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Abstract 

Most of the engineering products are made with multiple components. The products with multiple subassemblies offer 

greater flexibility for parallel assembly operation and also disassembly operation during its end of life. Assembly cost 

and time can be minimized by reducing the number of assembly levels. In this paper Elephant search algorithm is used 

to perform Optimal Assembly Sequence Planning (OASP) in order to minimize the number of assembly levels. 

Subassembly identification technique is used as an integral part of algorithm to identify the parallel assembly possibilities. 

The proposed method is implemented on industrial products and a detailed comparative assessment has been made with 

suitable product illustrations to corroborate the efficiency. 

 

Keywords- Assembly sequence planning, Elephant search algorithm, Swarm intelligence. 

 

 

 

1. Introduction 
There is an ever increasing demand for producing new products and supplying into market on-time 

towards fulfilling the customer needs, which made the industries to look towards new fabrication 

techniques and assembling methods. Product assembling is the major time consuming and 

expensive process for products with large part counts thus an industrial engineer always tries to 

reduce the overall fabrication cost and time of products (Bahubalendruni and Biswal, 2016a). 

 

There exist several assembly sequence generation methods intended for different uses, the graphical 

based methods generally result in a single/multiple feasible assembly sequence (Bahubalendruni et 

al., 2015a). Some traditional methods and recent computational approaches offer the same by 

considering the assembly attributes as input (Vigano and Osorio Gomez, 2012; Bahubalendruni 

and Biswal, 2016b). However, these methods do not assure any optimal assembly sequences, an 

optimal assembly sequence is a feasible and stable assembly sequence which requires minimum 

assembly efforts and time (Deepak et al., 2018). Finding an optimal assembly sequence ensuing 

multiple assembly constraints including clash information is an extremely challenging task (Gunji 

et al., 2019). Several researchers implemented numerous optimization algorithms to solve the 

mailto:bahubalindruni@gmail.com
mailto:mr.u.sudhakar@gmail.com


International Journal of Mathematical, Engineering and Management Sciences                                              

Vol. 4, No. 4, 998–1007, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.4-079 

 

999 

assembly sequence planning at the price of quality of solution The researcher has ignored some of 

the assembly predicates to generate solution at faster rate but the quality of solution is not 

practically possible (Bahubalendruni et al., 2015b). 

 

The journey of Artificial Intelligence (AI) based Optimal Assembly Sequence Planning (OASP) 

started with Genetic Algorithms (GA) and Simulated Annealing (SA) in the early 90’s. The 

traditional algorithms have major limitation of premature convergence and often not suited for 

combinatorial discrete optimization problems (Deepak et al., 2018). Sometimes it demands a 

feasible solution to compute initial fitness value (Deepak et al., 2018). 

 

The recent optimization techniques have been implemented to solve large products (Smith et al, 

2001; Chen et al., 2010; Ghandi and Masehian, 2015; Bahubalendruni et al., 2016; Gunji et al., 

2018). Hybridized and advanced optimization techniques have also been tried to overcome the 

limitations with traditional AI techniques and to address the OASP problem effectively (Akpinar 

et al., 2013; Gunji et al., 2017; Bahubalendruni and Biswal, 2017; Sahoo, 2017; Bahubalendruni 

and Biswal, 2018a).  Also, the hybrid heuristic approaches were implemented for multiple 

constraints in various realist problems like process planning and plant layout design (Bhunia et al., 

2017; Bose and Pain, 2018; Turgay, 2018). Fine tuning the optimization process parameters hybrid 

algorithms is computationally inefficient. Moreover, the researchers only focused on linear 

assembly systems where subassembly identification is ignored. The recent research focused on 

stable subassembly identification for small products made with fewer parts (Bahubalendruni and 

Biswal, 2018b; Bahubalendruni and Kumar, 2018). 

 

The proposed method aims to apply a new swarm intelligence based optimization algorithm, 

namely Elephant Swarm Water Search Algorithm (ESWSA), to solve subassembly based optimal 

assembly sequence planning efficiently for large scale products.  

