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Abstract 

The Variable-Entered Karnaugh Map is utilized to grant a simpler view and a visual perspective to Boolean curve fitting 

(Boolean interpolation); a topic whose inherent complexity hinders its potential applications. We derive the function(s) 

through 𝑚 points in the Boolean space 𝐵𝑛+1 together with consistency and uniqueness conditions, where 𝐵 is a general 

‘big’ Boolean algebra of ℓ ≥ 1 generators, ℒ atoms (2ℓ−1 < ℒ ≤ 2ℓ) and 2ℒ elements. We highlight prominent cases in 

which the consistency condition reduces to the identity (0 = 0) with a unique solution or with multiple solutions. We 

conjecture that consistent (albeit not necessarily unique) curve fitting is possible if, and only if, 𝑚 = 2𝑛. This conjecture 

is a generalization of the fact that a Boolean function of 𝑛 variables is fully and uniquely determined by its values in the 
{0,1}𝑛 subdomain of its 𝐵𝑛 domain. A few illustrative examples are used to clarify the pertinent concepts and techniques. 

 

Keywords– Boolean curve fitting, Boolean interpolation, variable-entered Karnaugh map, Consistency condition, 

uniqueness. 

 

 

 

1. Introduction 
Cryptography is the science of encrypting and decrypting data so as to allow secure transfer of 

information over space (transmission over a communication channel) or over time (storage within 

a computer memory). The ‘inverse’ of encryption is cryptanalysis, which is the science of analyzing 

and breaking encrypted messages. Cryptography not only protects data from theft or alteration, but 

can also be used for user authentication. Conventionally, cryptography was largely of interest to 

the military and to diplomats. Nowadays, it permeates many aspects of life, including Internet 

banking, e-commerce, e-mail, and automatic teller machines. It has tremendous impact on the 

economic, sociological, and political aspects of the contemporary society. A cryptographic scheme, 

or a system used to accomplish the goals of cryptography is called a cryptosystem (Adler and 

Gailly, 1999; Menezes et al., 1996; Piper and Murphy, 2002; Tanenbaum and Wetherall, 2011; 

Rushdi and Alsheikhy, 2017; Ahmad and Rushdi, 2018). 

 

This paper serves as a first step towards a novel cryptosystem that is based on the utilization of a 

‘big’ Boolean algebra, i.e., a finite (atomic) Boolean algebra other than the conventional two-valued 

one (Hammer and Rudeanu, 1968; Brown, 1990; Rudeanu, 1974, 2001; Crama and Hammer, 2011; 

Rushdi and Amashah, 2011). The basic idea is to dramatically extend the search space needed in 

satisfiability-based (SAT-based) cryptography (Ahmad and Rushdi, 2018). The adversary will not 
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only be obliged to traverse a search space (that can be arbitrarily huge), but will definitely end up 

with an arbitrarily large number of candidate answers, all of which are wrong except the one 

corresponding to the encrypted message. 

 

In the envisioned cryptosystem, the alphabet of symbols used is a certain subset of the 2ℒ elements 

of a general ‘big’ Boolean algebra 𝐵 of ℓ ≥ 1 generators, ℒ atoms (2ℓ−1 < ℒ ≤ 2ℓ). The sent 

message now consists of a sequence of functions 𝑓𝑖𝑗(𝑿) over 𝐵 encrypting the intended symbols 

𝑠𝑖, where every symbol 𝑠𝑖 is encrypted by an arbitrarily large number 𝐽 of functions ( 1 ≤   𝑗 ≤  𝐽 

). A single common particular vector 𝑿𝑐 is selected such that 𝑓𝑖𝑗(𝑿𝑐) =  𝑠𝑖 for all possible values 

of 𝑖 and 𝑗. This common vector 𝑿𝑐  is entrusted securely to the intended receiver. The job of the 

receiver is to trivially substitute this 𝑿𝑐 into the sequence of functions received, thereby converting 

it into the original sequence of sent symbols. However, it is a totally different story for the 

adversary, whose potential approaches for cryptanalysis will be discussed in a forthcoming paper. 

The present paper will be devoted entirely to the job required of the sender (or system designer), 

which is to construct a pool of functions 𝑓𝑖𝑗(𝑿) such that 𝑓𝑖𝑗(𝑿𝑐) =  𝑠𝑖 for all possible values of 𝑖 

and 𝑗. It is also desirable that these functions should be as ‘different’ as possible and that none of 

them should equate to 𝑠𝑖 at an input 𝑿 other than 𝑿𝑐. These requirements can be achieved via 

Boolean curve fitting (Boolean interpolation), which allows the algebraic derivation of a function 

passing through m points in the Boolean space 𝐵𝑛+1. As it is the case of all problems concerning 

Boolean equations, certain consistency conditions might be needed and uniqueness is not always 

guaranteed, (Hammer and Rudeanu, 1968; Brown, 1990; Rudeanu, 1974, 2001; Crama and 

Hammer, 2011; Rushdi and Amashah, 2011). 

 

The problem of Boolean curve fitting (Boolean interpolation) was handled as a pure mathematical 

curiosity with no view of practical applications during the past century. Most prominent among the 

early contributions to this problem are those due to Stamm (1925), McKinsey (1936a, 1936b), Ellis 

(1953, 1956), and Scognamiglio (1961). Such contributions culminated in the (now) classical 

treatise by Rudeanu (1974). A sequel paper by Melter and Rudeanu (1984) specialized the results 

for Boolean functions that are linear in the sense of Löwenheim (Löwenheim, 1918). We have 

searched many scientific databases vehemently and repeatedly for any contribution to (or 

application of) Boolean interpolation beyond 1984, but could not find any. However, we should 

note that there are many papers containing the words ‘Boolean interpolation’ in text (and even in 

title), but these apparently refer to the utilization of Boolean methods in real interpolation (see, e.g. 

(Delvos and Posdorf, 1979; Neumann, 1982a, 1982b; Delvos, 1982, 1990; Rudeanu and Simovici, 

2004). The work of Rushdi and Albarakati (2012) is related to Boolean interpolation as a special 

case since it deals with the inverse problem of Boolean equations, in which a Boolean function 

𝑓(𝑿) is required to have the same value of 0 (or 1) at (and only at) several distinct points 𝑿. 

