International Journal of Mathematical, Engineering and Management Sciences E@
Vol. 4, No. 4, 1051-1067, 2019
https://dx.doi.org/10.33889/IIMEMS.2019.4.4-084

DQM Based on the Modified Form of CTB Shape Functions for
Coupled Burgers’ Equation in 2D and 3D

Mohammad Tamsir
Department of Mathematics
Graphic Era (Deemed to be University) Dehradun-248002, Uttarakhand, India
E-mail: tamsiriitm@gmail.com

Neeraj Dhiman
Department of Mathematics
Graphic Era Hill University Dehradun-248002, Uttarakhand, India
Corresponding author: neeraj.dhimanl@gmail.com

(Received July 23, 2018; Accepted May 7, 2019)

Abstract

This work concerns for solving of coupled Burgers’ equations (CBEs) in 2D and 3D via DQM based on cubic
trigonometric B-spline (CTB) shape functions. In the method, the shape functions are modified and used for the
integration of space derivative. Consequently, the CBEs are transformed into the integral equations. These integral
equations are solved by an “optimal strong stability-preserving Runge-Kutta method (SSP-RK54)”. Three examples are
taken for analysis. The assessment of the present results are done with a number of already presented results in the
literature. We initiated that the present method generates more precise results. Straightforward algorithm, little amount
of computational cost and less error norms are the major achievements of the method. Therefore, the present method
possibly will be very valuable optional method for the computation of nonlinear PDEs. Moreover, the analysis of
method’s stability is also done.

Keywords- CBEs, DQM, CTB functions, SSP-RK54, Stability analysis.

1. Introduction

There is a significant role of the nonlinear Burgers’ equations to model the fluid dynamics
problems to study turbulence, shock wave structures, mass transport, etc. In view of appropriate
applications of these equations, it is great need to find a suitable method, which provide better
solutions economically as well as computationally. The Burgers’ equation is a 2" order nonlinear
PDE which was established by Bateman (1915). Afterward a solution of this equation was
suggested by Burger (1948). The Burgers’ equation may be treated as a straightforward
mathematical model, which is generally used for a range of applications. This equation is a
special type of N-S equation. The inclusion of straight forwardness nonlinear convection and
diffusion terms, makes the study of the solutions curiosity of this equation.

We consider the following CBEs:

(i) The CBEs in two-dimension
u, =—(uu+u,v)+(u, +uy)/Re, "

Vv, = —(vxu + vyv) + (vXX +V,, )/Re,

with initial conditions (I1.C’s.)
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Uu=g andv=g, att=0, (2)

and boundary conditions (B.C’s).

u(x,y,t)=4, v(x,y,t)=7, (3)
where (X,y)edR. R :{(X,y) :xela,a,], ¥ e[bl,bz]} is the rectangular domain and OR is
the boundary of R.

(i) The CBEs in three-dimension
Uy = U, — UV —U,W+ (U, +Uy, +Uy, ) /Re,

vV, =-V,u —vyv—vzw+(vxX +Vy, +Vy, )/Re, (4)

W, =-w,u —wyv—wzw+(wXX + Wy +W,, )/Re,

with I. C.’s.
u=d¢,v=g, W=¢ att=0, (5)
and B. C.’s.
u(x,y,z,t)=¢&, v(x,y,z,t) =&, w(x,y, z,t) =&, (6)

where (X,Y,2)e0Q. Q={(x.,y.z):xe[a,a,], ye[b,b,], z&[c,c,]} is the cubic domain
and 0Q is the boundary of ).

The terms u,v and w are velocity components and have its usual meaning in two and three
dimensions, Re s the “Reynolds number”, uu, +Vvu, and uu, +Vu, +Wwu, are the “nonlinear

convection terms” in one, two and three dimensions respectively. The terms (uXX +uyy) / Re and

(uy +u,, +u, )/Re are the diffusion terms.

Various analytical and numerical methods have been applied for the computational study of
nonlinear CBEs. An exact solution of 2D CBEs is generated by Fletcher (1983). Radwan (1999)
used both 4™ order accurate compact ADI and Du Fort Frankel methods to solve it. Bahadir
(2003) used a fully implicit FDM to solve 2D CBEs while Srivastava et al. (2013b), Srivastava et
al. (2013c) and Shukla et al. (2014) used implicit, implicit logarithm FD methods and modified
cubic B-spline DQM respectively. Zhu et al. (2010) and Zhao et al. (2011) intended a discrete
ADM and LDG finite element method respectively while a lattice Boltzmann method is used to
solve it by Liu and Shi (2011). Srivastava et al. (2013a) generated an exact solution of 3D CBEs
while Shukla et al. (2016) employed MCB-DQM to solve it. Recently, a hybrid trigonometric
DQM is used for Burgers’ equation by Arora and Joshi (2018).

