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Abstract  

This work concerns for solving of coupled Burgers’ equations (CBEs) in 2D and 3D via DQM based on cubic 

trigonometric B-spline (CTB) shape functions. In the method, the shape functions are modified and used for the 

integration of space derivative. Consequently, the CBEs are transformed into the integral equations. These integral 

equations are solved by an “optimal strong stability-preserving Runge-Kutta method (SSP-RK54)”. Three examples are 

taken for analysis. The assessment of the present results are done with a number of already presented results in the 

literature. We initiated that the present method generates more precise results. Straightforward algorithm, little amount 

of computational cost and less error norms are the major achievements of the method. Therefore, the present method 

possibly will be very valuable optional method for the computation of nonlinear PDEs. Moreover, the analysis of 

method’s stability is also done.  

 

Keywords- CBEs, DQM, CTB functions, SSP-RK54, Stability analysis. 

 

 

 

1. Introduction 
There is a significant role of the nonlinear Burgers’ equations to model the fluid dynamics 

problems to study turbulence, shock wave structures, mass transport, etc. In view of appropriate 

applications of these equations, it is great need to find a suitable method, which provide better 

solutions economically as well as computationally. The Burgers’ equation is a 2nd order nonlinear 

PDE which was established by Bateman (1915). Afterward a solution of this equation was 

suggested by Burger (1948). The Burgers’ equation may be treated as a straightforward 

mathematical model, which is generally used for a range of applications. This equation is a 

special type of N-S equation. The inclusion of straight forwardness nonlinear convection and 

diffusion terms, makes the study of the solutions curiosity of this equation.  

 

We consider the following CBEs: 

 

(i) The CBEs in two-dimension 

   

   

Re,

Re,

t x y xx yy

t x y xx yy

u u u u v u u

v v u v v v v

     


    

                                                                                        (1) 

with initial conditions (I.C’s.) 
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1 2 and  at 0u v t    ,                                                                                                          (2) 

 

and boundary conditions (B.C’s). 

   , , ,  , ,u x y t v x y t   ,                                                                                                       (3) 

where ( , )x y R .   1 2 1 2, : [ , ],  [ , ]R x y x a a y b b   is the rectangular domain and R  is 

the boundary of R .  

 

(ii) The CBEs in three-dimension 

 

 

 

Re,

Re,

Re,

t x y z xx yy zz

t x y z xx yy zz

t x y z xx yy zz

u u u u v u w u u u

v v u v v v w v v v

w w u w v w w w w w

       



      


      

                                                                   (4) 

 

with I. C.’s. 

1 2 3,  ,  u v w    

 

at 0t  ,                                                                                                    (5) 

 

and B. C.’s.

      1 2 3, , , ,  , , , ,  , , ,u x y z t v x y z t w x y z t     ,                                                              (6) 

where  , ,x y z  .         1 2 1 2 1 2, , : , ,  , ,  ,x y z x a a y b b z c c      is the cubic domain 

and   is the boundary of  . 

 

The terms ,  and u v w  
are velocity components and have its usual meaning in two and three 

dimensions, is the “Reynolds number”, x yuu vu  and x y zuu vu wu   are the “nonlinear 

convection terms” in one, two and three dimensions respectively. The terms   Rexx yyu u

 

and  

  Rexx yy zzu u u 

 

are the diffusion terms. 

 

Various analytical and numerical methods have been applied for the computational study of 

nonlinear CBEs. An exact solution of 2D CBEs is generated by Fletcher (1983). Radwan (1999) 

used both 4th order accurate compact ADI and Du Fort Frankel methods to solve it. Bahadir 

(2003) used a fully implicit FDM to solve 2D CBEs while Srivastava et al. (2013b), Srivastava et 

al. (2013c) and Shukla et al. (2014) used implicit, implicit logarithm FD methods and modified 

cubic B-spline DQM respectively. Zhu et al. (2010) and Zhao et al. (2011) intended a discrete 

ADM and LDG finite element method respectively while a lattice Boltzmann method is used to 

solve it by Liu and Shi (2011). Srivastava et al. (2013a) generated an exact solution of 3D CBEs 

while Shukla et al. (2016) employed MCB-DQM to solve it. Recently, a hybrid trigonometric 

DQM is used for Burgers’ equation by Arora and Joshi (2018).  

