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Abstract 

The generalized Pareto model plays an important role in modelling extreme events. Hosking and Wallis (1987) discussed 

the parameter and quantile estimation for generalized Pareto distribution. Optimal experimental designs are used to 

accurately estimate the unknown parameters of the model. In this paper, locally D-, A- and E-optimal designs with two 

and three support points having equal and unequal weights for homoscedastic generalized Pareto regression model are 

obtained numerically. It is also proved that these designs are minimally supported. The results are illustrated through 

Norwegian fire insurance claim data. 

 

Keywords- Fisher information matrix, Local optimality, D-optimality, minimally supported designs, Tchebycheff 

system.  

 

 

 

1. Introduction 
Pareto functions are very versatile and a variety of uncertainties can be usefully modeled by them 

such as life time models in actuarial sciences, survival analysis and growth models in economics, 

finance etc. Revankar et al., (1974) introduced the Pareto II or Lomax distribution for which the 

density function is given as:  

 

𝑓(𝑥, 𝑐, 𝑎) =
𝑎𝑐𝑎

(𝑥 + 𝑐)𝑎+1
 ;    𝑥 > 0, 𝑐 > 0, 𝑎 > 0 

 

Pickands (1975) introduced the generalized Pareto distribution for which the density function is 

given by  

 

𝑓(𝑥, 𝑐, 𝑘) =
1

𝑘
(1 −

𝑐𝑥

𝑘
)

1−𝑐
𝑐

𝐼 (𝑥 > 0,
𝑐𝑥

𝑘
< 1) ; 𝑘 > 0, −∞ < 𝑐 < ∞ (1) 

 

The generalized Pareto model has applications in a number of fields, including reliability studies, 

in the modelling of large insurance claims, as a failure time distribution. Also it is frequently used 

in the study of income distribution and in the analysis of extreme events, e.g. for the analysis of the 

precipitation data, in the flood frequency analysis, in the analysis of the data of greatest wave 

heights or sea levels, maximum winds loads on buildings, in the maximum rain fall analysis. 

Hosking and Wallis (1987) discussed the parameter and quantile estimation for generalized Pareto 
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distribution. Castillo and Daoudi (2009) studied the profile-likelohood function of the generalized 

Pareto distribution. Hambuckers et al. (2016) derived the asymptotic properties of the resulting 

parameter estimators for a semiparametric model for generalized Pareto regression based on a 

dimension reduction assumption.  

 

The choice of experimental design is very important in order to accurately estimate the unknown 

parameters of the model and efficiently improve the quality of statistical inferences. The strategy 

attempts to choose the design which maximize the accuracy of the resulting parameters estimate 

and the design is termed as optimal design. Optimal designs are widely studied and used in 

scientific investigation as they provide efficient plans for generating and analyzing data. Theory 

and applications of optimal designs are discussed by Silvey (1980), Pukelsheim (1993) and 

Atkinson et al. (2007). 

 

Let 𝜒 be the design space and Ξ be the class of probability distributions on the borel set of 𝜒, then 

any 𝜉 ∈ Ξ is called a design measure or an approximate design. Let 𝜽 denotes the column vector 

of k unknown parameters in the model and 𝑀(𝜉, 𝜽) denotes the Fisher information matrix induced 

by the design 𝜉, then 𝑀(𝜉, 𝜽) is a symmetric matrix of order k. Let 𝜙 be a real-valued function 

defined on 𝑘 x 𝑘  symmetric matrices and bounded above on {𝑀(𝜉, 𝜽): 𝜉 ∈ Ξ} . An optimal 

design problem is concerned with finding 𝜉∗ such that 𝜙(𝑀(𝜉∗, 𝜽)) = min
𝜉∈Ξ

𝜙(𝑀(𝜉, 𝜽)), which is 

called a 𝜙-optimal design. Li and Majumdar (2008) obtained D-optimal designs for logistic models 

with three and four parameters. Widiharih et al. (2013) investigated the D-optimal design for 

weighted exponential and generalized exponential models. They considered two support point 

designs with equal weights to obtain D-optimal design. Singh and Kumar (2018) investigated D-

optimal designs for exponentiated Pareto II and generalized exponentiated Pareto models. They 

considered design with two support points having equal weights to obtain D-optimal design. Yang 

(2008) discussed A-optimal designs for generalized linear models with two parameters. Dette and 

Haines (1994) obtained the E-optimal designs for linear and nonlinear models with two parameters. 

Heiligers (1994) obtained E-optimal designs for weighted polynomial regression. Dette et al. 

(2006) investigated locally E-optimal designs for exponential regression models.  

 

In this paper, we obtain locally D-, A- and E-optimal designs for the homoscedastic generalized 

Pareto model (2) based on (1) 

 

𝑦 = (1 − 𝜃1𝑥)𝜃2 + 𝜖 = 𝜂(𝑥, 𝜽) + 𝜖   (2) 

 

where 𝑥 > 0 (if 𝜃1 < 0 ) or 0 < 𝑥 ≤ 1/𝜃1  (if 𝜃2 > 0 ), 𝜃1 > 0  and 𝜖  is a random error 

normally distributed with mean zero and variance 𝜎2. Designs with two and three support points 

with equal and unequal weights are considered for this purpose.  

 

2. Locally Optimal Designs 

2.1 Optimal Designs for Linear Models 
Consider the linear regression model  

 

𝑦 = 𝑓𝑇(𝑥)𝜽 + 𝜖  (3) 
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where, 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑘)𝑇 is a vector of k unknown parameters, 𝑓(𝑥) = (1, 𝑥, 𝑥2, … , 𝑥𝑘−1)
𝑇
is 

vector of regressors and 𝜖 is a random error normally distributed with mean zero and variance 𝜎2.  

