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Abstract 

The goal of this paper is to introduce an application of hybrid algorithm in reliability optimization problems for a series 

system with parallel redundancy and multiple choice constraints to maximize the system reliability subject to system 

budget and also to minimize the system cost subject to minimum level of system reliability. Both the problems are 

solved by using penalty function technique for dealing with the constraints and hybrid algorithm. In this algorithm, the 

well-known real coded Genetic Algorithm is combined with Self-Organizing Migrating Algorithm. As special cases, 

both the problems are formulated and solved considering single component without redundancy. Finally, the proposed 

approach is illustrated by some numerical examples and the computational results are discussed. 
 
Keywords: Reliability-redundancy optimization, Multiple-choice constraints, Constrained integer nonlinear 

optimization, Genetic algorithm, Self-organizing migrating algorithm. 

 

 

1. Introduction 
In the present highly competitive business scenario, the reliability of a system (including 

industrial system) is widely regarded as an extremely important and crucial design measure. 

Consequently, the techniques / theories for the enhancement of system reliability play a pivotal 

role in the growth, development and improvement of power systems, telecommunication systems, 

manufacturing systems (Nourelfath and Nahas, 2003), advanced semiconductors, memory 

integrated circuits and nano systems (Ha and Kuo, 2006). The introduction of redundancy 

allocation is a commonly accepted technique, which is well known for its effectiveness in 

improving the reliability of a system. The problem associated with this method is known as 

redundancy allocation problem. The choice of the optimal combination of components of a 

system during design phase is guided by several factors like cost, performance, weight, size, 

technology, etc. Over the last few decades, a large number of researchers has explored this field 

of research. In this connection, one may refer to the works of Ghare and Taylor (1969), Tillman et 

al. (1977, 1980), Nakagawa et al. (1978), Chern (1992), Kuo (2001), Sun and Li (2002), Ha and 

Kuo (2006), Gupta et al. (2009) and others. 
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Due to the development of advanced technology and competitive market situations, for each 

component of a reliability system, various technologies are available. These technologies differ 

among themselves in terms of cost and reliability. This type of problem is known as reliability 

optimization problem with multiple choice constraints. In this area, the works of Nauss (1978), 

Sinha and Zoltners (1979), Sung and Lee (1994), Sung and Cho (2000), Nourelfath and Nahas 

(2003), Nahas and Nourelfath (2005) and others are worth mentioning. In their works, they did 

not consider the redundancy for each component. However, redundancies play an important role 

in reliability system. Mainly, it is used to increase the system reliability. On the other hand, they 

did not consider the cost optimization problem. 

 

Genetic Algorithm (GA) is a very efficient and powerful heuristic search optimization method 

based on the mechanics of natural genetics and natural selection which mimics the Charles 

Darwin’s evolutionary principle “Survival of the fittest”. Prof. J. H. Holland (1975) first 

developed the concept of this algorithm. Thereafter, many works have been done for the 

development of this subject. The detailed works on the development of this subject are presented 

in the Goldberg (1989), Michalewicz (1996), Sakawa and Kato (2002) and others. 

 

The focuses of the research on the hybridization have received significant interest in the recent 

years to solve the real-world problems (see Refs. Renders and Flasse, 1996; Salhi and Queen, 

2004; Fan, et al., 2006; Pedamallu and Ozdamar, 2008). GA works very efficiently when it is 

combined with other algorithms or local search methods, rather than simple Genetic Algorithm 

(Chelouah and Siarry, 2003). To enhance the efficiency of GA, most of the researchers have 

proposed hybrid algorithms combining GA and various other algorithms. 

 

Recently, a new stochastic optimization algorithm, viz. Self-Organizing Migrating Algorithm 

(SOMA) has been developed by Zelinka and Lampinen (2000). This is a population based 

stochastic search algorithm depending on the self-organizing behaviour of group of individuals in 

a social environment. Like Evolutionary Algorithm, it works with a population of individuals (in 

optimization, we refer to each solution as an individual). In SOMA, the individuals change their 

positions during migration loop (iteration). This change is enticed to the direction of the best 

individual from other individuals in a random fashion. This algorithm was seldom used in solving 

optimization problems. In this connection, one may refer to the recent works of Zelinka (2004), 

Nolle et al. (2005), Coelho (2009), Coelho and Alotto (2009), Coelho and Mariani (2010), 

Senkerik et al. (2010) and others. 

 

This paper deals with a series system having several subsystems (with parallel redundancies) for 

each of which various technologies with different costs and reliabilities are available. For this 

system, two problems have been formulated and solved. In the first problem, system reliability is 

maximized subject to the budget constraint. On the other hand, in the second problem, system 

cost is minimized subject to a minimum level of system reliability. In both cases, problems are 

formulated as nonlinear integer programming problems and solved by using penalty function 

technique and a hybrid algorithm developed by combining real coded Genetic Algorithm and 

Self-Organizing Migrating Algorithm. As special cases, both the problems have been formulated 

and solved considering single component without redundancy. Finally, to illustrate the proposed 

approach, some numerical examples have been solved and the computational results have been 

discussed. 
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2. Nomenclature 
n  number of subsystems of the main series system 

jM  number of technologies available for the subsystem j  

ijm  number of redundant components arranged in parallel in the subsystem j , when 

technology i  is adopted (i.e., the number of redundancies provided by technology i  

for subsystem j ) 

ijr  reliability of each component arranged in parallel in the technology i  for subsystem 
j  

( ijr ’s is assumed to be known) 

ijc  cost of each component arranged in parallel in the technology i  for subsystem j  

( ijc ’s is assumed to be known) 

(.)f  objective function 

sR  system reliability 

sC  total cost of the system 

minR  minimum desirable reliability of the overall system 

maxC  maximum permissible budget for the overall system 

ijy  decision variable (with 1,2, ,j n  and 1,2, , ji M )  

such that  
1   when technology  is used in subsystem   

0  otherwise
ij

i j
y


 


 

F  feasible space 
t  current iteration (or generation or migration loop) 

( )t
iv  

thi  solution vector (chromosome) at tht iteration   

[i.e., 
( )t
iv = 

( ) ( ) ( ) ( )
1 2

( , ,..., ,..., )
t t t t

i ni i i k
v v v v ] 

( 1)t
i jv


 new value of thj  component for 
thi active solution in ( 1)tht   iteration with step size 

( )
, start

t
i jv  starting position of thj  component for  

thi  active solution in tht  iteration 

( )t
L jv  position of thj  component of Leader in tht iteration 

( )P t  population of solution vectors (chromosomes) at 
tht  iteration 

sizePop  population size (i.e., total number of solution vector in a population) 

T
 

maximum number of allowable iterations (generations) 

crossp  probability of crossover 

mutep
 

probability of mutation 

StDev standard deviation 

 

3. Mathematical Formulation of Reliability–Redundancy Optimization Problem 
The goal of the reliability–redundancy optimization problem is to determine an optimal 

redundancy allocation so as to maximize the overall system reliability under limited resource 

constraints. The reliability–redundancy optimizations are useful for system designs that are 
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largely assembled and manufactured using off-the-shelf components and also have high reliability 

requirements (Coelho, 2009). 

 

A well-known series system with n - independent subsystems has been considered. As depicted 

in Fig. 1, there are different technologies available for each of these n-subsystems. Each 

technology, when used for a subsystem, employs its own components arranged parallel with one 

another to form the subsystems. When the same technology used for a given subsystem, the 

components are identical in terms of cost and reliability. However, the component’s reliability 

and cost may vary for different subsystems when the technology is given. Also, the component’s 

reliability may vary for different technologies, when the subsystem is given. For each subsystem, 

only one technology can be adopted. 

