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Abstract 

The paper develops Bayesian estimators and HPD intervals for the stress strength reliability of generalised inverted 

exponential distribution using upper record values. For prior distribution, informative prior as well as non-informative 

prior both are considered. The Bayes estimators are obtained under both symmetric and asymmetric loss functions. A 

simulation study is conducted to obtain the Bayes estimates of stress strength reliability. Simulated data sets are also 

considered here for illustration purpose. 
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1. Introduction 
The exponential distribution is the most commonly used distribution in reliability field due to its 

simple form and a characteristic of constant hazard rate. Let random variable Y has an 

exponential distribution then the random variable 𝑍 = 1/𝑌 will have the inverted exponential 

distribution. Lin et al. (1989); Keller et al. (1982) have discussed the inverted exponential 

distribution. Dey (2007) considered Bayesian estimations of the parameters of inverted 

exponential distribution under symmetric and asymmetric loss functions. A shape parameter was 

introduced in the inverted exponential distribution to get the Generalised inverted exponential 

distribution (Abouammoh and Alshinigiti 2009). Abouammoh and Alshinigiti (2009) also pointed 

out that generalised inverted exponential distribution gives better fit than inverted exponential, 

gamma, weibull and generalised exponential distribution in many situations. Nadarajah and Kotz 

(2000) also discussed the generalised inverted exponential distribution. Dey and Pradhan (2014) 

considered generalised inverted exponential distribution under hybrid censoring. These models 

have applications not only in the field of reliability but are also used in the system reliability as 

well (Li, 2016; Deepika et al., 2017; Kumar and Ram, 2018; Li et al., 2019; Chopra and Ram, 

2019). 

 

Record values have an abundant role in daily life problems concerning data relating to numerous 

fields such as economics, weather and sports data. Chandler (1952) introduced the main idea of 

record values, inter-record times and started the statistical study of record values as a model for 

successive extremes in a sequence of independently and identically distributed random variables. 

The record values can be categorized into the lower and the upper records. An observation 𝑋𝑗 will 

be called an upper record value if its value is greater than all of previous observations (i.e., 𝑋𝑗 >

𝑋𝑖   for every 𝑗 > 𝑖) and it will be called a lower record value if its value is less than all of 

previous observations (i.e., 𝑋𝑗 < 𝑋𝑖   for every 𝑗 > 𝑖). 
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A real life example using upper record values in case of generalised inverted exponential 

distribution is considered by Dey et al. (2016). The real data was originally proposed by Nelson 

(1972) consisting of 11 observations showing the times to breakdown of electrical insulating fluid 

subjected to 30 kilovolts. The data set is 17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46, 

43.40, 194.90, 47.30 and 7.74. The obtained upper record values from this data set are 17.05, 

22.66, 175.88 and 194.90. 

 

The thrust of this paper is Bayesian estimation of stress-strength reliability in the generalized 

inverted exponential distribution based on upper record values. This problem was studied by 

Hussian (2013) for ordinary samples from generalised inverted exponential distribution. The 

stress strength reliability is the probability that the stress does not exceed the strength of a system. 

Let 𝑌 represents the stress and 𝑋 represents the strength of a system then 𝜂 = 𝑃(𝑌 < 𝑋) 

represents the stress strength reliability of the system. Baklizi (2008); Asgharzadeh et al. (2011); 

Tarvirdizade and Garehchobogh (2014); Nadar and Kizilaslan (2014); Hassan et al. (2015); 

Mahmoud et al. (2016) discussed stress strength reliability for different distributions using record 

values. 

 

The scheme of the paper is as follows: In Section 2, an overview related to the model with 

distributional properties and stress strength reliability is given along with some details of upper 

record values. In Section 3, some concepts regarding priors, loss functions and HPD credible 

intervals used in the study are discussed. Bayesian estimators are derived for two different priors 

(non-informative and informative prior) using different loss functions viz. squared error loss 

function (SELF) and generalised entropy loss function (GELF). In Section 4, simulation is 

carried out to compute the Bayesian estimates using different configuration of sample sizes and 

parameters. Highest posterior density (HPD) Credible intervals along with the width of interval 

are also obtained in the Section 4. A simulated data set is also given in Section 5 followed by the 

brief discussion of the results. 