However, the techniques used in (Rushdi and Albarakati, 2012) are not derived from or based on 

concepts of Boolean interpolation (Rushdi and Balamesh, 2018). It seems that the topic of Boolean 

interpolation (as understood herein) matured in a pure mathematical sense several decades ago. 

Subsequently, it went into a temporary state of hibernation in wait for a practical application. We 

hope that the appropriate time has arrived for such an application, and that the suggested application 

is a serious and important one, indeed. 

 

To set the stage for our intended application in cryptography, we studied the available results on 

Boolean interpolation, and produced a tutorial exposition of them in Section 2. In Section 3, we 

considered important special cases in which the consistency condition needed for Boolean 



International Journal of Mathematical, Engineering and Management Sciences                                              

Vol. 4, No. 6, 1287–1306, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.6-102 

1289 

interpolation reduces to the trivial identity (0 = 0). In Section 4, we gave our exposition an 

insightful, visual and procedural interpretation with the aid of the Variable-Entered Karnaugh Map 

(VEKM) (Rushdi, 1987, 2004, 2018a, 2018b; Rushdi and Ahmad, 2017, 2018; Rushdi and Al-

Yahya, 2000, 2001; Rushdi and Albarakati, 2012, 2014; Rushdi and Ba-Rukab, 2017; Rushdi and 

Rushdi, 2018), which is the natural map for functions on big Boolean algebras (Rushdi and 

Amashah, 2011). We supplemented this interpretation with three demonstrative examples. Section 

5 uses elementary solution techniques to further illustrate and independently verify the results of 

the demonstrative examples in Section 4. Section 6 concludes the paper. 

 

To make the paper self-contained, it is supplemented with two appendices. Appendix A is a general 

discussion of the solution of a Boolean equation in a single variable. Appendix B details the solution 

of the Boolean equation in one of the illustrative examples. 

 

2. Boolean Curve Fitting 
In this section, we reproduce from (Rudeanu, 1974) the main results known on Boolean curve 

fitting or Boolean interpolation. We replace the mathematical theorem-proof style in (Rudeanu, 

1974) by an engineering problem-solving procedure. We take care to have a rather self-contained 

exposition and fill-in any missing details in (Rudeanu, 1974). We realize that some of the details 

might be said to be ‘obvious’ (to particularly talented mathematicians). The problem at hand 

requires the determination of a Boolean curve whose graph passes through 𝑚 given points 

(𝐗1, 𝑧1), (𝐗2, 𝑧2), … , (𝐗𝑚, 𝑧𝑚) of the Boolean space 𝐵𝑛+1, where 𝐗𝑘 = [𝑋𝑘,1, 𝑋𝑘,2, … , 𝑋𝑘,𝑛]
𝑇

∈

𝐵𝑛, 𝑘 = 1, 2, … , 𝑚 and 𝑧𝑘 ∈ 𝐵, 𝑘 = 1, 2, … , 𝑚. This is equivalent to finding a Boolean function 

𝑓: 𝐵𝑛 → 𝐵 such that 

 

𝑓(𝐗𝑘) = 𝑧𝑘 , 𝑘 = 1,2, … , 𝑚                                                                                                               (1) 

 

The function 𝑓(𝐗) and its complement 𝑓̅(𝐗) can, respectively, be represented by their minterm 

expansions (Hammer and Rudeanu, 1968; Rudeanu, 1974, 2001; Brown, 1990; Crama and 

Hammer, 2011) 

 

𝑓(𝐗) = ⋁ 𝑓(𝐀)𝐗𝐀

𝐀∈{0,1}𝑛

 (2) 

and 

𝑓̅(𝐗) = ⋁ 𝑓̅(𝐀)𝐗𝐀

𝐀∈{0,1}𝑛

 (3) 

where 𝐀 = [𝑎1, 𝑎2, … , 𝑎𝑛]𝑇 ∈ {0,1}𝑛, 𝑓(𝐀) and 𝑓̅(𝐀) are discriminants of 𝑓(𝐗) and 𝑓̅(𝐗), 

respectively, and 𝐗𝐀 is the primitive product (minterm) given by 

 

𝐗𝐀 = 𝑋1
𝑎1𝑋2

𝑎2 … 𝑋2
𝑎𝑛 (4) 

and 

𝑋𝑖
𝑎𝑖 = 𝑋𝑖 ⊙ 𝑎𝑖 = {

𝑋𝑖 , if 𝑎𝑖 = 1

𝑋̅𝑖, if 𝑎𝑖 = 0
 (5) 

The set of 𝑚 equations (1) can be rewritten in the equivalent form 
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𝑓(𝐗𝑘) ⊕ 𝑧𝑘 = 0, 𝑘 = 1,2, … , 𝑚 (6) 

which are characterized with a 0 in the right-hand side. These are further combined into a single 

equivalent equation:  

 

⋁(𝑓(𝐗𝑘) ⊕ 𝑧𝑘)

𝑚

𝑘=1

= 0 (7) 

Replacing the XOR function with its equivalent sum-of-products expression, we get 

 

⋁ (𝑧𝑘𝑓(̅𝐗𝑘)⋁𝑧𝑘̅𝑓(𝐗𝑘))

𝑚

𝑘=1

= 0 (8) 

Substituting the minterm expansions (2) and (3) for 𝑓(𝐗𝑘) and 𝑓̅(𝐗𝑘), we obtain 

 

⋁ ⋁ (𝑧𝑘𝑓̅(𝐀)⋁𝑧𝑘̅𝑓(𝐀))𝐗𝑘
𝐀

𝐀∈{0,1}𝑛

𝑚

𝑘=1

= 0 (9) 

Interchanging the OR operators over 𝑘 and 𝐀, we obtain 

 

⋁ [(⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) 𝑓̅(𝐀)⋁ (⋁ 𝑧𝑘̅𝐗𝑘
𝐀

𝑚

𝑘=1

) 𝑓(𝐀)]

𝐀∈{0,1}𝑛

= 0 (10) 

Equation (10) is equivalent to a set of 2𝑛 equations valid for each 𝐀 ∈ {0,1}𝑛: 

 

𝐹(𝑓(𝐀)) = (⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) 𝑓̅(𝐀)⋁ (⋁ 𝑧𝑘̅𝐗𝑘
𝐀

𝑚

𝑘=1

) 𝑓(𝐀) = 0 (11) 

Each of these equations is a Boolean equation in a single variable 𝑓(𝐀). The function in the left-

hand side of (11) can be represented by the Variable-Entered Karnaugh Map (VEKM) (Rushdi, 

1987, 2004; Rushdi and Al-Yahya, 2000, 2001; Rushdi and Albarakati, 2012, 2014; Rushdi and 

Ahmad, 2017) of a single map variable 𝑓(𝐀) shown in Figure 1. 
 