 

Baishya (2019) reproduced the advantage of a new technique using Hermite orthogonal basis 

elements to solve DEs. Vaid and Arora (2019) presented a collocation method based on 

trigonometric cubic B-spline functions to approximate a singular perturbed delay DE while 

Re
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https://www.sciencedirect.com/science/article/pii/S100757041000122X#!
https://www.sciencedirect.com/science/article/pii/S1110016817300790#!
https://www.sciencedirect.com/science/article/pii/S1110016817300790#!


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 4, No. 4, 1051–1067, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.4-084 

1053 

Chauhan and Srivastava (2019) presented a review report on latest computational techniques to 

solve DEs using various orders Runge-Kutta algorithms. 

 

In this work, the solutions of CBEs in 2D and 3D are obtained via DQM based on a modified 

form of CTB shape functions. We modify the shape function and use for the integration of space 

derivatives. Therefore, the CBEs are transformed into the form of integral equations. Then, we 

use SSP-RK54 to solve these integral equations. 

 

2. The DQM 
The DQM was set up by Bellman et al. (1972). Its simplicity and computationally effortlessness 

makes more suitable to solve PDEs. To apply this method, the problem domains are uniformly 

distributed at the grid points ix ( 1,2,..., )i M , jy ( 1,2,..., )j N , and kz ( 1,2,..., )k L  with 

space step sizes    1 2 1 1h a a M   ,    2 2 1 1h b b N    and    3 2 1 1h c c L    

respectively. 

 

In 2-dimensional problem, the partial derivatives (p.d.) of rth order of u  are estimated at ix , jy  as  

 

1

r M
ij r

pjr
p

ip

u
a u

x 





 ,                                                                                                                        (7) 

 









1

r N
ij r

ipr
p

jp

u
a u

y
.                                                                                                                        (8) 

 

Similarly, the approximation of p.d. of rth order of v  are estimated s  

 

1

r M
ij r

pjr
p

ip

v
a v

x 





 ,                                                                                                                        (9) 

 

1

r N
ij r

ipr
p

jp

v
a v

y 





 .                                                                                                                       (10) 

where  , ,ij i ju u x y t
 
and  , , ,ij i jv v x y t .  

 

In 3-dimensional problem, the p.d. of rth order of u  are estimated at ix , jy  and kz
 
, which are 

 

1
ip

r M
rijk

pjkr
p

u
a u

x 





 ,                                                                                                                 (11) 

 

1

r N
rijk

ipkr jp
p

u
b u

y 





 ,                                                                                                                 (12) 

 

1

r L
rijk

ijpr kp
p

u
c u

z 





 .                                                                                                                  (13) 
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Similarly, p.d. of v  and w  are estimated at ix , jy  and kz
 
as: 

 

1

,

r M
ijk r

pjkr
p

ip

v
a v

x 







                                                                                                                   

(14) 

 

1

,

r N
ijk r

ipkr
p

jp

v
b v

y 







                                                                                                                    

(15) 

 

1

,

r L
ijk r

ijpr
p

kp

v
c v

z 







                                                                                                                     

(16) 

 

1

,

r M
ijk r

pjkr
p

ip

w
a w

x 







                                                                                                                  

(17) 

 

1

,

r N
ijk r

ipkr
p

jp

w
b w

y 







                                                                                                                  

(18) 

 

1

,

r L
ijk r

ijpr
p

kp

w
c w

z 







                                                                                                                   

(19) 

where  , , ,ijk i j ku u x y z t ,  , , ,ijk i j kv v x y z t ,  , , ,ijk i j kw w x y z t
 
and 

 
ij

ra , 
 r
ijb , 

 r
ijc  

are weighting coefficients. 

 

3. CTB Functions 

The CTB shape functions are twice continuous differentiable piecewise functions in the domain 

under consideration. These functions are defined as 

 

 

   

                

                

3

2 2 1

2

2 1 1 2 2 1 1

2

1 2 2 1 1 2 1

3

,                                                                                  ,

, ,
1

, ,

k k k

k k k k k k k k k

k k k k k k k k k k

x x x x

x x x x x x x x x x

T x x x x x x x x x x x

x



      

      




  

      

      



  

   

   2 1 2,                                                                                   ,

0,                                                                                                 other

k k kx x x  

wise











 

(20)  

where      in ,  sin ,   =sin 0.5 sin sin 1.5 .
2 2

k kx x x x
s h h  

    
    

     
 

The vector  ( )kT x
 
forms a shape in concern domain. The values of  kT x  ,  kT x and  kT x  

at jx
 
are given by Lemma 1. 
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Lemma 1.  

