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Abstract 

Unsteady laminar boundary layer flow of viscous incompressible electrically conducting fluid along a continuous 

stretched permeable surface with the magnetic field effect is investigated. The defining characteristics of unsteady 

laminar boundary layer flow are governed a more than one independent variables, stretching velocity and surface 

temperature of the field. Governing equations are obtained for influencing parameters and transformed into ordinary 

differential equations by taking convenient similarity variables. Runge-Kutta fourth order method in corporation by the 

shooting technique is introduced to carry out numerical computations of the investigation. Velocity and temperature 

profiles are computed and represented graphically for the influences of suction/injection parameter, unsteadiness 

parameter, magnetic parameter and Prandtl number, while numerical solutions of local skin friction coefficient and local 

Nusselt number are discussed through tables. For non-magnetic condition, results are found in concordance with earlier 

research work.  

 

Keywords- Heat transfer, Hydromagnetic, Unsteady flow, Stretching permeable sheet. 

 

 

 

1. Introduction 
Studies of heat transfer and hydrodynamic flow towards a stretchable sheet have been receiving 

substantial importance over to its roles in upgrading technological applications and growing 

industrial processes. These types of problems have numerous characterizations with the small 

velocities in areas of geothermal where the layers of the shallow sheet are being stretched. The 

concept of stretching has useful applications in the hydrothermal system where fluid properties at 

depth influence the geothermal energy work. This study has value in important engineering 

applications such as drawing, tinning, and annealing of copper wire, crystal growing, etc. in the 

area of metallurgy and chemical engineering procedures. The above mentioned applications affect 

the continuous filaments cooling or strips via drawing them by a quiescent liquid. Besides, it has 

widespread applications in geophysics and thermal science, particularly in the packed bed reactors, 

petroleum resources recovery, geothermal energy technology, building thermal insulation, and 

underground disposal of chemical and nuclear waste. The final product quality is influenced by the 
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heat transfer rate at the stretching wall. Sakiadis (1961) initiated the boundary layer flow over a 

moving continuous solid surface with constant velocity. Further, Crane (1970) extended it and 

obtained an effective analytical solution for the steady two-dimensional boundary layer flow 

problem in a quiescent incompressible fluid caused through the elastic flat surface stretching which 

acts with it plane over linearly varying surface speed. Many researchers such as Andersson (2002), 

Hayat and Sajid (2007), and Mukhopadhyay and Layek (2012) have instigated the problems of 

steady flow due to a stretching sheet in different conditions. Recently, Chaudhary and Choudhary 

(2018), and Ram et al. (2018) have conducted numerous analysis on the stretching surface problems 

in steady boundary layer flow. 

 

The findings of the above studies that deal with stretching sheet are more significant with 

considering that the flow conditions are to be steady. In the unsteady flow condition where flow 

vary with respect to both time and space, the stretchable plate can vary along time and thus the 

appearance of unsteady stretching surface grow into practical problems. To enhance the physically 

realistic applications of the flow situation, that is worthwhile to carry unsteadiness in the governing 

equations of fluid flow analysis. A considerable number of engineering problems such as startup 

process and periodic fluid motion are defined by unsteady boundary layer conditions. Wang (1990) 

was the first one who studies the hydrodynamics of an unsteady boundary layer fluid flow of a 

liquid film past a stretched surface.  Many researchers such as Elbashbeshy and Bazid (2004), Ishak 

et al. (2008), Elbashbeshy and Aldawody (2010), Chaudhary et al. (2015), and Ram et al. (2017) 

are determined the problems of unsteady flow over a stretching plate in different situations.  

 

Furthermore, the studies of heat transfer and flow along a permeable area are important in 

predicting the behavior of practical applications particularly in geophysical fluid dynamics like as 

small blood vessels, the human lung, wood, sandstone, limestone and beach sand. In polymer 

processing industries, the flow along a permeable stretching surface has extensive 

characterizations. The advancement in engineering and industrial applications of heat transfer and 

flow due to the permeable surface have a lot of attention by researchers. Beavers and Joseph (1967) 

were pioneered the exploration of the boundary condition at a naturally permeable wall. Many 

researchers such as Magyari and Keller (2000), Liao (2007), and Khader and Megahed (2014) are 

considered the permeable stretching surface flow problem under different situations. Recently, 

Chaudhary and Kumar (2015), Maity et al. (2016), and Ghadikolaei et al. (2018) are considered the 

heat transfer and flow over a stretched sheet in a porous medium and found the numerical 

solution. 