 
 

We use the results in Appendix A to solve the Boolean equation (11). The consistency condition 

for this equation is 

 𝑓(𝐀) 

⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

 ⋁ 𝑧𝑘̅𝐗𝑘
𝐀

𝑚

𝑘=1

 

𝐹(𝑓(𝐀)) 

Figure 1. VKEM representation of the left-hand side of equation (11) 
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(⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) (⋁ 𝑧ℎ̅𝐗ℎ
𝐀

𝑚

ℎ=1

) = 0 (12) 

The condition in (12) is valid for each 𝐀 ∈ {0,1}𝑛. This means that we have 2𝑛 consistency 

conditions that can be combined into a single consistency condition by ORing (12) over all possible 

values of 𝐀. 

 

⋁ ⋁ ⋁ 𝑧𝑘𝑧ℎ̅𝐗𝑘
𝐀𝐗ℎ

𝐀

𝑚

ℎ=1

𝑚

𝑘=1𝐀∈{0,1}𝑛

= 0 (13) 

If we interchange 𝑘 and ℎ in (13), we obtain 

 

⋁ ⋁ ⋁ 𝑧𝑘̅𝑧ℎ𝐗𝑘
𝐀𝐗ℎ

𝐀

𝑚

ℎ=1

𝑚

𝑘=1𝐀∈{0,1}𝑛

= 0 (14) 

ORing (13) and (14), we obtain 

 

⋁ ⋁ ⋁(𝑧𝑘𝑧ℎ̅ ∨ 𝑧𝑘̅𝑧ℎ)𝐗𝑘
𝐀𝐗ℎ

𝐀

𝑚

ℎ=1

𝑚

𝑘=1𝐀∈{0,1}𝑛

= 0 (15) 

We now replace 𝑧𝑘𝑧ℎ̅ ∨ 𝑧𝑘̅𝑧ℎ by 𝑧𝑘 ⊕ 𝑧ℎ and interchange the order of the ORing to obtain 

 

⋁ ⋁(𝑧𝑘 ⊕ 𝑧ℎ) ⋁ 𝐗𝑘
𝐀𝐗ℎ

𝐀

𝐀∈{0,1}𝑛

𝑚

ℎ=1

𝑚

𝑘=1

= 0 (16) 

Now, using Lemma 13.3 in Rudeanu (1974) (due to McKinsey (1936a)) 

 

⋁ 𝐗𝑘
𝐀𝐗ℎ

𝐀

𝐀∈{0,1}𝑛

= ⋀(𝑋𝑘,𝑖 ⊙ 𝑋ℎ,𝑖)

𝑛

𝑖=1

, 𝑘, ℎ = 1,2, … , 𝑚 (17) 

We simplify the overall consistency condition into 

 

⋁ ⋁(𝑧𝑘 ⊕ 𝑧ℎ) ⋀(𝑋𝑘,𝑖 ⊙ 𝑋ℎ,𝑖)

𝑛

𝑖=1

𝑚

ℎ=1

𝑚

𝑘=1

= 0 (18) 

Using Appendix A, we write the parametric solution of (11) as 

 

𝑓(𝐀) = (⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) ⋁  𝑝𝐀 (⋁ 𝑧𝑘̅𝐗𝑘
𝐀

𝑚

𝑘=1

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (19) 

where 𝑝𝐀 is a parameter that belongs to the underlying Boolean algebra 𝐵. The last term in (19) 

can be simplified by De Morgan’s law and, then, by the reflection law to 
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(⋁ 𝑧𝑘̅𝐗𝑘
𝐀

𝑚

𝑘=1

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= ⋀ (𝑧𝑘⋁(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅)

𝑚

𝑘=1

= ⋀ (𝑧𝑘𝐗𝑘
𝐀⋁(𝐗𝑘

𝐀)̅̅ ̅̅ ̅̅ ̅)

𝑚

𝑘=1

 (20) 

The right-hand side of (20) is equal to ⋀ (𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅𝑚

𝑘=1  ORed with products containing at least one 𝑧𝑘𝐗𝑘
𝐀 

term. Each of these products subsumes (and hence is absorbed in) some of the terms in ⋁ 𝑧𝑘𝐗𝑘
𝐀𝑚

𝑘=1  

when inserted in (19). Therefore, (19) will ultimately take the form 

 

𝑓(𝐀) = (⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) ⋁  𝑝𝐀 ⋀(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅

𝑚

𝑘=1

 (21) 

This solution for 𝑓(𝐀) is then substituted in the minterm expansion (2) to obtain the desired 

interpolating function: 

 

𝑓(𝐗) = ⋁ [(⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) ⋁  𝑝𝐀 ⋀(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅

𝑚

𝑘=1

] 𝐗𝐀

𝐀∈{0,1}𝑛

 (22) 

The solution in (22) is unique if, and only if, the term containing 𝑝𝐀 vanishes for each 𝐀 ∈ {0,1}𝑛. 

This will occur if, and only if (McKinsey, 1936a; Rudeanu, 1974) 

 

⋁ ⋀(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅

𝑚

𝑘=1𝐀∈{0,1}𝑛

= 0 (23) 

and, in this case, the unique solution is 

 

𝑓(𝐗) = ⋁ (⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

) 𝐗𝐀

𝐀∈{0,1}𝑛

 (24) 

Note that the uniqueness condition (23) depends only on the 𝐗𝑘’s and is independent of the 𝑧𝑘’s. 

Incidentally, a Boolean curve through a single point (i.e., 𝑚 = 1) cannot be unique, since 

⋁ ⋀ (𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅1

𝑘=1𝐀∈{0,1}𝑛  becomes identically 1 and cannot be equated to 0. 

 

3. Cases of Unconditional Consistency 
There are two prominent cases in which the consistency condition (18) reduces to the identity 0 =
0, and hence consistency is achieved unconditionally: 

 

1) The case when the 𝑧𝑘’s are the same, i.e. 𝑧𝑘 = 𝑧0 for 1 ≤ 𝑘 ≤ 𝑚. This includes the case of 

𝑚 = 1 and, more importantly, the case of the inverse problem of consistent Boolean equations 

(Rushdi and Albarakati, 2012). 

