International Journal of Mathematical, Engineering and Management Sciences

ISSN: 2455-7749

An Effective Method for Parameter Estimation of Solar PV Cell Using Grey-Wolf Optimization Technique

Abhishek Sharma
Research and Development Department, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.

Abhinav Sharma
Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.

Averbukh Moshe
Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel.

Nikhil Raj
Research and Development Department, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.

Rupendra Kumar Pachauri
Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.

DOI https://doi.org/10.33889/IJMEMS.2021.6.3.054

Received on November 21, 2020
  ;
Accepted on February 07, 2021

Abstract

In the field of renewable energy, the extraction of parameters for solar photovoltaic (PV) cells is a widely studied area of research. Parameter extraction of solar PV cell is a highly non-linear complex optimization problem. In this research work, the authors have explored grey wolf optimization (GWO) algorithm to estimate the optimized value of the unknown parameters of a PV cell. The simulation results have been compared with five different pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), chicken swarm optimization (CSO) and cultural algorithm (CA). Furthermore, a comparison with the algorithms existing in the literature is also carried out. The comparative results comprehensively demonstrate that GWO outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and the rate of convergence. Furthermore, the statistical results validate and indicate that GWO algorithm is better than other algorithms in terms of average accuracy and robustness. An extensive comparison of electrical performance parameters: maximum current, voltage, power, and fill factor (FF) has been carried out for both PV model.

Keywords- Photovoltaic, GWO, Parameter extraction, Single-diode model, Double-diode model.

Citation

Sharma, A., Sharma, A., Moshe, A., Raj, N., & Pachauri, R. K. (2021). An Effective Method for Parameter Estimation of Solar PV Cell Using Grey-Wolf Optimization Technique. International Journal of Mathematical, Engineering and Management Sciences, 6(3), 911-931. https://doi.org/10.33889/IJMEMS.2021.6.3.054.

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgements

The authors would like to express their sincere thanks to the editor and anonymous reviews for their time and valuable suggestions.

References

Alam, D.F., Yousri, D.A., & Eteiba, M.B. (2015). Flower pollination algorithm based solar PV parameter estimation. Energy Conversion and Management, 101, 410-422.

AlHajri, M.F., El-Naggar, K.M., AlRashidi, M.R., & Al-Othman, A.K. (2012). Optimal extraction of solar cell parameters using pattern search. Renewable Energy, 44, 238-245.

AlRashidi, M.R., AlHajri, M.F., El-Naggar, K.M., & Al-Othman, A.K. (2011). A new estimation approach for determining the I–V characteristics of solar cells. Solar Energy, 85(7), 1543-1550.

Armghan, H., Ahmad, I., Armghan, A., Khan, S., & Arsalan, M. (2018). Backstepping based non-linear control for maximum power point tracking in photovoltaic system. Solar Energy, 159, 134-141.

Aryanpur, V., Atabaki, M.S., Marzband, M., Siano, P., & Ghayoumi, K. (2019). An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector. Renewable and Sustainable Energy Reviews, 112, 58-74.

Askarzadeh, A., & Rezazadeh, A. (2012). Parameter identification for solar cell models using harmony search-based algorithms. Solar Energy, 86(11), 3241-3249.

Askarzadeh, A., & Rezazadeh, A. (2013a). Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Applied Energy, 102, 943-949.

Askarzadeh, A., & Rezazadeh, A. (2013b). Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Solar Energy, 90, 123-133.

Batzelis, E.I., & Papathanassiou, S.A. (2015). A method for the analytical extraction of the single-diode PV model parameters. IEEE Transactions on Sustainable Energy, 7(2), 504-512.

Beigi, A.M., & Maroosi, A. (2018). Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms. Solar Energy, 171, 435-446.

Brano, V.L., & Ciulla, G. (2013). An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data. Applied Energy, 111, 894-903.

Chegaar, M., Ouennoughi, Z., & Hoffmann, A. (2001). A new method for evaluating illuminated solar cell parameters. Solid-State Electronics, 45(2), 293-296.

Chen, Y., Chen, Z., Wu, L., Long, C., Lin, P., & Cheng, S. (2019). Parameter extraction of PV models using an enhanced shuffled complex evolution algorithm improved by opposition-based learning. Energy Procedia, 158, 991-997.

Chen, Z., Wu, L., Lin, P., Wu, Y., & Cheng, S. (2016). Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy. Applied Energy, 182, 47-57.

Chin, V.J., Salam, Z., & Ishaque, K. (2015). Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Applied Energy, 154, 500-519.

Coello, C.A.C., Lamont, G.B., & Van Veldhuizen, D.A. (2007). Evolutionary algorithms for solving multi-objective problems (Vol. 5, pp. 79-104). Springer, New York.

Easwarakhanthan, T., Bottin, J., Bouhouch, I., & Boutrit, C. (1986). Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. International Journal of Solar Energy, 4(1), 1-12.

Elaziz, M.A., & Oliva, D. (2018). Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Conversion and Management, 171, 1843-1859.

El-Naggar, K.M., AlRashidi, M.R., AlHajri, M.F., & Al-Othman, A.K. (2012). Simulated annealing algorithm for photovoltaic parameters identification. Solar Energy, 86(1), 266-274.

Esram, T., & Chapman, P.L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 22(2), 439-449.

Gao, X., Cui, Y., Hu, J., Xu, G., & Yu, Y. (2016). Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction. Energy Conversion and Management, 127, 443-460.

Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50.