Let approximate design measure 𝜉  which puts weight 𝑤𝑖  on the distinct point 𝑥𝑖  for 𝑖 =
1,2, … , 𝑚 be denoted by  

 

𝜉 = {
𝑥1, 𝑥2, … , 𝑥𝑚

𝑤1, 𝑤2, … , 𝑤𝑚
} (4) 

 

where 𝑤𝑖 =
𝑛𝑖

𝑛
, 𝑛𝑖 = number of observations at the point 𝑥𝑖, 𝑛 = ∑𝑛𝑖, 0 < 𝑤𝑖 < 1; ∑𝑤𝑖 = 1. 

Then the Fisher information matrix 𝑀(𝜉, 𝜽) corresponding to the approximate design 𝜉 is given 

by  

 

𝑀(𝜉, 𝜽) = ∑ 𝑤𝑖𝑓(𝑥)𝑓𝑇(𝑥)

𝑚

𝑖=1

 (5) 

 

A design is said to be D-, A- and E-optimal if it minimize, the determinant, the trace and the 

maximum of eigen value of the inverse of the Fisher information matrix 𝑀(𝜉, 𝜽), a symmetric 

matrix of order k. 

 

2.2 Optimal Designs for Non-Linear Models 
Consider the non-linear model  

𝑦 = 𝜂(𝑥, 𝜽) + 𝜖 (6) 

 

where 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑘)𝑇  and 𝜖  is a random error normally distributed with mean zero and 

variance 𝜎2. 

 

We linearized non-linear model (6) by method of Taylor series expansion around the point 𝜽𝟎 =
(𝜃01, 𝜃02, … , 𝜃0𝑘)𝑇 as follows:  

 

𝐸[𝑦] = 𝜂(𝑥, 𝜽) = 𝜂(𝑥, 𝜽𝟎) +  
𝜕𝜂(𝑥, 𝜽)

𝜕𝜽𝑇
|𝜽=𝜽𝟎

(𝜽 − 𝜽𝟎) 

      = 𝑐 + [
𝜕𝜂( 𝑥,𝜽)

𝝏𝜽𝑻 𝜽]
𝜽=𝜽𝟎

 

 

𝑦𝜽𝟎
(𝑥) = 𝑓𝜽𝟎

𝑇 (𝑥)𝜽𝟎 + 𝜖 

where 𝑓𝜽𝟎
(𝑥) = (

𝜕𝜂(𝑥,𝜽)

𝜕𝜃1
,

𝜕𝜂(𝑥,𝜽)

𝜕𝜃2
, … ,

𝜕𝜂(𝑥,𝜽)

𝜕𝜃𝑘
)

|𝜽=𝜽𝟎

𝑇
. 

 

In general (6) can be written as  

𝑦 = 𝑓𝑇(𝑥)𝜽 + 𝜖  (7) 

 

where 𝑓(𝑥) = (
𝜕𝜂(𝑥,𝜽)

𝜕𝜃1
,

𝜕𝜂(𝑥,𝜽)

𝜕𝜃2
, … ,

𝜕𝜂(𝑥,𝜽)

𝜕𝜃𝑘
)

𝑇
, 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑘)𝑇  is a vector of k unknown 

parameters and 𝜖 is a random error normally distributed with mean zero and variance 𝜎2. Then 

the Fisher information matrix 𝑀(𝜉, 𝜽) for model (7) is same as (5). 
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The Fisher information matrix for non-linear models depend on the unknown parameters, therefore, 

obtaining optimal designs in this case is difficult. The most widely used approach to deal with this 

problem is local optimality approach introduced by Chernoff (1953). Chernoff (1953) adopted an 

initial guess 𝜽 = 𝜽𝟎 for unknown parameter vector and maximize the criteria function evaluated 

at guessed value of the parameters. The resulting design is termed as locally optimal design. 

 

Definition 1. [Atkinson et al., (2007)]. D-optimal criterion is a criterion which is obtained by 

minimizing 𝜙(𝑀(𝜉, 𝜽)), where 𝜙(𝑀(𝜉, 𝜽)) = log|𝑀−1(𝜉, 𝜽)| = − log|𝑀(𝜉, 𝜽)|.  

 

Let the design measure 𝜉̅ put the unit mass at the point x and let the measure 𝜉𝛼 be given by 𝜉𝛼 =
(1 − 𝛼)𝜉 + 𝛼 𝜉̅, (0 ≤ 𝛼 ≤ 1) then, 𝑀(𝜉𝛼 , 𝜽) = (1 − 𝛼)𝑀(𝜉, 𝜽) + 𝛼𝑀(𝜉̅, 𝜽)and the derivative 

of 𝜙 in the direction 𝜉̅ is  

 

𝜓(𝑥, 𝜉) = lim
𝛼→0

1

𝛼
[𝜙{(1 − 𝛼)𝑀(𝜉, 𝜽) + 𝛼𝑀(𝜉̅, 𝜽)} − 𝜙(𝑀(𝜉, 𝜽))]  (8) 

 

The following general equivalance theorem is a useful tool for checking whether the design is 

optimal or not (Atkinson et al., 2007). 

 

Theorem 1. 
The generalized equivalence theorem states the equivalence of the following three condition on 𝜉∗: 

(i) The design 𝜉∗ minimizes 𝜙(𝑀(𝜉, 𝜽)).  

(ii) The design 𝜉∗ maximizes the minimum over 𝜒 of 𝜓(𝑥, 𝜉).  