2) The case when the 𝐗𝑘’s (1 ≤ 𝑘 ≤ 𝑚) cover exactly all the K-map cells 𝐀 ∈ {0,1}𝑛, i.e. 
{𝐗1, 𝐗2, … , 𝐗𝑚} = {0,1}𝑛 with 𝑚 = 2𝑛. For 𝑘 ≠ ℎ, 𝐗𝑘 and 𝐗ℎ ∈ {0,1}𝑛, there must be at least 

a single 𝑋𝑘,𝑖 ≠ 𝑋ℎ,𝑖 such that 𝑋𝑘,𝑖 ⊙ 𝑋ℎ,𝑖 = 0, and for 𝑘 = ℎ, 𝑧𝑘 ⊕ 𝑧ℎ = 0. 
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In case (2) above, the uniqueness condition (23) is also satisfied since 

 

𝐗𝑘
𝐀 = {

1, 𝐗𝑘 = 𝐀
0, 𝐗𝑘 ≠ 𝐀

 

 
(25) 

𝐗𝑘
𝐀̅̅ ̅̅ = {

0, 𝐗𝑘 = 𝐀
1, 𝐗𝑘 ≠ 𝐀

 

 
(26) 

∀𝐀 ∈ {0,1}𝑛 : ⋀ 𝐗𝑘
𝐀̅̅ ̅̅

𝑚

𝑘=1

= ⋀ 𝐗𝑘
𝐀̅̅ ̅̅

𝐗𝑘∈{0,1}𝑛

= 0 (27) 

The observation above corresponds to the fact that a Boolean function 𝑓: 𝐵𝑛 → 𝐵 is unconditionally 

and uniquely defined by its Karnaugh map 𝑓: {0,1}𝑛 → 𝐵 (Brown, 1990; Rushdi and Amashah, 

2011). 

 

 

4. VEKM Representation 
The algebraic solution procedure in Section 2 will now be implemented by constructing a sequence 

of five Variable-Entered Karnaugh Maps (VEKMs) of map variables 𝐗, that we characterize in 

Table 1. Use of the map allows us to work either at the level of a single cell 𝐀 ∈ {0,1}𝑛 or the level 

of the entire map. The entries of the cell 𝐀 for the first two VEKMs are, respectively, the two 

subfunctions 𝐹(0) and 𝐹(1) of the function 𝐹(𝑓(𝐀)) in Figure 1. The entry in cell 𝐀 of the third 

VEKM is obtained by ANDing the corresponding entries in the first two VEKMs. All VKEM 

entries are expressed solely in terms of the input data of the problem, with the only exception of 

the fifth VEKM which needs an arbitrarily selected parameter 𝑝𝐀 ∈ 𝐵. Out of the five VKEM 

functions in Table 1, the third and fourth functions are important for stating the consistency and 

uniqueness conditions. In fact, each of these two conditions results by equating to 0 the disjunctive 

eliminant (Brown, 1990) or join derivative (Thayse, 1978) of the corresponding function, i.e., 

ORing all VEKM entries of the corresponding map. The fifth VEKM function is the general desired 

solution subject to the consistency condition. If further the uniqueness condition is involved, the 

fifth VEKM is replaced by the first VEKM which stands for a unique solution. Only the second 

function, called an auxiliary function, is merely an intermediate product and not a final one. In the 

following sections, we demonstrate the solution of the Boolean curve fitting problem by 

constructing the aforementioned VEKMs. 
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Table 1. Five VEKMs of map variables 𝐗 for achieving a (unique) consistent solution of the problem of 

curve fitting 
 

Map 

Number 
Entry in Cell 𝐀 ∈ {𝟎, 𝟏}𝒏 Map Function 

Pertinent 

Equation 

1 𝐸1(𝐀) = ⋁ 𝑧𝑘𝐗𝑘
𝐀

𝑚

𝑘=1

 

𝑓(𝑋) = ⋁ 𝐸1(𝐀)𝐗𝐀

𝐀∈{0,1}𝑛

 

Unique solution (subject to 

consistency and uniqueness 

conditions) 

(24) 

2 𝐸2(𝐀) = ⋁ 𝑧𝑘̅𝐗𝑘
𝐀

𝑚

𝑘=1

 Auxiliary function  

3 𝐸3(𝐀) = 𝐸1(𝐀)⋀𝐸2(𝐀) 

Consistency function: 

⋁ 𝐸3(𝐀)𝐗𝐀

𝐀∈{0,1}𝑛

 

The consistency condition is obtained 

by equating to 0 the disjunctive 

eliminant of this function: 

⋁ 𝐸3(𝐀)𝐀∈{0,1}𝑛 = 0 

(12) 

4 𝐸4(𝐴) = ⋀(𝐗𝑘
𝐀)̅̅ ̅̅ ̅̅ ̅

𝑚

𝑘=1

 

Uniqueness function: 

⋁ 𝐸4(𝐀)𝐗𝐀

𝐀∈{0,1}𝑛

 

The uniqueness condition is obtained 

by equating to 0 the disjunctive 

eliminant of this function: 

⋁ 𝐸4(𝐀)𝐀∈{0,1}𝑛 = 0 

(23) 

5 𝐸5(𝐀) = 𝐸1(𝐀)⋁𝑝𝐀𝐸4(𝐀) 

𝑓(𝑋) = ⋁ 𝐸5(𝐀)𝐗𝐀

𝐀∈{0,1}𝑛

 

General solution (subject to 

consistency condition) 

(22) 
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Example 1. 

