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Abstract 

This paper tries to trace our research history briefly from Barlow and Proschan to attain general replacement models. 

We begin with a random age replacement policy that is planned at a random time 𝑌 and call it as random replacement. 

When the distribution of 𝑌 becomes a degenerate distribution placing unit mass at 𝑇, age replacement is formulated. 

We obtain the general formulas for optimum replacement times. We next suppose the unit works for a job with random 

works, and replacement policies with 𝑁 cycles are discussed. As follows, we combine age and random replacement 

models and discuss replacement first, replacement last, replacement overtime, replacement overtime first and 

replacement overtime last. By formulating the distributions of replacement times with 𝑛  variables, general 

replacement models with 𝑛 replacement times are obtained. 

 

Keywords- Age replacement, Replacement first, Replacement last, Replacement overtime, General replacement. 

 

 

 

1. Introduction 
Most basic model in maintenance theory is age replacement, in which we plan to replace an 

operating unit before failure at an optimum time 𝑇∗ to minimize the expected replacement cost 

rate. Since Barlow and Proschan (Barlow and Proschan, 1996) have introduced age replacement 

model in 1965, a great number of age replacement models have been discussed by researchers for 

a half century, which have been summarized (Barlow, and Proschan, 1996; Nakagawa, 2005; 

Sarkar et al., 2011). Recently, we have proposed several new notions of age replacement such as 

random replacement, replacement first, replacement last, replacement overtime, and replacement 

middle (Nakagawa, 2014; Zhao and Nakagawa, 2012; Nakagawa and Zhao, 2015; Zhao et al., 

2015). General replacement models combing age and random replacement policies with 𝑛 

replacement times have been studied (Chen et al., 2016). 

 

This paper has an object of tracing our research history briefly from Barlow and Proschan 

(Barlow and Proschan, 1996) to attain general replacement models, which is shown in Fig. 1. 
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Fig. 1. The evolution of age replacement policies 

 

 

 

In Section 2, general assumptions are given for modelings. In Section 3, we introduce age and 

random replacement models (Barlow and Proschan, 1996). In Sections 4-6, we give models of 

replacement first, replacement last, replacement overtime and replacement middle, respectively, 

and compare their optimum policies analytically. When the costs of preventive replacement are 

the same, age replacement is most economical than others. However, when a unit works for a job 

with random works, it is not wise in practice to stop its operation and to replace it at the optimum 

time, e.g., planned time 𝑇. In this situation, replacement overtime would be better than others. In 

Section 7, we propose general replacement policies and call them as redundant maintenances in 

general forms, as their distributions of replacement times agree with the failure distributions of a 

series system and a parallel system with 𝑛 units. 

 

2. General Assumptions 

We suppose that an operating unit has a failure distribution 𝐹(𝑡) with finite mean 𝜇 ≡ ∫
∞

0

�̅�(𝑡)𝑑𝑡, where φ̅(𝑡) ≡ 1 − φ(𝑡) for any distribution φ(𝑡). Denote that 𝐹(𝑡) has a density 

function 𝑓(𝑡) ≡ d𝐹(𝑡)/d𝑡 , i.e., 𝐹(𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
, and suppose the failure rate ℎ(𝑡) ≡

𝑓(𝑡)/�̅�(𝑡) for �̅�(𝑡) < 1 increases strictly from ℎ(0) ≡ 0 to ℎ(∞) ≡ lim
𝑡→∞

ℎ(𝑡) = ∞. 

 

In addition, we suppose the unit operates for an infinite time horizon by means of replacement. 

All times for corrective replacement and preventive replacement are supposed to be neglected and 

their costs are constantly given respectively. Our objective is to find optimum preventive 

replacement times to minimize the expected cost rates. 
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3. Age and Random Replacement Models  
Suppose that an operating unit is replaced at a random time 𝑌(0 < 𝑌 ≤ ∞) or at failure, 

whichever occurs first. The random variable 𝑌  has a general distribution 𝐺(𝑡)  and is 

independent with the failure time 𝑋. We call this policy as random replacement. The expected 

cost rate is (Barlow and Proschan, 1996; Nakagawa, 2014) 

 

𝐶(𝐺) =
𝑐𝑅+(𝑐𝐹−𝑐𝑅) ∫ �̅�(𝑡)𝑑𝐹(𝑡)

∞

0

∫ �̅�(𝑡)�̅�(𝑡)𝑑𝑡
∞

0

,                                                   (1) 

 

where 𝑐𝑅 = replacement cost at time 𝑌, 𝑐𝐹 = replacement cost at failure and 𝑐𝐹 > 𝑐𝑅. 

 

It has been shown (Barlow and Proschan, 1996; Nakagawa, 2014) that C(G) can be rewritten as 

 

𝐶(𝐺) =
∫ 𝑄(𝑡)𝑑𝐺(𝑡)

∞

0

∫ 𝑆(𝑡)𝑑𝐺(𝑡)
∞

0

 , 

where 

𝑄(𝑡) ≡ 𝑐𝑅 + (𝑐𝐹 − 𝑐𝑅)𝐹(𝑡)  and  𝑆(𝑡) ≡ ∫ �̅�(𝑢)𝑑𝑢
𝑡

0

. 

 

Suppose that there exits a minimum value 𝑇 (0 < 𝑇 ≤ ∞) for Q(𝑡) S(𝑡)⁄  ≥ Q(𝑇) S(𝑇)⁄ , i.e., 

 

∫ 𝑄(𝑡)𝑑𝐺(𝑡) ≥
𝑄(𝑇)

𝑆(𝑇)
∫ 𝑆(𝑡)𝑑𝐺(𝑡)

∞

0

∞

0

. 

 

Thus, 

𝐶(𝐺) ≥
𝑄(𝑇)

𝑆(𝑇)
≥ 𝐶(𝐺𝑇), 

 

where 𝐺𝑇(𝑡) is the degenerate distribution placing unit mass at 𝑇, i.e., 𝐺𝑇(𝑡) ≡ 1 for 𝑡 ≥ 𝑇 

and 𝐺𝑇(𝑡) ≡ 0 for 𝑡 < 𝑇. If 𝑇 = ∞, then the unit is replaced at failure. 

 

It was written in (Barlow and Proschan, 1996) that the elegant proof was due to S. Karlin, who 

was the author of (Karlin and Taylor, 1975). This is very easy and simple, however, it could not 

be occurred to anybody from (1). In other words, if preventive replacement costs are equal, the 

policy at time 𝑇 is superior to other ones, which will be shown theoretically in the following 

sections. 

 

Suppose the unit is replaced at time 𝑇  or at failure, whichever occurs first. We call this policy 

as age replacement, and the expected cost rate is 

 

𝐶(𝑇) =
𝑐𝑇+(𝑐𝐹−𝑐𝑇)𝐹(𝑇)

∫ �̅�(𝑡)𝑑𝑡
𝑇

0

,                                                         (2) 

 

where 𝑐𝑇 =  replacement cost at time 𝑇  with 𝑐𝑇 < 𝑐𝐹 . Optimum 𝑇∗  to minimize 𝐶(𝑇) 

satisfies 
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ℎ(𝑇) ∫ �̅�
𝑇

0

(𝑡)𝑑𝑡 − 𝐹(𝑇) =
𝑐𝑇

𝑐𝐹 − 𝑐𝑇
, 

or 

 

∫ �̅�
𝑇

0
(𝑡)[ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡 =

𝑐𝑇

𝑐𝐹−𝑐𝑇
,                                                (3) 

 

which is the standard formula of deriving optimum age replacement time, and the resulting cost 

rate is 

 

𝐶(𝑇∗) = (𝑐𝐹 − 𝑐𝑇)ℎ(𝑇∗).                                                       (4) 

 

Equation (3) means physically that optimum replacement time satisfies: Failure rate × Mean 

replacement time − Failure probability = Replacement cost ratio. This general formula will be 

shown in all sections. 