 

2. Model 
Let 𝑋 be a random variable having generalised exponential distribution (GIED), its probability 

density function (pdf) is  

 

𝑓(𝑥; 𝛼, 𝜆) =
𝛼𝜆

𝑥2 𝑒−
𝜆

𝑥 (1 − 𝑒−
𝜆

𝑥)
𝛼−1

 ;     𝑥 > 0, 𝛼 > 0, 𝜆 > 0, 

 

where 𝛼 is shape parameter and 𝜆 is scale parameter. The corresponding cumulative distribution 

function (cdf) is  

 

𝐹(𝑥; 𝛼, 𝜆) = 1 − (1 − 𝑒−
𝜆

𝑥)
𝛼

   ;      𝑥 > 0, 𝛼 > 0, 𝜆 > 0. 

 

The corresponding reliability function is 

𝑅(𝑥) = (1 − 𝑒−
𝜆

𝑥)
𝛼

  ;      𝑥 > 0, 𝛼 > 0, 𝜆 > 0. 

 

Let 𝑋 and 𝑌 are two independent random variables from two GIED with parameters (𝛼, 𝜆) and 
(𝛽, 𝜃) respectively, where 𝛼, 𝛽 are shape parameters and 𝜆, 𝜃 are scale parameters. Let 𝑋 
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represents the strength and 𝑌 represents the stress, then stress strength reliability 𝑃(𝑌 < 𝑋) is 

defined as (Krishna et al. 2017) 

 

𝜂 = 𝑃(𝑌 < 𝑋) 

    = 1 − 𝛼 ∫ (1 − 𝑧)𝛼−1(1 − 𝑧𝜃/𝜆)
𝛽−11

0
𝑑𝑧.                                                                                  (1) 

 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the 𝑛 upper record values from GIED(𝛼, 𝜆) and 𝑦1, 𝑦2, … , 𝑦𝑚 be the 𝑚 upper 

record values from GIED(𝛽, 𝜃). Then the likelihood function is defined as (Arnold et al., 1998) 

 

𝐿1 = 𝑓(𝑥𝑛) ∏
𝑓(𝑥𝑖)

1−𝐹(𝑥𝑖)
𝑛−1
𝑖=1   and  𝐿2 = 𝑔(𝑦𝑚) ∏

𝑔(𝑦𝑖)

1−𝐺(𝑦𝑖)
𝑚−1
𝑗=1  

 

where 𝑓 and 𝐹 are pdf and cdf of GIED(𝛼, 𝜆) respectively and 𝑔 and 𝐺 are pdf and cdf of 

GIED(𝛽, 𝜃) respectively. The joint likelihood function of 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦1, 𝑦2, … , 𝑦𝑚 is  

 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑚) 

= 𝛼𝑛𝜆𝑛𝛽𝑚𝜃𝑚 (1 − 𝑒
−

𝜆

𝑥𝑛)
𝛼

(1 − 𝑒
−

𝜃

𝑦𝑛)
𝛽

∏
𝑒

−
𝜆
𝑥𝑖

𝑥𝑖
2(1−𝑒

−
𝜆
𝑥𝑖)

∏
𝑒

−
𝜃

𝑦𝑗

𝑦𝑗
2(1−𝑒

−
𝜃

𝑦𝑗)

𝑚
𝑗=1

𝑛
𝑖=1  .                             (2) 

 

3. Bayesian Estimation 
In this Section, Bayes estimators for stress strength reliability are derived using upper record 

values in case of both informative and non-informative priors under symmetric loss function 

(squared error loss function) and asymmetric loss function (generalised entropy loss function). A 

brief introduction of loss functions, priors and HPD credible intervals is given below: 

 

Squared Error Loss Function (SELF)  

The squared error loss function (SELF) is defined as 𝐿(𝜉,̂ 𝜉) ∝ (𝜉 − 𝜉)2where 𝜉 is the Bayes 

estimator of unknown parameter 𝜉. Squared error loss function is the simplest symmetric loss 

function. The Bayes estimator of 𝜉under SELF is 𝜉𝑠 = 𝐸(𝜉|𝑥), where expectation is taken with 

respect to posterior density.  

 

General Entropy Loss Function (GELF)  
Squared error loss function (SELF) gives equal weights to under estimation and over estimation. 

However, in many situations under estimation is more serious than over estimations and vice 

versa. So, in order to overcome this difficulty another useful asymmetric loss function namely 

generalized entropy loss function (GELF) is used here. 