(iii) The minimum over 𝜒 of 𝜓(𝑥, 𝜉∗) is equal to the zero, this minimum occurring at the 

points of support of the design. 

As a consequence of (iii), we obtain the further condition: 

(iv) For any non-optimum design 𝜉 the minimum over 𝜒 of 𝜓(𝑥, 𝜉) < 0.  

 

For D-optimal criterion, we minimize  

 

𝜙(𝜉, 𝜽) = − log|𝑀(𝜉, 𝜽)|    (9) 

 
∴ Equation (8) becomes 

 

𝜓(𝑥, 𝜉) = 𝑘 −
𝜕𝑓(𝑥)

𝜕𝜽
𝑀−1(𝜉, 𝜽)

𝜕𝑓(𝑥)

𝜕𝜽𝑇
= 𝑘 − 𝑑(𝑥, 𝜉) (10) 

where  

 

𝑑(𝑥, 𝜉) =
𝜕𝑓(𝑥)

𝜕𝜽
𝑀−1(𝜉, 𝜽)

𝜕𝑓(𝑥)

𝜕𝜽𝑇   

 

is dispersion function (standardized variance) associated with the design measure 𝜉. 

 

From Theorem 1 condition 3, 𝜓(𝑥, 𝜉) ≥ 0, therefore 𝑑(𝑥, 𝜉) ≤ 𝑘 

 

For A-optimal criterion, we minimize  

𝜙(𝜉, 𝜽) = tarce(𝑀−1(𝜉, 𝜽)) (11) 
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For E-optimal criterion, we minimize the maximum of eigenvalue of  

 

𝜙(𝜉, 𝜽) = 𝑀−1(𝜉, 𝜽) (12) 

 

 

3. Optimal Design for Generalized Pareto Model 
Keeping in mind the sufficient conditions of Li and Majumdar (2008), we are giving the following 

sufficient conditions for obtaining A- and E- optimal designs alongwith sufficient conditions of D-

optimal designs (Li and Majumdar, 2008) for non-linear regression models.  

 

Theorem 2. 
(i) For 𝜒0 = (−∞, ∞), if ∀ 𝜉 ∈ Ξ, ∃ 𝜖 > 0 such that every function in {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 <

𝑐 < 𝜖} has at most 2𝑘 + 1 roots in the design space and the D-, A- and E-optimal design 

exists, then the D-, A- and E-optimal designs must be minimally supported and unique.  

(ii) Let 𝜒  be one of the following two forms: 𝜒1 = [𝑎, ∞)  or 𝜒2 = (−∞, 𝑏] . If ∀ 𝜉 ∈
Ξ, ∃ 𝜖 > 0 such that every function in {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 < 𝜖} has at most 2𝑘 roots 

in the design space 𝜒1 or 𝜒2 and the D-, A- and E-optimal designs exists, then the D-, A- and 

E-optimal designs must be minimally supported and unique. In addition, if ∀ 𝜉 ∈ Ξ, ∃ 𝜖 >
0 such that every function in {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 < 𝜖} has at most 2𝑘 − 1 roots in the 

design space and the D-, A- and E-optimal designs exists, then a (for 𝜒1) or b (for 𝜒2) is one 

of the support point of the D-, A- and E-optimal designs.  

(iii) For 𝜒3 = [𝑎, 𝑏], if ∀ 𝜉 ∈ Ξ, ∃ 𝜖 > 0 such that every function in {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 <
𝜖} has at most 2𝑘 − 1 roots in the design space 𝜒3, then the D-, A- and E-optimal design 

must be minimally supported and unique and atleast one of the boundary points is a support 

point of the D-, A- and E-optimal designs. In addition, if ∀ 𝜉 ∈ Ξ, ∃ 𝜖 > 0 such that every 

function in {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 < 𝜖} has at most 2𝑘 − 2 roots in the design space 𝜒3, 

then both a and b are support points of the D-, A- and E-optimal designs.  

 

To verify sufficient conditions given in Theorem 2, it is most important to verify the maximum 

number of roots of {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 < 𝜖} is according to Theorem 2, where k is number of 

parameters. The theory of Tchebycheff system or T-system (Karlin and Studden, 1966), chapter 

11; theorem 102) plays an important role in the derivation of this result. We apply Theorem 2 to 

obtain D-, A- and E-optimal designs for generalized Pareto model given in (2).  

 

The Fisher information matrix is  

 

𝑀(𝜉, 𝑥) =  (
𝜕𝜂(𝑥, 𝜽)

𝜕𝜽
) (

𝜕𝜂(𝑥, 𝜽)

𝜕𝜽𝑇 ) = 𝑓(𝑥)𝑓𝑇(𝑥) 

       = [
𝜃2

2𝑥2(1 − 𝜃1𝑥)2𝜃2−2 −(1 − 𝜃1𝑥)2𝜃2−1𝜃2𝑥 log(1 − 𝜃1𝑥)

−(1 − 𝜃1𝑥)2𝜃2−1𝜃2𝑥 log(1 − 𝜃1𝑥) (1 − 𝜃1𝑥)2𝜃2(log(1 − 𝜃1𝑥))2
] 

       = [
𝑓11 𝑓12

𝑓12 𝑓22
] 

 

Consider a two point design with equal weight 

𝜉 = {
𝑥1        𝑥2

0.5      0.5
} (13) 
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then the Fisher information matrix will be  

 

𝑀(𝜉, 𝜽) = ∑ 𝑤𝑖𝑓𝑇(𝑥)𝑓(𝑥)

2

𝑖=1

= [
𝑀11 𝑀12

𝑀12 𝑀22
]  (14) 

 

where  𝑀11 = 0.5𝑓11|𝑥=𝑥1
+ 0.5𝑓11|𝑥=𝑥2

 

𝑀12 = 0.5𝑓12|𝑥=𝑥1
+ 0.5𝑓12|𝑥=𝑥2

 

𝑀22 = 0.5𝑓22|𝑥=𝑥1
+ 0.5𝑓22|𝑥=𝑥2

. 

