IJMEMES logo

International Journal of Mathematical, Engineering and Management Sciences

ISSN: 2455-7749


Annealing Effects on MgO Films Grown using e-beam Evaporation

Annealing Effects on MgO Films Grown using e-beam Evaporation

Jitendra Pal Singh
Advanced Analysis Center, Korea Institute of Science and Technology, Seoul-02792, South Korea. Industrial Technology Convergence Center, Pohang Accelerator Laboratory, Pohang-37673, South Korea South Korea.

Lalit Kumar Gupta
Department of Applied Sciences, Krishna Engineering College, Ghaziabad-201007, Uttar Pradesh, India.

DOI https://dx.doi.org/10.33889/IJMEMS.2019.4.3-049

Received on October 29, 2018
  ;
Accepted on February 18, 2019

Abstract

Present work investigates the annealing effects on MgO thin films deposited using e-beam evaporation method. MgO thin films of thickness 5 and 50 nm were evaporated from MgO-pellet in ultra-high vacuum (2×10-8 Torr). As deposited thin films exhibit coordination similar to MgO bulk as envisaged from near edge X-ray absorption fine structure measurements. As deposited films were annealed at 300, 400 and 500oC in open environment. Thickness of films remain unaltered with annealing within experimental error. Raman spectroscopic measurements further confirm the presence of bands associated with Mg-O bonding at such low thicknesses.

Keywords- e-beam evaporation, Annealing, Rutherford back scattering, Raman spectroscopy.

Citation

Singh, J. P., & Gupta, L. K. (2019). Annealing Effects on MgO Films Grown using e-beam Evaporation. International Journal of Mathematical, Engineering and Management Sciences, 4(3), 619-626. https://dx.doi.org/10.33889/IJMEMS.2019.4.3-049.

Conflict of Interest

The authors confirm that this article contents have no conflict of interest.

Acknowledgements

JPS is thankful to Dr. D. Karibaj, Mr. Sunil Ojha and Dr. Foran Singh, Inter-University Accelerator Center, New Delhi, India for providing access to e-beam evaporation facility, X-ray diffraction, RBS spectrometer and Raman spectrometer for growing and characterization of these films. JPS is also thankful to Dr. K. Asokan, Inter University Accelerator Center, New Delhi and Prof. Keun Hwa Chae for fruitful discussion during the implementation of this work.

References

Cao, M., Ma, Y., Wang, X., Ma, C., Zhou, W., Wang, X., Tan, W., & Du, J. (2017). Point defects and magnetic properties of neutron irradiated MgO single crystal. AIP Advances, 7(5), 056413

Gazquez, J., Bose, S., Sharma, M., Torija, M.A., Pennycook, S.J., Leighton, C., & Varela, M. (2013). Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3-δ thin films. APL Materials, 1(1), 012105-1-7.

Hu, L., Hecht, D.S., & Gruner, G. (2010). Carbon nanotube thin films: fabrication, properties, and applications. Chemical Reviews, 110(10), 5790-5844.

Kern, W., & Schuegraf, K.K. (2001). Deposition technologies and applications: introduction and overview. In: Krisna Seshan (ed.), Handbook of Thin Film Deposition Processes and Techniques (2nd Edition), William Andrew Publishing (pp. 11-43). Elsevier

Linder, T., Sauer, H., Engel, W., & Kmabe, K. (2006). Near-edge structure in electron-energy-loss spectra of MgO. Physical Review B, 33(1), 22–24

Loureiro, J., Santos, J.R., Nogueira, A., Wyszisk, F., Divay, L., Reparaz, S., Alzina, F., Torres, C.L.M., Cuffee, J., Montemor, F., Martinsa, R., & Ferreira, I. (2014) Nanostructured p-type Cr/V2O5 thin films with boosted thermoelectric properties. Journal of Materials Chemistry A, 2(18), 6456-6462.

Luches, P., D’Addato, S., Valeri, S., Groppo, E., Prestipino, C., Lamberti, C., & Boscherini, F. (2004). X-ray absorption study at the Mg and O K edges of ultrathin MgO epilayers on Ag (001). Physical Review B, 69(4), 045412.

