥(℘)  and its derivatives at the nodal points ℘0, ℘1, … ,℘𝑁  are 

obtained in this part of the manuscript. We prove the following result using a similar approach as in 

Kadalbajoo and Kumar (2007). 

 

Lemma 4.1: Let 𝑥(℘) ∈ 𝐶8[0,1] and 𝕊(℘)be approximate of 𝑥(℘) given by the quartic B-spline which 

satisfies the conditions (12), then 

𝕊′(℘𝑚) = 𝑥
′(℘𝑚) +

1

720
ℎ4𝑥(5)(℘𝑚) −

1

2016
ℎ6𝑥(7)(℘𝑚) + 𝑂(ℎ

8)                                                        (18) 

𝕊″(℘𝑚) = 𝑥
″(℘𝑚) −

1

240
ℎ4𝑥(6)(℘𝑚) +

1

6048
ℎ6𝑥(8)(℘𝑚) + 𝑂(ℎ

8)                                                       (19) 

𝕊‴(℘𝑚) = 𝑥
‴(℘𝑚) −

1

12
ℎ2𝑥(5)(℘𝑚) +

1

240
ℎ4𝑥(7)(℘𝑚) + 𝑂(ℎ

6)                                                          (20) 

𝕊(4)(℘𝑚+) = 24[𝕊(℘𝑚−1) + 𝕊(℘𝑚) − 2𝕊
(4)(℘𝑚+1)] + 6ℎ[𝕊

′(℘𝑚−1) + 8𝕊
′(℘𝑚) + 3𝕊

′(℘𝑚+1)]   (21) 

𝕊(4)(℘𝑚−) = 24[𝕊(℘𝑚+1) + 𝕊(℘𝑚) − 2𝕊
(4)(℘𝑚−1)] − 6ℎ[𝕊

′(℘𝑚+1) + 8𝕊
′(℘𝑚) + 3𝕊

′(℘𝑚−1)]   (22) 

 

where, 𝕊(4)(℘𝑚+)  presents the value of 𝕊(4)(℘𝑚)  in [℘𝑚, ℘𝑚+1],  and 𝕊(4)(℘𝑚−)  is the value of 

𝕊(4)(℘𝑚) in [℘𝑚−1, ℘𝑚]. 
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Proof: Using Equations (7)-(10), we obtain 

ℎ[𝕊′(℘𝑚−2) + 11𝕊
′(℘𝑚−1) + 11𝕊

′(℘𝑚) + 𝕊
′(℘𝑚+1)] = 4[𝕊(℘𝑚+1) + 3𝕊(℘𝑚) − 3𝕊(℘𝑚−1) −

𝕊(℘𝑚−2)]                                                                                                                                                    (23) 

ℎ2𝕊″(℘𝑚) = 2[𝕊(℘𝑚+1) − 2𝕊(℘𝑚) + 𝕊(℘𝑚−1)] −
ℎ

2
[𝕊′(℘𝑚+1) − 𝕊

′(℘𝑚−1)]                                  (24) 

ℎ3𝕊‴(℘𝑚) = 12[𝕊(℘𝑚+1) − 𝕊(℘𝑚−1)] − 3ℎ[𝕊
′(℘𝑚+1) + 6𝕊

′(℘𝑚) + 𝕊
′(℘𝑚−1)]                             (25) 

 

Using operator 𝐸(𝕊(℘𝑚)) = 𝕊(℘𝑚+1) in Equation (23), we get 

ℎ[𝐸−2 + 11𝐸−1 + 11 + 𝐸]𝕊′(℘𝑚) = 4[𝐸 + 3 − 3𝐸
−1 − 𝐸−2]𝕊(℘𝑚)                                                    (26) 

   

since 𝐸 = 𝑒ℎ𝐷 where 𝐷 =
𝑑

𝑑℘
, we get 

ℎ[𝑒−2ℎ𝐷 + 11𝑒−ℎ𝐷 + 11 + 𝑒ℎ𝐷]𝕊′(℘𝑚) = 4[𝑒
ℎ𝐷 + 3 − 3𝑒−ℎ𝐷 − 𝑒−2ℎ𝐷]𝕊(℘𝑚)                                    (27) 

 

Expressing 𝐸 = 𝑒ℎ𝐷 in Taylor’s series expansion in powers of ℎ𝐷, we obtain 

24ℎ (1 −
1

2
ℎ𝐷 +

1

3
ℎ2𝐷2 −

1

8
ℎ3𝐷3 +

7

144
ℎ4𝐷4 +⋯⋯)𝕊′(℘𝑚) = 24ℎ (𝐷 −

1

2
ℎ𝐷2 +

1

3
ℎ2𝐷3 −

1

8
ℎ3𝐷4 +⋯⋯)𝑥(℘𝑚)                                                                                                                                             (28) 

 

or 

( ) ( )

( )

( )

1

2 2 3 3 4 2 2 3 3

2

2 2 3 2 2 2 2

4 5 6 7 8 9

1 1 1 1 1 1
1

2 3 8 2 3 8

1 1 1 1 1 1
1

2 3 2 3 2 3

1 1 1
.

720 2016 17280

i m

m

m

D hD h D h D hD h D h D x

D hD h D hD h D hD h D x

D h D h D h D x

−

    
  = − + − + + − + − +     

    

      
= − + − − − + − + − + − −              

 
= + − + +  
 

S

 

 

Simplifying this equation, Equation (18) gets proved. 