 

The Fisher information matrix for three point design can also be obtained, similarly. Now, we apply 

Theorem 2 to see the existence of minimally supported designs and their uniqueness. Let 𝑚𝑖𝑗 

denote the (𝑖, 𝑗)𝑡ℎ element of 𝑀−1(𝜉, 𝜽), then  

 

𝑑(𝑥, 𝜉) =
𝜕𝜂(𝑥, 𝜽)

𝜕𝜽𝑇
𝑀−1(𝜉, 𝜽)

𝜕𝜂(𝑥, 𝜽)

𝜕𝜽
 

∴  
𝑑(𝑥, 𝜉)

(1 − 𝜃1𝑥)2𝜃2
=

𝑚11𝜃2
2𝑥2

(1 − 𝜃1𝑥)2
−

2𝑚12𝜃2𝑥 log(1 − 𝜃1𝑥)

1 − 𝜃1𝑥
+ 𝑚22(log(1 − 𝜃1𝑥))2. 

 

Now, {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐: 0 < 𝑐 < 𝜖} is a linear combination of 

 

{
𝜃2

2𝑥2

(1 − 𝜃1𝑥)2
,
𝜃2𝑥 log(1 − 𝜃1𝑥)

1 − 𝜃1𝑥
, (log(1 − 𝜃1𝑥))2,

1

(1 − 𝜃1𝑥)2𝜃2
}  (15) 

 

therefore by Karlin and Studden (1966), (15) is a T-system.  

 

Hence, {𝑑(𝑥, 𝜉) − 𝑘 + 𝑐} has at most four roots and from Theorem 2, locally A-, D- and E-

optimal designs for [𝑎, ∞); 𝑎 > 0 are minimally supported if D- , A- and E-optimal design exists 

in the corresponding design space.  

 

To determine the support points for D-, A- and E-optimal designs, we minimize the determinant, 

trace and maximun eigenvalue of the inverse of Fisher information matrix 𝑀(𝜉, 𝜽) given in (14), 

respectively. Since the determinant, trace and maximum eigenvalue of the inverse of Fisher 

information matrix are not in explicit form, therefore, we obtain optimal support points numerically 

for some known values of the parameters 𝜃1 and 𝜃2. Theorems 3, 4 and 5 give conditions on 

support points for designs to be D-, A- and E-optimal, respectively.  
 

Theorem 3. 
(i) For design support 𝛬0 = [𝑎, ∞), 𝑎 > 0, D-optimal design is supported on (𝑥1

∗, 𝑥2
∗).  

(ii) Consider 𝛬0 = [𝑎, 𝑏) 

 If 𝑎 < 𝑥1
∗ < 𝑥2

∗ < 𝑏, then the D-optimal design is supported on (𝑥1
∗, 𝑥2

∗)  

 If 𝑎 ≥ 𝑥1
∗, 𝑏 > 𝑥2

∗ , then the D-optimal design is supported on (𝑥𝑎
∗ , 𝑥2

∗) , where 𝑥𝑎
∗  is 

solution of minimized (9) with 𝑥1
∗ = 𝑎. 

 If 𝑎 < 𝑥1
∗, 𝑏 ≤ 𝑥2

∗ , then the D-optimal design is supported on (𝑥1
∗, 𝑥𝑏

∗) , where 𝑥𝑏
∗  is 

solution of minimized (9) with 𝑥2
∗ = 𝑏.  

 If 𝑎 ≥ 𝑥1
∗, 𝑏 ≤ 𝑥2

∗, then the D-optimal design is supported on (𝑎, 𝑏).  
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For some values of 𝜃1 and 𝜃2 the D-optimal design with two and three support points having 

equal weights are listed in Table 1 and Table 2 respectively and can be shown to satisfy generalized 

equivalence theorem as 𝑑(𝑥, 𝜉) ≤ 2. For equal and unequal weights, D-optimal design support 

points are same.  

 

 

 
Table 1. D-optimal designs for generalized Pareto model with two support points having weights 

𝑤1 = 0.5, 𝑤2 = 0.5 
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 

    𝑥1 𝑥2     𝑥1 𝑥2 
 [0.1, 4] 1.2749 3.0877   [0.1, 2] 0.8467 1.7850 
 [0.5, 3.5] 1.2749 3.0877   [0.5, 1.8] 0.8497 1.7834 

(0.25, 2) [1.5, 3.5] 1.5000 3.1386 (0.5, 1.5) [1, 2] 1.0000 1.8027 
 [0.1, 2.5] 1.0793 2.5000   [0.1, 1.75] 0.7182 1.7500 
 [1.5, 2.5] 1.5000 2.5000   [1, 1.75] 1.0000 1.7500 

  [0.1, 4] 0.8490 2.3745   [0.1, 2] 0.5097 1.3457 
 [0.5, 3.5] 0.8490 2.3745   [0.5, 1.5] 0.5097 1.3457 

(0.25, 3) [1, 3.5] 1.0000 2.4267 (0.5, 2.5) [0.75, 2] 0.7500 1.4204 
 [0.1, 2] 0.7597 2.0000   [0.1, 1] 0.4118 1.0000 