 

     
2 3 5

1 3 4

,   if ,   if 1 ,   if 

,   if 1;  ,   if 1;    ,   if 1,

0,   else 0,   else 0,   else

k j k j k j

p k j p k j p k j

T x p k j T x p k j T x p k j

     
               
  
  

 

where,      2

1 sin 0.5 csc csc 1.5p h h h , 
 

2

2

1 2cos
p

h



,  3

3
csc 1.5

4
p h , 

    

    

2

4

3 1 3cos csc 0.5

16 2cos 0.5 cos 1.5

h h
p

h h




 
, 

 

 

2

5

3cot 1.5
.

2 4cos

h
p

h





 

 

Now we modify the CTB shape functions with preserving the property of diagonally dominance 

for resulting matrix as: 

 

 

1 0 1 2 0 2

1 1 1 1

ˆ ˆ2 ,  ,

ˆ  for 3,..., - 2,

ˆ ˆ,  2 ,

m m

N N N N N N

T T T T T T

T T m N

T T T T T x T   

    


  


     

  

(21) 

where  1 2 3
ˆ ˆ ˆ ˆ,  ,  ,..., NT T T T

 
again forms a basis in aforesaid domain. 

 

The substitution of the values of ˆ ,jT  1,2,...,j M  in Equation (7), gives  

   (1)

1

ˆ
M

m i m pip

p

T x a T x


  ,                                                                                                          (22) 

by Equation (21) and Lemma 1, Equation (22) reduces into  

 

     1
Ac i B i ,                                                                                                                         (23) 

where 
         1 1 11

21
, ,...,

T

ii iM
c i a a a 

  
, and A  is the coefficient matrix which is given by

  

 

1 2 2

2 1

1 2 1

1 2 1

1 2

1 1 2

2

0

0

2
N N

p p p

p p

p p p

A

p p p

p p

p p p


 
 
 
 
 

  
 
 
 
  

. 
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The vectors  B i  are given by 

   3 31 2 2 0 0 0 0 ,
T

B p p 

 

   3 32 0 0 0 0 ,
T

B p p 

 

 

   3 31 0 0 0 0 ,
T

B N p p  

 

   3 30 0 0 0 .
T

B N p p   

 

The solution of system (23) is done by “Thomas algorithm”.  

 

Weighting coefficients 
 2

,  1 ,ija i j M 
 
are computed by the recurrence relations given by 

Shu (2000) which is defined below 

 

 

 
 

 

1
1 1

2

2

1,

2 if 

else

ij
iiij

i j

ij
M

ij

j j i

a
a a j i

x x
a

a
 

  
   
     






.                                                                                      (24) 

4. Implementation of the Method to CDEs 
Now we substitute the approximated spatial derivatives values in the CBEs (1) and (4). By 

substituting in Equation (1), we get 

(1) (1) (2) (2)

1 1 1 1

(1) (1) (2) (2)

1 1 1 1

,

,

ip jp ip jp

ip jp ip jp

M N M N
ij

ij pj ij ip pj ip

p p p p

M N M N
ij

ij pj ij ip pj ip

p p p p

u
u a u v b u a u b u

t

v
u a u v b u a u b u

t





   

   

  
      

  

  

        

   

   

                                          (25)  

 

On applying B.C.’s (3) into Equation (25), we get 

1 1 1 1
(1) (1) (2) (2)

2 2 2 2

1 1 1 1
(1) (1) (2) (2)

2 2 2 2

,

,

ip jp ip jp

ip jp ip jp

M N M N
ij

ij pj ij ip pj ip ij

p p p p

M N M N
ij

ij pj ij ip pj ip ij

p p p p

u
u a u v b u a u b u F

t

v
u a u v b u a u b u G

t





   

   

   

   

  
       

  

  

         

   

   
                                 

(26) 

where  

       
1 1 1 1

(1) (1) (1) (1) (2) (2) (2) (2)

1 1 1 1 ,
i iM i iN i iM i iNij ij j Mj ij i iN j Mj i iNF u a u a u v b u b u a u a u b u b u          
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1 1 1 1

(1) (1) (1) (1) (2) (2) (2) (2)

1 1 1 1 ,
i iM i iN i iM i iNij ij j Mj ij i iN j Mj i iNG u a v a v v b v b v a v a v b v b v          

 
 

 

Equation (25) can also be written as

    1 2 and 
ij ij

ij ij

du dv
L u L u

dt dt
  ,                                                                                           (27) 

where
 1L  and 

2L  denote spatial nonlinear differential operator. 