 

Unsteadiness in hydromagnetic flow has received attention to some considerable extent in recent 

years due to the facts that numerical modeling of problems has developed a better understanding 

of practical and physical processes involved in engineering and technological applications. The 

field of solar energy collection, the design of cooling systems for electronic devices, an infinite 

metallic plate cooling in a cooling bath, a polymer plate or filament extruded continuously through 

a dye, geothermal reservoirs, heat exchangers, MHD marine propulsion, the boundary layer over a 

liquid film in condensation procedures, casting of magnetic-levitation and molten metal MHD 

stirring etc. are continuously driven by the influences of hydromagnetic unsteadiness of flow in 

variable situations. The problem of variable surface heat and mass flux of an unsteady natural 

convection MHD fluid flow over an inclined plate was presented by Jat and Chaudhary (2009), and 

Rashad (2014). Recently, hydromagnetic flow through unsteady stretching sheet was investigated 

by Mabood and Khan (2016), and Tian et al. (2017). Until, very recently, some scientists and 
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researchers like as Chaudhary et al. (2018), Dey (2019), Pandya et al. (2019), and Dutta et al. (2019) 

explored the fluid flow analysis with the magnetic impact. 

 

With reference to above discussed applications and explorations, the primary objective of the 

present investigation is to expand the analysis of Ishak et al. (2009) for an electrically conducting 

fluid with the impact of the magnetic field associated to specified boundary conditions.  

 

2. Mathematical Model 
Two-dimensional unsteady laminar boundary layer flow of a quiescent viscous incompressible and 

electrically conducting fluid along a continuous stretched permeable sheet is assumed. The x
axis is considered forward the continuous stretchable plate in the flow direction with the leading 

edge of the sheet as the origin, and y axis is normal to it. The flow is assumed to be circumscribed 

in the upper half plane 0y . In the perpendicular direction of the stretching sheet, a uniform 

magnetic field of strength 0H  is applied as depicted in Figure 1. The induced magnetic field is 

negligible along to the magnetic Reynolds number is taken so small. The plate is impulsively 

stretched at time 0t , along x axis with the stretching velocity 
ct

ax
txuw




1
),( , keeping the 

origin fixed in the fluid and surface temperature 
ct

bx
TtxTw


 

1
),(  where a  is positive 

constant, x  is the coordinate measured along the stretching sheet, c  is constant with 0c  and 

1ct , T  is the ambient temperature, b is constants with 0b , and both a and c have 

dimension time  ̶  1 . All properties of the fluid are summarized to be constant all over the flow. 

Under these considerations along with the boundary layer approximations and neglecting the 

viscous dissipation, the basic equations that describe the case are as follows 
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with the boundary conditions 
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where u  and v  are the velocity components in the x  and y  directions respectively, 



   is 

the kinematic viscosity,   is the coefficient of fluid viscosity,   is the fluid density, e is the 

electrical conductivity, e  is the magnetic permeability, T is the temperature of the fluid, 
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pC


   is the thermal diffusivity,   is the thermal conductivity, pC  is the specific heat at 

constant pressure, S
x

u
txv w

w

2/1

),( 










 is the mass transfer at the surface with 0wv
 
for 

injection
 

and
 

0wv for suction, and S
 
is the suction parameter when 0S or injection 

parameter when 0S . It allows to notice that at the time 0t (initial motion), equations (1) to 

(3) defines the unsteady flow past a stretching sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
Figure 1. Flow geometry and coordinate system 

 

 

3. Similarity Variables 

The continuity equation (1) is identically satisfied through proposing a stream function  tyx ,,  

defined like that 
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  and
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
 . Moreover, the momentum and energy equations (2) 

and (3) are transformed to the ordinary differential equations by defined the following similarity 

variables (Ishak et al., 2009) 
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where )(f is the non-dimensional stream function, 
 
is the similarity variable and    is the 

non-dimensional temperature. The converted equations are 
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where primes )'( denote differentiation with respect to  , 
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A   is the unsteadiness parameter, 
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4. Method of Solution 
Apply a perturbation technique for the computational solution of the equations (6) and (7) along to 

the corresponding boundary conditions equations (8), by surmising the power series in terms of the 

small magnetic parameter M as 
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Substituting equations (9) and (10) and its derivatives in equations (6) and (7) and comparing the 

coefficients of like powers of M , the following set of equations are found 
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The equation (11) was obtained by Ishak et al. (2009) in the absence of magnetic impact and the 

resting equations are solved numerically via Runge-Kutta fourth order method in association with 

shooting technique (Na, 1979; Hoffman, 2001) with step size 0.001. The above process is imitated 

until finding the converged results up to the aimed level of accuracy 510 . Consequently, the 

numerical values of velocity and temperature fields are sketched in Figures 2 to 4 and 5 to 8 

respectively for illustrations of the result. 

 

5. Local Skin Friction Coefficient and Local Nusselt Number 
In addition to velocity and temperature, the physical quantities of engineering interest are the local 

skin friction coefficient fC  and the local Nusselt number Nu , which in the dimensional form are 

expressed as 
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respectively, for the present case the equations (18) and (19) are obtained as follows 

 

fCf
2

Re
)0(                                                                                                                           (20) 

Nu
Re

1
)0(                                                                                                                        (21) 

 

Numerical values of )0(f   and )0(   for distinct values of the specified parameters are given in 

Tables 1 and 2 respectively. 

