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Abstract 

The analysis of Weibull and Pareto distribution functions in the approximation of the density of a sum of damping 

functions, PMRQ approximation and approximation of service distribution in the peak mode of the flow. There was 

found one of the characteristics of the network, the average waiting time of packets in the queue after application of 

spectral method of the Lindley’s integral equation. Finally, PMRQ approximation of the average waiting time in 

TES+/G/1, MMPR, was compared with the analytic values of the same value in the spectral solution of the Lindley’s 

integral equation obtained by simulation with real traffic. Traffic is captured using the Wireshark protocol analyzer 

program. The time distributions were obtained in the EasyFit data analysis program, designed for quick statistical data 

analysis and decision making. Methods of approximation of network traffic allows us to estimate the average packet 

latency using statistical data analysis, which will improve the quality of service and predict the behavior of traffic. 

 

Keywords- Approximation, PMRQ, PMRS, Damping function, Lindley’s equation. 

 

 

 

1. Introduction 
Analytical study and calculation of traffic parameters, according to its statistical parameters, help 

to get closer to the definition of network capacity, the optimal buffer size for telecommunications 

equipment. Both analytical and simulation models can be used to solve problems involving random 

events. In this case, analytical models are preferred to simulation models for the following reasons: 

they do not require a large number of tests to get a good estimation of the value of the objective 
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function for each individual solution; it is possible to obtain an optimal solution (Chupahina, 2013). 

 

The main part of the traditional queue theory was devoted to queues, the time between arrival and 

service time of which are independent update processes. The assumption that the service time of 

the packet flow is mutually independent is often justified in practice, and the corresponding 

assumption about the independence of the packet flow from the intervals between arrivals is often 

unjustified – therefore, it is necessary to consider self-similarity of these processes while modeling 

G/G/1 queue. Typical examples are packet flows in emerging high-speed integrated 

telecommunication networks. The relevance and practical importance of studying queues with 

dependent arrival processes is obvious. It should be concluded that exact solutions (analytical or 

numerical) are not usually available for the G/G/1 queue, since the researchers resort to Monte 

Carlo simulation or use classical Markov theory and its variations for parametric analysis of the 

average length of the queue (Heyman, 1976; Blatov et al., 2013). 

 

It is known that correlations in the arriving event flow, assuming a queue per server, significantly 

affect the average wait time compared to the corresponding event flow coming again to the same 

server. However, if we use such models like G/G/1, for which real or the most possible to the 

reality approximations of the distribution of time intervals between packets and long-term service 

for queues with correlated flows (Altiok and Melamed, 2001) are created, it becomes possible to 

find a solution to the unknown average characteristics of traffic. The study mainly uses 

distributions with a «heavy» Pareto and Weibull tail to build the process of the incoming packet 

flow and determine the average waiting time of the packet in the queue, considering its speed, 

coefficient of variation and other characteristics. A study on the distribution of time between 

packets described by distributions with a «heavy» Weibull tail, Pareto function showed that it can 

be used for analytical determination of traffic parameters (Kartashevskii et al., 2015; Akhin et al., 

2015; Kartashevskii et al., 2016; Klochkov and Gazizulina, 2016; Skripal and Itsykson, 2017). The 

application of heavy tail distributions is best approximated to the distribution functions describing 

the statistical characteristics of the traffic. Determining the Laplace transform of the laws of 

distributions, which are subject to time intervals between packets and duration of packets and using 

a spectral method solution to Lindley’s integral equation, it is possible to find a function of waiting 

time of packets in the queue. The definition of this network characteristic allows to improve its 

quality of service when configuring the network. Therefore, it allows you to track the changeable 

nature of the traffic, considering the properties, so that the network parameters may be estimated 

in the most accurate way (Heyman, 1976). 

 

2. Analysis of Waiting Time in G/G/1 Queue Using the PMRQ Approximation 
A number of studies confirmed the theoretical calculations, demonstrating the effect of 

autocorrelations in the arrival process (or service process) on the statistics of the queues in the 

associated queue, as compared to their counterparts updates. More generally, if data on statistical 

parameters are available, the methods considered and analysed in this study may be used to obtain 

the average waiting time. There was performed the analysis of the results obtained in (Jagerman 

et.al., 2004) for this study. The idea of this paper is to compare the results of the PMRQ 

approximation and PMRS while comparing the G/G/1 queue which approximate GI/G/1 and 

approximation by the sum of damped exponents (Livny et al., 1993; Patuwo et al., 1993) with the 

same parameters of the network simulated and approximate to real values. 