 

Now, by substituting in Equation (4), we get 

(1) (1) (1) (2) (2)

1 1 1 1 1

(2)

1

(1) (1) (1)

1 1 1

+

          ,

ip jp kp ip jp

kp

ip jp kp

M N L M N
ijk

ijk pjk ijk ipk ijk ijp pjk ipk

p p p p p

L

ijp

p

M N L
ijk

ijk pjk ijk ipk ijk i

p p p

du
u a u v b u w c u a u b u

dt

c u

dv
u a v v b v w c v

dt


    



  


    




 



   

    



   (2) (2)

1 1

(2)

1

(1) (1) (1) (2) (2)

1 1 1 1 1

(2)

1

          ,

           

ip jp

kp

ip jp kp ip jp

kp

M N

jp pjk ipk

p p

L

ijp

p

M N L M N
ijk

ijk pjk ijk ipk ijk ijp pjk ipk

p p p p p

L

ijp

p

a v b v

c v

dw
u a w v b w w c w a w b w

dt

c w





 



    




 




 




     






 



    

 .
























              (28) 

 

On applying B.C.’s (6) into Equation (28), we have 

1 1 1 1 1
(1) (1) (1) (2) (2)

2 2 2 2 2

1
(2)

2

1 1
(1) (1)

2 2

           ,

ip jp kp ip jp

kp

ip jp

M N L M N
ijk

ijk pjk ijk ipk ijk ijp pjk ipk

p p p p p

L

ijp ijk

p

M N
ijk

ijk pjk ijk

p p

du
u a u v b u w c u a u b u

dt

c u F

dv
u a v v b

dt


    

    





 

 


     




 



  

    



 
1 1 1

(1) (2) (2)

2 2 2

1
(2)

2

1 1 1 1
(1) (1) (1) (2)

2 2 2 2

           ,

kp ip jp

kp

ip jp kp ip j

L M N

ipk ijk ijp pjk ipk

p p p

L

ijp ijk

p

M N L M
ijk

ijk pjk ijk ipk ijk ijp pjk

p p p p

v w c v a v b v

c v G

dw
u a w v b w w c w a w b

dt





  

  





   

   


  




 



     

  



   
1

(2)

2

1
(2)

2

            ,

p

kp

N

ipk

p

L

ijp ijk

p

w

c w H























 
 
 


  






              (29)
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where  

     (1) (1) (1) (1) (1) (1)

1 1 11 1 1ijk ijk jk Mjk ijk i k iNk ijk ij ijLi iM i iN i iL
F u a u a u v b u b u w c u c u        

          

     (2) (2) (2) (2) (2) (2)

1 1 11 1 1
,jk Mjk i k iNk ij ijLi iM i iN i iL

a u a u b u b u c u c u       
 

 

     (1) (1) (1) (1) (1) (1)

1 1 11 1 1ijk ijk jk Mjk ijk i k iNk ijk ij ijLi iM i iN i iL
G u a v a v v b v b v w c v c v      

 

           

     (2) (2) (2) (2) (2) (2)

1 1 11 1 1
,jk Mjk i k iNk ij ijLi iM i iN i iL

a v a v b v b v c v c v       
 

 

     (1) (1) (1) (1) (1) (1)

1 1 11 1 1ijk ijk jk Mjk ijk i k iNk ijk ij ijLi iM i iN i iL
H u a w a w v b w b w w c w c w      

 

           

     (2) (2) (2) (2) (2) (2)

1 1 11 1 1

1
.

Re
jk Mjk i k iNk ij ijLi iM i iN i iL

a w a w b w b w c w c w      
 

 
 

The Equations (28) can also be written as 

     1 2 3,  and 
ijk ijk ijk

ijk ijk ijk

du dv dw
L u L u L u

dt dt dt
   .                                                         (30) 

 

Finally “SSP-RK54” (Gottlieb et al., 2009) is applied to integrate Equations (27) and (30). 