 

 
 

Fig. 1. Series system with n-subsystems 

 

From the given above situation, the following two decision making problems may arise: 

(i) To study and select the best combination of technologies along with the optimum number 

of redundant components in each subsystem, so that the system reliability is maximized 

subject to a budget constraint. 

(ii) To study and select the best combination of technologies along with the optimum number 

of redundant components in each subsystem, so that the total cost is minimized subject to 

a given fixed level of system reliability. 

 

With the help of earlier mentioned notations, the mathematical formulations of two decision-

making problems (i) and (ii) discussed above are as follows:  
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Problem 1 

  
11

Maximize 1 1

j
ij

Mn
m

s ij ij

ij

R y r



                                                                                         (1) 

subject to max

1 1

jMn

ij ij ij

j i

y c m C

 

  

where  

1

1 1,2, ,

jM

ij

i

y j n



   ;  0, 1 ; 1,2, ,  and  1,2, ,ij jy i M j n    . 

 

Problem 2  

1 1

Minimize 

jMn

s ij ij ij

j i

C y c m

 

                                                                                                      (2) 

subject to     min

11

1 1

j
ij

Mn
m

ij ij

ij

y r R



    

where

1

1 1,2, ,

jM

ij

i

y j n



   ;  0, 1 1,2, ,   and  1,2, ,ij jy i M j n    . 

 

These two problems (1) and (2) belong to the category of constrained integer nonlinear 

optimization problems. 

 

4. Constraint Handling Technique of Constrained Integer Nonlinear Optimization 

Problems 
In the application of evolutionary algorithm for the given constrained integer nonlinear 

optimization problem, there arises an important question: how the algorithm handles the 

constraints relating to the optimization problem? During the last few decades, several methods 

have been proposed to handle the constraints for solving constrained optimization problems with 

the help of evolutionary algorithms (Michalewicz and Schoenauer, 1996; Koziel and 

Michalewicz, 1999; Deb, 2000; Coello, 2002). Among these methods, penalty function method is 

very popular. In this method, the constrained optimization problem is converted to unconstrained 

one in which the reduced objective function involves the original objective function and a penalty 

for violating the constraints. Recently Gupta et al. (2009) proposed a penalty function approach to 

handle the constraints. In this approach, to convert the constrained optimization problem to an 

unconstrained one, a large negative value (say, –M) is blindly assigned to the objective function 

for the infeasible solution (for maximization problem). In this case, if the constrained 

optimization problem is 

 

Maximize ( )f x  

subject to ( ) 0, 1,2,...,ig i m x  

 

then the reduced unconstrained optimization problem is as follows: 
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Maximize ˆ( ) ( ) ( )f f  x x x  

0,   if 
where ( )

-M,   if 

F

F



 



x
x

x
  

and { ; ( ) 0, 1,2,..., }iF g i m  x x , the feasible space for the optimization problem. 

 

For minimization problem, it is to be noted that instead of –M, +M is considered. For solving the 

earlier mentioned constrained integer nonlinear optimization problems (1) and (2), we have 

proposed a new hybrid algorithm, viz. C-RCSOMGA which is discussed in the next section. 

 

5. Hybrid Algorithm C-RCSOMGA, Based on RCGA and SOMA 
For the purpose of solving the reliability–redundancy optimization problems (1) and (2), we have 

developed a hybrid Real Coded Self-Organizing Migrating Genetic Algorithm (C-RCSOMGA) 

combining two different algorithms RCGA and SOMA. In this algorithm, we have used 

tournament selection, modified uniform crossover and modified mutation operators for RCGA as 

well as our proposed modified strategy for SOMA. 

 

5.1 Real Coded Genetic Algorithm (RCGA) 
Genetic Algorithm is a stochastic search method based on natural evolution and natural genetics. 

In this algorithm, initially a population of solutions is generated by Random Number Generator 

(RNG). Then this population is updated from iteration (generation) to iteration with respect to 

their fitness value through different well known genetic operators (viz. selection, crossover and 

mutation) until a termination criterion is satisfied. For implementation of this GA for the 

proposed algorithm, the following basic components are considered:  

 

(a) Initialization of GA parameters and bounds of variables.  

(b) Representation and initialization of solution. 

(c) Evaluation of the fitness function. 

(d) Selection process. 

(e) Genetic operators (crossover, mutation to create the new offspring for improvement of 

the population). 

(f) Termination criterion. 

 

5.1.1 Initialization of GA Parameters and Bounds of Variables 

Genetic Algorithm is dependent on some parameters, viz. population size ( sizePop ), maximum 

number of allowable iterations (T ), probability of crossover ( crossp ) and probability of 

mutation ( mutep ). But there is no hard and fast rule to choose the values of all parameters. From 

the literature (Goldberg et al., 1989; Michalewicz and Schoenauer, 1996; Jabeen and Bhunia, 

2006), it is seen that, if the values of the parameters are not chosen in the reasonable range, there 

arise some difficulties. If the value of sizePop  is taken very large then the computational cost is 

large and also storing of data in computer in intermediate steps of GA may arise some difficulties 

at the time of computation. Again, if the value of sizePop  is taken very small then the good 

properties of genetic operators do not stem for evolution of the population. T  varies from 

problem to problem and it depends upon the number of variables of the problem. From the natural 

genetics, it is obvious that the value of crossp  is always greater than that of mutep . 
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5.1.2 Representation and Initialization of Solution 
After initialization of GA parameters and bounds of variables, a successful implementation of GA 

is dependent on the representation of solution and also the initialization of an appropriate 

population. In this work, we have used the real numbers to represent the component of solution. 

 

5.1.3 Evaluation of the Fitness Function 
After getting a population of solutions, GA carries out the evaluation stage. In this stage, we have 

to evaluate the objective function value of each solution of initial population or improved 

population. In this work, we have considered the objective function value as fitness value of the 

solution. 

 

5.1.4 Selection Process 
In the selection process, we have handled the constraints of an optimization problem by the 

tournament selection method (Brindle, 1981; Goldberg et al., 1989). In this method, two or more 

solutions are chosen randomly from the population and the best solution from this group is 

selected as parent for the next iteration. This process is repeated sizePop number of times. The 

size of the tournament selection may take the value from 2 to sizePop . In our work, we have taken 

the size as 2. In tht  iteration, if two solutions 
( )t
iv  and 

( )t
jv  are considered for tournament 

selection, then any of these two will be selected for the next (i.e., ( 1)tht  ) iteration based on the 

following rules: 

 

(a) If 
( )

( )
t

if v is better than
( )

( )
t
jf v  [

( )
( )

t
if v >

( )
( )

t
jf v  in case of maximization problem, 

whereas
( )

( )
t

if v <
( )

( )
t
jf v  in case of minimization problem], where 

( ) ( )
,

t t
i jv v F then 

select 
( )t
iv  otherwise select

( )t
jv . 

(b) If 
( )t
iv F and

( )t
jv F , then select

( )t
iv , otherwise if 

( )t
iv F and 

( )t
jv F , then 

select
( )t
jv . 

(c)  If 
( ) ( )

,
t t

i jv v F , then select the solution with lesser number of constraints violation. 

(d) If 
( ) ( )

,
t t

i jv v F  and both the solution have equal constraints violation, then select any one 

of them. 