 

Next, the unit works for a job with working cycles 𝑌𝑗 (𝑗 = 1,2 ⋯ ), where 𝑌𝑗 are independent 

and have an identical distribution 𝐺(𝑡) ≡ Pr{𝑌𝑗 ≤ 𝑡} with finite mean 1 𝜃⁄ ≡ ∫ 𝐺(𝑡) 𝑑𝑡
∞

0
. It is 

assumed that 𝐺(𝑗)(𝑡) ≡ Pr{𝑌1 + 𝑌2 + ⋯ + 𝑌𝑗 ≤ 𝑡}(𝑗 = 1, 2, ⋯ )  is the 𝑗 -fold Stieltjes 

convolution of 𝐺(𝑡) with itself and 𝐺(0)(𝑡) ≡ 1 for 𝑡 ≥ 0. 

 

Suppose that the unit is replaced at cycle 𝑁 or at failure, whichever occurs first. We also call this 

policy as random replacement, and the expected cost rate is (Nakagawa, 2014). 

 

𝐶(𝑁) =
𝑐𝑁+(𝑐𝐹−𝑐𝑁) ∫ [1−𝐺(𝑁)(𝑡)]𝑑𝐹(𝑡)

∞

0

∫ [1−𝐺(𝑁)(𝑡)]�̅�(𝑡)𝑑𝑡
∞

0

                                              (5) 

 

where 𝑐𝑁 = replacement cost at cycle 𝑁 with 𝑐𝑁 < 𝑐𝐹. The expected cost rate 𝐶(𝑁) is easily 

obtained by replacing 𝐺(𝑡) and 𝑐𝑅 in (1) with 𝐺(𝑁)(𝑡) and 𝑐𝑁, respectively. 

 

Optimum 𝑁∗ to minimize 𝐶(𝑁) satisfies 

 

∫ [1 − 𝐺(𝑁)(𝑡)]�̅�(𝑡)[𝑄(𝑁) − ℎ(𝑡)]𝑑𝑡 ≥
𝑐𝑁

𝑐𝐹−𝑐𝑁

∞

0
,                                     (6) 

 

where 

 

𝑄(𝑇, 𝑁) =
∫ [𝐺(𝑁)(𝑡) − 𝐺(𝑁+1)(𝑡)]𝑑𝐹(𝑡)

𝑇

0

∫ [𝐺(𝑁)(𝑡) − 𝐺(𝑁+1)(𝑡)]�̅�(𝑡)𝑑𝑡
𝑇

0

< ℎ(𝑇), 

 

and 𝑄(𝑁) ≡ lim𝑇→∞𝑄(𝑇, 𝑁). 
 

In particular, when 𝐺(𝑡) = 1 − 𝑒−𝜃𝑡, 
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𝑄(𝑇, 𝑁) =
∫ (𝜃𝑡)𝑁𝑒−𝜃𝑡𝑑𝐹(𝑡)

𝑇

0

∫ (𝜃𝑡)𝑁𝑒−𝜃𝑡�̅�(𝑡)𝑑𝑡
𝑇

0

 

 

increases strictly with 𝑁 to ℎ(𝑇) and increases with 𝑇 to 𝑄(∞, 𝑁) [4]. When ℎ(∞) = ∞ 

and 𝐺(𝑡) = 1 − 𝑒−𝜃𝑡, both optimum 𝑇∗ and 𝑁∗ to satisfy (3) and (6) exist. 

 

4. Replacement First and Last 

4.1 Replacement First 
Suppose the unit is replaced preventively at 𝑇 or at cycle 𝑁 , whichever occurs first. Then, the 

expected cost rate is (Nakagawa, 2014) 

 

𝐶𝐹(𝑇, 𝑁) =
𝑐𝑇+(𝑐𝐹−𝑐𝑇) ∫ [1−𝐺(𝑁)(𝑡)]𝑑𝐹(𝑡)+(𝑐𝑁−𝑐𝑇)

𝑇

0 ∫ �̅�(𝑡)𝑑𝐺(𝑁)(𝑡)
𝑇

0

∫ [1−𝐺(𝑁)(𝑡)]�̅�(𝑡)𝑑𝑡
𝑇

0

.                          (7) 

 

Clearly, lim𝑁→∞𝐶𝐹(𝑇, 𝑁) = 𝐶(𝑇) in (2) and lim𝑇→∞𝐶𝐹(𝑇, 𝑁) = 𝐶(𝑁) in (5). 

 

When 𝑐𝑇 = 𝑐𝑁, differentiating 𝐶𝐹(𝑇, 𝑁) with respect to 𝑇 and setting it equal to zero, 

 

∫ [1 − 𝐺(𝑁)(𝑡)]𝐹(𝑡)[ℎ(𝑇) − ℎ(𝑡)] 𝑑𝑡 =
𝑇

0

𝑐𝑇

𝑐𝐹−𝑐𝑇
.                                      (8) 

 

The left-hand side increases with 𝑇 to ∞. Thus, there exists a unique 𝑇𝐹
∗ (0 < 𝑇𝐹

∗ < ∞) which 

satisfies (8), and 

 

 𝐶𝐹(𝑇𝐹
∗, 𝑁) = (𝑐𝐹 − 𝑐𝑇)ℎ(𝑇𝐹

∗).                                                   (9) 

 

The left-hand side of (8) increases strictly with 𝑁 to that of (3), 𝑇𝐹
∗ 

decreases strictly to 𝑇∗ in 

(3). 

 

Forming the inequality 𝐶𝐹(𝑇, 𝑁 + 1) − 𝐶𝐹(𝑇, 𝑁) ≥ 0, 

 

∫ [1 − 𝐺(𝑁)(𝑡)]�̅�(𝑡)[𝑄(𝑇, 𝑁) − ℎ(𝑡)
𝑇

0
]dt ≥

𝑐𝑇

𝑐𝐹−𝑐𝑇
.                                  (10) 

 

Substituting (8) for (10), 

 

Q(𝑇, 𝑁) ≥ ℎ(𝑇), 
 

which does not hold for any 𝑁, i.e., 𝑁𝐹
∗ = ∞. Thus, optimum policy to minimize 𝐶𝐹(𝑇, 𝑁) is 

(𝑇𝐹
∗ = 𝑇∗, 𝑁𝐹

∗ = ∞), where 𝑇∗ 
is given in (3). This shows that when the costs of preventive 

replacement are the equal, age replacement is more economical than the random policy. 