5. Stability Analysis 
For linearizing the non-linear terms of CBEs, we assume u , v  and w  as locally constant (Saka 

et al., 2009). The discretized CBEs (26) are converted into  

1 1 1 1
(1) (1) (2) (2)

2 2 2 2

1 1 1 1
(1) (1) (2) (2)

2 2 2 2

,

.

ip jp ip jp

ip jp ip jp

M N M N
ij

ij pj ij ip pj ip ij

p p p p

M N M N
ij

ij pj ij ip pj ip ij

p p p p

u
U a u V b u a u b u F

t

v
U a u V b u a u b u G

t





   

   

   

   

  
       

  

  

         

   

   
                                

(31) 

 

The system of ODEs (31) can also be expressed as

 

                                                                                                      

 

 
   

A Od W
W K

O Bdt

 
  
 

,                                                                                                (32)

 where 

 
(i) The vector    ,

T
K F G  contains non-homogeneous part and B.C.’s. 

(ii) The null matrices are represented by O . 

(iii) { } ( , )TW U V . 

(iv) 
1 1 2 2

1 1 2 2

,

,

ij ij

ij ij

A U A V B A B

B U A V B A B
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where rA
 
and rB

 
are   2 2N M   order square matrices as  

22 23

32 33 3, 1

( 1) 2 ( 1)3 ( 1)( 1)

( ) ( ) ( )

2( 1)

( ) ( ) ( )

( ) ( ) ( )

,N

N N N N

r r r

N

r r r

r

r r r

a I a I a I

a I a I a I
A

a I a I a I



   


 
 
 

  
 
 
   

r

r
r

r

H O O

O H O
B

O O H

 
 
 
 
 
 

, 

 
 

where  

22 23

32 33 3( 1)

( 1) 2 ( 1)3 ( 1)( 1)

( ) ( ) ( )

2( 1)

( ) ( ) ( )

( ) ( ) ( )

.M

M M M M

r r r

M

r r r

r r r

r

b b b

b b b
H

b b b



   


 
 
 

  
 
 
   

 

The discretized CBEs (29) are converted into  
1 1 1

(1) (1) (1)

2 2 2

1 1 1
(2) (2) (2)

2 2 2

1 1
(1) (1)

2 2

            ,

ip jp kp

ip jp kp

ip jp

M N L
ijk

ijk pjk ijk ipk ijpijk

p p p

M N L

pjk ipk ijp ijk

p p p

M N
ijk

ijk pjk ijk

p p

du
U a u V b u c uW

dt

a u b u c u F

dv
U a v V b

dt



  

  

  

  

 

 

    

 
   

 

  

  

  


1

(1)

2

1 1 1
(2) (2) (2)

2 2 2

1 1 1
(1) (1) (1)

2 2 2

(2)

            ,

           

kp

ip jp kp

ip jp kp

ip

L

ipk ijk ijp

p

M N L

pjk ipk ijp ijk

p p p

M N L
ijk

ijk pjk ijk ipk ijk ijp

p p p

p

v W c v

a v b v c v G

dw
U a w V b w W c w

dt

a









  

  

  

  

 

 
   

 

    

 

  

  

1 1 1
(2) (2)

2 2 2

.
jp kp

M N L

pjk ipk ijp ijk

p p

w b w c w H
  

  


















  
    
  

  

                                                   (33) 

 

The system of ODEs (33) can also be represented as

 

,

A O Ou u F
d

O B Ov v G
dt

O O Cw w H

      
       
      
                                                                                                   

(34) 

 

where  

(i) The 'O s  represents null matrices. 

(ii) The vector  , ,
T

F G H  contains non-homogeneous parts and B.C.’s. 
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(iii) 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 1 1
,

Re Re Re

1 1 1
,

Re Re Re

1 1 1
,

Re Re Re

ijk ijk ijk

ijk ijk ijk

ijk ijk ijk

A U A V A W A A A A

B U B V B W B B B B

C U C V C W C C C C


      




      



      


 

 

where 'siA  ( i 1 to 6) are    2 2 2M N L    order square matrices as given below: 

(1) (1) (1)

2( 1)
22 23

(1) (1) (2)

32 33 3( )

(1) (1) (1)

( 1)2 ( 1)3 ( 1)( 1)

1
1 ,

M

M M M M

x x x

x x xL

x x x

a I a I a I

a I a I c I
A

a I a I a I



   