 

5.1.5 Crossover 
After selection process, the survived solutions take part in the crossover operation. The main 

objective of this operation is to create new offspring (probably better) by recombining the 

features of randomly selected two or more parent solutions. The crossover of two parents is 

inspired by the natural genetic process. In this work, we have used modified uniform crossover 

operation (Sahoo et al., 2012). Expected [ ]size crossPop p   (say, crossN ) (* denotes the product 

and denotes the integral value) number of solutions will take part in this operation. Here the 
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uniform crossover operation has been used. The different steps of this operation at tht  generation 

are as follows: 

 

Step-1: Find the integral value of size crossPop p   and store it in crossN . 

Step-2: Select two chromosomes 
( )t
iv  and 

( )t
jv  randomly from the population. 

Step-3: Compute the components  
( )t

ik
v  and 

( )t

jk
v  ( 1,2,...,k n ) of two offspring 

( )t
iv  and 

( )t
jv by 

either 
( ) ( )t t
ik ik

v v g  and 
( ) ( )t t
jk jk

v v g   , if 
( ) ( )t t
ik jk

v v  

or, 
( ) ( )t t
ik ik

v v g  and 
( ) ( )t t
jk jk

v v g  , otherwise 

 

where g  is a random integer number 0 and 
( ) ( )

| |
t t

ik jk
v v , 1,2,...,k n . 

Step-4: Compute 
( 1)t
iv


= argument of best of  ( ) ( )( ) ( )
( ), ( ), ( ), ( )

t tt t
i j i jf v f v f v f v ; 

and 
( 1)t
jv


= argument of next best of  ( ) ( )( ) ( )
( ), ( ), ( ), ( )

t tt t
i j i jf v f v f v f v . 

Step-5: Repeat Step-2 to Step-4 for 
1

2
crossN  times. 

 

5.1.6 Mutation 
From inspiration of genetic diversity in nature, in GA, mutation operation is performed to 

introduce the random variations into the population. Sometimes, it helps to get back the 

information lost in earlier iterations. Expected [ * ]size mutePop n p  (say, muteN ) (* denotes the 

product and denotes the integral value) number of genes / components will take part in mutation 

operation. According to Michalewicz (1996), mutation is also applied to whole solution vector 

rather than a single component of it. Basically, it is responsible for fine tuning capabilities of the 

system. In this work, we have used one–neighborhood mutation (Bhunia et al., 2010). 

The computational steps of this operation at 
tht  generation are as follows: 

 

Step-1: Find the integral value of the product of sizePop , n  and mutep  and store it in muteN .  

Step-2: Select a non-mutated gene 
( )t
ik

v of solution 
( )t
iv for mutation.  

Step-3: Create new gene 
( )t

ik
v  of the new solution 

( )t

iv by the following process as follows: 

( ) ( )

( ) ( )
( )

( )

( )

1 ,

1 ,

1 , 0.5

1 , 0.5

t t
ikik ik

t t
ikt ik ik

ik t
ik

t
ik

v if v l

v if v u
v

v if r

v if r

  



 
 
  

  

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where  r  is a uniformly distributed random number in [0, 1]. 

Step-4: Compute 
( 1)t
iv


= argument of better of  ( )( )
( ), ( )

tt
i if v f v . 

Step-5: Repeat Step-2 to Step-4 for muteN  times. 

Step-6: Stop. 

 

5.1.7 Termination Criterion 
In GA, selection process, crossover, mutation and evaluation are performed repeatedly until a 

predefined termination criterion (In this work, we have considered the termination criterion as the 

number of iterations (generations) reachesT ) is met. 

 

The RCGA flow can be summarized as follows: 

 

Algorithm-I 

Step-1:  Initialize the parameters of GA. 

Step-2:  Set 0t   

Step-3: Initialize ( )P t . 

Step-4:  Evaluate the fitness function value of each solution of ( )P t . 

Step-5:  Find the best solution from ( )P t . 

Step-6:  Do the following until the termination condition is satisfied:  

(a) Increase t  by 1. 

(b) Select ( )P t from ( 1)P t   by the selection process. 

(c) Perform the crossover operation with probability crossp . 

(d) Perform the mutation operation with probability mutep . 

(e) Evaluate the fitness function value of each solution of newly created ( )P t . 

(f) Find the best solution from ( )P t . 

 

Step-7:  Print the best solution. 

Step-8:  Stop. 

 

5.2 Self-Organizing Migrating Algorithm (SOMA) 
SOMA is a relatively new stochastic evolutionary algorithm, which is based on the social 

behavior of cooperative solutions and self-organization (e.g. a herd of animals looking for their 

food). From the existing literature, it is evident that this algorithm has ability to converge towards 

the global optima (Zelinka et al., 2001). It starts with a population of solutions initialized 

randomly over the search space at the beginning and then improves the population in loops 

(called migration loop). In each loop, considering the solution with highest fitness as leader ( L ), 

all other solutions (called active solutions ( ia )) will traverse in the direction of the leader. 

Whether the solution will travel a certain distance (called path length) towards the leader in sN  

steps (number of steps) of defined length or not, it depends upon a perturbation parameter. This 

perturbation works as mutation operator of Genetic Algorithm. If the path length is greater than 

one, then active solution will over shoot the leader (Zelinka, 2004). 
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The main control parameters used in SOMA are sizePop  (number of solutions in the population), 

n  (number of decision variables of objective function of optimization problem), _Path length  

(distance of movement of active solutions), sizeStep  (size of a migration step), 

PRT (perturbation determines whether a solution will travel directly towards the Leader or not), 

Migrations (number of iterations).The suggested values (Zelinka, 2004) for the above parameters 

are given in Table 1. 
 

Parameter name Suggested range 

Popsize  10 to any integer number 

n  Problem dependent 

PRT  (0, 1)  

_Path length  [1.1, 3] 

Stepsize  [0.11, _Path length ] 

Migrations  10 to any integer number 

 
Table 1. Suggested values for the SOMA parameters 

 

5.2.1 Variations of SOMA 
Based on different strategies, different versions of SOMA have been developed. Till now, Zelinka 

(2004) proposed five strategies as follows: 

(i) All-To-One, (ii) All-To-All, (iii) All-To-All Adaptive, (iv) All-To-Rand and (v) Clusters.  

Here we shall discuss SOMA with All-To-One strategy in details. 

 

5.2.2 SOMA with All-To-One Strategy 
The evolution of SOMA performs with perturbation (equivalent to mutation for GA) and 

crossover operation. Here the movement of active solutions in the search space is perturbed, not 

mutated. Perturbation depends on the PRT controlling parameter and perturbation vector 

( PRTVector ) (Zelinka, 2004). This SOMA generates a random number to assign PRT parameter 

from the interval (0, 1). If PRT equals to 0 then the perturbation is not performed and if 

PRT equals to 1 then the stochastic nature of SOMA will be vanished. PRTVector  is created by 

the following condition: 

 

If 1r PRT , then jPRTVector  = 1, else jPRTVector  = 0; where 1, 2, ,j n  and 1r  is a random 

number between 0 and 1. Before a solution starts its journey over the search space towards the 

Leader, this jPRTVector  is created for each solution’s component (see Fig. 2).  

SOMA creates a new solution at ( 1)tht   iteration by the special operation (Zelinka, 2004) 

(known as crossover in case of SOMA) as follows:  

 

( 1) ( ) ( ) ( )
, start ,start( )

t t t t
ji j i j i jL jv v v v PRTVector


                                                                         (3) 

where  0,  by  to, _sizeStep Path length  . 
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This operation helps the active solution to move its new position and travels in the search space 

towards the leader in sN  steps of defined length. The principle of SOMA with All-To-One 

strategy is shown in Fig. 2. 

 

 
 

Fig. 2. Movement of active solutions (
ia ) towards the Leader ( L ) for two dimensional search spaces 

 

The different steps of SOMA are as follows:  

 

Algorithm-II 

Step-1:  Generate initial population of solutions.  