 

Furthermore, if 𝑄(𝑇, 𝑁) increases with 𝑁 to ℎ(𝑇), then the left-hand side of (10) increases 

with 𝑁 to that of (3). Thus, if 𝑇 > 𝑇∗, then there exists a unique minimum 𝑁𝐹
∗ (1 ≤ 𝑁𝐹

∗ < ∞) 

which satisfies (10), and decreases with 𝑇 to 𝑁∗ given in (6). Conversely, if 𝑇 ≤ 𝑇∗, then 

𝑁𝐹
∗ = ∞. 
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4.2 Replacement Last 
Suppose the unit is replaced at 𝑇  or at cycle 𝑁, whichever occurs last. Then, the expected cost 

rate is (Nakagawa, 2014) 

 

𝐶𝐿(𝑇, 𝑁) =
𝑐𝑇+(𝑐𝐹−𝑐𝑇){𝐹(𝑇)+∫ [1−𝐺(𝑁)(𝑡)] 𝑑𝐹(𝑡)}+(𝑐𝑁−𝑐𝑇) ∫ �̅�(𝑡)𝑑𝐺(𝑁)(𝑡)

∞

𝑇

∞

𝑇

∫ �̅�(𝑡)𝑑𝑡+∫ [1−𝐺(𝑁)(𝑡)
∞

𝑇

𝑇

0
]�̅�(𝑡)𝑑𝑡

.                   (11) 

 

Clearly, lim𝑇→0𝐶𝐿(𝑇, 𝑁) = lim𝑇→∞𝐶𝐹(𝑇, 𝑁) and lim𝑁→0𝐶𝐿(𝑇, 𝑁) = lim𝑁→∞𝐶𝐹(𝑇, 𝑁). 

 

When 𝑐𝑇 = 𝑐𝑁, differentiating C𝐿(𝑇, 𝑁) with respect to 𝑇 and setting it equal to zero, 

 

∫ 𝐹(𝑡)[ℎ(𝑇) − ℎ(𝑡)]
𝑇

0
𝑑𝑡 − ∫ [1 − 𝐺(𝑁)(𝑡)]

∞

𝑇
𝐹(𝑡)[ℎ(𝑡) − ℎ(𝑇)] 𝑑𝑡 =

𝑐𝑇

𝑐𝐹−𝑐𝑇
.             (12) 

 

The left-hand side of (12) increases with 𝑇  to ℎ(∞) = ∞ . Thus, there exists a unique 

𝑇𝐿
∗(0 < 𝑇𝐿

∗ < ∞) which satisfies (12), and 

 

𝐶𝐿(𝑇𝐿
∗, 𝑁) = (𝑐𝐹 − 𝑐𝑇)ℎ(𝑇𝐿

∗).                                                   (13) 

 

Letting 𝐿𝐹(𝑇) and 𝐿𝐿(𝑇) be the left-hand sides of (8) and (12), 

 

𝐿𝐿𝐹(𝑇) = 𝐿𝐿(𝑇) − 𝐿𝐹(𝑇) 
 

= ∫ 𝐺(𝑁)(𝑡)�̅�(𝑡)𝑡[ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡 − ∫ [1 − 𝐺(𝑁)(𝑡)]�̅�(𝑡)[ℎ(𝑡) − ℎ(𝑇)]𝑑𝑡,
∞

𝑇

𝑇

0

 

 

which increases strictly with 𝑇 from 𝐿𝐿𝐹(0) < 0 to ∞. Thus, there exists a unique 𝑇𝐴
∗ which 

satisfies 𝐿𝐿𝐹(𝑇) = 0, and 𝑇𝐴
∗ increases with 𝑁 to ∞. Thus, if 𝐿𝐹(𝑇𝐴

∗) ≥ 𝑐𝑇 (𝑐𝐹 − 𝑐𝑇)⁄ , then 

𝑇𝐹
∗ ≤ 𝑇𝐿

∗, and hence, from (9) and (13), replacement first is more economical than replacement 

last. 

 

If 𝐿𝐹(𝑇𝐴
∗) < 𝑐𝑇 (𝑐𝐹 − 𝑐𝑇)⁄ , then 𝑇𝐿

∗ < 𝑇𝐹
∗, and replacement last is more economical. This means 

that if the ratio of 𝑐𝑇/(𝑐𝐹 − 𝑐𝑇) is large, we adopt replacement last, and if 𝑁  is large, 

replacement first is adopted. 

 

5. Replacement Overtime 
We suppose the unit is replaced preventively at the first completion of working cycles 𝑌𝑗 (𝑗 =

1,2 ⋯ ) over 𝑇 . We call this policy as replacement overtime, and the expected cost rate is 

(Nakagawa and Zhao, (2015). 

 

𝐶𝑂(𝑇) =
𝑐𝑂+(𝑐𝐹−𝑐𝑂) ∑ ∫ [∫ 𝐹(𝑡+𝑢)𝑑𝐺(𝑢)]𝑑𝐺(𝑗)(𝑡)

∞

𝑇−𝑡

𝑇

0
∞
𝑗=0

∑ ∫ [∫ �̅�(𝑢)�̅�(𝑡+𝑢)𝑑𝑢]𝑑𝐺(𝑗)(𝑡)
∞

0

𝑇

0
∞
𝑗=0

,                                  (14) 

 

where 𝑐𝑂 = replacement cost over 𝑇 with 𝑐𝑂 < 𝑐𝐹. Optimum 𝑇𝑂
∗ 

satisfies 
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�̃�(𝑇) ∑ ∫ [∫ �̅�(𝑢)�̅�(𝑡 + 𝑢)𝑑𝑢
∞

0
]𝑑𝐺(𝑗)(𝑡)

𝑇

0
∞
𝑗=0                                       (15) 

− ∑ ∫ [∫ 𝐹(𝑡 + 𝑢)𝑑𝐺(𝑢)
∞

𝑇−𝑡

] 𝑑𝐺(𝑗)(𝑡) =
𝑐𝑂

𝑐𝐹 − 𝑐𝑂

𝑇

0

∞

𝑗=0

, 

where 

 

�̃�(𝑇, 𝑁) ≡
∫ [𝐺(𝑁)(𝑡) − 𝐺(𝑁+1)(𝑡)]𝑑𝐹(𝑡)

∞

𝑇

∫ [𝐺(𝑁)(𝑡) − 𝐺(𝑁+1)(𝑡)]�̅�(𝑡)𝑑𝑡
∞

𝑇

, 

 

and Q̃(𝑇) ≡ �̃�(𝑇, 0). 

 

When 𝐺(𝑡) = 1 − 𝑒−𝜃𝑡, (15) is 

 

�̃�1(𝑇) ∫ �̅�(𝑡)𝑑𝑡
𝑇

0
− 𝐹(𝑇) =

𝑐𝑂

𝑐𝐹−𝑐𝑂
,                                               (16) 

 

where 

 

�̃�1(𝑇) ≡
∫ 𝑒−𝜃𝑡𝑑𝐹(𝑡)

∞

𝑇

∫ 𝑒−𝜃𝑡�̅�(𝑡)𝑑𝑡
∞

𝑇

 

 

increases with 𝑇 to ℎ(∞) = ∞. Thus, there exists a unique 𝑇𝑂
∗ (0 < 𝑇𝑂

∗ < ∞) which satisfies 

(16), and the resulting cost rate is 

 

𝑐𝑂(𝑇𝑂
∗) = (𝑐𝐹 − 𝑐𝑂)�̃�1(𝑇𝑂

∗) =
𝑐𝑂+(𝑐𝐹−𝑐𝑂)𝐹(𝑇𝑂

∗ )

∫ �̅�(𝑡)𝑑𝑡
𝑇𝑂

∗

0

.                                     (17) 

 

Noting that �̃�1(𝑇) > ℎ(𝑇) for 0 ≤ 𝑇 < ∞, 𝑇𝑂
∗ 

< 𝑇∗, and hence, from (2) and (17), 𝑐𝑂(𝑇𝑂
∗) >

C(𝑇∗) when 𝑐𝑂 = 𝑐𝑇, i.e., age replacement is more economical than the overtime policy. 