 

Generalized entropy loss function is an asymmetric loss function and defined by Calabria and 

Pulcini (1996). This loss function is a generalization of the entropy loss function and defined as 

 

𝐿(𝜉, 𝜉) ∝ (
�̂�

𝜉
)

𝑏

− 𝑏 𝑙𝑛 (
�̂�

𝜉
) − 1, 
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where b≠ 0. The constant 𝑏 determines the shape of the loss function. If 𝑏 < 0 then under 

estimation gets more serious than over estimation and vice-versa. Bayes estimator of 𝜉 under 

generalized entropy loss function is  

 

𝜉𝑔 = [𝐸(𝜉−𝑏|𝑥)](−1/𝑏) . 

 

Gamma Prior 
Gamma prior is frequently used informative prior in case of GIED (Dey and Dey, 2014; Dube et 

al. 2016). Assuming the parameters 𝛼, 𝜆, 𝛽, 𝜃 having independent gamma priors with respective 

pdfs  

 

𝑝1(𝛼) ∝ 𝛼𝑐1−1𝑒−𝑑1𝛼     ;    𝛼 > 0, 𝑐1 > 0, 𝑑1 > 0, 

𝑝2(𝜆) ∝ 𝜆𝑐2−1𝑒−𝑑2𝜆        ;     𝜆 > 0, 𝑐2 > 0, 𝑑2 > 0, 

𝑝3(𝛽) ∝ 𝛽𝑐3−1𝑒−𝑑3𝛽     ;   𝛽 > 0, 𝑐3 > 0, 𝑑3 > 0, 

𝑝4(𝜃) ∝ 𝜃𝑐4−1𝑒−𝑑4𝜃      ;    𝜃 > 0, 𝑐4 > 0, 𝑑4 > 0, 

 

where 𝑐𝑖’s , 𝑑𝑖’; 𝑖 = 1,2,3,4 are hyper-parameters. 

The joint prior density is  

 

𝑝(𝛼, 𝜆, 𝛽, 𝜃) ∝  𝛼𝑐1−1𝜆𝑐2−1𝛽𝑐3−1𝜃𝑐4−1𝑒−(𝑑1𝛼+𝑑2𝜆+𝑑3𝛽+𝑑4𝜃)     
;  𝛼, 𝜆, 𝛽, 𝜃 > 0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑑1, 𝑑2, 𝑑3, 𝑑4 > 0. 

(3) 

 

Remark 
If the value of all hyper parameters is zero i.e. 𝑐𝑖 = 0, 𝑑𝑖 = 0 ; 𝑖 = 1,2,3,4 then gamma priors 

develop non-informative priors and the joint prior density in case of non-informative prior is  

 

𝑝(𝛼, 𝜆, 𝛽, 𝜃) ∝
1

𝛼𝜆𝛽𝜃
     ;  𝛼, 𝜆, 𝛽, 𝜃 > 0. 

 

3.1 Bayesian Estimation of 𝜼 = 𝑷(𝒀 < 𝑿) Using Gamma Prior  
The joint posterior distribution of the unknown parameters 𝛼, 𝜆, 𝛽 and 𝜃 given data using 

equation (3) is 

 

𝜋 (𝛼, 𝜆, 𝛽, 𝜃|𝑥, 𝑦) =
𝐿(𝑥,𝑦|𝛼,𝜆,𝛽,𝜃)𝑝(𝛼,𝜆,𝛽,𝜃)

∫ ∫ ∫ ∫ 𝐿(𝑥,𝑦|𝛼,𝜆,𝛽,𝜃)𝑝(𝛼,𝜆,𝛽,𝜃)𝑑𝛼𝑑𝜆𝑑𝛽𝑑𝜃
∞

0

∞

0

∞

0

∞

0

 , 

∝ 𝛼𝑛+𝑐1−1𝜆𝑛+𝑐2−1𝛽𝑚+𝑐3−1𝜃𝑚+𝑐4−1𝑒−(𝑑1𝛼+𝑑2𝜆+𝑑3𝛽+𝑑4𝜃) (1 − 𝑒
−

𝜆
𝑥𝑛)

𝛼

× 

(1 − 𝑒
−

𝜃

𝑦𝑚)
𝛽

∏
𝑒−𝜆/𝑥𝑖

𝑥𝑖
2(1−𝑒−𝜆/𝑥𝑖)

∏
𝑒

−𝜃/𝑦𝑗

𝑦𝑗
2(1−𝑒

−𝜃/𝑦𝑗)

𝑚
𝑗=1

𝑛
𝑖=1   .     (4) 

 

Since, the joint posterior distribution of 𝛼, 𝜆, 𝛽, 𝜃 in Equation (4) cannot be obtained analytically, 

the Markov Chain Monte Carlo (MCMC) technique is adopted to obtain the Bayes estimates and 

corresponding highest posterior density (HPD) credible interval of 𝜂.  
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The Metropolis–Hastings (M–H) algorithm can be used to generate random samples from any 

complex distribution of any dimension that is known up to a normalizing constant. The M–H 

algorithm was established by Metropolis et al. (1953) and later extended by Hastings (1970). 