Baishya (2019) reproduced the advantage of a new technique using Hermite orthogonal basis

elements to solve DEs. Vaid and Arora (2019) presented a collocation method based on
trigonometric cubic B-spline functions to approximate a singular perturbed delay DE while
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Chauhan and Srivastava (2019) presented a review report on latest computational techniques to
solve DEs using various orders Runge-Kutta algorithms.

In this work, the solutions of CBEs in 2D and 3D are obtained via DQM based on a modified
form of CTB shape functions. We modify the shape function and use for the integration of space
derivatives. Therefore, the CBEs are transformed into the form of integral equations. Then, we
use SSP-RK54 to solve these integral equations.

2. The DQM
The DQM was set up by Bellman et al. (1972). Its simplicity and computationally effortlessness
makes more suitable to solve PDEs. To apply this method, the problem domains are uniformly

distributed at the grid points X, (1=12,..,M), y; (j=12,..,N),and 7, (k=1,2,...,L) with
space step sizes h =(a,-a,)/(M-1), h,=(b,~b)/(N-1) and h;=(c,-c,)/(L-1)

respectively.

In 2-dimensional problem, the partial derivatives (p.d.) of r™ order of U are estimated at X, Yjas

o'u; M
0 _Nay
ox" éaip Ui » Y
ou, N
i o_ (r)
oy ; P
Similarly, the approximation of p.d. of r' order of V are estimated s
o'v, M
i _ (y .
ox' ;aip Vo ®)
o'v. N
—_ Za(_r)vi . (10)
ayr = jp P

where Uy =u(x;, y;,t) and vy =v(x,y;.,t).

In 3-dimensional problem, the p.d. of r'" order of U are estimated at X, Y and z, , which are

o'uy, M
jk r
ox" _Zlai(p)upj"’ D
p:
o'ug, N
ay'rj :Zb(j;)uipk’ (12)
p=
o'uy, &
jk — r
o' _Zl(:(kp)uijp' &
p:
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Similarly, p.d. of v and w are estimated at X, Y and Z, as:

o'vy M
ik _ N 5(1)
= _Ziaip Vi (14)
o'V N
jk _ (N,
IR -
o'vy &
ik =N (1)
por —;Ckpvijp’ (16)
o'w,, M
L PO
ox" pz—laip Mo 47
o'wy, N
Z Tk Ny
Py ;bjp Wik » (18)
o'w, &
ijk = (r) ’
oz’ ;Ckp Wi (19)
where Uy =u(X,Y;,2.t), Vy =V(X, Y, 2.t), Wy =w(x,y;,2,,t) and af]_’), by, )

are weighting coefficients.

3. CTB Functions
The CTB shape functions are twice continuous differentiable piecewise functions in the domain
under consideration. These functions are defined as

ﬂg(xkfz)v XE[kaz’kal)
(a(xk )ﬂ(xk—z)"’a(xk+1)ﬁ(xk—1))ﬂ(xk—2)+a(xk+z)ﬂ2 (Xk—l)’ Xe [xk—llxk)

T, (X) zi o (Xk+1)ﬂ(xk—2)+a(xk+2)(a(xkﬂ)ﬂ(xk—l)+a(xk+2)ﬂ(xk ))’ Xe [Xk'xk+1)
o’ (Xk+2)’ Xe [Xk+1' Xk+2)
0, otherwise
(20)

wherea = sin(x"z_xj, B :sin(x_zxk j x=sin(0.5)sin(h)sin(L.5h).

The vector {T,(X)} forms a shape in concern domain. The values of T, (X) , T, (X)and T/'(X)

at X; are given by Lemma 1.
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Lemma 1.
p,, ifk=]j p,, ifk=j+1 p,, ifk=]
To(%)=1 Py ifk=jxL T/(x)=3-p, ifk=j-1; T/ (x;)=1p, ifk-j==1,
0, else 0, else 0, else
where, p, =sin’(0.5h)csc(h)csc(1.5h), P, zmzos(h)’ p, = %csc(l.Sh),

_ 3(1+3cos(h))csc? (0.5h) ~3cot? (1.5h)
_16+(2003(0.5h)+cos(1.5h))' Ps = 2+4cos(h)

Py

Now we modify the CTB shape functions with preserving the property of diagonally dominance
for resulting matrix as:

>

A

=2T,+T, T,==T, +T,,

0

T =T form=3,.,N-2, (1)

m

TN—l = _TN+1 +TN—1’ TN = 2TN+1(X)+TN '

=

where {'I:l 'I:2, 'I:3, ...,'fN} again forms a basis in aforesaid domain.