  [1, 2] 1.0000 2.0000   [0.75, 1] 0.7500 1.0000 

 

 

 
Table 2. D-optimal designs for generalized Pareto model with three support points having weights 

𝑤1 = 1 3⁄ , 𝑤2 = 1 3⁄ , 𝑤3 = 1 3⁄  
 

(𝜃1, 𝜃2)  Design region 
Design points 

(𝜃1, 𝜃2) Design region 
Design points 

𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 
 [0.1, 4] 1.2749 1.2749 3.0877   [0.1, 2] 0.8467 0.8467 1.7850 
 [0.5, 3.5] 1.2749 1.2749 3.0877   [0.5, 1.8] 0.8497 0.8497 1.7834 

(0.25, 2) [1.5, 3.5] 1.5000 1.5000 3.1386 (0.5, 1.5) [1, 2] 1.0000 1.0000 1.8027 
 [0.1, 2.5] 1.0793 1.0793 2.5000   [0.1, 1.75] 0.7182 0.7182 1.7500 
 [1.5, 2.5] 1.5000 1.5000 2.5000   [1, 1.75] 1.0000 1.0000 1.7500 

  [0.1, 4] 0.8490 0.8490 2.3745   [0.1, 2] 0.5097 0.5097 1.3457 
 [0.5, 3.5] 0.8490 0.8490 2.3745   [0.5, 1.5] 0.5097 0.5097 1.3457 

(0.25, 3) [1, 3.5] 1.0000 1.0000 2.4267 (0.5, 2.5) [0.75, 2] 0.7500 0.7500 1.4204 
 [0.1, 2] 0.7597 0.7597 2.0000   [0.1, 1] 0.4118 0.4118 1.0000 

  [1, 2] 1.0000 1.0000 2.0000   [0.75, 1] 0.7500 0.7500 1.0000 

 

 

 

Theorem 4. 
(i) For design support 𝛬0 = [𝑎, ∞), 𝑎 > 0, A-optimal design is supported on (𝑥1

∗, 𝑥2
∗).  

(ii) Consider 𝛬0 = [𝑎, 𝑏)   

 If 𝑎 < 𝑥1
∗ < 𝑥2

∗ < 𝑏, then the A-optimal design is supported on (𝑥1
∗, 𝑥2

∗)  

 If 𝑎 ≥ 𝑥1
∗, 𝑏 > 𝑥2

∗ , then the A-optimal design is supported on (𝑥𝑎
∗ , 𝑥2

∗) , where 𝑥𝑎
∗  is 

solution of minimized (11) with 𝑥1
∗ = 𝑎. 

 If 𝑎 < 𝑥1
∗, 𝑏 ≤ 𝑥2

∗ , then the A-optimal design is supported on (𝑥1
∗, 𝑥𝑏

∗) , where 𝑥𝑏
∗  is 

solution of minimized (11) with 𝑥2
∗ = 𝑏.  

 If 𝑎 ≥ 𝑥1
∗, 𝑏 ≤ 𝑥2

∗, then the A-optimal design is supported on (𝑎, 𝑏).  
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For some values of 𝜃1 and 𝜃2 the A-optimal design with two support points having equal and 

unequal weights and three support points having equal and unequal weights are listed in Tables 3-

6 respectively and can be shown to satisfy generalized equivalence theorem as 𝑑(𝑥, 𝜉) ≤ 2. 

 

 

 

Table 3. A-optimal designs for generalized Pareto model with two support points having weights 

𝑤1 = 0.5, 𝑤2 = 0.5 
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 

    𝑥1 𝑥2     𝑥1 𝑥2 
 [0.1, 4] 1.3121 3.7159   [0.1, 2] 0.6571 1.8263 
 [0.5, 3.75] 1.3121 3.7159   [0.5, 1.9] 0.6554 1.8562 

(0.25, 1.5) [1.5, 3.75] 1.5000 3.7094 (0.5, 1.5) [0.75, 2] 0.7500 1.8531 
 [0.5, 2.75] 1.1461 2.7500   [0.5, 1.5] 0.6125 1.5000 

  [1.5, 2.75] 1.5000 2.7500   [0.75, 1.5] 0.7500 1.5000 
 [0.1, 4] 0.7253 2.9106   [0.1, 2] 0.3623 1.4545 
 [0.5, 3.5] 0.7253 2.9106   [0.25, 1.5] 0.3623 1.4545 

(0.25, 2.5) [1.5, 3.5] 1.5000 2.9757 (0.5, 2.5) [0.5, 2] 0.5000 1.4494 
 [0.5, 2.5] 0.7468 2.5000  [0.25, 1] 0.3425 1.0000 

  [1.5, 2.5] 1.5000 2.5000   [0.5, 1] 0.5000 1.0000 

 

 

 
Table 4. A-optimal designs for generalized Pareto model with two support points having weights 

𝑤1 = 0.35, 𝑤2 = 0.65 
 

 (𝜃1, 𝜃2) Design region Design points  (𝜃1, 𝜃2) Design region Design points 

    𝑥1 𝑥2     𝑥1 𝑥2 
 [0.1, 5] 1.4368 3.7652   [0.1, 2] 0.7181 1.8809 
 [0.1, 4] 1.4368 3.7652   [0.5, 2] 0.7181 1.8809 

(0.25, 1.5) [1.5, 4] 1.5000 3.7628 (0.5, 1.5) [0.75, 2] 0.7500 1.8798 
 [0.5, 3.5] 1.4466 3.5000   [0.5, 1.5] 0.6513 1.5000 