Step-2:  Repeat the following for the number of migrations times: 

(i) Generate PRTVector parameter. 

(ii) Evaluate the fitness function value of each solution of ( )P t . 

(iii) Find the best solution of population and consider it as leader ( L ). 

(iv) Do the following for each active solution of the population: 

(a) Set each active solution as best solution. 

(b) Do the following for specified number of steps: 

 Find the new solution towards the position of the leader ( L ) starting from active by the 

Eq. (3). 

 Evaluate the fitness function for new solution. 

 If the fitness of new solution is better than the fitness of previous best solution then 

replace that best solution by the new one. 

(c) Replace the active solution by the best solution obtained from earlier Step-2 (iv) (b). 

Step-3:  Print the best solution. 

Step-4:  Stop. 

 

 

 



International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 2, No. 3, 185–212, 2017 

ISSN: 2455-7749 

196 

5.3 Proposed Real Coded Self-Organizing Migrating Genetic Algorithm (C-

RCSOMGA) 
In this algorithm, initially a population is created by randomly generated solutions and is 

evaluated through the fitness function. After that, in each iteration, GA as well as SOMA 

operators are applied consecutively to the population to improve the same. At the end of the 

successful applications of GA operators, the best solution is selected according to the fitness 

value. Then, considering the best solution as leader ( L ) and others as active solutions ( ia ), 

SOMA operators are applied. In this application, a perturbation vector ( PRTVector ) is created 

first, then for each active solution, a set of new solutions is created by equation (3) along the path 

from active to leader at an equal length. After this, the best solution (called Perturbed 

Leader, PL ) is selected from the created new solutions for each active solution and the previous 

leader. In the next migration loop this PL will work as the leader ( L ). This process will be 

continued until the termination criterion is satisfied. In this connection, we call this new strategy 

as All-To-One Adaptive strategy which is incorporated in SOMA of our proposed C-RCSOMGA 

(see Fig. 3). 

 

 
 

Fig. 3. The principle of C-RCSOMGA with All-To-One Adaptive strategy for two dimensional search 

spaces 
 

The computational steps of C-RCSOMGA are as follows: 

 

Algorithm-III 

Step-1: Initialize the bounds of decision variables, parameters of GA and SOMA, and different 

parameters of the optimization problems. 

Step-2: Set 0t  [ t , the number of current iteration]. 

Step-3: Initialize ( )P t  [ ( )P t , the population of solutions / solutions at t -th iteration]. 

Step-4: Evaluate the fitness function value of each solution of ( )P t . 

Step-5: Find the best solution from ( )P t . 

Step-6: Increase the value of t  by 1. 
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Step-7: Select ( )P t  from ( 1)P t   by tournament selection process. 

Step-8: Apply modified uniform crossover with probability crossp . 

Step-9: Apply modified one-neighbourhood mutation with probability mutep . 

Step-10: Evaluate the fitness function value of each solution of ( )P t . 

Step-11: Find the best fitted solution (Leader, L ) of ( )P t  and consider all others solutions as 

active solutions of this population. 

Step-12: Apply SOMA with All-To-One Adaptive strategy as follows: 

(i) Do the following for each solution of the population: 

(a) If the solution is infeasible then go to Step-12 (i) (c). 

(b) If the absolute value of the difference between the objective function value of Leader ( L ) 

and objective function value of the solution is less than  (in this work,  = 0.001) then go 

to Step-12 (i). 

(c) Generate PRTVector . 

(d) Do the following for specified number of sizeStep : 

 Create a new population with the help of Eq. (3). 

 Evaluate fitness for each solution of that new population. 

 Find the best solution (Perturbed Leader, PL ) from this created new population. 

(e) If PL  is better than L , replace the L  by PL . 

Step-13: If (termination criterion is satisfied) go to Step-14, otherwise go to Step-6. 

Step-14: Print the best result. 

Step-15: Stop. 

 

6. Numerical Results and Discussion 
To illustrate and also to compare the results obtained from the proposed algorithm with the 

existing algorithms, we have solved four examples. The data for these four examples have been 

taken from Nahas and Nourelfath (2005) and shown in Appendix (see Table A.1, A.2, A.3 and 

A.4). However, Nahas and Nourelfath (2005) solved these examples considering without 

redundancy. In these examples, the available budgets are $1000, $900, $1000 and $1400. First of 

all we have solved the examples for reliability optimization without redundancy and compared 

the results with the same obtained from the existing algorithms (Nahas and Nourelfath, 2005) 

Algorithm – 1 (AS+Alg1) and Algorithm – 2 (AS+Alg1+Local). These results have been show in 

Table 4, 5. Using the same numerical data of Example 1 to 4, reliability optimization problem 

with redundancy has been solved for different budget. On the other hand, cost optimization 

problems with / without redundancy have been solved considering different lower bounds of 

reliability. The computational results have been shown in Table 4 – 15. 

 

Due to the stochastic nature of the proposed algorithm, 100 independent runs have been made for 

each problem considering different sets of random numbers. The proposed algorithm has been 

coded in C / C++ environment and the simulation has been done on a PC with Intel Core-i3 (2.5 

GHz) processor in LINUX environment. The stopping criterion used in the proposed C-

RCSOMGA performs up to maximum number of allowable iteration (T ). The values of 

parameters of C-RCSOMGA are given in Table 2 and Table 3. 
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Parameters Popsize  pcross  pmute  PRT  _Path length  Stepsize  

C-RCSOMGA 100 0.85 0.05 0.75 2 0.11 - 0.25 

 

Table 2. Experimental setup for C-RCSOMGA 

 

 

 

 

 

Example # 
(# of tech. used) 

Reliability optimization problem Cost optimization problem 

without redundancy with redundancy without redundancy with redundancy 

1 
(61) 

300 2000 500 2000 

2 

(80) 
300 2000 500 2000 

3 
(100) 

500 2000 700 2000 

4 

(166) 
1000 2000 1200 2000 

 

Table 3. Experimental setup for C-RCSOMGA for the values of allowable maximum number of iteration 

(T ) for different problems 

 

 

 

 

 

Example # 

(# of tech. used) 
% of feasible solution Algorithm used 

System Reliability 

Average StDev Best Min 

1 

(61) 

N/A AS+Alg1 0.85632000 0.00029000 0.85705000 0.85602000 

N/A AS+Alg1+Local 0.85705000 0.00000000 0.85705000 0.85705000 

100 C-RCSOMGA 0.85705458 0.00000000 0.85705458 0.85705458 

2 

(80) 

N/A AS+Alg1 0.90036000 0.01011000 0.91504000 0.87868000 

N/A AS+Alg1+Local 0.91504000 0.00000000 0.91504000 0.91504000 

100 C-RCSOMGA 0.91504172 0.00000000 0.91504172 0.91504172 

3 

(100) 

N/A AS+Alg1 0.95850000 0.00250000 0.96406000 0.95624000 

N/A AS+Alg1+Local 0.96439000 0.00050000 0.96513000 0.96406000 

100 C-RCSOMGA 0.96513425 0.00000000 0.96513425 0.96513425 

4 
(166) 

N/A AS+Alg1 0.77546000 0.01646000 0.80632000 0.76074000 

N/A AS+Alg1+Local 0.86491000 0.00038000 0.86543000 0.86465000 

100 C-RCSOMGA 0.86543863 0.00000000 0.86543863 0.87000000 

 

Table 4. Comparison between the results of reliability optimization without redundancy for different 

Algorithm 
N/A - indicates the non-availability of results in literature. 
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Example #(# of tech. 