We use the aforementioned VEKM procedure for Boolean curve fitting to obtain 𝑓(𝐗) =
𝑓(𝑋1, 𝑋2): 𝐵4

2 → 𝐵4 where 𝐵4 = {0,1, 𝑎, 𝑎̅} and 𝑓(𝐗) satisfies: 

 

𝑘 1 2 3 4 5 6 7 8 

𝐗𝑘 = (𝑋𝑘,1, 𝑋𝑘,2) (0,0) (0, 𝑎) (𝑎̅, 0) (𝑎̅, 𝑎) (𝑎, 𝑎̅) (𝑎, 1) (1, 𝑎̅) (1,1) 

𝑧𝑘 0 0 0 0 1 1 1 1 

 

  𝑋1 

 (1)(𝑎̅)(𝑎)⋁(1)(𝑎̅)(0)⋁(1)(0)(𝑎)⋁(1)(0)(0) (1)(𝑎)(𝑎)⋁(1)(𝑎)(0)⋁(1)(1)(𝑎)⋁(1)(1)(0) 

𝑋2 (1)(𝑎̅)(𝑎̅)⋁(1)(𝑎̅)(1)⋁(1)(0)(𝑎̅)⋁(1)(0)(1) (1)(𝑎)(𝑎̅)⋁(1)(𝑎)(1)⋁(1)(1)(𝑎̅)⋁(1)(1)(1) 
a) Initial map 1 

  𝑋1 

 0 𝑎 

𝑋2 𝑎̅ 1 

b) Final map 1 

  𝑋1 
 (1)(1)(1)⋁(1)(1)(𝑎̅)⋁(1)(𝑎)(1)⋁(1)(𝑎)(𝑎̅) (1)(0)(1)⋁(1)(0)(𝑎̅)⋁(1)(𝑎̅)(1)⋁(1)(𝑎̅)(𝑎̅) 

𝑋2 (1)(0)(1)⋁(1)(0)(𝑎̅)⋁(1)(𝑎̅)(1)⋁(1)(𝑎̅)(𝑎̅) (1)(0)(0)⋁(1)(0)(𝑎)⋁(1)(𝑎̅)(0)⋁(1)(𝑎̅)(𝑎) 
c) Initial map 2 

  𝑋1 

 1 𝑎̅ 

𝑋2 𝑎 0 

d) Final map 2 

  𝑎1 

 0 0 

𝑎2 0 0 

e) Map 3 

  𝑎1 

 (0⋁0)(0⋁𝑎)(𝑎̅⋁0)(𝑎̅⋁𝑎) 

(𝑎⋁𝑎̅)(𝑎⋁1)(1⋁𝑎̅)(1⋁1) 

(1⋁0)(1⋁𝑎)(𝑎⋁0)(𝑎⋁𝑎) 

(𝑎̅⋁𝑎̅)(𝑎̅⋁1)(0⋁𝑎̅)(0⋁1) 

𝑎2 (0⋁1)(0⋁𝑎̅)(𝑎̅⋁1)(𝑎̅⋁𝑎̅) 

(𝑎⋁𝑎)(𝑎⋁0)(1⋁𝑎)(1⋁0) 

(1⋁1)(1⋁𝑎̅)(𝑎⋁1)(𝑎⋁𝑎̅) 

(𝑎̅⋁𝑎)(𝑎̅⋁0)(0⋁𝑎)(0⋁0) 
f) Initial map 4 

  𝑎1 

 0 0 

𝑎2 0 0 

g) Final map 4 

Figure 2. VEKMs for example 1 
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Figure 2 shows the development of the first four maps mentioned in Table 1 for this example. Map 

3 indicates that the consistency condition is the identity (0 = 0). Likewise, Map 4 indicates that the 

uniqueness condition is identically satisfied. Therefore, there is no need for Map 5. Thus, the final 

unique solution can be read from Map 1 as (Rushdi, 1987; Rushdi and Al-Yahya, 2000, 2001) 

 

𝑓(𝐗) = 𝑓(𝑋1, 𝑋2) = 𝑎𝑋1𝑋̅2 ∨ 𝑎̅𝑋̅1𝑋2 ∨ 𝑋1𝑋2 = 𝑎𝑋1 ∨ 𝑎̅𝑋2 (28) 

 

Example 2. 

In this example, we find the function 𝑓(𝑋1, 𝑋2): 𝐵4
2 → 𝐵4 where 𝐵4 = {0,1, 𝑎, 𝑎̅} that satisfies: 

 

𝑘 1 2 

𝐗𝑘 = (𝑋𝑘,1, 𝑋𝑘,2) (0,0) (1,1) 

𝑧𝑘 0 1 

 

The five maps mentioned in Table 1 that correspond to this problem are shown in final form in 

Figure 3. Map 3 indicates that the consistency condition is the identity (0 = 0). However, Map 4 

indicates that the uniqueness condition is not satisfied. Therefore, the desired function 𝑓(𝑋1, 𝑋2) is 

not unique and is obtained from Map 5 as 

 

𝑓(𝐗) = 𝑓(𝑋1, 𝑋2) = 𝑝1𝑋1𝑋̅2 ∨ 𝑝2𝑋̅1𝑋2 ∨ 𝑋1𝑋2 = 𝑝1𝑋1 ∨ 𝑝2𝑋2 ∨ 𝑋1𝑋2 (29) 

where 𝑝1 and 𝑝2 are arbitrary parameters that independently belong to 𝐵4. So, there are 16 different 

solutions to this problem. Figure 4 displays all the solutions. 

 

 
 

 

  𝑎1 

 0 0 

𝑎2 0 1 
a) Map 1 

  𝑎1 

 1 0 

𝑎2 0 0 
b) Map 2 

  𝑎1 

 0 0 

𝑎2 0 0 
c) Map 3 

  𝑎1 

 0 1 

𝑎2 1 0 
d) Map 4 

  𝑋1 

 0 𝑝1 

𝑋2 𝑝2 1 
e) Map 5 

 

Figure 3. VEKMs for example 2 

𝑝
1

𝑝
2

 0 1 𝑎 𝑎̅ 

0 𝑋1𝑋2 𝑋1 𝑋1𝑋2 ∨ 𝑎𝑋1 𝑋1𝑋2 ∨ 𝑎̅𝑋1 

1 𝑋2 𝑋1 ∨ 𝑋2 𝑎𝑋1 ∨ 𝑋2 𝑎̅𝑋1 ∨ 𝑋2 

𝑎 𝑋1𝑋2 ∨ 𝑎𝑋2 𝑋1 ∨ 𝑎𝑋2 𝑋1𝑋2 ∨ 𝑎(𝑋1 ∨ 𝑋2) 𝑎̅𝑋1 ∨ 𝑎𝑋2 

𝑎̅ 𝑋1𝑋2 ∨ 𝑎̅𝑋2 𝑋1 ∨ 𝑎̅𝑋2 𝑎𝑋1 ∨ 𝑎̅𝑋2 𝑋1𝑋2 ∨ 𝑎̅(𝑋1 ∨ 𝑋2) 

Figure 4. All possible solutions of example 2 
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Example 3. 