 

The proposed approximation scheme presented in (Jagerman et al., 1997), which maps G/G/1 

queue approximating GI/G/1 PMRQ (Peakedness Matched Renewal Queue) uses the 
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approximation of the flux distribution services in peak mode, which is PMRS (Peakedness 

Matched Renewal Stream). The approximate arrival process of PMRS preserves the peak of the 

original arrival process and its speed of arrival; in addition, the square coefficient of variation of 

the constructed arrival process of PMRS is equal to the variance index of the original arrival 

process. The merit of the PMRQ approximation is that it is easily solvable, unlike the original 

G/G/1 queue. To do this, (Jagerman et al., 2004) uses the peak sharpness measure function 

(Melamed, 1993), and the lag - autocorrelation coefficient in the original stream. 

 

The approach of the PMRQ approximation method to find the average waiting time in the 

TES+/G/1 scheme (Transform Expand Sample) is better compared to the reference values obtained 

through simulation, where a simple version of the processes of arrival TES+ served as the arrival 

process associated with autocorrelation (Melamed, 1991; Jagerman and Melamed, 1992). 

Consideration of universal classes of autocorrelation (vane) stochastic processes called TES+ 

(Melamed, 1991; Jagerman, 1992) subsequently serve as arrival processes in the G/G/1 queue, the 

resulting TES+/G/1 is a check of the efficiency of the mean waiting time of the approximation 

proposed in (Jagerman et al., 2004). When considering this model, both the marginal distribution 

and the correlation function are selected. The purpose of the PMRQ approximation and PMRS is 

to build the model corresponding to three requirements simultaneously: the marginal distribution 

should match its original (histogram); the basic correlation model should be close to the originals 

to an acceptable delay; sample generated by the model should "resemble" with the experimental 

time series. 

 

Interestingly, the PMRS approach is possible in the following way. It can be shown (Melamed, 

1993) that the peak function of any renewable traffic flow has a representation of (1) 

 

𝑍𝑅(𝑠) =  
1

1−𝑎𝑅̃(𝑆)
−  

𝜆𝑅

𝑆
, 𝑆 ≥ 0                                                                                                               (1) 

 

where 𝑎𝑅̃(𝑆) – Laplace transform of the density of the time interval between time and 𝜆𝑅. From 

equation (1) is obvious that, for the overall movement of the process X, the corresponding PMRS 

approximating the update process P is completely determined by the Laplace transform from its 

time-interval density between time (2) 

 

𝑎𝑅̃(𝑆) =  1 −
1

𝑍𝑋(𝑆)+
𝜆𝑋
𝑆

, 𝑆 ≥ 0                                                                                                    (2) 

 

The equation (2) actually implies that 𝜆𝑅 =  𝜆𝑋. 

 

The justification for the PMRS approximation is obvious: in general, R is analytically simpler than 

X is a fact, which will be used later in the approximate analysis of the G/G/1 queue. More 

specifically, the PMRQ approximations of the G/G/1 queue with the General Process X is simply 

corresponding to the GI/G/1 queue with an update of the proposed traffic process R, where R – 

PMRS approximations. 

 

Therefore, traffic is considered as a pulsating process of time (Shanthikumar and Buzacott, 1980, 

Downey, 2005), having descriptions and properties of TES processes (Melamed, 1991; Jagerman, 

1992). TES processes are a universal class of stationary time series that allow any limit distribution, 

a wide variety of autocorrelation functions (monotony, oscillation, alternation, etc.), and a wide 
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range of behavior, including directional and non-directional processes. Processes TES may be 

designed to fit any empirical (marginal) distribution, and at the same time approximate the 

empirical autocorrelation functions of different functional forms. It is possible to determine TES 

processes with different autocorrelation functions, thereby controlling (estimating) their degree. 