Gibbs sampler creates a sequence of samples from the full conditional probability distributions. 

The full posterior conditional distribution of parameters 𝛼, 𝜆, 𝛽 and 𝜃 are defined as 

 

𝜋𝛼(𝛼|𝜆, 𝛽, 𝜃) ∝ 𝛼𝑛+𝑐1−1𝑒−𝑑1𝛼(1 − 𝑒−𝜆/𝑥𝑛)𝛼  ,                                                                           (5) 

𝜋𝜆(𝜆|𝛼, 𝛽, 𝜃) ∝ 𝜆𝑛+𝑐2−1𝑒−𝑑2𝜆 (1 − 𝑒
−

𝜆

𝑥𝑛)
𝛼

∏
𝑒−𝜆/𝑥𝑖

(1−𝑒−𝜆/𝑥𝑖)

𝑛
𝑖=1  ,                                                       (6) 

𝜋𝛽(𝛽|𝜃, 𝛼, 𝜆) ∝ 𝛽𝑚+𝑐2−1𝑒−𝑑3𝛽(1 − 𝑒−𝜃/𝑦𝑚)𝛽 ,                                                                           (7) 

𝜋𝜃(𝜃|𝛽, 𝛼, 𝜆) ∝ 𝜃𝑚+𝑐4−1𝑒−𝑑4𝜃(1 − 𝑒−𝜃/𝑦𝑚)
𝛽

∏
𝑒

−𝜃/𝑦𝑗

(1−𝑒
−𝜃/𝑦𝑗)

𝑚
𝑗=1  .                                                 (8) 

 

The full posterior conditional distributions of 𝛼, 𝛽, 𝜆 and 𝜃 in Equations (5), (6), (7) and (8) are 

not in known form. Hence to generate the random samples from Equations (5), (6), (7) and (8), 

the Metropolis-hasting algorithm is used. Since the full posterior conditional distribution of each 

parameter depends on some of the other parameters, the Gibbs sampler is also used here. The 

MCMC technique of M-H algorithm using Gibbs sampler is as follows:  

 

(i) First take initial value (𝛼(0), 𝜆(0), 𝛽(0), 𝜃(0)) 

(ii) Fix 𝑘 = 1 

(iii)  Generate 𝛼(𝑘)from 𝜋𝛼  using M-H algorithm 

(iv) Generate 𝜆(𝑘) from 𝜋𝜆 using M-H algorithm 

(v) Generate 𝛽(𝑘) from 𝜋𝛽 using M-H algorithm 

(vi) Generate 𝜃(𝑘) from 𝜋𝜃 using M-H algorithm 

(vii) Obtain 𝜂𝑘 

(viii)  Set 𝑘 = 𝑘 + 1 

(ix)  Repeat step (i) to (viii) 𝑁 times. 

 

The Bayes estimator of 𝜂 under squared error loss function is 𝜂𝑠𝑒𝑙𝑓 =
1

𝑁−𝑁0
∑ 𝜂(𝑟)

𝑁
𝑟=𝑁0+1 . The 

Bayes estimator of 𝜂 under generalised entropy loss function is 𝜂𝑔𝑒𝑙𝑓 = [
1

𝑁−𝑁0
∑ 𝜂(𝑟)

−𝑏𝑁
𝑟=𝑁0+1 ]

−1/𝑏
. 

Note that 𝑁0 is the burn in period. 

 

HPD Credible Intervals 
Chen and Shao (1999) introduced the algorithm to find the highest posterior density (HPD) 

credible intervals. 100(1 − γ)%HPD credible interval is that 100(1 − γ)% credible interval 

which is having smallest width among all possible 100(1 − γ)% credible intervals. 