 

6. Results Discussion 
Figures 2 to 4 illustrate the velocity profiles )(f 

 
for the changeable value of the suction/injection 

parameter ,S  the unsteadiness parameter A  
and the magnetic parameter M respectively, along 

the remaining physical parameters are constant. From these figures, it may be noticed that the fluid 

flow declines with the enhancement in the values of ,S A  and ,M  whereas for the value of 

5.2  Figure 3 exhibits converse behavior. Moreover, the effect of drag force (called Lorentz 

force) composed through the transverse magnetic field on electrically conducting fluid, causes 

deceleration of the fluid motion and increase the fluid temperature (Figure 7). 
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Figure 2. Velocity profiles against   for various values of S  with 1.0A  and 1.0M  

 

 

 
Figure 3. Velocity profiles against   for various values of A  with 0.1S  and 1.0M  

 

 

 
Figure 4. Velocity profiles against   for various values of M  with 0.1S  and 1.0A  
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The results of the dimensionless temperature )(  for various values of S , A , M and Pr are 

portrayed in Figures 5 to 8 respectively, while the other physical parameters are fixed.  It is evident 

from these figures that the temperature reduces along with the booming values of S , A  and Pr , 

although the opposite impact is found for M and likewise observed for the value of  5.2  as 

exhibited in Figure 6. Also, Figure 5 represents that the surface heat flux is higher for suction 0S  

as compared by injection 0S . Therefore, suction can be handling for the surface cooling enough 

faster than injection. Furthermore, the greater Prandtl number fluid has relatively a higher viscosity 

or a lower thermal conductivity which concludes in the thinner thermal boundary layer, decrease 

in the fluid temperature and hence, a higher rate of heat transfer at surface. Also, for greater Prandtl 

number, the thermal boundary layer falls down at a faster rate. This leads that the cooling rate is 

faster for greater Prandtl number. Therefore, the Prandtl number can be handling to evolve the 

cooling rate in resulting in fluid flows.  

 

 
 

Figure 5. Temperature profiles against   for various values of S with 1.0,1.0  MA  and 0.1Pr   

 

 
Figure 6. Temperature profiles against   for various values of A with 1.0,0.1  MS  and 0.1Pr   
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Figure 7. Temperature profiles against   for various values of M with 1.0,0.1  AS  and 0.1Pr   

 

 

 
Figure 8. Temperature profiles against   for various values of Pr with 1.0,0.1  AS and 1.0M  
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M , taking other physical parameters fixed.  It is also detected that the temperature gradient is 

negative for all physical parameters specified, which denotes that there is a heat transfer from the 

surface. 

 

 

Table 1. Values of )0(f   for various values of AS , and M  

 

S  A  M  )0(f   
̶  1.0 0.1 0.1 0.628175 

̶  0.5   0.791421 

0.5   1.285129 

1.0   1.617678 
 0.5  1.721770 
 1.0  1.849368 
 2.0  2.086832 
 3.0  2.299925 
 0.1 0.3 1.718507 
  0.5 1.990376 
  0.7 2.357692 

 

 

 
Table 2. Comparison of )0(  for various values of MAS ,,  and Pr  

 

S  A  M  Pr  Ishak et al. (2009) Present Results 

̶  1.5 1.0 0.0 1.0 0.8095 0.809571 

0.0    1.3205 1.320640 

1.5    2.2224 2.222548 

̶  1.0 0.1 0.1   0.621232 

̶  0.5     0.783041 

0.5     1.274117 

1.0     1.605432 
 0.5    1.709830 
 1.0    1.837760 
 2.0    2.075527 
 3.0    2.288617 
 0.1 0.3   1.590010 
  0.5   1.550880 
  0.7   1.503348 
  0.1 0.7  1.190688 
   1.0  1.605432 
   2.0  2.857070 
   3.0  4.011680 

 

 

 

7. Concluding Remarks 
A model for the numerical study is developed to investigate the analysis of the heat transfer on 

unsteady boundary layer flow of an incompressible viscous and electrically conducting fluid past a 

stretchable permeable surface. Employ the similarity transformations to convert the governing 

partial differential equations to ordinary differential equations. Finally, the numerical solutions of 

the set of resulting equations are found by implementing the Runge-Kutta fourth order method in 

association with the shooting technique. The numerical results for the surface heat flux are in 

congruous with the earlier results in the absence of the magnetic parameter. In present work, it is 
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observed that the fluid flow, as well as the surface gradient, depreciates along with the raising 

values of the suction/injection parameter, the unsteadiness parameter and the magnetic parameter. 

Subsequently, the fluid velocity enlarges for a booming value of the unsteadiness parameter for 

5.2 . Also, the thickness of thermal boundary layer as well as the temperature gradient steps-

down over the developing nature of the suction/injection parameter, the unsteadiness parameter, 

and the Prandtl number, whereas these increase along to the increasing values of the magnetic 

parameter. Furthermore, the fluid temperature boosts with an evolvement in the value of the 

unsteadiness parameter for 5.2 . 
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