 

Solving the statistics of the equilibrium waiting time in the GI/G/1 queue usually requires a 

complex calculation procedure. To find the time-out function 𝑊(𝛾) it is necessary to use the 

inverse transformation of the Laplace function 𝑊∗(𝑆) by integrating, considering the Delta 

function properties (e.g. Lindley’s integral equation for the special case). 

 

𝑊(𝛾) = ∫ 𝑤(𝜏)𝑑𝜏
𝛾

0−                                                                                                                       (3) 

 

To estimate the parameters of the approximate average waiting time as an alternative to the 

calculation of the average waiting time, we consider the approximation of large traffic. From 

(Jagerman et al., 2004) when GI/G/1 has a queue with high traffic, namely 𝜌 → 1 approximation 

of the average waiting time (4) 

 

𝑊̅ ≈
𝐸[𝑌](𝑐𝑥

2+𝑐𝛾
2)

2
∗

𝜌

1−𝜌
                                                                                                                 (4) 

where 𝑐𝑋, 𝑐𝛾 – the coefficients of variation of the time receipt intervals X  and service time Y , 

respectively (Blatov et al., 2013). 

 

In (Melamed, 1993) the efficiency of the proposed approximation is investigated by comparison 

with modeling. The accuracy of the approximation W is compared in two ways: the scale averaging 

method and the approximation W, three types of parameters in the system TES+/G/1 were changed. 

Frequencies of receipt with values are considered λ = 0,6 and λ = 0,8. These frequencies correspond 

to the average system load and heavy load respectively, because the average service value has 

always been one. Parameter of kidney AE must be distinguished by the range of values by the 

proper selection of the parameters L and R. The values L and R have a strong effect on the result 

of kidney failure, while λ has a secondary effect. As a result, four medium-term service time 

distributions are considered – Exponential, Erlang, Deterministic, MCE2 and MMPP (Markov-

modulated Poisson processes) (Melamed, 1993), where results for the average waiting time of 

SMO TES+/G/1 are obtained. 

 

 

3. Approximation as a Density of Sum of Damping Functions 
According to the scheme of organization of communication presented in Figure 1, users receive 

and send data through the switch with a single uplink to the global network. The bandwidth from 

the subscribers has changed with the software switch, and the port is an edge for the switch, have 

the configuration of mirroring, allowing you to capture all traffic going to the network. The uplink 

to the aggregation node was understated in speed, namely the transfer rate was limited to 60 and 

80 Mbps. 
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Figure 1. The scheme of organization of communication 

 

 

Measurements on the user's PC were carried out using the Wireshark protocol analyzer program, 

this program captures all the packets entering the network interface of the PC. The program allows 

to get statistical data in the form of text files. In the process of measuring traffic, there were 

obtained time sequences that contain the required statistics for the study: the time intervals between 

packets in seconds, the length of packets in bytes, in addition, we need to study the two – 

dimensional sequence – "the moment of receipt of the package (seconds) – the length of the 

package (bytes)". The resulting real-time traffic implementation is shown in Figures 2 and 3. 

 

 

 

 
 

Figure 2. Traffic intensity (packet / sec) at λ = 0.6 



International Journal of Mathematical, Engineering and Management Sciences                                              

Vol. 4, No. 4, 1040–1050, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.4-083 

1045  

 
 

Figure 3. Traffic intensity (packet / sec) at λ = 0.8 

 

 

Based on available traffic studies for loads with values λ = 0.6 and λ = 0.8 and the resulting 

distributions according to their histogram, there were considered cases of G/G/1 queue system: 

system types P/W/1 and W/P/1, where the symbols P and W mean, respectively, Pareto and Weibull 

distributions (Chupahina, 2013; Itsykson, 2017). The Pareto and Weibull distribution, respectively, 

have the form (5) and (6): 

 

𝑓(𝑥) =  
𝛼𝛽𝛼

𝑥𝛼+1                                                                                                                                                (5) 

 

𝑓(𝑥) =  
𝛼

𝛽
(

𝑥

𝛽
)𝛼−1exp (− (

𝑥

𝛽
)

𝛼
)                                                                                                               (6) 

where α – shape parameter; β – scale parameter. 