In this example, we consider 𝑓: 𝐵4
2 → 𝐵4 satisfying: 

 

𝑘 1 2 3 4 

𝐗𝑘 = (𝑋𝑘,1, 𝑋𝑘,2) (0, 𝑎) (𝑎̅, 𝑎) (𝑎, 𝑎̅) (1, 𝑎̅) 

𝑧𝑘 0 0 1 1 

 

Figure 5 displays the five VEKMs for this function. Map 3 shows that the problem is consistent 

and Map 4 indicates that the solution is not unique. For 𝑖 ∈ {0,3}, 𝑝𝑖 ∈ 𝐵4 and, hence, 𝑝𝑖𝑎 ∈ {0, 𝑎}. 

Therefore, the number of particular solutions in Map 5 is 2 × 2 = 4, namely, 

 

𝑓0(𝑋1, 𝑋2) = 𝑎𝑋1𝑋̅2 ∨ 𝑎̅𝑋̅1𝑋2 ∨ 𝑎̅𝑋1𝑋2 = 𝑎𝑋1𝑋̅2 ∨ 𝑎̅𝑋2, (30) 

𝑓1(𝑋1, 𝑋2) = 𝑎𝑋̅1𝑋̅2 ∨ 𝑎𝑋1𝑋̅2 ∨ 𝑎̅𝑋̅1𝑋2 ∨ 𝑎̅𝑋1𝑋2 = 𝑎𝑋̅2 ∨ 𝑎̅𝑋2, (31) 

𝑓2(𝑋1, 𝑋2) = 𝑎𝑋1𝑋̅2 ∨ 𝑎̅𝑋̅1𝑋2 ∨ 𝑋1𝑋2 = 𝑎𝑋1 ∨ 𝑎̅𝑋2, (32) 

and 

𝑓3(𝑋1, 𝑋2) = 𝑎𝑋̅1𝑋̅2 ∨ 𝑎𝑋1𝑋̅2 ∨ 𝑎̅𝑋̅1𝑋2 ∨ 𝑋1𝑋2 = 𝑎𝑋̅2 ∨ 𝑎̅𝑋2 ∨ 𝑋1𝑋2, (33) 

 

 
 

  𝑎1 

 0 𝑎 

𝑎2 𝑎̅ 𝑎̅ 
a) Map 1 

  𝑎1 

 𝑎̅ 𝑎̅ 

𝑎2 𝑎 0 
b) Map 2 

  𝑎1 

 0 0 

𝑎2 0 0 
c) Map 3 

  𝑎1 

 𝑎 0 

𝑎2 0 𝑎 
d) Map 4 

  𝑋1 

 𝑝0𝑎 𝑎 

𝑋2 𝑎̅ 𝑎̅ ∨ 𝑝3𝑎 
e) Map 5 

Figure 5. VEKMs for example 3 
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5. Elementary Solution Techniques 
In this section, we revisit the three examples in Section 4 solving them by elementary methods. We 

verify that, in each case, we recover the same solutions obtained via the formal interpolation 

procedure. 

 

Example 1 – Revisited 

Here, we solve example 1 from first principles and without using the theory presented in Sections 

2 and 4. Figure 6 shows the function table (𝐵4
2 → 𝐵4) for 𝑓(𝑋1, 𝑋2). Note that the section marked 

with the thick line is the Karnaugh map ({0,1}2 → 𝐵4) for this function. The function 𝑓(𝑋1, 𝑋2) is 

uniquely determined by its Karnaugh map. Two entries in the Karnaugh are required by the problem 

statements to be 𝑓(0,0) = 0 and 𝑓(1,1) = 1. So, to complete the entries of the map, we assume 

that 𝑓(0,1) = 𝛽 and 𝑓(1,0) = 𝛾, as shown in Figure 6. Then the map produces 

 

𝑓(𝑋1, 𝑋2) = 𝛽𝑋1𝑋̅2 ∨ 𝛾𝑋̅1𝑋2 ∨ 𝑋1𝑋2 = 𝑋1𝑋2 ∨ 𝛽𝑋1 ∨ 𝛾𝑋2 (34) 

Now, we find the conditions on 𝛽, 𝛾 ∈ 𝐵4 from the remaining known elements in the function table. 

We obtain the following set of simple Boolean equations with their corresponding solutions: 

 

𝑓(0, 𝑎) = 0 = 𝛾𝑎  ⇒   𝛾 ∈ {0, 𝑎̅} (35) 

𝑓(𝑎̅, 0) = 0 = 𝛽𝑎̅   ⇒   𝛽 ∈ {0, 𝑎} (36) 

𝑓(𝑎̅, 𝑎) = 0 = 𝛽𝑎̅ ∨ 𝛾𝑎  ⇒   𝛾 ∈ {0, 𝑎̅}, 𝛽 ∈ {0, 𝑎} (37) 

𝑓(𝑎, 1) = 1 = 𝑎 ∨ 𝛽𝑎 ∨ 𝛾 = 𝑎 ∨ 𝛾  ⇒   𝛾 ∈ {1, 𝑎̅} (38) 

𝑓(1, 𝑎̅) = 1 = 𝑎̅ ∨ 𝛽 ∨ 𝑎̅𝑎̅ = 𝑎̅ ∨ 𝛽  ⇒   𝛽 ∈ {1, 𝑎} (39) 

Conditions in (35)-(39) are consistent and they produce the solution 𝛾 = 𝑎̅ and 𝛽 = 𝑎. These values 

are also consistent with the given value for 𝑓(𝑎, 𝑎̅), since 

 

𝑓(𝑎, 𝑎̅) = 0 ∨ 𝛽𝑎 ∨ 𝛾𝑎̅ = 0 ∨ 𝑎𝑎 ∨ 𝑎̅𝑎̅ = 1 (40) 

as required. Substituting for 𝛽 and 𝛾 into (34), we obtain 

 

𝑓(𝑋1, 𝑋2) = 𝑋1𝑋2 ∨ 𝛽𝑋1 ∨ 𝛾𝑋2 = 𝑋1𝑋2 ∨ 𝑎𝑋1 ∨ 𝑎̅𝑋2 = 𝑎𝑋1 ∨ 𝑎̅𝑋2 (41) 

which is identical to the solution obtained before in (28). 