 

5.1 Replacement Overtime First 
Suppose the unit is replaced over  𝑇 (0≤ 𝑇≤∞) or at cycle 𝑁 (𝑁 = 1,2, ⋯ ), whichever occurs 

first. Then, the expected cost rate is (Nakagawa and Zhao, X. 2015). 

 

𝐶𝑂𝐹(𝑇, 𝑁) =

𝑐𝑂+(𝑐𝐹−𝑐𝑂) ∑ ∫ {∫ [𝐹(𝑡+𝑢)−𝐹(𝑡)]𝑑𝐺(𝑢)
∞

0
}

𝑇

0
𝑑𝐺(𝑗)(𝑡)𝑁−1

𝑗=0

+(𝑐𝑁−𝑐𝑂) ∫ �̅�(𝑡)𝑑𝐺(𝑁)(𝑡)
𝑇

0

∑ ∫ [∫ �̅�(𝑢)�̅�(𝑡+𝑢)𝑑𝑢
∞

0
]

𝑇

0
𝑑𝐺(𝑗)(𝑡)𝑁−1

𝑗=0

.                           (18) 

 

Clearly, lim𝑇→∞𝐶𝑂𝐹(𝑇, 𝑁) = 𝐶(𝑁) in (5) and lim𝑁→∞𝐶𝑂𝐹(𝑇, 𝑁) = 𝐶𝑂(𝑇) in (14). 

 

When 𝐺(𝑡) = 1 − 𝑒−𝜃𝑡 
and 𝑐𝑂 = 𝑐𝑁, optimum 𝑇𝑂𝐹

∗  satisfies 

 

�̃�1(𝑇) ∑ ∫
(𝜃𝑡)𝑗

𝑗!
𝑒−𝜃𝑡�̅�(𝑡)𝑑𝑡

𝑇

0
𝑁−1
𝑗=0 − ∑ ∫

(𝜃𝑡)𝑗

𝑗!
𝑒−𝜃𝑡𝑑𝐹(𝑡)

𝑇

0
𝑁−1
𝑗=0 =

𝑐𝑂

𝑐𝐹−𝑐𝑂
.                    (19) 
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The left-hand side of (19) increases with 𝑇 to ℎ(∞). Thus, there exists a unique 𝑇𝑂𝐹
∗  (0 <

𝑇𝑂𝐹
∗ < ∞) which satisfies (19), and the resulting cost rate is 

 

𝐶𝑂𝐹(𝑇𝑂𝐹
∗ , 𝑁) = (𝑐𝐹 − 𝑐𝑂)�̃�1(𝑇𝑂𝐹

∗ ).                                               (20) 

 

Noting that the left-hand side of (19) increases strictly with 𝑁 to that of (16), 𝑇𝑂𝐹
∗  decreases 

strictly with 𝑁 to 𝑇𝑂
∗ 

given in (16). 

 

Forming the inequality 𝐶𝑂𝐹(𝑇, 𝑁 + 1) − 𝐶𝑂𝐹(𝑇, 𝑁) ≥ 0, 

 

𝑄2(𝑇, 𝑁 − 1) ∑ [
(𝜃𝑇)𝑗

𝑗!
∫ 𝑒−𝜃𝑡�̅�(𝑡)𝑑𝑡 + ∫

(𝜃𝑡)𝑗

𝑗!

𝑇

0

�̅�(𝑡)𝑑𝑡
∞

𝑇

]

𝑁−1

𝑗=0

 

− ∑ [
(𝜃𝑇)𝑗

𝑗!
∫ 𝑒−𝜃𝑡𝑑𝐹(𝑡)

∞

𝑇
+ ∫

(𝜃𝑡)𝑗

𝑗!
𝑒−𝜃𝑡𝑑𝐹(𝑡)

𝑇

0
]𝑁−1

𝑗=0 ≥
𝑐𝑂

𝑐𝐹−𝑐𝑂
,                          (21) 

 

where 

𝑄2(𝑇, 𝑁) ≡
∫ (𝜃𝑡)𝑁[∫ 𝑒−𝜃𝑢𝑑𝐹(𝑢)

∞

𝑡
]𝑑𝑡

𝑇

0

∫ (𝜃𝑡)𝑁𝑇

0
[∫ 𝑒−𝜃𝑢�̅�(𝑢)𝑑𝑢

∞

𝑡
]𝑑𝑡

< �̃�1(𝑇)  

 

increases strictly with 𝑁 to Q̃1(T) and increases with T (Nakagawa, 2014). Substituting (19) 

for (21), 

 

𝑄2(𝑇, 𝑁) ≥ �̃�1(𝑇), 
 

which does not hold for any 𝑁, i.e., 𝑁𝑂𝐹
∗ = ∞. Thus, optimum policy to minimize 𝐶𝑂𝐹(𝑇, 𝑁) is 

(𝑇𝑂𝐹
∗ = 𝑇𝑂

∗, 𝑁𝑂𝐹
∗ = ∞), where 𝑇𝑂

∗ is given in (16). This shows that when the costs of preventive 

replacement are equal, replacement overtime is more economical than random policy. 

 

Furthermore, noting that 𝑄2(𝑇, 𝑁) increase with 𝑁 to �̃�1(𝑇) (Nakagawa and Zhao, 2015), the 

left-hand side of (21) increase strictly with 𝑁 to that of (16). Thus, if 𝑇 > 𝑇𝑂
∗, then there exists a 

unique minimum 𝑁𝑂𝐹
∗  (1 ≤ 𝑁𝑂𝐹

∗ < ∞) which satisfies (21), and decrease with 𝑇 to 𝑁∗ given 

in (6). Conversely, if 𝑇 ≤ 𝑇𝑂
∗, then 𝑁𝑂𝐹

∗ = ∞. 

 

 

5.2 Replacement Overtime Last 
Suppose the unit is replaced over time 𝑇 or at cycle 𝑁, whichever occurs last. Then, the 

expected cost rate is (Nakagawa and Zhao, 2015). 

 

𝐶𝑂𝐿(𝑇, 𝑁) =

𝑐𝑂+(𝑐𝑁−𝑐𝑂) ∫ �̅�(𝑡)𝑑𝐺(𝑁)(𝑡)
∞

T
+(𝑐𝐹−𝑐𝑂)(∫ 𝐹(𝑡)𝑑𝐺(𝑁)(𝑡)

∞

0

+ ∑ ∫ {∫ [𝐹(𝑡+𝑢)−𝐹(𝑡)]𝑑𝐺(𝑢)
∞

0
}

𝑇

0
∞
𝑗=𝑁 𝑑𝐺(𝑗)(𝑡))

∫ [1−𝐺(𝑁)(𝑡)]�̅�(𝑡)𝑑𝑡
∞

0
+∑ ∫ [∫ �̅�(𝑢)�̅�(𝑡+𝑢)𝑑𝑢

∞

0
]𝑑𝐺(𝑗)(𝑡)

𝑇

0
∞
𝑗=𝑁

.                        (22) 

 

Clearly, lim𝑇→0𝐶𝑂𝐿(𝑇, 𝑁) = C(𝑁) in (5) and lim𝑁→0𝐶𝑂𝐿(𝑇, 𝑁) = 𝐶𝑂(𝑇) in (14). 