 

Once the posterior sample is generated for  𝜂𝑖  (𝑖 = 1,2, … , (𝑁 − 𝑁0)), then 𝜂(1) ≤ 𝜂(2) ≤ ⋯ ≤

𝜂(𝑁−𝑁0)denotes the ordered values of 𝜂1, 𝜂2, … , 𝜂(𝑁−𝑁0) . The 100(1 − γ)% HPD interval for 𝜂 is 

defined by (𝜂(𝑗), 𝜂(𝑗+[(1−𝛾)(𝑁−𝑁0)]))), where 𝑗 is chosen such that  

 

𝜂(𝑗+[(1−𝛾)(𝑁−𝑁0)]) − 𝜂(𝑗) = 𝑚𝑖𝑛
1≤𝑗≤𝑀

(𝜂(𝑗+[(1−𝛾)(𝑁−𝑁0)]) − 𝜂(𝑗)) ,         𝑗 = 1,2, … , (𝑁 − 𝑁0), 

where [𝑥] is the greatest integer of 𝑥. 
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4. Simulation Study 
In this section, Monte Carlo simulation study is made for Bayes estimates for stress strength 

reliability of generalised inverted exponential distribution using upper record values as the 

estimators cannot be obtained theoretically. The Bayesian estimation is done for both informative 

(gamma prior) as well as non-informative prior under squared error loss function (SELF) and 

generalised entropy loss function (GELF) based on 3000 replications. For generalised entropy 

loss function the value of 𝑏 is taken 0.5 (for over estimation) and −0.5 (for under estimation). 

The values of hyper parameters (𝑐𝑖
′𝑠, 𝑑𝑖

′𝑠 ; 𝑖 = 1,2,3,4) are chosen such that the true value of 

parameters is equal to the prior mean. Three cases of stress strength reliability are considered as 

small, medium and large value by taking different configurations of the true values underlying 

presents (i) 𝜂 = 0.2610697 (𝛼 = 4, 𝜆 = 5, 𝛽 = 1, 𝜃 = 4) (ii) 𝜂 = 0.5 (𝛼 = 1, 𝜆 = 2, 𝛽 = 1, 𝜃 =
2) (iii) 𝜂 = 0.7428572 (𝛼 = 1, 𝜆 = 2, 𝛽 = 2, 𝜃 = 1.5) respectively.  

 

 

 

For simulation, different sample sizes are 5, 10, 15 and all combinations of these sample sizes are 

considered for 𝑋 and 𝑌. For simulation study MCMC technique of M-H algorithm using Gibbs 

sampler is used. For which a chain of 20,000 observations is generated with 5000 burn-in period 

i.e. first 5000 observations are discarded as burn–in period from 20,000 observations. This burn-

in period decided by cumulative mean plots and for a simulated data set trace plots, cumulative 

mean plots and density plots are shown in Section 5. 

 

 

 

Tables 1 and 2 represents the Bayes estimates, Expected loss function (in brackets), 95% HPD 

credible intervals (in brackets) and their length for stress strength reliability of Generalised 

inverted exponential distribution using informative and non-informative prior. The value of 

expected loss function and the length of HPD credible intervals decrease as the sample sizes 

increase (Tables 1 and 2). As sample size 𝑛, 𝑚 increases, the loss function decreases as is seen 

from the Tables 1 and 2. The length of 95% HPD credible intervals decreases as sample size 

increases for the Bayes estimates of stress strength reliability of generalised inverted exponential 

distribution. As seen from the Tables 1 and 2, the length of credible intervals for gamma prior is 

less than for non-informative prior.  
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Table 1. Bayes Estimates, Expected loss functions (in brackets), HPD credible intervals (in brackets) with 

length for 𝜂 = 𝑃(𝑌 < 𝑋) using Gamma prior under squared error loss function (SELF) and Generalised 

entropy loss function (GELF) 
 

 

𝑃(𝑌 < 𝑋) 

 

𝑛, 𝑚 

 
Self 

Gelf 

𝑏 = 0.5 

Gelf 

𝑏 = −0.5 

HPD 
credible interval 

 
 

 

 
 

 

 
 

 

0.2610697 
 

5, 5 0.273444 
(0.002636) 

0.263506 
(0.005437) 

0.270215 
(0.005083) 

(0.196111, 0.410094) 
0.213983 

5, 10 0.273670 

(0.002540) 

0.263769 

(0.005275) 

0.270451 

(0.004959) 

(0.211205, 0.425026) 

