IJMEMES logo

International Journal of Mathematical, Engineering and Management Sciences

ISSN: 2455-7749


Control of the System of Piezoelectric Actuator Devices for Precision Drive Systems

Control of the System of Piezoelectric Actuator Devices for Precision Drive Systems

Stanislav Matveev
Vice-Rector for Scientific Work and Innovative Communication Technologies, Faculty of Information and Control Systems, Department of Control Systems and Computer Technology, Baltic State Technical University “VOENMEH”, St. Petersburg, 190005, Russia.

Nikolai Yakovenko
Faculty of Information and Control Systems, Department of Drive Systems, Mechatronics and Robotics, Baltic State Technical University “VOENMEH”, St. Petersburg, 190005, Russia.

Yuri Konoplev
Faculty of Rocket and Space Technology, Department of Control Processes, Baltic State Technical University “VOENMEH”, St. Petersburg, 190005, Russia.

Andrei Gorbunov
Faculty of Information and Control Systems, Department of Control Systems and Computer Technology, Baltic State Technical University “VOENMEH”, St. Petersburg, 190005, Russia.

Alexander Shirshov
Faculty of Information and Control Systems, Department of Control Systems and Computer Technology, Baltic State Technical University “VOENMEH”, St. Petersburg, 190005, Russia.

Nikolay Didenko
Research Laboratory "System Dynamics", Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.

DOI https://doi.org/10.33889/IJMEMS.2020.5.2.026

Received on May 12, 2019
  ;
Accepted on September 11, 2019

Abstract

In the work problems related to control of precision piezoelectric actuator devices, piezo actuators in particular, are discussed. Multichannel system of control of piezo actuators is presented. Possibility of using the said control system to control the shape of the space-based large transformed antenna is discussed.

Keywords- Precision actuator devices, Amplifier driver, Microcontroller, Control signal, Piezo actuator, Stroke length, PCB.

Citation

Matveev, S., Yakovenko, N., Konoplev, Y., Gorbunov, A., Shirshov, A., & Didenko, N. (2020). Control of the System of Piezoelectric Actuator Devices for Precision Drive Systems. International Journal of Mathematical, Engineering and Management Sciences, 5(2), 319-327. https://doi.org/10.33889/IJMEMS.2020.5.2.026.

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgements

The work has been fulfilled within the range of implementation of the Federal Targeted Programme ‘R&D Work in the Russia Science and Technology Sector’ Priority Areas for 2014 through 2020 Period’; Grant Policy Agreement No. 14.574.21.0165 dated 26.09.2017; Agreement EB 075-02-2018-1074 dated 15.11.2018. Unique identifier RFMEFI57417X0165: ‘Development of wireless management system for controlling the shape of large transformed earth-based and space structures using precise drives’.

References

Bardin, V.A., & Vasil'ev, V.A. (2014). Nano and micro movements actuators for the control system, monitoring and security. Modern Equipment and Technologies, 2-3. [In Russian].

Bardin, V.A., & Vasil'ev, V.A. (2017). Combining measurement and control functions in the structure of a multilayer piezoelectric actuator of nano- and micro-motions. Measurement Techniques, 60(7), 711-716.

Chi, Z., & Xu, Q. (2014). Recent advances in the control of piezoelectric actuators. International Journal of Advanced Robotic, 11(11), 1-11. DOI: 10.5772/59099.

Choe, H., Heidbrink, S., Ziolkowski, M., Pietsch, U., Dyadkin, V., Gorfman, S., & Chernyshov, D. (2017). A microcontroller for in situ single-crystal diffraction measurements with a PILATUS-2M detector under an alternating electric field. Journal of Applied Crystallography, 50, 975-977. doi:10.1107/S1600576717006197.

Frolov, V.Ya., Neelov, A.A., Zhiligotov, R.I., & Bystrov, A.V. (2018). Identification of the protection parameters of the local electrical network taking into account the detuning of the inrush current. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 626-628). Moscow, Russia. doi:10.1109/EIConRus.2018.8317174.

Halabi, F.A., Gryshkov, O., Kuhn, A.I., Kapralova, V.M., & Glasmacher, B. (2018). Force induced piezoelectric effect of polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene nanofibrous scaffolds. International Journal of Artificial Organs, 41(11), 811-822. doi: 10.1177/0391398818785049.