 

 

 

2. Assembly Attributes 
Assembly attributes plays significant role in ensuring the practical possibility of assembly operation 

while applied during assembly sequence generation. Most of the assembly attribute data can be 

extracted through Computer Aided Design (CAD) product through user interface (Vigano and 

Osorio Gomez, 2012; Bahubalendruni and Biswal, 2016; Bahubalendruni and Biswal, 2017; 

Bahubalendruni and Biswal, 2018). Most of Application Program Interface (API) of CAD ease the 

process of automatic attribute extraction without any human error. A 17-part gear box assembly 

shown in Figure 1 is considered from literature.  
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Figure 1. 17-part reduction gear box assembly cut section view 

 

 

 

There are three assembly attributes namely Assembly Contact Matrix (ACM), Collision Free Path 

Matrix (CFPM) and Assembly Stability Matrix (ASM). ACM is a square matrix of size    equal to 

number of parts in the final product. It represents the surface contact between any pair of parts, the 

existence of surface contact is “1” and non-existence as “0”. A product can have three CFPMs 

along principal axes (x+, y+ and z+) the transpose of these matrices give the CFPM along the 

opposite directions (x-, y- and z-), the element value “1” in the matrix represents possibility of 

collision free path of the part stated in the row in presence of part stated in the column. ASM is a 

square matrix of size    equal to number of parts in the final product. It characterizes the stability of 

any pair of parts, “3” signifies permanent stability between pair of parts due to external connectors, 

“2” represents permanent stability between pair of parts due to part mating features, “1” depicts 

partial stability of part stated in the column in presence of part in the row and “0” denotes unstable 

pair of parts. The ACM, ASM and CFPM for the reduction gear-box assembly is given in Figure 

2. 
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                 (a) ACM of reduction gear box assembly                                                 (b) ASM of reduction gear box assembly 
 

   
 

 

 

(f) CFPM of reduction gear box assembly along “z+” direction 

Figure 2. (a) to (f) represents the reduction gear-box assembly in ACM, ASM and CFPM 

(c) CFPM of reduction gear box assembly along 
“x+” direction    

(d) CFPM of reduction gear box assembly along 
“y+” direction    
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3. Elephant Swarm Water Search Algorithm 
Elephant Swarm Water Search Algorithm is a swarm based optimization algorithm inspired from 

the natural phenomenon of Elephants searching for water during dry weather and scarcity of water 

situations (Mandal, 2018). The communication strategies among swarm is used to find the global 

optimal solution from local optima. A typical ESWSA for assembly sequence planning is given in 

Figure 3. 

 

 

Figure 3. Flow diagram of ESWSA for assembly sequence generation 

4. Assembly Sequence Validation and Fitness Value Computations 
Initial elephants swarm are generated based on the random numbers; in each swarm, assembly-part 

numbers are assigned to random numbers in ascending order. A typical assembly sequence 

generation from random numbers is indicated in Table 1. 

 
Table 1. Assembly sequence generation from random numbers 

 

SWARM-1 

Random 

No. 

0
.9

8
3
7

8
 

0
.1

8
8
3

3
 

0
.2

7
5
8

5
 

0
.0

9
1
8

9
 

0
.9

1
7
2

8
 

0
.1

5
1
6

5
 

0
.1

7
0
7

6
 

0
.3

1
4
9

0
 

0
.3

7
9
2

7
 

0
.8

4
2
4

4
 

0
.9

5
1
2

7
 

0
.7

2
7
5

0
 

0
.0

1
5
1

6
 

0
.1

4
8
7

5
 

0
.1

9
0
4

5
 

0
.9

4
4
1

6
 

0
.8

3
0
1

4
 

Assembly  
sequence 

17 6 8 2 14 1 5 9 10 13 16 11 1 3 7 15 12 

SWARM-2 

Random  

No. 

0
.1

7
2
7

2
 

0
.2

2
2
7

1
 

0
.6

8
0
2

5
 

0
.3

4
2
5

6
 

0
.6

7
5
8

8
 

0
.5

6
3
8

2
 

0
.5

4
6
9

4
 

0
.5

1
2
1

8
 

0
.7

2
0
1

0
 

0
.5

9
5
7

3
 

0
.7

2
2
3

2
 

0
.8

9
5
1

8
 

0
.8

8
8
1

4
 

0
.8

8
2
4

4
 

0
.0

9
0
0

4
 

0
.9

6
0
7

2
 

0
.8

7
1
7

7
 

Assembly  
sequence 

2 3 10 4 9 7 6 5 11 8 12 16 15 14 1 17 13 
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Liaison become true when each successive part in the sequence must exhibit at least one surface 

contact with one part in the preceding list. Assembly stability is true when part has at least one 

stable relation (partial/permanent) with reference to one part the preceding sequence. Geometric 

feasibility is true when part has at least one collision free path in the existence of all preceding 

parts. A stable subassembly is a sub-set where all the parts must exhibit permanent stability along 

with geometric feasibility. The position changes for the parts after every iteration based on the 

fitness values is given in Table 2.  