The substitution of the values of 'fj, j=12,...,M in Equation (7), gives

M
Fr 1
Tn(x)=2 a5 (x,), 22)
p=1
by Equation (21) and Lemma 1, Equation (22) reduces into

AcWTi]=B[i], (23)
T
where ¢V [i]= [ai(i)’ai(;)""’ ai(la } ,and A is the coefficient matrix which is given by
2p+P, P |
0 P, Py

P P Py

A= o,
P P P
P P, 0

L pl 2p1+ p2_N><N
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The vectors B[i] are given by
I_3.[1]:[_2p3 2p3 00 -0 O]T,
E[Z]:[—p3 0 pp 0 - 0 OT’
B[N-1]=[0 0 - 0 -p, 0 p,],
B[N]=[0 0 - 0 0 —-p, p,].

The solution of system (23) is done by “Thomas algorithm”.

Weighting coefficients ai(f), 1<i, j<M are computed by the recurrence relations given by
Shu (2000) which is defined below

(1)
2 aal - | ifj«i
a-(-2)= Xi_Xj
| e A(2) : (24)
- D a else
j=1, ji

4. Implementation of the Method to CDEs
Now we substitute the approximated spatial derivatives values in the CBEs (1) and (4). By
substituting in Equation (1), we get

ou, ) @ Y 2@ @
U _

E——uijzam Uy _Viiz;bm Up +U Z;a"’ o +Z;b”’ |

p= p= P= P

25

V; A > " @) b @) ()
E:_uﬁzaip upj_vijzbjp Upp +0 zaip upj+zbjp Uip |

p=1 p=1 p=1 p=t

On applying B.C.’s (3) into Equation (25), we get

ou; S0 SO N0 N
E:_uij;aip Uy _ViiZ_;bm Up +0 Z_;a'p o +Z_;b”’ e |t Fij,

p= p= p= p= (26)

8\!.. M-1 M N-1 O M-1 @ N-1 @
j_ _
= u; E a Uy VijE b U, +v E a upj+§ b "y, |+Gy,
p=2 p=2 p=2 p=2
where

_ o ® o o ©) ©) &) ©)
Fi=-y, (ai1 u;+a’ qu)—vij (bil Uy +b Uy )+u[(ail U +a’ qu)+(bil Uy +b Uy )}
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_ ) M &) ) @) @) (2) @)
G, =-U; (ai1 Vi ta Vy; )—vij (bi1 Vi +0 Vi )+ u[(ai1 Vi Ha Vy; )+(bi1 Vi +0 vy )}
Equation (25) can also be written as

du. dv.
%: Li(“ij) and %: LZ(“ij)’ @)

where L, and L, denote spatial nonlinear differential operator.

Now, by substituting in Equation (4), we get

dul L M
Jk __ Oy _ @ ® 2) @y
u”kZa U, vukZb Uy iij;ckp Uy +0 Z;a upjk+Zb
p= p= =1
" @)
+chp Uijp |»
p=1
dVie ® ® @ (2) S h @)
I] _
_—uukZa vy —vukZb Vige — uch Vi +0 Zalp Vi +ijp Vi
P (28)
L
)
+2.Cp Vijp}
p=1
o 3 A S h @ " 0 4 (2) @)
K _ _ —_
dt = —Ujj zaip Wik Vijkzb,-p Wipk ijk chp Wip +U Zaip Woik +2bjp Wipk
p-1 p-1 p=1 p=l p=l
" )
+chp Wy, |-
p=1
On applying B.C.’s (6) into Equation (28), we have
du,
uk _ ® ® @) @ )
.sza Uy —v,JkZb Uiy — ,Jch Uy +0 Zam U +Zb Ui
(2)
+Zc u, } ”
dv
@) ® ® ) (2)
,JkZa vy —v,JkZb Vip —W”kZC Vi +0 Za vpjk+2b Vipi
L-1 (29)
(2)
+chp Vijp}rGijkv
p=2
dw,
uk _ ® @) @) ) )
= ,JkZa W, —vukZb W, — Uch W, +0 Za ka+2b Wi,
L-1 @
+Z‘£ckp W, [+Hy,,
p:
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where