used) 
Algorithm used 

Best solution among all runs System Reliability corres. to best 

solution Selected technologies 

1 
(61) 

AS+Alg1+Local 3-4-5-2-3-3-2-3-2-2-2-3-4-3-2 0.85705000 

C-RCSOMGA 3-4-5-2-3-3-2-3-2-2-2-3-4-3-2 0.85705458 

2 

(80) 

AS+Alg1+Local 3-3-3-4-2-3-3-2-4-1-2-3-4-3-1 0.91504000 

C-RCSOMGA 3-3-3-4-3-3-2-2-4-1-2-4-3-3-1 0.91504172 

3 

(100) 

AS+Alg1+Local 3-3-4-4-3-3-2-2-3-2-2-4-4-4-2 0.96406000 

C-RCSOMGA 3-3-4-4-3-3-2-2-3-2-2-4-4-4-2 0.96513425 

4 

(166) 

AS+Alg1+Local 
3-3-3-5-2-3-2-2-3-1-2-3-4-4-1-2-3-3-4-2-3-2-

2-3-1 
0.86465000 

C-RCSOMGA 
2-3-3-5-2-3-2-2-3-1-2-3-4-4-1-3-3-3-4-2-3-2-

2-3-1 
0.87000000 

 

Table 5. Comparison between the best solutions of reliability optimization without redundancy for different 

Algorithm 

 

 

 

 

Example # 

(# of tech. used) 
% of feasible solution 

Cost 

(in $) 

System Reliability 

Average StDev Best Worst 

1 
(61) 

 

4 1000.00 0.66330978 0.14592301 0.76649293 0.56012663 

100 1500.00 0.95737293 0.06539612 0.99786000 0.70272100 

100 2000.00 0.99942527 0.00103140 0.99984776 0.98971794 

100 2500.00 0.99997221 0.00002808 0.99999372 0.99987642 

100 3000.00 0.99999653 0.00000464 0.99999952 0.99997381 

2 

(80) 

0 1000.00 * * * * 

40 1500.00 0.94207788 0.086130537 0.99751069 0.67791754 

100 2000.00 0.99759396 0.007374591 0.99986934 0.94948385 

100 2500.00 0.99992546 0.000173946 0.99999524 0.99898519 

100 3000.00 0.99999140 0.000049970 0.99999989 0.99949879 

3 

(100) 

 

0 1000.00 * * * * 

3 1500.00 0.92626357 0.11169830 0.99724094 0.79751090 

69 2000.00 0.98288200 0.05065330 0.99995316 0.74795818 

100 2500.00 0.99987742 0.00034136 0.99999600 0.99695193 

100 3000.00 0.99999329 0.00003173 0.99999993 0.99968348 

4 

(166) 

0 3000.00 * * * * 

9 3500.00 0.99690361 0.004690514 0.99986526 0.98801831 

69 4000.00 0.99902158 0.006380859 0.99998640 0.94686575 

100 4500.00 0.99985665 0.000999104 0.99999716 0.98999433 

100 5000.00 0.99989291 0.000999533 0.99999986 0.98999914 

 

Table 6. Computational results of reliability of reliability optimization with redundancy for different 

Budget for hybrid C-RCSOMGA 
* - indicates that no feasible solution of the corresponding problem has been obtained. 
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From Table 4, it is observed that for all the examples, our proposed algorithm gives better 

solution than the existing algorithms (Nahas and Nourelfath, 2005) for reliability optimization 

without redundancy. It is also seen that among 100 runs maximum, minimum and average (mean) 

values of reliability be the same and obviously standard deviation is zero. In Table 5, best found 

solutions (selected technologies) with reliabilities have been shown for the existing algorithm 

(Nahas and Nourelfath, 2005) and our proposed algorithm for different examples. From this table, 

it is observed that for all the examples our algorithm gives the better result. 

 

From Table 6, it is evident that for all the examples average, maximum and minimum values of 

reliabilities along with standard deviation have been shown considering different values of budget 

for reliability optimization problem with redundancy. In each case, number of feasible solutions 

obtained has also been displayed. It is also observed that for higher budget (i.e., for higher cost), 

the maximum and average reliabilities are greater and in all the runs the obtained results are 

feasible. 

 

In Table 7, selected technologies, number of redundancies with reliability corresponding to the 

best found solution among all runs has been displayed for different budget costs for different 

examples. From this table, it is observed that system reliability is higher for higher cost. 

However, for examples 2, 3 and 4, feasible solutions are not obtained for budget costs $1000, 

$1000 and $3000 respectively. 

 

In Table 8 – 11, the computational results of cost optimization problem without redundancy have 

been displayed for different examples for different lower bound of system reliabilities. On the 

other hand, the computational results of the cost optimization problem with redundancy have 

been shown in Table 12 – 15. In Table 8, 9 and 11, it is seen that the feasible solutions of the cost 

optimization problem without redundancy in different technology of each subsystem are not 

available among all runs when the lower bounds of system reliability are 0.9000, 0.9500, 0.9900 

and 0.9990 for example 1, 0.9990 for example 2 and 0.9990 for example 4 respectively. 

 

Again from Table 8 – 11, it is observed that the standard deviations for total system cost are zero 

(0) in all cases except in one case when the lower bound of system reliability is 0.9990 for 

example 3. From Table 8 – 11, it is clear that the best-found cost is higher for higher imposed 

lower bound of system reliability. The same types of results have been shown in Table 12 – 15. 
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Example #(# of tech. used) Cost($) 
Best solution among all runs System Reliability corres. 

to best solution Selected technologies (Selected no. of redundancies) 

1 
(61) 

1000.00 
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 

(3-3-3-4-1-3-1-5-2-2-2-3-4-6-1) 
0.76649293 

1500.00 
2-1-1-2-2-4-1-2-1-1-4-3-4-1-1 

(2-5-6-3-2-1-3-2-4-3-1-2-1-8-2) 
0.99786000 

2000.00 
2-2-3-2-2-3-1-1-1-1-2-3-4-1-2 

(3-3-3-4-3-2-4-8-5-4-2-2-2-8-2) 
0.99984776 

2500.00 
7-2-2-2-2-2-1-2-1-1-1-3-4-3-1 

(1-4-5-5-4-5-5-3-7-4-6-3-2-3-3) 
0.99999372 

3000.00 
4-3-2-2-2-3-1-2-1-1-2-3-4-3-1 

(2-3-5-6-5-3-6-3-7-8-3-4-3-4-4) 
0.99999952 

2 

(80) 

1000.00 
* 

( * ) 
* 

1500.00 
2-1-1-3-2-4-3-1-1-1-2-5-1-1-1 

(2-4-6-2-2-1-2-6-4-2-2-1-6-6-2) 
0.99751069 

2000.00 
1-2-2-3-2-3-3-1-1-1-2-6-3-3-1 

(6-3-3-3-3-2-2-8-5-4-2-1-3-3-3) 
0.99986934 

2500.00 
2-2-2-5-2-3-3-2-1-1-2-4-4-3-1 

(4-4-5-3-4-2-2-3-7-4-3-2-2-4-4) 
0.99999524 

3000.00 
2-3-4-2-2-3-2-2-1-1-2-5-4-3-1 

(4-3-3-7-4-3-4-4-8-5-3-2-3-5-4) 
0.99999989 

3 

(100) 