Gomes, R.C.M., Vitorino, M.A., de Rossiter Corrêa, M.B., Fernandes, D.A., & Wang, R. (2016). Shuffled complex evolution on photovoltaic parameter extraction: a comparative analysis. IEEE Transactions on Sustainable Energy, 8(2), 805-815.

Gong, W., & Cai, Z. (2013). Parameter extraction of solar cell models using repaired adaptive differential evolution. Solar Energy, 94, 209-220.

Ishaque, K., Salam, Z., Mekhilef, S., & Shamsudin, A. (2012). Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Applied Energy, 99, 297-308.

Ismail, M.S., Moghavvemi, M., & Mahlia, T.M.I. (2013). Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Conversion and Management, 73, 10-25.

Jayapriya, J., & Arock, M. (2015). A parallel GWO technique for aligning multiple molecular sequences. Paper presented at the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), (pp. 210-215). IEEE. Kochi, India.

Jervase, J.A., Bourdoucen, H., & Al-Lawati, A. (2001). Solar cell parameter extraction using genetic algorithms. Measurement Science and Technology, 12(11), 1922.

Jordehi, A.R. (2016). Parameter estimation of solar photovoltaic (PV) cells: a review. Renewable and Sustainable Energy Reviews, 61, 354-371.

Khan, F., Baek, S.H., & Kim, J.H. (2016). Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar cells under high illumination conditions. Applied Energy, 183, 715-724.

Khanna, V., Das, B.K., Bisht, D., & Singh, P.K. (2015). A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renewable Energy, 78, 105-113.

Li, S., Gong, W., Yan, X., Hu, C., Bai, D., Wang, L., & Gao, L. (2019). Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Conversion and Management, 186, 293-305.

Liu, L., Meng, X., & Liu, C. (2016). A review of maximum power point tracking methods of PV power system at uniform and partial shading. Renewable and Sustainable Energy Reviews, 53, 1500-1507.

Louzazni, M., & Aroudam, E.H. (2015). An analytical mathematical modeling to extract the parameters of solar cell from implicit equation to explicit form. Applied Solar Energy, 51(3), 165-171.

Lu, C., Xiao, S., Li, X., & Gao, L. (2016). An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software, 99, 161-176.

Ma, J., Ting, T.O., Man, K.L., Zhang, N., Guan, S.U., & Wong, P.W. (2013). Parameter estimation of photovoltaic models via cuckoo search. Journal of Applied Mathematics, 2013.

Ma, T., Yang, H., & Lu, L. (2014). Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays. Solar Energy, 100, 31-41.

Mirjalili, S., Mirjalili, S.M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61.

Mohapatra, A., Nayak, B., Das, P., & Mohanty, K.B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80, 854-867.

Oliva, D., El Aziz, M.A., & Hassanien, A.E. (2017). Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Applied Energy, 200, 141-154.

Panwar, N.L., Kaushik, S.C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.

Ram, J.P., Manghani, H., Pillai, D.S., Babu, T.S., Miyatake, M., & Rajasekar, N. (2018). Analysis on solar PV emulators: a review. Renewable and Sustainable Energy Reviews, 81, 149-160.

Rezk, H., Babu, T.S., Al-Dhaifallah, M., & Ziedan, H.A. (2021). A robust parameter estimation approach based on stochastic fractal search optimization algorithm applied to solar PV parameters. Energy Reports, 7, 620-640.

Rhouma, M.B., Gastli, A., Brahim, L.B., Touati, F., & Benammar, M. (2017). A simple method for extracting the parameters of the PV cell single-diode model. Renewable Energy, 113, 885-894.

Sharma, A., Pachauri, R., Sharma, A., & Raj, N. (2019). Extraction of the solar PV module parameters using chicken swarm optimization technique. Paper presented at the 2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE), (pp. 45-48). IEEE. Dehradun Uttarakhand, India.

Sharma, A., Sharma, A., Averbukh, M., Jately, V., & Azzopardi, B. (2021). An Effective method for parameter estimation of a solar cell. Electronics, 10(3), 312.

Soon, J.J., & Low, K.S. (2012). Photovoltaic model identification using particle swarm optimization with inverse barrier constraint. IEEE Transactions on Power Electronics, 27(9), 3975-3983.

Subudhi, B., & Pradhan, R. (2017). Bacterial foraging optimization approach to parameter extraction of a photovoltaic module. IEEE Transactions on Sustainable Energy, 9(1), 381-389.

Tao, Y., Bai, J., Pachauri, R.K., & Sharma, A. (2020). Parameter extraction of photovoltaic modules using a heuristic iterative algorithm. Energy Conversion and Management, 224, 113386.

Tsai, P.W., & Dao, T.K. (2016). Robot path planning optimization based on multiobjective grey wolf optimizer. Paper presented at the International Conference on Genetic and Evolutionary Computing, 166-173. Springer, Cham. Fuzhou City, Fujian Province, China.

Villalva, M.G., Gazoli, J.R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198-1208.

Wei, H., Cong, J., Lingyun, X., & Deyun, S. (2011). Extracting solar cell model parameters based on chaos particle swarm algorithm. Paper presented at the 2011 International Conference on Electric Information and Control Engineering. (pp. 398-402). IEEE. Wuhan, China.

Youssef, A., El-Telbany, M., & Zekry, A. (2017). The role of artificial intelligence in photo-voltaic systems design and control: a review. Renewable and Sustainable Energy Reviews, 78, 72-79.

Privacy Policy| Terms & Conditions