 

The Lindley’s equation has the following form: 

 

𝐹(𝑥) = ∫ 𝐻(𝑥 − 𝑦)𝑑𝐹(𝑦)
∞

0
                                                                                                          (7) 

where F(*) the distribution function of the waiting time of requirements in the queue; 

 

H(*) – kernel linking an arbitrary probability distribution function of time intervals between 

receipts of neighboring requirements A(τ) and an arbitrary function of the distribution of the 

duration of service requirements B(τ). 

 

Note that the Lindley’s equation itself is derived under the assumption of independence of the 

elements of the sequence of time intervals between applications and time intervals of applications 

processing. 

 

It is known that for the G/G/1 queue, a spectral method for solving Lindley’s integral equation is 

possible if for probability α(τ) and b(τ), the respective distributions A(τ) and B(τ) are used for the 

approximation as a sum of exponentially decaying functions. 
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Herewith α(τ) and b(τ) know 

 

𝛼(𝜏) = ∑ 𝜉𝑘𝑒−𝜂𝑘(𝜏)𝑛
𝑘=1                                                                                                                  (8) 

𝑏(𝜏) = ∑ 𝜑𝑘𝑒−𝜃𝑘(𝜏)1
𝑘=1                                                                                                     (9) 

where n = 5; l = 5. 

 

The average waiting time of the packet in the queue for the above examples is found according to 

the known property of the characteristic function 

 

𝑡𝑐𝑝 =  
𝑑𝐹(𝑠)

𝑑𝑠
|
𝑆=0

                                                                                                                         (10) 

with an average load of λ = 0.6, the statistical parameters obtained histograms correspond to the 

W/P/1 system for the time intervals between the packets (W): α1=0.13, β1=0.000225 and for the 

length of the packet (P) – parameters: α = 0.39, β = 54. 

 

Based on the simulation results, the parameters of the stream generated by the sending node were 

checked against the specified parameters using the EasyFit program. The following distributions 

were obtained for the time intervals between packets and packet durations Figures 4, 5. 

 

 

 

 
 

Figure 4. Weibull-distribution of time intervals between packages, the value of the parameters: α1=0.13, 
β1=0.000225 
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Figure 5. Pareto distribution of the lengths of the packets, the value of the parameters: α = 0.39, β = 54 

 

 

After the calculation according to the above algorithm, the average waiting time of the packet was 

equal to tcp = 42.6.  

 

At large load λ = 0.8 the statistical parameters of obtained histograms correspond to the W/P/1 

system for the time intervals between the packets (W) parameters have been set α1=0.78, β1=1500 

and for the length of the packet (P) – parameters: α=0.41, β=62 (Figures 6, 7). 

 

 
 

Figure 6. Weibull-distribution of time intervals between packages, the value of the parameters: α1=0.78, 

β1=1500 
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Figure 7. Pareto distribution of the lengths of the packets, the value of the parameters: α=0.41, β=62 

 

 

 

After the calculation, the average waiting time of the packet is equal to tcp =50.662. 

 

4. Conclusion 
This article presents the methods of determining the average waiting time in the G/G/1 queue: 

scale averaging method and approximation 𝑊̅, as well as an approximation in the form of a sum 

of damping functions to find the solution of Lindley’s integral equation. In this case, the TCP 

module is selected as the transport layer module, and the intensity of the packets is equal to λ = 

0.6 and λ = 0.8. 

 

The error of solving the Lindley’s equation by the spectral method in comparison with the results 

of section 11 of (Melamed, 1993) is approximately: λ = 0.6 – 4 %, and with parameter λ = 0.8 – 

14%, which is perfectly acceptable. This error may be associated with the idealization of the initial 

(real) distributions of time parameters of the considered models, with the assumption of the 

independence of the elements of the considered sequences of time intervals and with certain 

accuracy characteristic of any program used in the removal and processing of network traffic. 

Traffic capture is carried out using the Wireshark protocol analyzer program. Time distributions 

were obtained in the EasyFit data analysis program, designed for fast statistical data analysis and 

decision making. 

 

The comparison of methods of approximating network traffic allows to estimate the average 

waiting time of the packet using statistical data analysis, which will make it possible to improve 

the quality of service and predict the behavior of traffic. 
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