 

 

 

𝑋2 \  𝑋1 0 1 𝑎 𝑎̅ 

0 0 𝛽  0 

1 𝛾 1 1  

𝑎 0   0 

𝑎̅  1 1  

𝑓(𝑋1, 𝑋2) 

Figure 6. Function table for the function of example 1 with its Karnaugh map part highlighted 
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Example 2 – Revisited. 

Figure 7 shows the function table for the function in example 2, where we have assumed that 

𝑓(1,0) = 𝛽 and 𝑓(0,1) = 𝛾 where 𝛽, 𝛾 ∈ 𝐵4. So, we can write the function based on its Karnaugh 

map as 

 

𝑓(𝑋1, 𝑋2) = 𝛽𝑋1𝑋̅2 ∨ 𝛾𝑋̅1𝑋2 ∨ 𝑋1𝑋2 = 𝛽𝑋1 ∨ 𝛾𝑋2 ∨ 𝑋1𝑋2 (42) 

Note that, in this case, we have no further constraints on 𝑓. So, there are no more conditions on 𝛽 

and 𝛾 other than the fact that each of them belongs to 𝐵4. This solution (42) is exactly the same as 

the earlier solution (29) with 𝛽 identified as 𝑝1 and 𝛾 identified as 𝑝2. 

 

 
 

Example 3 – Revisited 

Figure 8 shows the function table for the function in example 3. We can write the function as 

 

𝑓(𝑋1, 𝑋2) = 𝛼𝑋̅1𝑋̅2 ∨ 𝛽𝑋1𝑋̅2 ∨ 𝛾𝑋̅1𝑋2 ∨ 𝛿𝑋1𝑋2 (43) 

We apply the constraints dictated by the function table to get equations on the unknowns 

𝛼, 𝛽, 𝛾, and 𝛿. Table 2 shows the resulting equations and their individual solutions (which could be 

obtained either by inspection or formally as shown in Appendix B). The overall solution set is the 

intersection of the solutions of the individual equations which is not empty (indicating that the 

system of equations is consistent). This overall solution set is 

 

𝛼 ∈ {0, 𝑎}, 𝛽 = 𝑎, 𝛾 = 𝑎̅, 𝛿 ∈ {𝑎̅, 1} (44) 

Substituting the four possible solutions obtained in (43), we obtain the four functional expressions 

in (30)-(33). 

 

 

 

𝑋2 \  𝑋1 0 1 𝑎 𝑎̅ 

0 0 𝛽   

1 𝛾 1   

𝑎     

𝑎̅     

𝑓(𝑋1, 𝑋2) 

Figure 7. Function table for the function of example 2 

𝑋2 \  𝑋1 0 1 𝑎 𝑎̅ 

0 𝛼 𝛽   

1 𝛾 𝛿   

𝑎 0   0 

𝑎̅  1 1  

𝑓(𝑋1, 𝑋2) 

Figure 8. Function table for the function of example 3 
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6. Conclusions 
This paper revisited the classical problem of Boolean curve fitting, and offered a detailed exposition 

of its algebraic formulation and solution together with conditions for consistency and uniqueness. 

This is followed by a map procedure implementing these algebraic results via a sequence of five 

Variable-Entered Karnaugh Maps (VEKMs). Three illustrative examples are then solved twice, 

first via the curve-fitting procedure and then based on elementary principles of Boolean algebra. 

The solutions based on elementary principles are insightful, but they demand much care or effort 

in solving the elementary Boolean equations required. The earlier solutions based on the curve-

fitting procedure are almost mechanical in nature, since the solution of Boolean equations is already 

taken care of. 

 

The main aim of this paper is to set the stage for constructing a cryptosystem based on Boolean 

curve fitting. As an offshoot, it is an invitation for further exploration of Boolean curves drawn in 

arbitrary Boolean spaces. It is well known that if the 𝑚 interpolation points exactly cover the 2𝑛 

Karnaugh map points {0,1}𝑛, then it is possible to draw a Boolean curve through them consistently 

and uniquely. One of our examples (Example 3) shows that when 2𝑛 interpolation points other than 

the Karnaugh-map points are used, consistency is achieved but uniqueness is not. So far, we have 

been unable to prove a conjecture that 2𝑛 interpolation points will lead to consistent curve fitting, 

but in the meanwhile we could not find a counterexample against this conjecture. 

 

Appendix A: Solution of a Boolean Equation in a Single Variable 
We consider the Boolean equation 

 

𝐹(𝑋) = 0 (A1) 

for a single variable 𝑋 where 𝐹: 𝐵 → 𝐵 and 𝐵 is an arbitrary Boolean algebra. 

 

The function 𝐹(𝑋) can be represented via the Boole-Shannon expression (Brown, 1990; Crama and 

Hammer, 2011; Hammer and Rudeanu, 1968; Rudeanu, 1974, 2001; A. M. Rushdi and Amashah, 

2011) 

 

𝐹(𝑋) = 𝐹(0)𝑋̅ ⋁ 𝐹(1)𝑋 (A2) 

Each of the subfunctions 𝐹(0) and 𝐹(1) in (A2) is a disjunction of certain atoms of the underlying 

Boolean algebra 𝐵. The two terms in the right-hand side of (A2) can be augmented by their 

consensus with respect to 𝑋, leading to a replacement of (A2) by 

 

Table 2. Equations resulting from constraints of example 3 
 

Equation Solution 

𝑎̅𝛼 ∨ 𝑎𝛾 = 0 𝛼 ∈ {0, 𝑎}, 𝛾 ∈ {0, 𝑎̅} 

𝑎̅𝛽 ∨ 𝑎𝛾 = 0 𝛽 ∈ {0, 𝑎}, 𝛾 ∈ {0, 𝑎̅} 

𝑎𝛽 ∨ 𝑎̅𝛾 = 1 𝛽 ∈ {𝑎, 1}, 𝛾 = {𝑎̅, 1} 

𝑎𝛽 ∨ 𝑎̅𝛿 = 1 𝛽 = {𝑎, 1}, 𝛿 ∈ {𝑎̅, 1} 
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𝐹(𝑋) = 𝐹(0)𝑋̅ ∨ 𝐹(1)𝑋 ∨ 𝐹(0)𝐹(1) = 0 (A3) 

The single equation (A3) is equivalent to the following three individual equations taken collectively 

 

𝐹(0)𝑋̅ = 0 (A4) 

𝐹(1)𝑋 = 0 (A5) 

𝐹(0)𝐹(1) = 0 (A6) 

Equations (A4) and (A5) are, respectively, equivalent to the inequalities 

 

𝐹(0) ≤ 𝑋 (A7) 

𝑋 ≤ 𝐹̅(1) (A8) 

which can be combined into the general subsumptive solution of (A1), namely 

 

𝐹(0) ≤ 𝑋 ≤ 𝐹̅(1) (A9) 

subject to the consistency condition (A6), which is implicit in (A9), since if 𝑋 is eliminated, one 

obtains the inequality 

 

𝐹(0) ≤ 𝐹̅(1) (A10) 

which is equivalent to (A6). Another prominent solution of (A1) is its general parametric solution 

 

𝑋 = 𝐹(0) ∨ 𝑝𝐹̅(1) (A11) 

where 𝑝 ∈ 𝐵 is an arbitrary parameter. 