 

To prove Equation (19), substitute Equation (18) in Equation (24) and using the interpolation constraints 

(8), we obtain, 

ℎ2𝕊″(℘𝑚) = 2[𝑥(℘𝑚+1) − 2𝑥(℘𝑚) + 𝑥(℘𝑚−1)] −
ℎ

2
{𝑥′(℘𝑚+1) +

1

720
ℎ4𝑥(5)(℘𝑚+1) −

1

2016
ℎ6𝑥(7)(℘𝑚+1) + 𝑂(ℎ

8)− (𝑥′(℘𝑚−1) +
1

720
ℎ4𝑥(5)(℘𝑚−1) −

1

2016
ℎ6𝑥(7)(℘𝑚−1) + 𝑂(ℎ

8))} , 𝑚 =

1: 1:𝑁. 

 

Applying Taylor’s series to 𝑥(𝑘)(℘𝑚±1)  for 𝑘 = 0,1,5,7,  we get (19). Using the same approach in 

Equations (20)-(22). This completes the proof of lemma.  

 

To find the error, define 𝑒(℘) = 𝑥(℘) − 𝕊(℘),  substitute Equations (18)-(22) in the Taylor’s 

approximation of 𝑒(℘𝑚 + 𝜃ℎ); we obtain 

𝑒(℘𝑚 + 𝜃ℎ) = −
(10𝜃2−1)𝜃

720
ℎ5𝑥(5)(℘𝑚) +

(5𝜃2−3)𝜃2

1440
ℎ6𝑥(6)(℘𝑚) +

(7𝜃2−5)𝜃

10080
ℎ7𝑥(7)(℘𝑚) + 𝑂(ℎ

9)    (29) 

 

Hence proved. 
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Following theorem gives the global error bounds. 

 

Theorem: If the conditions in Lemma 4.1 are satisfied, then 

‖𝑥(℘) − 𝕊(℘)‖∞ = 𝑂(ℎ
5−𝑘) for 𝑘 = 0, 1, 2, 3, 4. 

 

Proof: For proof, see (Roul and Thula, 2019). 

 

5. Numerical Illustration and Discussion 
We use the technique on a numerical example to prove the accuracy and to get the numerical value of rate 

of convergence. The numerical simulations in this study were conducted using MATLAB (version R2023b, 

MathWorks Inc.). MATLAB was chosen for its robust suite of numerical computation libraries and its 

suitability for solving differential equations.  

휀𝑥″(℘) + 2𝑥′(℘− 𝛿) − 𝑒𝑥(℘) = 0, 

𝑥(℘) = 0, −𝛿 < 𝑥 < 0 and 𝑥(1) = 0. 

 

Due to non-linearity of the BVP, the exact solution cannot be determined. Hence, the MAE is found by the 

double mesh principle, which is given by, 

𝑒𝑁 = 𝑚𝑎𝑥
0≤𝑚≤𝑁

|𝕊(℘𝑚) − 𝕊(℘2𝑚)|. 

 

We have also determined the rate of convergence (RCGT) using the formula. 

𝑐 =
𝑙𝑛(𝑒𝑁/𝑒2𝑁)

𝑙𝑛 2
. 

 

Table 2 presents calculated MAE, RCGT, and run time for various values of 𝑁, and 휀 with 𝛿 = 0.4휀. The 

tabulated values show that the MAE decreases as 𝑁increases. From Table 3, it is seen that the results 

obtained by QBSM are better as compared with Kadalbajoo and Kumar (2010). Figure 1 is the numerical 

solution for many values of 𝛿 and Figure 2 for different values of 휀. In both the figures, a left boundary 

layer is observed. From Figure 1, we can see the decrease in the width of the boundary region as 𝛿 increases. 

Also, Figure 2 shows that the width of the boundary layer and the oscillations decrease as 휀 tends to zero. 

 
Table 2. MAE, rate of convergence and run time for 𝛿 = 0.4휀. 

 

휀 N=50 RCGT Time in Sec.  N=100 Time in Sec.  RCGT N=200 Time in Sec. 

2−1 2.0316E-05 3.9536E+00 2.961 1.3114E-06 10.904 3.9941E+00 8.2298E-08 43.166 

2−2 2.9896E-04 3.9238E+00 2.980 1.9698E-05 11.831 3.9497E+00 1.2748E-06 42.437 

2−3 3.6852E-03 3.6456E+00 2.959 2.9447E-04 11.271 3.9223E+00 1.9423E-05 42.556 

2−4 2.1380E-02 2.5426E+00 3.180 3.6694E-03 11.107 3.6505E+00 2.9220E-04 42.957 

 
 

 

 

Table 3. Comparison of MAE with Kadalbajoo and Kumar (2010) for 휀 = 10−1  
 

N MAE by Kadalbajoo and Kumar (2010)  MAE 

64 5.688 E – 02  3.413 E – 03 

128 1.754 E – 02  2.665 E – 04  

256 5.580 E – 02  1.772 E – 05  

1024 1.276 E – 02  6.210 E – 06  
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Figure 1. Solution of example 1 for various 𝛿values. 

 

 

 
 

Figure 2. Solution of example 1 for various 휀 values. 

 

 

6. Conclusions and Future Scope 
We conclude that the QBSM is efficient for the NSP-DDE. The accuracy of the approach is demonstrated 

through numerical experiments with a minimal number of grid points, the method can precisely capture the 

solution. Additionally, it is noted that the MAE's value decreases as N increases. The calculated order of 

convergence is almost four. We have also explained the error analysis for the discussed method. Overall, 

the quartic B-spline method is computationally easy to implement and can be extended to solve a variety 

of SPDEs as well as SPDDEs with different delay structures and boundary conditions. It has been noticed 

that very few researchers have addressed NSP-DDE, so there is a lot of scope to solve these equations using 
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variety of numerical methods tailored specifically for solving complex NSP-DDE. This includes exploring 

adaptive mesh refinement strategies, higher-order accurate methods, and hybrid approaches combining 

various numerical schemes to enhance accuracy and efficiency. 
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