 
 
 
 
 
 
 
 

   

2

y

y

y

R O O

O R O
A

O O R

 
 
 

  
 
   , 

 

where  

(1) (1) (1)

2( 1)
22 23

(1) (1) (2)

32 33 3( 1)

(1) (1) (1)

( 1)2 ( 1)3 ( 1)( 1)

N

L

yN N N N

y y y

y y y

y

y y

b I b I b I

b I b I b I
R

b I b I b I





   

 
 
 
 
 
 
 
   

 

and  

3 ,

z

z

z

R O O

O R O
A

O O R

 
 
 
 
 
   

where 

(1) (1)

2( 1)
22

(1) (1) (2)

32 33 3( 1)

(1) (1) (1)

( 1)2 ( 1)3 ( 1)( 1)

(1)

23

.

L

L

L L L L

z

b b b

b b b
R

b b b





   

 
 
 
 
 
 
 
   

 

The matrices 4 5,  A A , 6A  
are similar to the matrices 1 2,  A A , 3A  respectively. Similarly iB  

and 

iC  ( i 1 to 6) are defined. For stability analysis, the Eigenvalues (E.V.) of matrices are 

calculated and shown in Figure 1. 
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(a) (b) 

Figure 1. Eigenvalues of (a) matrix 1A and (b) matrix 2A  

 

 

As the E.V. of 1 1( )ij ijU A V B   are imaginary and of 2 2( )A B
 
are real and negative. So, we get 

negative real parts (r.p.) of all E.V. of A . Also, the matrices 
1 1 2 2, , ,A B A B     and 

1 1 2 2, , ,A B A B  are 

same. Therefore, the r.p. of all E.V. of the coefficient matrix of the system (32) are negative.  

Similarly, we can obtain the E.V. of the coefficient matrix of the system (34). As all the E.V. of 

the coefficient matrix of the system (32) satisfy the conditions of stability, hence the present 

method is unconditionally stable for CBEs. 

 

6. Numerical Discussion 
We consider three examples of CBEs in two and three dimensions. The analysis of errors is done 

by
 2L and L error norms, defined below: 

2

2

1

| | ,  L max | |
n

i i i i
i

i

L h U u U u



    .

    

Example 1. Take the CBEs (1) in [0,1] [0,1]  
with the exact solution  

  

  

1
0.75 ,

4 1 exp 4 4 Re

1
0.75 .

4 1 exp (1/ 32) 4 4 Re

u
t x y

v
t x y


        


  
      

                                                               (35) 

 

The solution of Example 1 is evaluated with the parameters: t  0.0001, 
210    at t  1.0  

for various grids and given in Tables 1 and 2 . The “rate of convergence” (ROC) is also 

calculated. As we can see from Tables 1 and 2 that the present method achieves superior results 

than obtained by Expo-FDM (Srivastava et al., 2013c) and almost similar results obtained by 

MCB-DQM (Shukla et al., 2014). Also we found that the ROC of the method is more than 
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quadratic. Figure 2 shows the solutions (numerical and exact) comparison for 
210  , t 

0.0001 at t  1.0 . 

 

 

 

 

 
Table 1. Error norms and ROC for component u  

 

 

Grids 

 

2L
 

L  
Expo-FDM Present method Expo-FDM Present method 

 ROC  ROC 

4 4  8.570e-02 1.645e-02 - 9.704e-02 2.895e-03 - 

8 8  4.942e-02 1.932e-03 3.09 4.688e-02 1.964e-04 3.88 

16 16  1.919e-02 3.950e-04 2.29 2.046e-02 2.050e-05 3.26 

32 32  8.681e-03 8.122e-05 2.28 9.074e-03 2.221e-06 3.20 

64 64  - 1.540e-05 2.40 - 2.187e-07 3.34 

 

 

 

 

 

 
Table 2. Error norms and ROC for component v  

 

 

Grids 
 

2L
 

L  
Expo-FDM Present method Expo-FDM Present method 

 ROC  ROC 

4 4  8.570e-02 1.645e-02 - 9.704e-02 2.895e-03 - 

8 8  4.943e-02 1.932e-03 3.09 4.688e-02 1.964e-04 3.88 

16 16  1.919e-02 3.950e-04 2.29 2.047e-02 2.050e-05 3.26 

32 32  8.687e-03 8.122e-05 2.28 9.081e-03 2.221e-06 3.20 

64 64  - 1.540e-05 2.40 - 2.187e-07 3.34 
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Figure 2. The solutions comparison of Example 1 for u  and v  respectively 