 

When 𝐺(𝑡) = 1 − 𝑒−𝜃𝑡 and 𝑐𝑂 = 𝑐𝑁, optimum 𝑇𝑂𝐿
∗  satisfies 
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�̃�1(𝑇) ∑ ∫
(𝜃𝑡)𝑗

𝑗!
𝑒−𝜃𝑡�̅�(𝑡)𝑑𝑡

∞

𝑇
𝑁−1
𝑗=0 − ∑ ∫

(𝜃𝑡)𝑗

𝑗!

∞

𝑇
𝑒−𝜃𝑡𝑑𝐹(𝑡)𝑁−1

𝑗=0                           (23) 

+�̃�1(𝑇) ∫ �̅�(𝑡)𝑑𝑡
𝑇

0
− 𝐹(𝑇) =

𝑐𝑂

𝑐𝐹−𝑐𝑂
. 

 

The left-hand side increase with 𝑇 to ℎ(∞) = ∞. Thus, there exists a unique 𝑇𝑂𝐿
∗ (0 < 𝑇𝑂𝐿

∗ <
∞) which satisfies (23), and 

 

𝐶𝑂𝐿(𝑇𝑂𝐿
∗ , N) = (𝑐𝐹 − 𝑐𝑂)�̃�1(𝑇𝑂𝐿

∗ ).                                               (24) 

 

Noting that the left-hand side of (23) increase with 𝑁 from that of (16), 𝑇𝑂𝐿
∗  decreases with 𝑁 

from 𝑇𝑂
∗ given in (16). 

 

Forming the inequality 𝐶𝑂𝐿(𝑇, 𝑁 + 1) − 𝐶𝑂𝐿(𝑇, 𝑁) ≥ 0, 
 

�̃�2(𝑇, 𝑁 − 1) [∫ �̅�(𝑡)𝑑𝑡 + ∑ ∫
(𝜃𝑡)𝑗

𝑗!
𝑒−𝜃𝑡�̅�(𝑡)𝑑𝑡

∞

𝑇
+ ∑

(𝜃𝑡)𝑗

𝑗!
∫ 𝑒−𝜃𝑡�̅�(𝑡)𝑑𝑡

∞

𝑇
∞
𝑗=𝑁

𝑁−1
𝑗=0

𝑇

0
] −

∑ [
(𝜃𝑡)𝑗

𝑗!
∫ 𝑒−𝜃𝑡𝑑𝐹(𝑡)

∞

𝑇
− ∫

(𝜃𝑡)𝑗

𝑗!
𝑒−𝜃𝑡𝑑𝐹(𝑡)

∞

𝑇
] − 1 ≥

𝑐𝑂

𝑐𝐹−𝑐𝑂

∞
𝑗=𝑁 ,                        (25) 

 

where 

 

�̃�2(𝑇, 𝑁) ≡
∫ (𝜃𝑡)𝑁[∫ 𝑒−𝜃𝑢𝑑𝐹(𝑢)

∞

𝑡
]𝑑𝑡

∞

𝑇

∫ (𝜃𝑡)𝑁[∫ 𝑒−𝜗𝑢�̅�(𝑡)𝑑𝑢
∞

𝑡
]𝑑𝑡

∞

𝑇

< �̃�1(𝑇), 

 

increases with N from �̃�1(𝑇) and increases with T to ℎ(∞). Substituting (23) for (25), 

 

�̃�2(𝑇, 𝑁 − 1) ≥ �̃�1(𝑇), 
 

which always holds for any T, i.e., 𝑁𝑂𝐿
∗ = 0. Thus, optimum policy to minimize 𝐶𝑂𝐿(𝑇, 𝑁) is 

(𝑇𝑂𝐿
∗ = 𝑇𝑂

∗, 𝑁𝑂𝐿
∗ = ∞), where 𝑇𝑂

∗ is given in (16). This shows that when the costs of preventive 

replacement are equal, replacement overtime is more economical than random policy. 

 

Furthermore, noting that �̃�2(𝑇, 𝑁) increases with N from �̃�1(𝑇), the left-hand side of (25) 

increase with N from 

 

 

�̃�2(𝑇, 0) [∫ �̅�(𝑡)𝑑𝑡
𝑇

0

+ ∫ 𝑒−𝜃(𝑡−𝑇)�̅�(𝑡)𝑑𝑡
∞

𝑇

] + ∫ [1 − 𝑒−𝜃(𝑡−𝑇)]𝑑𝐹(𝑡)
∞

𝑇

− 1

≥ �̃�1(𝑇) ∫ �̅�(𝑡)𝑑𝑡
𝑇

0

− 𝐹(𝑇), 

 

 

which agrees with that of (16). Thus, if 𝑇 < 𝑇𝑂
∗, then there exists a unique and minimum 

𝑁𝑂𝐿
∗ (1 ≤ 𝑁𝑂𝐹

∗ < ∞)  which satisfies (25), and decreases with T from 𝑁∗ given in (6). 

Conversely, if 𝑇 ≥ 𝑇𝑂
∗, then 𝑁𝑂𝐿

∗ = 0. 
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6. Replacement Middle 
Suppose the unit is replaced at T, 𝑌1 or 𝑌2, whichever occurs first, where each 𝑌𝑖  (𝑖 = 1,2) has 

distribution 𝐺𝑖(𝑡) ≡ Pr{𝑌𝑖 ≤ 𝑡}. Then, the expected cost rate is 

 

𝐶2𝐹(𝑇) =

𝑐𝑇+(𝑐1−𝑐𝑇) ∫ �̅�(𝑡)�̅�2(𝑡)𝑑𝐺1(𝑡)
𝑇

0

+(𝑐2−𝑐𝑇) ∫ �̅�(𝑡)�̅�1(𝑡)𝑑𝐺2(𝑡)
𝑇

0
+(𝑐𝐹−𝑐𝑇) ∫ �̅�1(𝑡)�̅�2(𝑡)𝑑𝐹(𝑡)

𝑇

0

∫ �̅�(𝑡)�̅�1(𝑡)�̅�2(𝑡)𝑑𝑡
𝑇

0

,                           (26) 

 

where 𝑐𝑖 = replacement cost at 𝑌𝑖 with 𝑐𝑖 < 𝑐𝐹  (𝑖 = 1,2) and 𝑐𝑇 and 𝑐𝐹 are given in (2).  