  [1.5, 3.5] 1.5000 3.5000   [0.75, 1.5] 0.7500 1.5000 
 [0.1, 4] 0.8077 3.0029   [0.1, 2] 0.4036 1.5005 
 [0.5, 3.5] 0.8077 3.0029   [0.25, 2] 0.4036 1.5005 

(0.25, 2.5) [1, 3.5] 1.0000 2.9908 (0.5, 2.5) [0.5, 2] 0.5000 1.4946 
 [0.5, 2.5] 0.8196 2.5000  [0.25, 1.5] 0.3674 1.0000 

  [1.5, 2.5] 1.5000 2.5000   [0.5, 1] 0.5000 1.0000 

 

 

 
Table 5. A-optimal designs for generalized Pareto model with three support points having weights 

𝑤1 = 1 3, 𝑤2 = 1 3⁄ , 𝑤3 = 1 3⁄⁄  
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 

    𝑥1 𝑥2 𝑥3     𝑥1 𝑥2 𝑥3 
 [0.1, 4] 1.1587 1.1587 3.6617   [0.1, 2] 0.5784 0.5785 1.8291 
 [0.5, 3.75] 1.1587 1.1587 3.6617   [0.5, 1.9] 0.5784 0.5785 1.8291 

(0.25, 1.5) [1.5, 3.75] 1.5000 1.5000 3.6539 (0.5, 1.5) [0.75, 2] 0.7500 0.7500 1.8258 
 [0.5, 3.5] 1.1825 1.1825 3.5000   [0.5, 1.5] 0.5556 0.5556 1.5000 

  [1.5, 3.5] 1.5000 1.5000 3.5000   [0.75, 1.5] 0.7500 0.7500 1.5000 
 [0.1, 4] 0.6292 0.6292 2.8182   [0.1, 2] 0.3142 0.3142 1.4084 
 [0.5, 3.5] 0.6292 0.6292 2.8182   [0.25, 1.5] 0.3142 0.3142 1.4084 

(0.25, 2.5) [1.5, 3.5] 1.5000 1.5000 2.9204 (0.5, 2.5) [0.5, 2] 0.5000 0.5000 1.4089 
 [0.5, 2.5] 0.6517 0.6517 2.5000   [0.25, 1] 0.3069 0.3069 1.0000 

  [1.5, 2.5] 1.5000 1.5000 2.5000   [0.5, 1] 0.5000 0.5000 1.0000 
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Table 6. A-optimal designs for generalized Pareto model with three support points having weights 

𝑤1 = 0.15,  𝑤2 = 0.25, 𝑤3 = 0.60 
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 

    𝑥1 𝑥2 𝑥3     𝑥1 𝑥2 𝑥3 
 [0.1, 4] 1.3955 1.3955 3.7483   [0.1, 2] 0.6973 0.6973 1.8725 
 [1, 4] 1.3955 1.3955 3.7483   [0.5, 2] 0.6973 0.6973 1.8725 

(0.25, 1.5) [1.5, 4] 1.5000 1.5000 3.7444 (0.5, 1.5) [0.75, 2] 0.7500 0.7500 1.8706 
 [0.5, 3.5] 1.4109 1.4109 3.5000   [0.5, 1.5] 0.6393 0.6393 1.5000 

  [1.5, 3.5] 1.5000 1.5000 3.5000   [0.75, 1.5] 0.7500 0.7500 1.5000 

  [0.1, 4] 0.7799 0.7799 2.9702   [0.1, 2] 0.3897 0.3897 1.4842 
 [0.5, 3.5] 0.7799 0.7799 2.9702  [0.25, 1.5] 0.3897 0.3897 1.4842 

(0.25, 2.5) [1.5, 3.5] 1.5000 1.5000 3.0178 (0.5, 2.5) [0.5, 2] 0.5000 0.5000 1.4782 
 [0.5, 2.5] 0.7962 0.7962 2.5000   [0.25, 1] 0.3597 0.3597 1.0000 

  [1.5, 2.5] 1.5000 1.5000 2.5000   [0.5, 1] 0.5000 0.5000 1.0000 

 

 

 

Theorem 5. 
(i) For design support 𝛬0 = [𝑎, ∞), 𝑎 > 0, E-optimal design is supported on (𝑥1

∗, 𝑥2
∗).  

(ii) Consider 𝛬0 = [𝑎, 𝑏)   

 If 𝑎 < 𝑥1
∗ < 𝑥2

∗ < 𝑏, then the E-optimal design is supported on (𝑥1
∗, 𝑥2

∗)  

 If 𝑎 ≥ 𝑥1
∗, 𝑏 > 𝑥2

∗ , then the E-optimal design is supported on (𝑥𝑎
∗ , 𝑥2

∗) , where 𝑥𝑎
∗  is 

solution of minimized (12) with 𝑥1
∗ = 𝑎. 

 If 𝑎 < 𝑥1
∗, 𝑏 ≤ 𝑥2

∗ , then the E-optimal design is supported on (𝑥1
∗, 𝑥𝑏

∗) , where 𝑥𝑏
∗  is 

solution of minimized (12) with 𝑥2
∗ = 𝑏.  

 If 𝑎 ≥ 𝑥1
∗, 𝑏 ≤ 𝑥2

∗, then the E-optimal design is supported on (𝑎, 𝑏).  

 

For some values of 𝜃1  and 𝜃2  the E-optimal design with two support points haing equal and 

unequal weights and three support points having equal and unequal weights are listed in Tables 7-

10 respectively and can be shown to satisfy generalized equivalence theorem as 𝑑(𝑥, 𝜉) ≤ 2.  