 

 

 

Example 2. Now we consider CBEs (1) in the domain [0,0.5] [0,0.5]  with I.C.’s 

sin cos ,  u x y v x y      at 0t 
 

and B.C.’s 

cos( ),   at 0

1 sin( ),   at 0

1 cos( ),  0.5  at 0.5

sin( ),  0.5  at 0.5

u y v y x

u x v x y

u y v y x

u x v x y









  


   


    
    

.                                                                                 (36)

 
 

The solutions of Example 2 are shown in Table 3 as a comparison with the solutions obtained by 

Expo-FDM (Srivastava et al., 2013c) and MCB-DQM (Shukla et al., 2014) for   0.02, grids 

20 20  and t  0.0001 at t  0.625. We found a closed agreement between the results. The 

physical behaviours of solutions are represented in Figure 3 for   0.01, 0.0001t   and 

0.05h 
 
at time t  1. 
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Table 3. Comparison of the solutions at t  0.625 
 

Grid 

 

u  v  

Expo-FDM MCB-DQM Present Expo-FDM MCB-DQM Present 

(0.1, 0.1) 0.9715 0.9706 0.9705 0.0987 0.0984 0.0984 

(0.3, 0.1) 1.1528 1.1515 1.1515 0.1416 0.1410 
 

0.1411 
 

(0.2, 0.2) 0.8631 0.8624 0.8624 0.1675 0.1673 
 

0.1673 
 

(0.4, 0.2) 0.9798 0.9807 0.9808 0.1711 0.1722 

 

0.1722 

 
(0.1, 0.3) 0.6632 0.6633 0.6634 0.2638 0.2638 

 

0.2638 

 
(0.3, 0.3) 0.7723 0.7722 0.7723 0.2265 0.2265 

 

0.2265 

 
(0.2, 0.4) 0.5818 0.5827 0.5827 0.3285 0.3293 

 

0.3294 

 
(0.4, 0.4) 0.7586 0.7617 0.7618 0.3250 0.3288 

 
0.3288 

 

 

 

  
 

Figure 3. The physical behaviour of the numerical solutions for Example 2 at t=1 

 

 

 

Example 3: Finally take the CBEs (4) with the exact solution  

     
2 2 2

,  ,  
Re Re Re

x y zf f fu f v f w f      ,                                                 (37) 

where sin  sin  sin 1tf e x y z x   . 

 

Table 4 shows the L and 2L errors for 0.04h  , 0.01t  , 1.0t   at different Re , where 

h x y z      . The obtained error norms are small which shows that the method presented in 

this paper gives accurate results. Figure 4 shows contour plots of u, v and w for Re 100 with 

0.5z  . 
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Table 4. The L
and 

2L  error norms 

 

Re  Error norms u  v  w  

210  L
 2.1903e-06 3.5236e-05 3.5236e-05 

2L  7.8066e-04 5.4508e-03 5.4508e-03 

310  L
 3.4657e-07 7.0278e-07 7.0278e-07 

2L  1.1998e-04 1.5859e-04 1.5859e-04 

410  L
 3.8335e-08 4.2985e-08 4.2985e-08 

2L  1.3185e-05 1.3894e-05 1.3894e-05 

 

 

 

          

             
Figure 4. Contour plots (a ), (c) and (e) numerical (b), (d) and (f)  exact for u , v

 
and w

 
respectively with 

0.5z  for Re 100  
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7. Conclusion 
In this work, the CBEs in two and three dimensions are solved via DQM based on modified form 

of TCB shape functions. The modified TCB shape functions are used for integration of space 

derivatives. Thus, the CBEs are transformed into the form of integral equations. These integral 

equations are solved by SSP-RK54 method. The analysis of the method is done through three 

examples. The different error norms are obtained and compared with the error norms of Expo-

FDM (Srivastava et al., 2013c) and MCB-DQM (Shukla et al., 2014) for two dimensional 

problems. We found a good quality conformity between the solutions obtained by present and 

aforesaid methods. The ROC and stability analysis show that the method is quadratic convergent 

and stable unconditionally for CBEs.  
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