 

When 𝑐𝑖 = 𝑐𝑇, optimum 𝑇2𝐹
∗  to minimize 𝐶2𝐹(𝑇) satisfies 

 

∫ �̅�(𝑡)�̅�1(𝑡)𝑑𝐺2(𝑡)
𝑇

0
[ℎ(𝑇) − ℎ(𝑡)]dt =

𝑐𝑇

𝑐𝐹−𝑐𝑇
.                                     (27) 

 

The left-hand side of (27) increases with T from 0 to ℎ(∞) = ∞. Thus, there exists a unique 

𝑇2𝐹
∗ (0 < 𝑇2𝐹

∗ < ∞) which satisfies (27), and the resulting cost rate is 

 

𝐶2𝐹(𝑇2𝐹
∗ ) = (𝑐𝐹 − 𝑐𝑇)ℎ(𝑇2𝐹

∗ ).                                                   (28) 

 

Next, suppose the unit is replaced at times T, 𝑌1 or 𝑌2, whichever occurs last. Then, the 

expected cost rate is 

 

𝐶2𝐿(𝑇) =

𝑐𝑇+(𝑐1−𝑐𝑇) ∫ �̅�(𝑡)𝐺2(𝑡)𝑑𝐺1(𝑡)
∞

𝑇
+(𝑐2−𝑐𝑇) ∫ �̅�(𝑡)𝐺1(𝑡)𝑑𝐺2(𝑡)

∞

𝑇

+(𝑐𝐹−𝑐𝑇)[1−∫ 𝐺1(𝑡)𝐺2(𝑡)𝑑𝐹(𝑡)
∞

𝑇
]

∫ �̅�(𝑡)𝑑𝑡
𝑇

0
+∫ [1−𝐺1(𝑡)𝐺2(𝑡)]

∞

𝑇
�̅�(𝑡)𝑑𝑡

.                         (29) 

 

When 𝑐𝑖 = 𝑐𝑇, optimum 𝑇2𝐿
∗  to minimize 𝐶2𝐿(𝑇) satisfies 

 

∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0
− ∫ [1 − 𝐺1(𝑡)𝐺2(𝑡)]�̅�(𝑇)[ℎ(𝑡) − ℎ(𝑇)]𝑑𝑡

∞

𝑇
=

𝑐𝑇

𝑐𝐹−𝑐𝑇
.           (30) 

 

The left-hand side of (30) increases strictly with T to ℎ(∞) = ∞. Thus, there exists a finite and 

unique 𝑇2𝐿
∗  

(0 < 𝑇2𝐿
∗  

<∞) which satisfies (30), and the resulting cost rate is 

 

𝐶2𝐿(𝑇2𝐿
∗ ) = (𝑐𝐹 − 𝑐𝑇)ℎ(𝑇2𝐿

∗ ).                                                   (31) 

 

Finally, suppose the unit is replaced at times T, 𝑌1 or 𝑌2, whichever occurs middle. We call this 

policy as replacement middle (Zhao et al., 2015), and the expected cost rate is 

 

𝐶2𝑀(𝑇) =

𝑐𝑇+(𝑐1−𝑐𝑇)[∫ �̅�(𝑡)𝐺2(𝑡)𝑑𝐺1(𝑡)+∫ �̅�(𝑡)�̅�2(𝑡)𝑑𝐺1(𝑡)
∞

𝑇

𝑇

0
]

+(𝑐2−𝑐𝑇)[∫ �̅�(𝑡)𝐺1(𝑡)𝑑𝐺2(𝑡)
𝑇

0
+∫ �̅�(𝑡)�̅�1(𝑡)𝑑𝐺2(𝑡)

∞

𝑇
]

+(𝑐𝐹−𝑐𝑇){∫ [1−𝐺1(𝑡)𝐺2(𝑡)]𝑑𝐹(𝑡)
𝑇

0
+∫ �̅�1(𝑡)�̅�2(𝑡)𝑑𝐹(𝑡)

∞

𝑇
}

∫ [1−𝐺1(𝑡)𝐺2(𝑡)]�̅�(𝑡)𝑑𝑡+
𝑇

0 ∫ �̅�(𝑡)�̅�1(𝑡)�̅�2(𝑡)𝑑𝑡
∞

𝑇

.                            (32) 
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when 𝑐𝑖 = 𝑐𝑇, optimum 𝑇2𝑀
∗  to minimize 𝐶2𝑀(𝑇) satisfies 

 

∫ �̅�(𝑡)[1 − 𝐺1(𝑡)𝐺2(𝑡)][ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0

 

− ∫ �̅�(𝑡)�̅�1(𝑡)�̅�2(𝑡)[ℎ(𝑡) − ℎ(𝑇)]
∞

𝑇
=

𝑐𝑇

𝑐𝐹−𝑐𝑇
.                                      (33) 

 

The left-hand side of (33) increases with T to ∞. Thus, there exists a unique 𝑇2𝑀
∗ (0 < 𝑇2𝑀

∗ < ∞) 

which satisfies (33), and 

 

C2𝑀(𝑇2𝑀
∗ ) = (𝑐𝐹 − 𝑐𝑇)ℎ(𝑇2𝑀

∗ ).                                                  (34) 

 

 

6.1 Comparison of Three Polices  
Let 𝐿𝐹(𝑇), 𝐿𝐿(𝑇) and 𝐿𝑀(𝑇) be the left-hand sides of (27), (30) and (33), respectively. From 

(27) and (30), 

 

𝐿𝐿𝐹(𝑇) ≡ 𝐿𝐿(𝑇) − 𝐿𝐹(𝑇) = ∫ [1 − �̅�1(𝑡)�̅�2(𝑡)][ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0

 

− ∫ �̅�(𝑡)[1 − 𝐺1(𝑡)𝐺2(𝑡)][ℎ(𝑡) − ℎ(𝑇)]𝑑𝑡
∞

𝑇
, 

 

which increases with T from 𝐿𝐿𝐹(0) < 0 to ∞. Thus, there exists a unique T̃LF(0 <  T̃LF <

∞) which satisfies 𝐿𝐿𝐹(𝑇) = 0. 

 

From (27) and (33), 

 

𝐿𝑀𝐹(𝑇) ≡ 𝐿𝑀(𝑇) − 𝐿𝐹(𝑇) = ∫ [𝐺1(𝑡)�̅�2(𝑡) + �̅�1(𝑡)𝐺2(𝑡)][ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0

 

 

− ∫ �̅�(𝑡)�̅�1(𝑡)�̅�2(𝑡)[ℎ(𝑡) − ℎ(𝑇)]𝑑𝑡
∞

𝑇

, 

 

which increases strictly with T from LMF(0) < 0 to ∞. Thus, there exists unique T̃MF(0 <

 T̃MF < ∞) which satisfies 𝐿𝑀𝐹(𝑇) = 0. 

 

From (30) and (33) 

 

𝐿𝐿𝑀(𝑇) ≡ 𝐿𝐿(𝑇) − 𝐿𝑀(T) = ∫ �̅�(𝑡)𝐺1(𝑡)𝐺2(𝑡)[ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0

 

 

− ∫ �̅�(𝑡)[𝐺1(𝑡)�̅�2(𝑡) + �̅�1(𝑡)𝐺2(𝑡)][ℎ(𝑡) − ℎ(𝑇)]𝑑𝑡
∞

𝑇

, 

 

which increases strictly with T from 𝐿𝐿𝑀(0) < 0 to ∞. Thus, there exists a finite and unique 

�̃�𝐿𝑀(0 <  �̃�𝐿𝑀 < ∞) which satisfies 𝐿𝐿𝑀(𝑇) = 0. 
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The above discussions show the following comparative results: 

 

(i) If 𝐿𝑀(�̃�𝑀𝐹) ≥ 𝑐𝑇/(𝑐𝐹 − 𝑐𝑇) and 𝐿𝑀(�̃�𝐿𝑀) ≥ 𝑐𝑇/(𝑐𝐹 − 𝑐𝑇), then the ranking is replacement 

first, middle, last. 

 

(ii) If 𝐿𝑀(�̃�𝑀𝐹) < 𝑐𝑇/(𝑐𝐹 − 𝑐𝑇) < 𝐿𝑀(�̃�𝐿𝑀) and 𝐿𝐹(�̃�𝐿𝐹) ≥ 𝑐𝑇 (𝑐𝐹 − 𝑐𝑇)⁄ , then the ranking is 

replacement middle, first, last. 