Ma, C., Liu, M., Chen, C., Lin, Y.; Li, Y., Horwitz, J.S., Jiang, J., Meletis, E.I., & Zhang, Q. (2013). The origin of local strain in highly epitaxial oxide thin films. Scientific Reports, 3, 3092-1-5

Manson, N.B., Von der Ohe, W., & Chodos, S.L. (1971). Second-order Raman spectrum of MgO. Physical Review B, 3(6), 1968.

Meier, C., Lüttjohann, S., Kravets, V.G., Nienhaus, H., Lorke, A., & Wiggers, H. (2006). Raman properties of silicon nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 32(1-2), 155-158.

Parker Jr, J.H., Feldman, D.W., & Ashkin, M. (1967). Raman scattering by silicon and germanium. Physical Review, 155(3), 712-714

Pathak, N., Gupta, S.K., Prajapat, C.L., Sharma, S.K., Ghosh, P.S., Kanrar, B., Pujari, P.K., & Kadam, R.M. (2017). Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: a case of transformation of various defect states. Physical Chemistry Chemical Physics, 19(19), 11975-11989.

Qi, L.Q., Liu, L.H., Feng, S.Z., Sun, H.Y., & Han, R.S. (2017). Synthesis and magnetic properties of ceramic MgO porous film. Journal of the European Ceramic Society, 37(15), 4727-4731.

Rao, A., Dsa, J., Goyal, S., & Singh, B.R. (2014). Stress induced degradation in sputtered ZrO2 thin films on Silicon for Nano-MOSFET’s. In: Jain, V., & Verma, A. (eds) Physics of Semiconductor Devices. Environmental Science and Engineering. (pp 555-558), Springer, Cham.

Schlecht, R.G., & Böckelmann, H.K. (1973). Raman scattering from microcrystals of MgO. Physical Review Letters, 31(15), 930-932.

Sharma, A., Singh, J.P., Won, S.O., Chae, K.H., Sharma, S.K., & Kumar, S. (2018). Introduction to X-Ray Absorption Spectroscopy and its applications in material science. In Handbook of Materials Characterization (pp. 497-548). Springer, Cham.

Singh, J.P., Chen, C.L., Dong, C.L., Prakash, J., Kabiraj, J. Kanjilal, D., Pong, W.F., & Asokan, K. (2015). Role of surface and subsurface defects in MgO thin film: XANES and magnetic investigations. Superlattices and Microstructures, 77, 313-324.

Singh, J.P., & Chae, K. H. (2017). d° Ferromagnetism of Magnesium Oxide. Condensed Matter, 2(4), 36.

Singh, J.P., Kaur, B., Sharma, A., Kim, S.H., Gautam, S., Srivastava, R.C., Goyal, N., Lim, W.C., Lin, H-J., Chen, J.M., Asokan, K., Kanjilal, D., Won, S.O., Lee, I.J., Chae, K.H. (2018a). Mechanistic insights into the interaction between energetic oxygen ions and nanosized ZnFe2O4: XAS-XMCD investigations. Physical Chemistry Chemical Physics, 20(17), 12084-12096.

Singh, J.P., Kumar, M., Lee, I.J., & Chae, K.H. (2017). X-ray reflectivity and near edge X-ray absorption fine structure investigations of MgO thin films. Applied Science Letters, 3(3), 47-52

Singh, J.P., Lim, W.C., & Chae, K.H (2016). Atomic diffusion processes in MgO/Fe/MgO multilayer. Superlattices and Microstructures, 88(12), 609-619

Singh, J.P., Lim, W.C., Lee, I.J., Won, S.O., & Chae, K.H. (2018b). Surface Structure of MgO Thin Films Revealed from X-ray reflectivity and near-edge X-ray absorption fine structure measurements. Science of Advanced Materials, 10(9), 1372-1376.

Singh, J.P., Srivastava, R.C., Agrawal, H.M., & Kumar, R. (2011). Micro‐Raman investigation of nanosized zinc ferrite: effect of crystallite size and fluence of irradiation. Journal of Raman Spectroscopy, 42(7), 1510-1517.

Wu, H.-C., Mauit, O., Ó Coileáin, C., Syrlybekov, A., Khalid, A., Mouti, A., Abid, M., Zhang, H.-Z., Abid M., & Shvets, I. V. (2014). Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy. Scientific Reports, 4, 7012-1-6.