@ @ @ @ @ @
F _uljk (a' ule + a uMJk Ijk (bl Uiy + biN uiNk) I]k (C uljl +C. U, )

iL L
) 2 @ )
+u[(a uljk+a quk +( u,1k+biN uiNk)+(c Ujy +C; u,JL)J
v,

(6] @ @ (@)
ijk (bl Vllk +bNV|Nk) Ijk (C1V|11+C Vle)

_ (@) (l)
Gijk - _uijk (a Vljk + a k)
+u[(a(2)vl jFav ) + (b‘z)v,lk +b®viy )+ ) (c‘z)vIJl +cvy, )}
_ @ @ (1) @ @ @
Hijk - _uijk (a lek + a Mjk) Ijk ( Vvllk +b WINk) Wijk (C lel +C WIJL)

1
(2) (2) (2) @) @ @)
+R—e[(ail Wy +an WMjk)+(bi1 Wiy + b5 wiNk)+(c Wy, +C WIJL)].

The Equations (28) can also be written as

du, dv, dw;
d_tlkzl_l(uijk),d_t'k:Lz( uk)and dt :LS(uiJ'k)' (30)

Finally “SSP-RK54” (Gottlieb et al., 2009) is applied to integrate Equations (27) and (30).
5. Stability Analysis

For linearizing the non-linear terms of CBEs, we assume U, V and W as locally constant (Saka
et al., 2009). The discretized CBEs (26) are converted into

M -1 N-1 M -1 N-1

_ W, _ W @ @

=-U, Z; aluy, VijZ;b,.,, Usy +1{2 al?u,, +Z;bjp uip} Fi
p= p= p= p=

31
V.. M -1 N-1 M - (31)
E“ =-U; > a%u, =V, > b%u, +o Z alu + Zb‘z)u +G;.
p=2 p=2 p=2
The system of ODEs (31) can also be expressed as
djw} [A O
— = Wi+iK¢, 32
L[ et -
where

(i) The vector {K} =(F,G )T contains non-homogeneous part and B.C.’s.
(i) The null matrices are represented by O.

(i) W}=U.V)".

{A: U, A -V,B,+0A, +0B,,

(iv) ! ! ! !
B=-U,A -V,B/+0A + 0B},
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where A and B, are (N —2)(M —2) order square matrices as

[ 4 (r) (r) 1
azz I aza I aZ(N—l)I Hr O ... O
(r) (r) (r)
A= a’l a’l ... al’l B _ O H, ... O
: : . : SR A
a” 1 a” 1 ... a” | O O .. H,
| (N2 (N-1)3 (N-1)(N-1) |
where
NG (n n 7
b b’ T Y
t)(r) t)(r) . k)(r)
Hr — 32 33 3(M-1)
b(r) b(r) b(r)
L (M2 M3 T (M-1)(M-1) _|
The discretized CBEs (29) are converted into
du, N A0 N O )
at Uy > aug, =V > bPu Wy, > cluy, +
p=2 p=2 p=2
(2) (2) (2)
{Za upjk+Zb u,pk+Zc u, } ”
p=2
aVi (1) N " 0
dt —UukZa v, V,JKZb Vi =Wy D c0v;, +
P (33)
M
(2) (2) )
z{Za vpjk+2b v,pk+Zc 7 } "
2
o N a0 N O N7 )
ij
d—:—Uiijam Wi =V 200w, W“ch W, +
t p=2 p=2
A0 @y =@
) Zap ijk+Zb ,pk+2ckp W, [+Hy,
p=2 p=2
The system of ODEs (33) can also be represented as
g u A O Ollu F
pm v ={O B Oflv |+ G|, (34)
w O O Cl|lw H
where
(i) The O's represents null matrices.