 

 

 
Table 2. Assembly sequence validation criterion 

 

Assembly Predicate Predicate testing criterion Remarks 

Liaison Predicate 
],2[;1),(

1

nkkjACM
k

j




 
 

Geometric Feasibility 
]6,1[&],2[;),(

1




dnkkkjCPFM
k

j

d
 

d is a feasible direction 

Assembly stability 
],2[;1),(

1

nkkjASM
k

j




  

Subassembly 

Detection 
If dj=dj+1; j (l,k) & k>l 

If ASM (j,j+1)>=2 j (l,k) & k>l 

The group of parts (l,k) creates a 

stable subassembly 

 

 

The present problem part/subassembly position swapping in the assembly sequence obtained from 

above fitness vales are depicted in Figure 4. 

 

 

 

 
 

Figure 4. Part/Subassembly position swapping in the assembly sequence 

 

 

 

Fitness function is evaluated based on the number of total assembly levels, which is calculated as 

the sum of maximum number of single assembly operations of the final assembly and sub-

assembly. A typical assembly level calculation for a sequence is listed in the Table 3. 
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Table 3. Assembly level calculation for valid sequence 

Assembly 
level Assembly sequence 

L7 ((((((6-7)-10)-15)-16)-((8-11)-12)-((13-14)-17)))-(((2-5)-4)-9)-(1-3)) 

L6 (((((6-7)-10)-15)-16)-((8-11)-12)-((13-14)-17))  

L5 ((((6-7)-10)-15)-16)-((8-11)-12) 

 

 

L4 (((6-7)-10)-15)-16  ((2-5)-4)-9)-(1-3) 

L3 ((6-7)-10)-15  ((2-5)-4)-9 
 

L2 (6-7)-10   (8-11)-12 (13-14)-17 (2-5)-4  

L1 6-7    8-11  13-14  2-5   1-3 

Loose parts 6 7 10 15 16 8 11 12 13 14 17 2 5 4 9 1 3 

 
 

The maximum number of iterations and population of algorithms (swarm) is chosen as 1000, 10 

respectively and the probabilistic constant (switching probability) is turned to 0.86 after few 

iterations and the resulted outcomes are presented in the following section.  

 

5. Results and Discussions 
The product is solved multiple times due to the stochastic nature of optimization algorithm and the 

resulted assembly sequence is compared with that of solution given by past literature. Dini has 

proposed a solution while implementing the Genetic Algorithm (GA), the solution has 12 total 

assembly levels with 4 identified stable subassemblies (Dini and Santochi, 1992). Trigui solved the 

product with disassembly sequence planning approach and obtained a feasible solution with 7 

assembly levels (Trigui et al., 2017). The proposed approach resulted in an assembly sequence with 

6 total assembly levels as listed in Table 4. 

 

 
Table 4. ESWSA resulted optimal assembly sequence with level description 

 

Assembly level Assembly sequence 

L6 (((((2-5)-4)-(1-3))-((8-9)-(11-12)))-(((((6-7)-10)-15)-16)-((13-14)-17))) 

L5   (((((6-7)-10)-15)-16)-((13-14)-17)) 

L4 ((((2-5)-4)-(1-3))-((8-9)-(11-12))) ((((6-7)-10)-15)-16)   

L3 (((2-5)-4)-(1-3))   (((6-7)-10)-15)   

L2 ((2-5)-4)   ((8-9)-(11-12)) ((6-7)-10)   ((13-14)-17) 

L1 (2-5)   (1-3) (8-9) (11-12) (6-7)   (13-14)   

L0 
(Loose parts) 

2 5 4 1 3 8 9 11 12 6 7 10 15 16 13 14 17 

 

 

The rate of convergence of the algorithm is compared with that of basic scheme of Genetic 

Algorithm and Particle Swarm Optimization (PSO) technique and presented in Figure 5. The time 

taken to converge the solution by each algorithm is presented in Figure 6. The GA and PSO have 

taken the more time than ESWSA.  
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Figure 5. Convergence plot of ESWSA  

 

 

 
 

Figure 6. Time of convergence 

 

 

 

6. Conclusion 
An efficient method to produce optimal assembly sequences by considering all the necessary 

assembly sequence validity constraints is proposed. The proposed ESWSA is a proven capable to 

solve both subassembly detection and assembly sequence planning. The previous methods 

discussed by Dini and Trigui focus on identifying the stable subassemblies and then each 

subassembly is treated as a single part and further linear assembly sequence is found out. Unlike 

the previous methods, the proposed method obtains the better fitness value with total number of 

assembly levels of 5, where subassembly detection is an integral part of assembly sequence 

generation. A comparative assessment is also presented with that of swarm based optimization 

technique to corroborate the performance of the proposed method.  
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