 

 

 
 

Table 7. E-optimal designs for generalized Pareto model with two support points having weights 

𝑤1 = 0.5, 𝑤2 = 0.5 
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 

    𝑥1 𝑥2     𝑥1 𝑥2 
 [0.1, 4] 0.9324 3.2931   [0.1, 2] 0.4648 1.6455 
 [0.5, 3.5] 0.9324 3.2931   [0.25, 1.75] 0.4648 1.6455 

(0.25, 2) [1.5, 3.5] 1.5000 3.2992 (0.5, 2) [0.5, 2] 0.5000 1.6425 
 [0.5, 2.5] 0.898 2.5000   [0.1, 1.5] 0.4781 1.5000 
 [1.5, 2.5] 1.5000 2.5000   [0.5, 1.5] 0.5000 0.5000 

  [0.1, 4] 0.5937 2.5918   [0.1, 2] 0.2965 1.2955 
 [0.5, 3] 0.5937 2.5918   [0.25, 1.5] 0.2965 1.2955 

(0.25, 3) [1, 3] 1.0000 2.6023 (0.5, 3) [0.5, 2] 0.5000 1.3008 
 [0.5, 2] 0.6017 2.0000   [0.1, 1] 0.3007 1.0000 

  [1, 2] 1.0000 2.0000   [0.5, 1] 0.5000 1.0000 
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Table 8. E-optimal designs for generalized Pareto model with two support points having weights 

𝑤1 = 0.35, 𝑤2 = 0.65 
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 
    𝑥1 𝑥2     𝑥1 𝑥2 
 [0.1, 4] 1.0327 3.3733   [0.1, 2] 0.5152 1.6857 
 [0.5, 3.5] 1.0327 3.3733   [0.25, 1.75] 0.5152 1.6857 

(0.25, 2) [1.5, 3.5] 1.5000 3.3696 (0.5, 2) [0.75, 2] 0.7500 1.6840 
 [0.5, 3] 1.0518 3.0000   [0.1, 1.5] 0.5252 1.5000 
 [1.5, 3] 1.5000 3.0000   [0.75, 1.5] 0.7500 1.5000 

  [0.1, 4] 0.6633 2.6874   [0.1, 2] 0.3314 1.3432 
 [0.5, 3] 0.6633 2.6874   [0.25, 1.5] 0.3314 1.3432 

(0.25, 3) [1, 3] 1.0000 2.6852 (0.5, 3) [0.5, 2] 0.5000 1.3422 
 [0.5, 2] 0.6553 2.0000   [0.1, 1] 0.3275 1.0000 

  [1, 2] 1.0000 2.0000   [0.5, 1] 0.5000 1.0000 

 

 

 

Table 9. E-optimal designs for generalized Pareto model with three support points having weights 

𝑤1 = 1 3⁄ , 𝑤2 = 1 3⁄ , 𝑤3 = 1 3⁄  
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 
    𝑥1 𝑥2 𝑥3     𝑥1 𝑥2 𝑥3 
 [0.1, 4] 0.8134 0.8134 3.2105   [0.1, 2] 0.4053 0.4053 1.6043 
 [0.5, 3.5] 0.8134 0.8134 3.2105   [0.25, 1.75] 0.4053 0.4053 1.6043 

(0.25, 2) [1.5, 3.5] 1.5000 1.5000 3.2369 (0.5, 2) [0.5, 2] 0.5000 0.5000 1.5985 
 [0.5, 3] 0.8367 0.8367 3.0000   [0.1, 1.5] 0.4171 0.4171 1.5000 
 [1.5, 3] 1.5000 1.5000 3.0000   [0.5, 1.5] 0.5000 0.5000 1.5000 

  [0.1, 4] 0.5132 0.5132 2.4978   [0.1, 2] 0.2562 0.2562 1.2485 
 [0.5, 3] 0.5132 0.5132 2.4978   [0.25, 1.5] 0.2562 0.2562 1.2485 

(0.25, 3) [1, 3] 1.0000 1.0000 2.5321 (0.5, 3) [0.5, 2] 0.5000 0.5000 1.2658 
 [0.5, 2] 0.5293 0.5293 2.0000   [0.1, 1] 0.2644 0.2644 1.0000 

  [1, 2] 1.0000 1.0000 2.0000   [0.5, 1] 0.5000 0.5000 1.0000 

 

 

 

Table 10. E-optimal designs for generalized Pareto model with three support points having weights 

𝑤1 = 0.15, 𝑤2 = 0.25, 𝑤3 = 0.60 
 

(𝜃1, 𝜃2) Design region Design points (𝜃1, 𝜃2) Design region Design points 
    𝑥1 𝑥2 𝑥3     𝑥1 𝑥2 𝑥3 
 [0.1, 4] 0.9990 0.9990 3.3452   [0.1, 2] 0.4983 0.4983 1.6716 
 [0.5, 3.5] 0.9990 0.9990 3.3452   [0.25, 1.75] 0.4983 0.4983 1.6716 

(0.25, 2) [1.5, 3.5] 1.5000 1.5000 3.3440 (0.5, 2) [0.75, 2] 0.7500 0.7500 1.6715 
 [0.5, 3] 1.0217 1.0217 3.0000   [0.1, 1.5] 0.5100 0.5100 1.5000 
 [1.5, 3] 1.5000 1.5000 3.0000   [0.75, 1.5] 0.7500 0.7500 1.5000 

  [0.1, 4] 0.6398 0.6398 2.6534   [0.1, 2] 0.3196 0.3196 1.3262 
 [0.5, 3] 0.6398 0.6398 2.6534   [0.25, 1.5] 0.3196 0.3196 1.3262 