1000.00 
* 

( * ) 
* 

1500.00 
4-2-1-2-5-3-2-1-5-1-4-3-1-1-3 

(1-2-5-3-1-2-2-5-1-2-1-2-5-6-1) 
0.99724094 

2000.00 
5-1-1-4-6-2-2-1-6-1-1-4-4-1-1 

(1-6-8-2-1-5-3-7-1-4-4-2-2-8-3) 
0.99995316 

2500.00 
2-4-4-5-2-3-1-2-4-1-2-4-5-3-2 

(4-2-3-2-4-2-5-3-2-6-3-2-2-4-2) 
0.99999600 

3000.00 
4-2-7-5-2-3-5-2-1-1-1-5-4-4-1 

(2-5-2-2-4-3-2-4-8-8-7-2-3-3-4) 
0.99999993 

4 

(166) 

3000.00 
* 

( * ) 
* 

3500.00 
4-2-8-3-4-1-6-2-1-1-2-4-1-1-4-1-2-4-5-3-3-6-1-3-4 

(2-4-1-3-2-6-1-2-5-5-2-2-8-8-1-6-3-2-2-2-2-1-8-2-1) 
0.99986526 

4000.00 
3-1-2-4-2-3-4-2-4-1-5-4-7-4-6-6-2-2-4-2-3-7-2-8-1 

(2-8-5-4-3-3-2-3-2-7-1-2-1-2-1-1-4-6-3-3-3-1-4-1-5) 
0.99998640 

4500.00 
3-3-6-5-4-4-4-2-1-2-2-4-4-2-1-2-3-2-3-4-3-4-2-5-1 

(3-3-2-2-2-2-2-5-7-3-3-2-2-6-4-4-3-5-4-2-3-2-3-2-8) 
0.99999716 

5000.00 
5-3-4-5-4-4-6-2-5-1-1-4-4-4-2-2-2-2-5-5-3-2-2-1-2 

(2-3-3-2-2-2-2-4-2-7-6-3-3-3-3-5-5-6-2-2-3-4-4-8-3) 
0.99999986 

 

Table 7. Computational results of corresponding best solution of reliability optimization with redundancy 

for different budget for hybrid C-RCSOMGA 
* - indicates that no feasible solution of the corresponding problem has been obtained. 
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% of feasible 

solution 

Imposed lower bound 

of system reliability 

Cost (in $) 
Selected technologies 

corres. to best found 
solution Average StDev 

Best 

(corres. System 

Reliability) 

Worst 

(corres. System 

Reliability) 

100 0.7500 720.00 0 
720.00 

(0.76621405) 
720.00 

(0.75140173) 
2-2-2-2-2-3-2-2-2-1-2-3-3-

3-1 

100 0.8000 770.00 0 
770.00 

(0.80559763) 

770.00 

(0.80559763) 

2-3-3-2-2-3-2-2-2-1-2-3-3-

3-1 

100 0.8500 930.00 0 
930.00 

(0.85114618) 
930.00 

(0.85037926) 
3-3-5-2-3-3-2-2-2-2-2-3-4-

3-2 

0 0.9000 * * * * * 

0 0.9500 * * * * * 

0 0.9900 * * * * * 

0 0.9990 * * * * * 

 

Table 8. Computational results of cost optimization problem without redundancy for different technology 

of each subsystem for hybrid C-RCSOMGA for example 1 

*- indicates that no feasible solution of the corresponding problem has been obtained. 

 

 

 

 

 

% of feasible 

solution 

Imposed lower bound 

of system reliability 

Cost (in $) 
Selected technologies 

corres. to best found 

solution Average StDev 
Best 

(corres. System 

Reliability) 

Worst 
(corres. System 

Reliability) 

100 0.7500 720.00 0 
720.00 

(0.76033925) 

720.00 

(0.75065072) 

2-2-2-3-2-3-1-2-2-1-2-3-3-

3-1 

100 0.8000 750.00 0 
750.00 

(0.80869072) 

750.00 

(0.80026686) 

2-2-2-4-2-3-2-2-2-1-2-3-3-

3-1 

100 0.8500 790.00 0 
790.00 

(0.86029801) 

790.00 

(0.86029801) 

2-2-3-4-2-3-2-2-3-1-2-3-3-

3-1 

100 0.9000 865.00 0 
865.00 

(0.90316727) 

865.00 

(0.90316727) 

2-3-3-5-2-3-2-2-4-1-2-4-3-

3-1 

100 0.9500 995.00 0 
995.00 

(0.95260974) 

995.00 

(0.95070067) 

3-3-4-5-3-3-3-2-4-2-2-4-4-

3-1 

72 0.9900 1325.00 0 
1325.00 

(0.99023365) 

1325.00 

(0.99023365) 

4-4-5-5-4-4-4-4-5-2-3-5-4-

6-2 

0 0.9990 * * * * * 

 

Table 9. Computational results of cost optimization problem without redundancy for different technology 

of each subsystem for hybrid C-RCSOMGA for example 2 
*- indicates that no feasible solution of the corresponding problem has been obtained. 
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% of 

feasible 

solution 

Imposed 
lower 

bound of 

system 
reliability 

Cost (in $) 
Selected technologies 

corres. to best found 

solution Average StDev 

Best 

(corres. System 

Reliability) 

Worst 

(corres. System 

Reliability) 

100 0.7500 710.00 0 
710.00 

(0.76817779) 

710.00 

(0.75031118) 

2-2-2-3-2-3-1-2-2-1-2-3-

3-3-1 

100 0.8000 730.00 0 
730.00 

(0.80456517) 
730.00 

(0.80052213) 
2-2-2-3-2-3-1-2-3-1-2-3-

3-3-1 

100 0.8500 760.00 0 
760.00 

(0.85469711) 
760.00 

(0.85469711) 
2-2-2-4-2-3-2-2-3-1-2-3-

3-3-1 

100 0.9000 830.00 0 
830.00 

(0.90679810) 

830.00 

(0.90269287) 

2-3-3-4-2-3-2-2-3-1-2-3-

3-4-1 

100 0.9500 955.00 0 
955.00 

(0.95020322) 

955.00 

(0.95020322) 

3-3-4-4-2-3-3-2-4-1-2-4-

4-4-1 

100 0.9900 1180.00 0 
1180.00 

(0.99014455) 

1180.00 

(0.99004557) 

3-4-5-5-4-4-4-3-4-2-2-4-

4-4-2 

52 0.9990 1550.77 3.92232 
1550.00 

(0.99903024) 

1570.00 

(0.99900428) 

5-5-7-5-5-4-5-4-5-3-4-5-

6-5-3 

 

Table 10. Computational results of cost optimization problem without redundancy for different technology 

of each subsystem for hybrid C-RCSOMGA for example 3 

 

 

 

% of feasible 
solution 

Imposed lower bound 
of system reliability 

Cost (in $) 
Selected technologies 

corres. to best found 

solution Average StDev 

Best 

(corres. System 

Reliability) 

Worst 

(corres. System 

Reliability) 

100 0.7500 1225.00 0 
1225.00 

(0.76123401) 

1225.00 

(0.75330450) 

2-2-2-4-2-3-2-2-3-1-2-3-3-
3-1-2-2-2-4-2-3-2-2-3-1 

 

100 0.8000 1265.00 0 
1265.00 

(0.80955458) 

1265.00 

(0.80955458) 

2-2-3-4-2-3-2-2-3-1-2-3-3-
3-1-2-2-3-4-2-3-2-2-3-1 

 

100 0.8500 1365.00 0 
1365.00 

(0.85686995) 

1365.00 

(0.85128304) 

2-3-3-4-2-3-2-2-3-1-2-3-4-

3-1-3-3-3-4-2-3-2-2-3-1 
 

100 0.9000 1490.00 0 
1490.00 

(0.90106570) 

1490.00 

(0.90016279) 