 

The consistency condition (A6) is interpreted to mean that any atom of 𝐵 belonging to 𝐹(0)𝐹(1) 

must be nullified or annihilated, thereby leading to collapse of the algebra 𝐵 to a subalgebra lacking 

the nullified atoms (Rushdi, 2004; Crama and Hammer, 2011; Rushdi and Albarakati, 2014; Rushdi 

and Ahmad, 2017;). The solution (A11) indicates that 𝑋 is a disjunction of certain atoms of 𝐵. This 

disjunction includes at least all the atoms constituting 𝐹(0) and possibly some of the atoms which 

imply 𝐹̅(1). To disjoint the two terms in (A11), we apply the Reflection Law to obtain 

 

𝑋 = 𝐹(0) ∨ 𝑝𝐹̅(0)𝐹̅(1) (A12) 

Since the parameter 𝑝 is any element of 𝐵, it is a disjunction of any possible subset of the set of 

atoms of 𝐵. Its multiplication by 𝐹̅(0)𝐹̅(1) can select or omit any atoms appearing in 𝐹̅(0)𝐹̅(1) 

independently of the other atoms. 

 

The parametric solution (A11) or (A12) can be directly obtained by viewing the VEKM in Figure 

A1 that represents 𝐹̅(𝑋) and seeking solutions of the equation 

 

𝐹̅(𝑋) = 1 (A13) 
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by using the method in (Brown, 1990; A. M. Rushdi and Amashah, 2011). According to this 

method, we can divide the atoms in the map into four categories, namely: 

 

1) Atoms that do not appear in any map cell, i.e., atoms whose disjunction constitutes 𝐹(0)𝐹(1). 

These atoms should be nullified as a consistency condition. 

2) Atoms that appear in both map cells, i.e. atoms whose disjunction constitutes 𝐹̅(0)𝐹̅(1). Each 

of these atoms should be tagged in the 𝑋-cell by an independent parameter of its own and 

tagged in the 𝑋̅-cell by the complement of this parameter. Each of these parameters belongs to 

𝐵2 = {0,1} (and not necessarily to the underlying 𝐵, which might be a bigger algebra). The 

disjunction of these atoms tagged by the respective parameters constitutes a part of the sum-

of-products expression for 𝑋. 

3) Atoms that appear in the 𝑋-cell but not in the 𝑋̅-cell, i.e. atoms whose disjunction constitutes 

𝐹(0)𝐹̅(1). Each of these atoms is tagged by a 1 (i.e., remains intact) and is added to the sum-

of-products expression of 𝑋. 

4) Atoms that appear in the 𝑋̅-cell but not in the 𝑋-cell, i.e., atoms whose disjunction constitutes 

𝐹̅(0)𝐹(1). Each of these atoms is tagged by 1 and is not added to the sum-of-products 

expression of 𝑋. 

 

 
 

The final expression of 𝑋, using don’t-care notation (rather than the equivalent parametric one) is 

 

𝑋 =𝐹(0)𝐹̅(1) ∨  𝑑(𝐹̅(0)𝐹̅(1)) (a)

=𝐹(0) ∨ 𝑑(𝐹̅(0)𝐹̅(1)) (b)
 (A14) 

Note that, thanks to the consistency condition (A6), there is no difference between the two versions 

of (A14). Equation (A14) is an admittedly unusual way of expressing (A11) or (A12). However, 

the don’t-care notation of (A14) is rigorously defined in (Reusch, 1975; A. M. Rushdi, 1987; A. 

M. Rushdi and Albarakati, 2014) and is a very convenient way of abbreviating the fact that atoms 

appearing in 𝐹̅(0)𝐹̅(1) are added independently of one another. Therefore, if 𝐹̅(0)𝐹̅(1) is a 

disjunction of ℓ atoms, the solution (a) of disjoint terms clearly expresses 2ℓ possibilities or 

particular solutions. 

 

Appendix B: Solution of the Boolean Equations in Example 3 (Revisited) 
In this Appendix, we use the methods in (Brown, 1990; Rudeanu, 2003; A. M. Rushdi, 2001, 2012; 

A. M. Rushdi and Amashah, 2011, 2012) to develop parametric (and then particular) solutions of 

the four equations in Example 3 (revisited). Each of the equations is a consistent equation of two 

variables that can be written (directly or via complementation) in the form 𝑔𝑖(𝑋1, 𝑋2) = 1, where 

𝑔𝑖: 𝐵4
2 → 𝐵4, 1 ≤ 𝑖 ≤ 4. The Boolean algebra 𝐵4 has two atoms, 𝑎 and 𝑎̅, either of which appears 

twice in the natural map of 𝑔𝑖 (1 ≤ 𝑖 ≤ 4) as shown in Table B1. This means that the consistency 

condition is the identity {0 = 0} and the number of particular solutions is 2 × 2 = 4. We need a 

single parameter 𝑝 ∈ 𝐵4 to produce the orthonormal set of tags {𝑝, 𝑝̅} and use these two elements 

 𝑋 

𝐹̅(0) 𝐹̅(1) 

𝐹̅(𝑋) 

Figure A1. VEKM representation of 𝑭̅(𝑿) used in the equation 𝑭̅(𝑿) = 𝟏 
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of the set to tag the two appearances of each of the atoms 𝑎 and 𝑎̅, thereby producing the auxiliary 

functions 𝐺𝑖  (1 ≤ 𝑖 ≤ 4) in Table B1. The final columns of Table B1 list the parametric solutions 

and then the particular solutions of each equation. 
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