 

(iii) If 𝐿𝑀(�̃�𝐿𝑀) < 𝑐𝑇 (𝑐𝐹 − 𝑐𝑇)⁄ < 𝐿𝑀(�̃�𝑀𝐹) and 𝐿𝐹(�̃�𝐿𝐹) < 𝑐𝑇/(𝑐𝐹 − 𝑐𝑇), then the ranking is 

replacement middle, last, first. 

 

(iv) If 𝐿𝑀(�̃�𝑀𝐹) < 𝑐𝑇/(𝑐𝐹 − 𝑐𝑇) and 𝐿𝑀(�̃�𝐿𝑀) ≤ 𝑐𝑇/(𝑐𝐹 − 𝑐𝑇), then the ranking is replacement 

last, middle, first. 

 

7. General Age Replacement 
Suppose the unit is replaced at random times 𝑌𝑖, where 𝑌𝑖  (𝑖 = 1, 2, … , 𝑛) are independent with 

each other and have general distributions 𝐺𝑖(𝑡) with finite means 1/𝜃𝑖, respectively. Denoting 

𝑌𝑚 ≡ min{ 𝑌1, 𝑌2, … , 𝑌𝑛}, it has a distribution 

 

Pr{𝑌𝑚 ≤ 𝑡} = 1 − ∏ �̅�𝑖(𝑡)𝑛
𝑖=1 ,                                                  (35) 

 

and denoting 𝑌𝑀 ≡ max{𝑌1,𝑌2, … , 𝑌𝑛}, it has a distribution 
 

Pr{𝑌𝑀 ≤ 𝑡} = ∏ 𝐺𝑖(𝑡)𝑛
𝑖=1 .                                                      (36) 

 

Note that (35) and (36) correspond to the respective failure distributions of a series system and a 

parallel system with 𝑛 units when 𝐺𝑖(𝑡) is the failure distribution of unit i (Nakagawa, 2008), 

so that we call the above policies as redundant replacement. 

 

Next, we consider the following four replacement policies: 

 

(a) Replacement first: The unit is replaced at time T or at time 𝑌𝑚, whichever occurs first. Then, 

the unit is replaced at time 𝑌𝐹 ≡ min{𝑇, 𝑌𝑚 } with a general distribution 

 

𝐺𝐹(𝑡) ≡ Pr{𝑌𝐹 ≤ 𝑡} = {
1 − ∏ �̅�𝑖(𝑡)𝑛

𝑖=1     𝑡 < 𝑇,

1                             𝑡 ≥ 𝑇.
                    (37) 

 

(b) Modified replacement first: The unit is replaced at time T or at time 𝑌𝑀, whichever occurs 

first. Then, the unit is replaced at time �̃�𝐹 ≡ min{𝑇, 𝑌𝑀} with a general distribution 

 

�̃�𝐹(𝑡) ≡ Pr{�̃�𝐹 ≤ 𝑡} = {
 ∏ 𝐺𝑖(𝑡)        𝑡 < 𝑇𝑛

𝑖=1  
1                         𝑡 ≥ 𝑇.

                        (38) 

 

(c) Replacement last: The unit is replaced at time T or at time 𝑌𝑀, whichever occurs last. Then, 

the unit is replaced at time 𝑌𝐿 ≡ max{𝑇, 𝑌𝑀} with a general distribution 
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𝐺𝐿(𝑡) ≡ Pr{�̃�𝐹 ≤ 𝑡} = {
0                 𝑡 < 𝑇,
∏ 𝐺𝑖(𝑡)         𝑡 ≥ 𝑇.𝑛

𝑖=1
                                (39) 

 

(d) Modified replacement last: The unit is replaced at time T or at time 𝑌𝑚, whichever occurs 

last.  

 

Then, the unit is replaced at time �̃�𝐿 ≡ max{𝑇, 𝑌𝑚} with a general distribution 

 

�̃�𝐿(𝑡) ≡ Pr{𝑌𝐿 ≤ 𝑡} = {
0                𝑡 < 𝑇,

1 − ∏ �̅�𝑖(𝑡)𝑛
𝑖=1      𝑡 ≥ 𝑇.

                                 (40) 

 

From the definitions of 𝑌𝑖 and �̃�𝑖(𝑖 = 𝐹, 𝐿), 𝑌𝐹 ≤ �̃�𝐹 ≤ �̃�𝐿 ≤ 𝑌𝐿, and hence, 𝐺𝐹(𝑡) ≥ �̃�𝐹(𝑡) ≥
�̃�𝐿(𝑡) ≥ 𝐺𝐿(𝑡). 

 

 

7.1 Replacement First 
Suppose the unit is replaced at time 𝑌𝐹 in case (a). Then, replacing 𝐺(𝑡) with 𝐺𝐹(𝑡) in (37), 

the expected cost rate is (Chen et al., 2016) 

 

𝐶𝐺𝐹(𝑇) =
𝑐𝑅+(𝑐𝐹−𝑐𝑅) ∫ ∏ �̅�𝑖(𝑡)𝑑𝐹(𝑡)𝑛

𝑖=1
𝑇

0

∫ �̅�(𝑡) ∏ �̅�𝑖(𝑡)𝑑𝑡𝑛
𝑖=1

𝑇

0

,                                             (41) 

 

where 𝑐𝑅 = replacement cost at time 𝑌𝑖  with  𝑐𝑅 <  𝑐𝐹. 

 

Optimum 𝑇𝐹
∗ to minimize 𝐶𝐺𝐹(𝑇) satisfies 

 

∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)] ∏ �̅�𝑖(𝑡)𝑑𝑡𝑛
𝑖=1

𝑇

0
=

𝑐𝑅

𝑐𝐹−𝑐𝑅
.                                      (42) 

 

The left-hand side of (42) increases with T to ℎ(∞) = ∞. Thus, there exists a unique 𝑇𝐹
∗(0 <

𝑇𝐹
∗ < ∞) 

which satisfies (42), and the resulting cost rate is 

 

𝐶𝐺𝐹(𝑇𝐹
∗) = (𝑐𝐹 − 𝑐𝑅)ℎ(𝑇𝐹

∗)                                                    (43) 

 

Next, suppose the unit is replaced at time �̃�𝐹 in case (b). Then, replacing 𝐺(𝑡) with 𝐺𝐹(𝑡) in 

(38), the expected cost rate is (Chen et al., 2016) 

 

�̃�𝐺𝐹(𝑇) =
𝑐𝑅+(𝑐𝐹−𝑐𝑅) ∫ [1−∏ 𝐺𝑖(𝑡)𝑛

𝑖=1 ]𝑑𝐹(𝑡)
𝑇

0

∫ �̅�(𝑡)[1−∏ 𝐺𝑖(𝑡)𝑛
𝑖=1 ]𝑑𝑡

𝑇

0

.                                          (44) 

 

Optimum �̃�𝐹
∗ to minimize �̃�𝐺𝐹(𝑇) satisfies 

 

∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)][1 − ∏ 𝐺𝑖(𝑡)𝑛
𝑖=1 ]𝑑𝑡

𝑇

0
=

𝑐𝑅

𝑐𝐹−𝑐𝑅
.                                  (45) 

 

The left-hand side of (45) increases with T to ℎ(∞) = ∞. Thus, there exists a unique �̃�𝐹
∗
 

(0 <
�̃�𝐹

∗ < ∞) which satisfies (42), and the resulting cost rate is 
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�̃�𝐺𝐹(�̃�𝐹
∗) = (𝑐𝐹 − 𝑐𝑅)ℎ(�̃�𝐹

∗).                                                    (46) 

 

Comparing (42) and (45) 

 

∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)] [1 − ∏ 𝐺𝑖(𝑡)

𝑛

𝑖=1

] 𝑑𝑡
𝑇

0

− ∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)] ∏ �̅�𝑖(𝑡)𝑑𝑡

𝑛

𝑖=1

𝑇

0

≥ 0, 

 

which follows that �̃�𝐹
∗ ≤ 𝑇𝐹

∗. Thus, from (43) and (46), �̃�𝐺𝐹(�̃�𝐹
∗) ≤ 𝐶𝐺𝐹(𝑇𝐹

∗), i.e., modified 

replacement first is economical than replacement first. 