3-3-4-4-3-3-3-2-3-1-2-3-4-

4-1-3-3-4-4-2-3-2-2-3-1 
 

100 0.9500 1650.00 0 
1650.00 

(0.95029611) 

1650.00 

(0.95029611) 

3-3-4-5-3-3-3-2-3-2-2-4-4-

4-2-3-3-4-4-3-3-3-2-3-2 
 

100 0.9900 2090.00 0 
2090.00 

(0.99054161) 
2090.00 

(0.99001633) 

4-4-5-5-4-3-4-4-4-2-3-5-4-

5-2-4-4-5-5-4-4-4-4-4-2 

 

0 0.9990 * * * * * 

 

Table 11. Computational results of cost optimization problem without redundancy for different technology 

of each subsystem for hybrid C-RCSOMGA for example 4 
*- indicates that no feasible solution of the corresponding problem has been obtained. 
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% of feasible 
solution 

Imposed lower bound of 
system reliability 

Cost (in $) Selected technologies corres. to 

best found solution 
(Selected number of 

redundancies) 
Average 

Best 
(corres. System 

Reliability) 

Worst 
(corres. System 

Reliability) 

100 0.7500 837.00 
720.00 

(0.75043378) 

1150.00 

(0.75029566) 

1-2-2-1-2-1-2-2-1-1-2-3-1-1-1 

(2-1-1-2-1-2-1-1-2-1-1-1-2-3 1) 

100 0.8000 858.10 
755.00 

(0.80050133) 
1020.00 

(0.80188406) 
3-1-1-2-2-1-2-2-1-1-1-1-3-1-1 

(1-2-3-1-1-2-1-1-2-1-2-2-1-3-1) 

100 0.8500 911.20 
810.00 

(0.86104210) 
1110.00 

(0.85330449) 
2-3-1-2-2-3-2-1-1-1-2-3-1-3-1 

(1-1-2-2-1-1-1-3-2-1-1-1-3-1-1) 

100 0.9000 983.40 
870.00 

(0.90063263) 
1190.00 

(0.90066850) 
1-1-1-2-2-3-2-2-1-1-2-3-3-1-3 

(3-2-3-2-1-1-1-1-2-1-1-1-1-4-1) 

100 0.9500 1088.90 
985.00 

(0.95030210) 
1200.00 

(0.95024704) 
1-3-2-2-1-3-1-2-1-1-1-3-1-1-2 

(3-1-2-2-3-1-2-1-2-2-2-1-4-4-1) 

100 0.9900 1412.20 
1305.00 

(0.99008213) 

1625.00 

(0.99049496) 

1-1-5-2-2-1-1-1-1-1-2-3-1-1-2 

(3-4-1-3-2-3-2-5-3-2-1-2-5-6-1) 

100 0.9990 1801.30 
1625.00 

(0.99901825) 

1995.00 

(0.99900971) 

3-5-2-2-2-3-2-1-1-1-1-3-3-1-1 

(2-1-3-4-2-2-2-6-4-3-3-2-2-6-2) 

100 0.9999 2220.60 
2045.00 

(0.99991102) 

2510.00 

(0.99991365) 

6-2-1-2-2-3-1-1-1-1-2-1-4-1-2 

(1-3-8-4-3-2-4-6-5-3-2-7-2-7-2) 

100 0.99999 2600.50 
2365.00 

(0.99999029) 

2945.00 

(0.99999014) 

4-4-5-2-2-3-2-2-1-1-2-3-4-2-1 

(2-2-2-5-3-2-3-3-6-4-2-3-2-5-3) 

 

Table 12. Computational results of cost optimization problem with redundancy for different technology of 

each subsystem for hybrid C-RCSOMGA for example 1 

 

% of feasible 
solution 

Imposed lower bound of 
system reliability 

Cost (in $) Selected technologies corres. 

to best found solution 
(Selected number of 

redundancies) 
Average 

Best 
(corres. System 

Reliability) 

Worst 
(corres. System 

Reliability) 

100 0.7500 861.00 
715.00 

(0.75332569) 

1130.00 

(0.75017713) 

1-1-1-3-1-1-1-2-1-1-2-1-3-1-1 
(2-2-2-1-2-2-1-1-2-1-1-2-1-3-

1) 

100 0.8000 902.40 
775.00 

(0.80007523) 

1240.00 

(0.80003961) 

1-2-2-2-1-1-2-1-1-1-1-3-1-3-1 

(2-1-1-1-3-2-1-3-2-2-2-1-3-1-
1) 

100 0.8500 939.20 
825.00 

(0.85050853) 

1220.00 

(0.85236908) 

3-2-2-4-2-2-2-1-1-2-1-3-3-1-1 

(1-1-2-1-1-2-1-3-2-1-1-1-1-3-
1) 

100 0.9000 1004.50 
875.00 

(0.90106520) 
1280.00 

(0.90137277) 

2-3-1-2-2-1-1-1-1-1-2-2-3-1-1 

(1-1-3-2-1-2-2-3-2-1-1-2-1-4-

1) 

100 0.9500 1106.20 
975.00 

(0.95126599) 
1275.00 

(0.95207199) 

1-1-1-2-1-1-1-1-1-1-1-4-3-1-2 

(3-3-3-2-3-3-2-4-2-2-2-1-1-4-

1) 

100 0.9900 1412.90 
1275.00 

(0.99002985) 

1880.00 

(0.99011295) 

1-2-1-2-3-3-4-1-1-3-3-1-4-1-1 
(3-2-4-3-1-1-1-4-3-1-1-4-1-6-

2) 

100 0.9990 1782.80 
1595.00 

(0.99900702) 

1980.00 

(0.99900596) 

1-1-2-2-2-2-2-2-1-1-4-5-3-1-1 
(4-5-3-4-2-3-2-3-4-3-1-1-2-8-

2) 

100 0.99999 2512.00 
2280.00 

(0.99999027) 

2880.00 

(0.99999144) 

1-1-2-2-2-3-3-2-1-1-1-5-4-3-1 

(6-8-5-5-3-2-2-3-6-4-5-2-2-3-
3) 

 

Table 13. Computational results of cost optimization problem with redundancy for different technology of 

each subsystem for hybrid C-RCSOMGA for example 2 
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% of feasible 
solution 

Imposed lower bound of 
system reliability 

Cost (in $) Selected technologies corres. to 

best found solution 
(Selected number of 

redundancies) 
Average 

Best 
(corres. System 

Reliability) 

Worst 
(corres. System 

Reliability) 

100 0.7500 940.30 
725.00 

(0.75110484) 

1155.00 

(0.75005996) 

3-1-3-4-1-3-2-1-1-1-1-1-1-1-1 

(1-2-1-1-2-1-1-2-2-1-1-2-2-3-1) 

100 0.8000 988.10 
760.00 

(0.80308843) 

1360.00 

(0.82297242) 

3-1-3-5-2-3-2-1-3-1-2-3-1-1-1 

(1-2-1-1-1-1-1-2-1-1-1-1-2-2-1) 

100 0.8500 1011.10 
800.00 

(0.85202849) 

1290.00 

(0.86985933) 

4-1-1-3-1-1-2-1-1-1-1-3-3-3-1 

(1-2-3-1-2-2-1-3-2-1-2-1-1-1-1) 

100 0.9000 1041.90 
875.00 

(0.90759672) 
1360.00 

(0.90115269) 
3-1-1-4-1-2-1-1-3-1-1-4-1-1-1 

(1-2-3-1-3-2-2-3-1-1-2-1-3-3-1) 

100 0.9500 1178.50 
950.00 

(0.95029904) 

1730.00 

(0.95216062) 