0.213821 

5, 15 0.273884 
(0.002485) 

0.263955 
(0.005147) 

0.270657 
(0.004825) 

(0.225881, 0.439613) 
0.213732 

10, 5 0.272456 

(0.002626) 

0.262591 

(0.005562) 

0.269249 

(0.005247) 

(0.147477, 0.359719) 

0.212242 

10, 10 0.272654 
(0.002621) 

0.262803 
(0.005543) 

0.269452 
(0.005226) 

(0.165999, 0.374616) 
0.208617 

10, 15 0.272901 

(0.002513) 

0.263040 

(0.005292) 

0.269695 

(0.004976) 

 (0.221307, 0.426759) 

0.205452 

15, 5 0.274074 
(0.002546) 

0.264252 
(0.005216) 

0.270569 
(0.004887) 

(0.205698, 0.416669) 
0.210971 

15, 10 0.274202 

(0.002528) 

0.263927 

(0.005196) 

0.270882 

(0.004881) 

(0.240128, 0.448922) 

0.208794 

15, 15 0.273768 
(0.002500) 

0.264418 
(0.005172) 

0.271022 
(0.004848) 

(0.211550, 0.416144) 
0.204594 

 

 

 
 

 

 
 

 
0.5 

5, 5 0.495512 

(0.004528) 

0.486167 

(0.002760) 

0.492473 

(0.002638) 

(0.348259, 0.639513) 

0.291254 

5, 10 0.497939 
(0.004481) 

0.485547 
(0.002693) 

0.491900 
(0.002551) 

(0.349508, 0.639520) 
0.290012 

5, 15 0.494961 

(0.004459) 

0.488664 

(0.002667) 

0.494924 

(0.002544) 

(0.351984, 0.641812) 

0.289828 

10, 5 0.497073 
(0.004481) 

0.483188 
(0.002753) 

0.489477 
(0.002619) 

(0.348236, 0.637923) 
0.289687 

10, 10 0.492506 

(0.004417) 

0.487839 

(0.002677) 

0.494069 

(0.002551) 

(0.351661, 0.640565) 

0.288904 

10, 15 0.493904 
(0.004265) 

0.484572 
(0.002621) 

0.490869 
(0.002489) 

(0.347330, 0.636145) 
0.288815 

15, 5 0.494918 

(0.004327) 

0.482723 

(0.002695) 

0.488973 

(0.002570) 

(0.349362, 0.638394) 

0.289032 

15, 10 0.491984 
(0.004276) 

0.485690 
(0.002633) 

0.491918 
(0.002504) 

(0.349640, 0.638077) 
0.288437 

15, 15 0.494790 

(0.004212) 

0.485524 

(0.002573) 

0.491777 

(0.002448) 

(0.347171, 0.635361) 

0.28819 

 
 

 

 
 

 

 
 

0.7428572 

 

5, 5 0.765168 
(0.001588) 

0.763376 
(0.000357) 

0.764575 
(0.000354) 

(0.683109, 0.843801) 
0.160692 

5, 10 0.765265 

(0.001557) 

0.763486 

(0.000351) 

0.764677 

(0.000348) 

(0.683309, 0.843778) 

0.160469 

5, 15 0.765211 
(0.001517) 

0.763425 
(0.000341) 

0.764620 
(0.000338) 

(0.683378, 0.843605) 
0.160227 

10, 5 0.765190 

(0.001607) 

0.763417 

(0.000362) 

0.764604 

(0.000358) 

(0.683859, 0.844123) 

0.160264 

10, 10 0.765692 

(0.001575) 

0.763911 

(0.000354) 

0.765103 

(0.000351) 

(0.683600, 0.843524) 

0.159924 

10, 15 0.766062 

(0.001514) 

0.764306 

(0.000339) 

0.765481 

(0.000336) 

(0.684805, 0.844128) 

0.159323 

15, 5 0.765232 
(0.001506) 

0.763471 
(0.000339) 

0.764649 
(0.000336) 

(0.683431, 0.843602) 
0.160171 

15, 10 0.765199 

(0.001483) 

0.763422 

(0.000334) 

0.764611 

(0.000330) 

(0.683812, 0.843275) 

0.159463 

15,15 0.766407 

(0.001458) 

0.764653 

(0.000324) 

0.765826 

(0.000321) 

(0.685010, 0.844318) 