(0.25, 3) [1, 3] 1.0000 1.0000 2.6546 (0.5, 3) [0.5, 2] 0.5000 0.5000 1.3270 
 [0.5, 2] 0.6383 0.6383 2.0000   [0.1, 1] 0.3190 0.3190 1.0000 

  [1, 2] 1.0000 1.0000 2.0000   [0.5, 1] 0.5000 0.5000 1.0000 

 

 

 

 

4. A Real Data Application 
Beirlant and Geogebeur (2003) have studied the fitting of generalized Pareto model to the 

Norwegian fire claim data for the period 1988-1991. The data is available in R software library in 

the package ReIns as norwegianfire, it contains 9181 observations on two variables size and year 
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for the period 1971-1992. We use this data to fit the model (2), by taking claim size an dependent 

variable and time as independent variable, we get 𝜽𝟏 = -0.0001754 and 𝜽𝟐 = -3.902088. For 

these parameters of the model, we have obtain D-, A- and E-optimal two and three support point 

designs having equal and unequal weights. It is found that support points for A- and E-optimal 

designs are same for all the cases, therefore we are showing D- and A-optimal design support points 

for all cases. The obtained results are listed in the Tables 11-14. 

 

 
Table 11. D-, A- and E-optimal designs for generalized Pareto model with two support points having 

weights 𝑤1 = 0.5,  𝑤2 = 0.5 
 

  

  

Design region Design points   Design region Design points 

  𝑥1 𝑥2 𝑥1 𝑥2 

D-optimal 

[500, 465365]  921.8780 4295.3240 

A-optimal 

or 
E-optimal 

[500, 465365] 572.6625 5068.4895 

[800, 5365] 921.8783 4295.3247 [550, 6365] 572.6625 5068.4895 

[1000, 5365] 1000.0000 4372.6100 [800, 6365] 800.0000 5022.0290 

[500, 4000] 897.8773 4000.0000 [550, 5000] 575.3937 5000.0000 

[1000, 4000] 1000.0000 4000.0000 [800, 5000] 800.0000 5000.0000 

 

 

 
Table 12. D-, A- and E-optimal designs for generalized Pareto model with two support points having 

weights 𝑤1 = 0.35,  𝑤2 = 0.65 
 

  

  

Design region Design points  Design region Design points 

𝑥1 𝑥2 𝑥1 𝑥2 

D-optimal 

[500, 465365] 921.8781 4295.3223 

A-optimal 

or 
E-optimal 

[500, 465365] 653.7900 5508.8220 

[800, 5365] 921.8782 4295.3249 [600, 6365] 653.7900 5508.8220 

[1000, 5365] 1000.0000 4372.6100 [800, 6365] 800.0000 5456.8240 

[500, 4000] 897.8774 4000.0000 [600, 5000] 672.3323 5000.0000 

[1000, 4000] 1000.0000 4000.0000 [800, 5000] 800.0000 5000.0000 

 

 

 
Table 13. D-, A- and E-optimal designs for generalized Pareto model with three support points having 

weights 𝑤1 = 1 3⁄ , 𝑤2 = 1 3⁄ , 𝑤3 = 1 3⁄  
 

  

  

Design region Design points  Design 

region 

Design points 

𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 

D-optimal 

[500, 465365]  921.878 921.878 4295.324 

A-optimal 

or 
E-optimal 

[500, 

465365]  

500.000 500.000 4668.251 

[800, 5365] 921.878 921.878 4295.324 [500, 6365] 500.000 500.000 4668.251 

[1000, 5365] 1000.000 1000.000 4372.610 [600, 6365] 600.000 600.000 4634.187 

[800, 4000] 897.877 897.877 4000.000 [500, 5000] 504.520 504.520 4000.000 

[1000, 4000] 1000.000 1000.000 4000.000 [600, 5000] 600.000 600.000 4000.000 

 

 

 

Table 14. D-, A- and E-optimal designs for generalized Pareto model with three support points having 

weights 𝑤1 = 0.15, 𝑤2 = 0.35, 𝑤3 = 0.60 
 

  
  

Design region Design points  Design 
region 

Design points 

𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 

D- optimal 

[500, 465365]  921.878 921.878 4295.324 

A-optimal 

or 
E-optimal 

[500, 465365]  625.896 625.895 5346.316 

[800, 5365] 921.878 921.877 4295.322 [600, 6365] 625.895 625.895 5346.316 

[1000, 5365] 1000.000 1000.000 4372.610 [800, 6365] 800.000 800.000 5293.034 

[800, 4000] 897.877 897.877 4000.000 [600, 5000] 639.101 639.101 5000.000 

[1000, 4000] 1000.000 1000.000 4000.000 

 
 

 

[800, 5000] 800.000 800.000 5000.000 
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5. Conclusion 
We obtained locally D-, A- and E-optimal designs for generalized Pareto model with equal and 

unequal weights numerically. It is observed that in A- and E-optimal designs with three design 

points, two points are same but these are different from two support points design. For D-optimal 

designs, in designs with three support points, two points are same. It is also observed that in D-

optmal designs the distinct points for two and three support point designs are same while in A- and 

E- optimal designs distinct points for two and three support point designs are different. D-optimal 

designs are same for equal and unequal weights. As we increase the values of parameters, the design 

points lie closer to center of the design region. For Norwegian fire claim data, the D-, A- and E-

optimal designs with two and three support points having equal and unequal weights are obtained. 

It is found that D-optimal design with two and three support points are almost same for equal and 

unequal weights. It is also observed that the support points for A- and E-optimal designs are same 

for all the cases. The designs obtained in the paper can be used in practice.   
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