(i) The vector (F,G,H)T contains non-homogeneous parts and B.C.’s.
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A=_UijkA1_VijkA2_WijkA3+RieA4+RieA5+RieA¥i’

(iii) B=-U.B -V.B -W_B +iB +iB +iB
ijk P1 ™ Vijk P2 k3T Re * " Re ° Re

c=-u.,C -V.C, -W.C +LC +iC —l—iC
ijk =1 Vijk =2 k3T Re "t T Re ° Re Y

where A's (i=1t06)are (M—2)(N—2)(L—2) order square matrices as given below:

(€] (€] 1)
a_ ly aly o Ayl S o
a®l a®l c? 1 $
_ 32 X 33 X 3(L-1) X
A = , O Ry ... O
@) @) (€]
a | a | ... a |
| (m-1)2 X (M-13 X M-1(M-1) X | _O o .. Ry_
where
Ne @) @ ]
b1, bO1, . b1,
b®] b®] ... b®
R — 32 Y 33 Y 3(L-1) Y
y . . . .
1) | (1) | (€]
_b(N—l)Z y b(N—l)3 y v b(N—l)(N—l) Y
and
p® p® p®
R O ... O 22 23 2D
Z
b(l) b(l) . b(2)
A3 _ O RZ @) ’ where Rz _ 32 33 3(L-1)
O O .. R H® H® H®
| (L-1)2 (L-np3 (L-1)(L-1) |

The matrices A,, A, A, are similar to the matrices A,;, A,, A, respectively. Similarly B; and

C, (i=1 to 6) are defined. For stability analysis, the Eigenvalues (E.V.) of matrices are
calculated and shown in Figure 1.
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100 : ‘ : 1
v h=0.05 « h=0.05
E 50| + h=0.025 + 0.5 = h=10.025
= h=0.02 g —h =0.02
e 2
g 0 E 0 e
= =50 —-05
-100 : ‘ : Al ‘ -
-1 -0.5 0 0.5 1 -2 -1 0 1
Real part <107 Real part w«10%
(@) (b)

Figure 1. Eigenvalues of (a) matrix A and (b) matrix A,

As the E.V. of —(U; A +V;;B,) are imaginary and of (A, +B,) are real and negative. So, we get

negative real parts (r.p.) of all E.V. of A. Also, the matrices A,,B/,A),B; and A,B,, A,,B, are

same. Therefore, the r.p. of all E.V. of the coefficient matrix of the system (32) are negative.
Similarly, we can obtain the E.V. of the coefficient matrix of the system (34). As all the E.V. of
the coefficient matrix of the system (32) satisfy the conditions of stability, hence the present
method is unconditionally stable for CBEs.

6. Numerical Discussion
We consider three examples of CBEs in two and three dimensions. The analysis of errors is done
by L,and L_ error norms, defined below:

L, =\/hZ|Ui_ui 7, L, =max|U;—u].
i-L :

Example 1. Take the CBEs (1) in [0,1]x[0,1] with the exact solution
1
4[1+exp((~t—4x+4y)Re) |’
1
4| 1+exp((1/32)(-t—4x+4y)Re) |

u=0.75-

(35)

v=0.75+

The solution of Example 1 is evaluated with the parameters: At =0.0001, v =107 att=1.0
for various grids and given in Tables 1 and 2 . The “rate of convergence” (ROC) is also
calculated. As we can see from Tables 1 and 2 that the present method achieves superior results
than obtained by Expo-FDM (Srivastava et al., 2013c) and almost similar results obtained by
MCB-DQM (Shukla et al., 2014). Also we found that the ROC of the method is more than
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quadratic. Figure 2 shows the solutions (humerical and exact) comparison for v=107, At=
0.000latt=1.0.

Table 1. Error norms and ROC for component u

_ L, L,
Grids
Expo-FDM Present method Expo-FDM Present method
ROC ROC
4x4 8.570e-02 1.645e-02 - 9.704e-02 2.895e-03 -
8x8 4.942e-02 1.932¢-03 3.09 4.688e-02 1.964e-04 3.88
16 x 16 1.919e-02 3.950e-04 2.29 2.046e-02 2.050e-05 3.26
32x32 8.681e-03 8.122e-05 2.28 9.074e-03 2.221e-06 3.20
64 x 64 - 1.540e-05 2.40 - 2.187e-07 3.34
Table 2. Error norms and ROC for component v
. L, L,
Grids
Expo-FDM Present method Expo-FDM Present method
ROC ROC
4x4 8.570e-02 1.645e-02 - 9.704e-02 2.895e-03 -
8x8 4.943e-02 1.932¢-03 3.09 4.688e-02 1.964e-04 3.88
16 x 16 1.919e-02 3.950e-04 2.29 2.047e-02 2.050e-05 3.26
32x32 8.687e-03 8.122e-05 2.28 9.081e-03 2.221e-06 3.20
64 x 64 - 1.540e-05 2.40 - 2.187e-07 3.34
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Exact for component u