0.159308 
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Table 2. Bayes estimates, expected loss functions (in brackets), HPD credible intervals (in brackets) with 

length for 𝜂 = 𝑃(𝑌 < 𝑋) using non-informative prior under squared error loss function (SELF) and 

Generalised entropy loss function (GELF) 
 

 

𝑃(𝑌 < 𝑋)  

 

𝑛, 𝑚 

 
Self 

Gelf 

𝑏 = 0.5 

Gelf 

𝑏 = −0.5 

HPD 
credible interval 

 
 

 

 
 

 

 
 

0.2610697 

 

5, 5 0.330588 
(0.027847) 

0.292779 
(0.040880) 

0.299357 
(0.047606) 

(0.163842, 0.386980) 
0.223138 

5, 10 0.316604 

(0.024561) 

0.307051 

(0.035493) 

0.313513 

(0.035490) 

(0.163327, 0.386244) 

0.222917 

5, 15 0.302498 
(0.020758) 

0.321416 
(0.031401) 

0.327608 
(0.028417) 

(0.163577, 0.386408 ) 
0.222831 

10, 5 0.321324 

(0.037643) 

0.257222 

(0.045580) 

0.264560 

(0.052686) 

(0.163283, 0.385450) 

0.222167 

10, 10 0.268040 
(0.020697) 

0.312146 
(0.044136) 

0.318333 
(0.043904) 

(0.162902, 0.384972) 
0.22207 

10, 15 0.248681 

(0.009501) 

0.238041 

(0.019426) 

0.245243 

(0.018168) 

(0.163185, 0.385076) 

0.221891 

15, 5 0.341742 
(0.043895) 

0.332159 
(0.044924) 

0.308685 
(0.044415) 

(0.164112, 0.386470) 
0.222358 

15, 10 0.311732 

(0.037293) 

0.302302 

(0.044886) 

0.338659 

(0.039764) 

(0.164594, 0.386692) 

0.222098 

15, 15 0.308061 
(0.021923) 

0.298821 
(0.029377) 

0.305079 
(0.028702) 

(0.164699, 0.386334) 
0.221635 

 

 

 
 

 

 
 

 
0.5 

5, 5 0.495526 

(0.005234) 

0.485572 

(0.003242) 

0.492299 

(0.003096) 

(0.345320, 0.643287) 

0.297967 

5, 10 0.495996 
(0.005215) 

0.486049 
(0.003224) 

0.491976 
(0.003088) 

(0.345742, 0.643704) 
0.297962 

5, 15 0.495208 

(0.005188) 

0.485235 

(0.003233) 

0.492771 

(0.003080) 

(0.345755, 0.643403) 

0.297648 

10, 5 0.494823 
(0.004988) 

0.483252 
(0.003110) 

0.491620 
(0.002959) 

(0.343675, 0.641000) 
0.297325 

10, 10 0.493200 

(0.004924) 

0.484943 

(0.003107) 

0.489974 

(0.002958) 

(0.345355, 0.641591) 

0.296236 

10, 15 0.495536 
(0.004871) 

0.485719 
(0.002983) 

0.492352 
(0.002831) 

(0.346369, 0.642515) 
0.296146 

15, 5 0.493530 

(0.005089) 

0.483702 

(0.003195) 

0.490344 

(0.003045) 

(0.344291, 0.640139) 

0.295848 

15, 10 0.493086 
(0.004956) 

0.483207 
(0.003133) 

0.489883 
(0.002985) 

(0.346976, 0.642765) 
0.295789 

15, 15 0.495895 

(0.004793) 

0.486103 

(0.002955) 

0.492720 

(0.002813) 

(0.344775, 0.640118) 

0.295343 

 
 

 

 
 

 

 
 

0.7428572 

 

5, 5 0.765669 
(0.001700) 

0.763840 
(0.000383) 

0.765064 
(0.000379) 

(0.683228, 0.845960) 
0.162732 

5, 10 0.766207 

(0.001690) 

0.764368 

(0.000378) 

0.765599 

(0.000374) 

(0.682781, 0.845004) 

0.162223 

5, 15 0.767360 
(0.001648) 

0.765543 
(0.000368) 

0.766759 
(0.000365) 

 (0.684803, 0.846526) 
0.161723 

10, 5 0.764474 

(0.001706) 

0.762627 

(0.000386) 

0.763863 

(0.000382) 

(0.681331, 0.844183) 

0.162852 

10, 10 0.764813 

(0.001703) 