 

 

7.2 Replacement Last 
Suppose the unit is replaced at time 𝑌𝐿 in case (c). Then, replacing 𝐺(𝑡) with 𝐺𝐿(𝑡) in (39), 

the expected cost rate is (Chen et al., 2016) 

 

𝐶𝐺𝐿(𝑇) =
𝑐𝑅+(𝑐𝐹−𝑐𝑅)[1−∫ ∏ 𝐺𝑖(𝑡)𝑑𝐹(𝑡)𝑛

𝑖=1
∞

𝑇
]

∫ �̅�(𝑡)𝑑𝑡
𝑇

0
+∫ �̅�(𝑡)[1−∏ 𝐺𝑖(𝑡)𝑛

𝑖=1 ]𝑑𝑡
∞

𝑇

.                                          (47) 

 

Optimum 𝑇𝐿
∗ to minimize 𝐶𝐺𝐿(𝑇) satisfies 

 

∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0
− ∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)][1 − ∏ 𝐺𝑖(𝑡)𝑛

𝑖=1 ]𝑑𝑡
∞

𝑇
=

𝑐𝑅

𝑐𝐹−𝑐𝑅
.           (48) 

 

The left-hand side of (48) increases strictly with T to ∞. Thus, there exists a unique 𝑇𝐿
∗ (0 <

𝑇𝐿
∗ < ∞) which satisfies (48), and the resulting cost rate is 

 

𝐶𝐺𝐿(𝑇𝐿
∗) = (𝑐𝐹 − 𝑐𝑅)h(𝑇𝐿

∗).                                                    (49) 

 

Next, suppose the unit is replaced at time �̃�𝐿 in case (d). Then, replacing G(t) with �̃�𝐿(𝑡) in 

(39), the expected cost rate is (Chen et al., 2016) 

 

�̃�𝐺𝐿(𝑇) =
𝑐𝑅+(𝑐𝐹−𝑐𝑅){1−∫ [1−∏ �̅�𝑖(𝑡)𝑛

𝑖=1 ]𝑑𝐹(𝑡)
∞

𝑇
}

∫ �̅�(𝑡)𝑑𝑡
𝑇

0
+∫ �̅�(𝑡) ∏ �̅�𝑖(𝑡)𝑑𝑡𝑛

𝑖=1
∞

𝑇

.                                       (50) 

 

Optimum �̃�𝐿
∗ to minimize �̃�𝐺𝐿(𝑇) satisfies 

 

∫ �̅�(𝑡)[ℎ(𝑇) − ℎ(𝑡)]𝑑𝑡
𝑇

0
− ∫ �̅�(𝑡)[ℎ(𝑡) − ℎ(𝑇)] ∏ �̅�𝑖(𝑡)𝑑𝑡𝑛

𝑖=1
∞

𝑇
=

𝑐𝑅

𝑐𝐹−𝑐𝑅
.                (51) 

 

The left-hand side of (51) increases with T to ℎ(∞) = ∞. Thus, there exists a unique �̃�𝐿
∗ (0 <

�̃�𝐿
∗ < ∞) which satisfies (51), and the resulting cost rate is 

 

�̃�𝐺𝐿(�̃�𝐿
∗) = (𝑐𝐹 − 𝑐𝑅)ℎ(�̃�𝐿

∗).                                                    (52) 

 

Comparing (48) and (52), 
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∫ �̅�(𝑡)[ℎ(𝑡) − ℎ(𝑇)] [1 − ∏ 𝐺𝑖(𝑡)

𝑛

𝑖=1

] 𝑑𝑡
∞

𝑇

− ∫ �̅�(𝑡)[ℎ(𝑡) − ℎ(𝑇)] ∏ �̅�𝑖(𝑡)𝑑𝑡

𝑛

𝑖=1

∞

𝑇

≥ 0, 

 

which follows that �̃�𝐿
∗ ≤ 𝑇𝐿

∗ . Thus, from (49) and (52), �̃�𝐺𝐿(�̃�𝐿
∗) ≤ 𝐶𝐺𝐿(𝑇𝐿

∗), i.e., modified 

replacement last is economical than replacement last. 

 

Finally, it is assumed that 𝑐𝑅𝑖(𝑖 = 1,2, … , 𝑛) are respective replacement costs at times 𝑌𝑖. Then, 

the expected cost rate in (41) becomes 

 

𝐶𝐺𝐹(𝑇) =

𝑐𝐹 ∫ ∏ �̅�𝑖(𝑡)𝑑𝐹(𝑡)𝑛
𝑖=1

𝑇

0
+𝑐𝑇�̅�(𝑇) ∏ �̅�𝑖(𝑡)𝑛

𝑖=1

+ ∑ 𝑐𝑅𝑖 ∫ �̅�(𝑡) ∏ �̅�𝑖(𝑡)𝑑𝐺𝑖(𝑡)𝑛
𝑖=1,𝑗≠𝑖

𝑇

0
𝑛
𝑖=1

∫ �̅�(𝑡) ∏ �̅�𝑖(𝑡)𝑑𝑡𝑛
𝑖=1

𝑇

0

.                                       (53) 

 

Similarly, �̃�𝐺𝐹(𝑇) in (44), 𝐶𝐺𝐿(𝑇) in (47) and �̃�𝐺𝐿(𝑇) in (50) can be obtained. 

 

 

 

8. Conclusions 
Age replacement model has been already challenged that the constant planned T can be a random 

variable Y to meet the random perforation need. In this paper, the so called replacement that is 

planned at time T and random replacement planned at random time Y have been introduced. 

Another random replacement that is planned at working cycles N are also obtained. If we need to 

consider both age and random replacement policies with working cycles, we next have discussed 

replacement first, replacement last, replacement overtime and replacement middle. The 

motivations of these methods can be found in our literatures, so that we give the expected cost 

rates directly and discuss their optimum policies to minimize them analytically. 

 

Another contribution of the paper is to give comparisons for these replacement policies. For 

examples, it has been shown that when the costs of preventive replacement are equal, age 

replacement is more economical than the random policy, age replacement is more economical 

than replacement overtime, replacement overtime is more economical than the random policy. 

Also, we have compared replacement first and replacement last analytically and showed that both 

have advantages in cost rates. 

 

In order to formulate general replacement models of replacement first and last, we have obtained 

general distributions of replacement times, and the models of general replacement become our 

final target of the paper. 
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