Numerical for component u

.S
s\)}\ N

N

NN
N

N
NN
W

/

NN
N
Exact for component v

Numerical for component v

Figure 2. The solutions comparison of Example 1 for u and v respectively

Example 2. Now we consider CBEs (1) in the domain [0,0.5]x[0,0.5] with I.C.’s
u=sinzx+coszy, v=x+y att=0
and B.C.’s

u=cos(ry), v=yatx=0

u=1+sin(zx), v=xaty=0

u=1+cos(zy), v=05+yatx=05"

u=sin(zx), v=05+xaty=0.5

(36)

The solutions of Example 2 are shown in Table 3 as a comparison with the solutions obtained by
Expo-FDM (Srivastava et al., 2013c) and MCB-DQM (Shukla et al., 2014) for v =0.02, grids

20x20 and At =0.0001 at t=0.625. We found a closed agreement between the results. The
physical behaviours of solutions are represented in Figure 3 for v =0.01, At=0.0001 and
h=0.05 attime t =1.
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Table 3. Comparison of the solutions at t =0.625

i)

Crid u v

Expo-FDM MCB-DQM Present Expo-FDM MCB-DQM Present
0.1,0.1) 0.9715 0.9706 0.9705 0.0987 0.0984 0.0984
(0.3,0.1) 1.1528 1.1515 1.1515 0.1416 0.1410 0.1411
0.2,0.2) 0.8631 0.8624 0.8624 0.1675 0.1673 0.1673
(0.4,0.2) 0.9798 0.9807 0.9808 0.1711 0.1722 0.1722
(0.1,03) 0.6632 0.6633 0.6634 0.2638 0.2638 0.2638
(0.3,0.3) 0.7723 0.7722 0.7723 0.2265 0.2265 0.2265
(0.2,0.4) 0.5818 0.5827 0.5827 0.3285 0.3293 0.3294
(0.4,0.4) 0.7586 0.7617 0.7618 0.3250 0.3288 0.3288
s 2
[
§ 1.5 -

—
Fl

Sol. for com
o
(9,]

<
wno

Sol. for component v

Example 3: Finally take the CBEs (4) with the exact solution
2 2 2
u=——(Ff/f),v=—arol = /f), w=——(F /),

Re( x/ ) Re( Y/ ) Re( z/ )

where f =e™'sinx siny sinz+x+1.

Figure 3. The physical behaviour of the numerical solutions for Example 2 at t=1

(37)

Table 4 shows the L and L,errors for h=0.04, At=0.01, t=1.0 at different Re, where
h = Ax = Ay = Az . The obtained error norms are small which shows that the method presented in
this paper gives accurate results. Figure 4 shows contour plots of u, v and w for Re =100 with

z=0.5.
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Table 4. The L and L, error norms

i)

Re Error norms u v W
102 L 2.1903e-06 3.5236e-05 3.5236e-05
|_2 7.8066e-04 5.4508e-03 5.4508e-03
103 L 3.4657e-07 7.0278e-07 7.0278e-07
|_2 1.1998e-04 1.5859¢-04 1.5859¢e-04
104 L 3.8335e-08 4.2985e-08 4.2985e-08
|_2 1.3185e-05 1.3894e-05 1.3894e-05
1 ‘ “‘
(a)! ()h!e“‘ ()
Il
0.6/
> i/
041
|
0.2
0"
0.5 | 0 0.5 1
xr xIr
1 - 1
§
0.8 (,Pﬁ 0.8 (d)-
0.6 0.6
= >
0.4 0.4}
02 02 [/
0 : 0! Lt
0 0.5 1 0 0.5 1
xr xT
1 1
0.8 08"
0.6 0.6
= >
0.4} 0.4+
0.2} 0.2
0 0
0 0.5 1 0 0.5 1

r

b

Figure 4. Contour plots (a ), (c) and (e) numerical (b), (d) and (f) exactfor u, v andw respectively with
z=0.5for Re=100
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7. Conclusion

In this work, the CBEs in two and three dimensions are solved via DQM based on modified form
of TCB shape functions. The modified TCB shape functions are used for integration of space
derivatives. Thus, the CBEs are transformed into the form of integral equations. These integral
equations are solved by SSP-RK54 method. The analysis of the method is done through three
examples. The different error norms are obtained and compared with the error norms of Expo-
FDM (Srivastava et al., 2013c) and MCB-DQM (Shukla et al., 2014) for two dimensional
problems. We found a good quality conformity between the solutions obtained by present and
aforesaid methods. The ROC and stability analysis show that the method is quadratic convergent
and stable unconditionally for CBEs.
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