Heijer, M.D., Fokkema, V., Saedi A., Schakel, P., & Rost, M.J. (2014). Improving the accuracy of walking piezo motors. Review of Scientific Instruments, 85(5), 055007. doi:https://doi.org/10.1063/1.4878624

Kabanov, S.A., Mitin, F.V., Krivushov, A.I., & Ulybushev, E.A. (2018). Control of a Piezo Actuator to adjust the reflective surface of the space-based reflector. Russian Aeronautics, 61(4), 629-635.

Kiseleva, E., Sochava, A., & Cherepanov, A. (2018). Telecommunication slot antenna based on a low-profile siw structure. In 2018 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech (pp. 48-51). St. Petersburg, Russia. doi:10.1109/EExPolytech.2018.8564367.

Kuptsov, V.D. (2016). Noise optimization of surface acoustic wave devices in electronic systems. In 2016 IEEE International Ultrasonics Symposium, IUS (pp. 1-4). Tours, France. doi: 10.1109/ULTSYM.2016.7728524.

Matveev, S.A., Shevtsov, I.V., Shirshov, A.D., & Yakovenko, N.G. (2018). Wireless power supply system for flexible space antenna actuators. Russian Aeronautics, 61(4), 636-641.

Medvedev, B.M., Molodyakov, S.A., Ustinov, S.M., & Fyodorov, S.A. (2018). Embedded systems software: trends in industry and education. In 2018 International Symposium on Consumer Technologies, ISCT (pp. 66-69). St. Petersburg, Russia. doi:10.1109/ISCE.2018.8408921.

Mitin, F., & Krivushov, A. (2018). Application of optimal control algorithm for dc motor. application of optimal control algorithm for dc motor. Proceedings of the 29th International DAAAM Symposium (pp. 0762-0766). ISBN 978-3-902734-20-4, ISSN 1726-9679, Vienna, Austria. doi: 10.2507/29th.daaam.proceedings.110.

Osipov, A.A., Aleksandrov, S.E., Osipov, A.A., & Berezenko, V.I. (2018). Development of process for fast plasma-chemical through etching of single-crystal quartz in sf6/o2 gas mixture. Russian Journal of Applied Chemistry, 91(8), 1255-1261. doi: 10.1134/S1070427218080025.

Varlamov, A.V., Lebedev, V.V., Agruzov, P.M., Ilichev, I.V., & Shamrai, A.V. (2019). Optimal configuration of the waveguide acousto-optic TE-TM polarization mode convertor on X-cut lithium niobate substrate. Journal of Physics: Conference Series, 1236(1). doi: 10.1088/1742-6596/1236/1/012034.



Varlamov, A.V., Shamray, A.V., Lebedev, V.V., Agrusov, P.M., & Il'ichev, I.V. (2018). Search for optimal conditions of saw excitation by lithium niobate integrated optical te-tm mode convertor. In 2018 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech (pp. 172-175). St. Petersburg, Russia. doi: 10.1109/EExPolytech.2018.8564393.

Vasil’ev, A.E., Vasil’yanov, G.S., Tapia, D.F., Pereverzev, A.E., & Nguyen, B.H. (2017). Hardware implementation of high-performance fuzzy computations based on programmable logic integrated circuits. Journal of Communications Technology and Electronics, 62(12), 1414-1426. doi:10.1134/S1064226917110183.

Vassiliev, A.E., Ivanova, T.Y., Tapia, D.F.C., & Luong, Q.T. (2017). Microcontroller-based embedded system equipment development for research and educational support. In 2016 International Conference on Information Management and Technology, ICIMTech (pp. 219-223). Bandung, Indonesia. doi:10.1109/ICIMTech.2016.7930333.

Yenuchenko, M.S. (2018). Alternative structures of a segmented current-steering DAC. In 2018 International Symposium on Consumer Technologies, ISCT (pp. 14-17). St. Petersburg, Russia. doi:10.1109/ISCE.2018.8408905.

Yiqun, Z., Na, L., Guigeng Y., & Wenrui, R. (2017). Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable–net structure. Acta Astronautica, 131, 182–189.

Yiqun, Z., Wenrui R., Guigeng Y., & Na L. (2016). Deployment analysis considering the cable–net tension effect for deployable antennas. Aerospace Science and Technology, 48, 193–202.

Zhengrong, C., Zongquan D., Xiaozhi Q., & Bing L. (2014). Modeling and analysis of a large deployable antenna structure. Acta Astronautica, 95, 51–60.