0.762986 

(0.000385) 

0.764209 

(0.000382) 

(0.682096, 0.844474) 

0.162378 

10, 15 0.765040 

(0.001680) 

0.763208 

(0.000380) 

0.764434 

(0.000377) 

(0.682083, 0.844150) 

0.162067 

15, 5 0.765746 
(0.001634) 

0.763941 
(0.000366) 

0.765149 
(0.000362) 

(0.683577, 0.845638) 
0.162061 

15, 10 0.766083 

(0.001580) 

0.764269 

(0.000354) 

0.765483 

(0.000351) 

(0.683610, 0.845371) 

0.161761 

15, 15 0.766305 

(0.001562) 

0.764485 

(0.000350) 

0.765703 

(0.000347) 

(0.683488, 0.844843) 

0.161355 
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5. Simulated Data Sets 
Two simulated data sets 𝑥 and 𝑦 are considered from GIED (𝛼, 𝜆) and GIED(𝛽, 𝜃) taking 𝛼 =
3, 𝜆 = 3, 𝛽 = 2, 𝜃 = 2 and 𝑟, 𝑠 are upper record values from 𝑥, 𝑦 respectively. In M-H algorithm 

we have generated chain of 20,000 observations taking burn-in period as 5000 i.e. discards the 

first 5000 observations. The trace plots (Figure 1) show the randomness of observations 
(𝛼, 𝜆, 𝛽, 𝜃) and the convergence of chain presented by the cumulative mean plots (Figure 2). The 

density plots for (𝛼, 𝜆, 𝛽, 𝜃) are presented in Figure 3. 

 

𝑥 = 1.3333, 1.6369, 1.2695, 1.7448, 3.7180, 3.1199, 1.9989, 10.3106, 1.0055, 0.8094  
𝑟 = 1.3333, 1.6369, 1.7448, 3.7180, 10.3106  

𝑦 = 1.1843, 2.1003, 1.0131, 0.9735, 3.3223, 0.3973, 2.3858, 9.3776, 2.2003, 1.8625  

𝑠 = 1.1843, 2.1003, 3.3223, 9.3776.  
 

 

 

 
 

Figure 1. Trace plots for 𝛼, 𝜆, 𝛽, 𝜃. 
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Figure 2. Cumulative mean plots for 𝛼, 𝜆, 𝛽, 𝜃. 

 

 

 
 

Figure 3. Density plots for 𝛼, 𝜆, 𝛽, 𝜃. 
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The Bayes estimates, Expected loss function (in brackets), 95% HPD credible intervals (in 

brackets) and their length for stress strength reliability of Generalised inverted exponential 

distribution using informative and non-informative priors are shown in Table 3. 

 

 
Table 3. Bayes estimates, expected loss functions (in brackets), HPD credible intervals (in brackets) with 

length for 𝜂 = 𝑃(𝑌 < 𝑋) using non-informative prior under squared error loss function (SELF) and 

Generalised entropy loss function (GELF) 
 

  

SELF 

GELF 

𝑏 = 0.5 

GELF 

𝑏 = −0.5 

HPD 

credible interval 

Non-informative prior 0.464897 

(0.008732) 

0.443843 

(0.006339) 

0.458252 

(0.005043) 

(0.232979, 0.651690) 

0.418711 

Gamma prior 0.492506 

(0.004417) 

0.484572 

(0.002621) 

0.494069 

(0.002551) 

(0.347330, 0.636145) 

0.288815 

 

 

The results obtained in case of simulation do hold in case of simulated data sets as well (Table 3). 

The 95% HPD credible intervals in case of gamma prior have small width as compared to non-

informative prior (Table 3). The value of expected loss function using gamma prior is smaller 

than using non-informative prior. 

 

6. Conclusion 
As sample size 𝑛, 𝑚 increases, the expected loss functions decreases as is seen from the Tables (1 

and 2). The length of 95% HPD credible intervals decreases as sample size increases for the 

Bayes estimates of stress strength reliability of generalised inverted exponential distribution. As 

seen from the Tables (1 and 2), the length of credible intervals for gamma prior is less than for 

non-informative prior. The value of expected loss function using gamma prior is smaller than 

using non-informative prior. 

 

It can be observed from the simulation study (Tables 1 and 2) that the expected loss function and 

the length of 95% HPD credible intervals in case of larger value of 𝜂 is smaller than taking small 

and medium values of 𝜂. 
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