3-3-3-5-1-3-4-1-1-1-2-4-4-1-1 

(1-1-1-1-3-1-1-4-2-2-1-1-1-3-1) 

100 0.9900 1409.00 
1225.00 

(0.99030730) 
1730.00 

(0.99066244) 
3-1-1-3-3-4-1-1-4-1-2-5-4-1-3 

(2-4-4-2-1-1-2-4-1-2-1-1-1-5-1) 

100 0.9990 1811.60 
1590.00 

(0.99912943) 

2015.00 

(0.99900853) 

2-5-2-4-1-5-6-1-5-2-1-5-4-1-1 

(2-1-3-2-5-1-1-5-1-2-3-1-2-6-2) 

100 0.9999 2186.60 
1935.00 

(0.99990842) 

2570.00 

(0.99990140) 

2-1-1-4-1-3-3-2-1-1-2-4-7-4-5 

(3-6-7-2-6-2-2-2-5-3-2-2-1-2-1) 

100 0.99999 2589.10 
2270.00 

(0.99999075) 

3025.00 

(0.99999441) 

2-2-5-5-2-4-8-1-1-1-4-4-4-1-1 

(3-4-2-2-3-2-1-8-6-4-2-2-2-8-3) 

 

Table 14. Computational results of cost optimization problem with redundancy for different technology of 

each subsystem for hybrid C-RCSOMGA for example 3 
 

% of 

feasibl

e 

solutio

n 

Imposed 

lower 

bound of 

system 

reliability 

Cost (in $) 

Selected technologies corres. to best solution 

(Selected number of redundancies) Average 

Best 
(corres. 

System 

Reliability) 

Worst 
(corres. 

System 

Reliability) 

100 0.7500 1680.30 
1425.00 

(0.75062799) 
1980.00 

(0.75547077) 
4-1-3-3-2-2-1-1-1-1-2-3-7-1-1-4-1-2-2-2-2-2-2-2-1 

(1-2-1-1-1-2-2-3-2-1-1-1-1-3-1-1-2-2-2-1-1-1-1-1-1) 

100 0.8000 1759.00 
1400.00 

(0.80021206) 

2185.00 

(0.80100284) 

3-1-3-2-2-3-2-1-3-1-1-1-3-1-1-4-1-1-3-1-3-4-1-3-1 

(1-2-1-2-1-1-1-3-1-1-2-3-1-3-1-1-2-2-1-3-1-1-3-1-1) 

100 0.8500 1827.00 
1420.00 

(0.85202907) 
2290.00 

(0.85023684) 
1-2-1-4-1-3-2-1-1-2-1-3-1-1-1-1-2-4-4-2-2-1-1-1-1 

(3-1-3-1-3-1-1-3-2-1-2-1-3-3-1-2-2-1-1-1-2-2-3-2-1) 

100 0.9000 1891.60 
1580.00 

(0.90138278) 
2190.00 

(0.90000340) 
2-3-1-4-2-1-1-3-1-1-2-1-3-4-2-1-1-2-4-1-2-2-1-1-1 

(2-1-3-1-1-2-2-1-2-2-1-3-1-1-1-3-3-2-1-3-2-1-3-2-2) 

100 0.9500 2085.40 
1810.00 

(0.95140623) 

2495.00 

(0.95192691) 

4-1-1-4-5-2-4-1-5-1-1-4-3-1-3-1-1-2-2-1-2-2-1-1-1 

(1-3-4-1-1-2-1-4-1-2-2-1-1-4-1-3-3-2-2-3-3-1-4-3-2) 

100 0.9900 2536.10 
2200.00 

(0.99005870) 
3010.00 

(0.99000153) 
1-1-5-3-1-2-3-1-4-1-1-3-5-1-1-3-1-1-5-1-3-6-1-4-2 

(4-4-1-2-5-3-1-5-1-2-3-2-1-6-2-1-4-5-1-4-2-1-5-1-1) 

100 0.9990 3283.40 
2940.00 

(0.99903265) 
3870.00 

(0.99903163) 
2-1-1-3-5-4-5-5-1-1-1-3-7-1-4-7-5-6-3-6-1-1-2-3-1 

(3-5-8-3-1-1-1-1-4-3-3-2-1-7-1-1-1-1-3-1-4-4-2-2-3) 

100 0.9999 3807.10 
3290.00 

(0.99990197) 
4265.00 

(0.99990278) 
1-2-7-4-2-5-3-2-4-1-2-4-4-3-1-2-2-2-3-4-5-3-1-6-1 

(6-3-1-2-3-1-2-3-2-3-2-2-2-3-3-3-3-4-3-2-1-2-8-1-3) 

100 0.99999 4402.10 
3985.00 

(0.99999001) 
5105.00 

(0.99999024) 
4-2-2-5-4-3-4-2-3-1-1-5-4-1-1-7-2-5-4-2-3-1-2-4-1 

(2-5-4-2-2-3-2-3-3-5-5-2-2-8-3-1-4-2-3-4-2-5-3-2-4) 

 

Table 15. Computational results of cost optimization problem with redundancy for different technology of 

each subsystem for hybrid C-RCSOMGA for example 4 
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7. Concluding Remarks 
This paper deals with two reliability optimization problems for a series system with parallel 

redundancy incorporating multiple choice constraints. In the first problem, system reliability is 

maximized subject to a budget constraint whereas in the second problem, system cost is 

minimized subject to a minimum level of system reliability. These problems are NP-hard 

problems. To solve these, we have developed hybrid heuristic approach based on parameter free 

penalty technique, RCGA and SOMA. Here, penalty function is to obtain the feasible solutions. 

In this penalty technique, only a large negative value (in case of maximization problem) or a very 

large value (in case of a minimization problem) is considered for infeasible solution. From the 

experimental results, it is observed that the optimal or near to optimal solution (though the 

optimality cannot be tested analytically) can be obtained quickly. 

 
Acknowledgment 

For this research, the first author would like to acknowledge the financial support provided by the Council 

of Scientific and Industrial Research (CSIR), New Delhi, India. 

 

References 

Bhunia, A. K., Sahoo, L., & Roy, D. (2010). Reliability stochastic optimization for a series system with 

interval component reliability via genetic algorithm. Applied Mathematics and Computation, 216(3), 

929-939. 

Brindle, A. (1981). Genetic algorithms for function optimization (Doctoral dissertation and Technical 

Report TR81-2). Edmonton: University of Alberta, Department of Computer Science. 

Chelouah, R., & Siarry, P. (2003). Genetic and Nelder–Mead algorithms hybridized for a more accurate 

global optimization of continuous multiminima functions. European Journal of Operational 

Research, 148(2), 335-348. 

Chern, M. S. (1992). On the computational complexity of reliability redundancy allocation in a series 

system. Operations Research Letters, 11(5), 309-315. 

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary 

algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and 

Engineering, 191(11), 1245-1287. 

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in 

Applied Mechanics and Engineering, 186, 311–38. 

dos Santos Coelho, L. (2009). An efficient particle swarm approach for mixed-integer programming in 

reliability–redundancy optimization applications. Reliability Engineering and System Safety, 94(4), 

830-837. 

dos Santos Coelho, L. (2009). Self-organizing migration algorithm applied to machining allocation of 

clutch assembly. Mathematics and Computers in Simulation, 80(2), 427-435. 

dos Santos Coelho, L., & Alotto, P. (2009). Electromagnetic optimization using a cultural self-organizing 

migrating algorithm approach based on normative knowledge. IEEE Transactions on Magnetics, 45(3), 

1446-1449. 

dos Santos Coelho, L., & Mariani, V. C. (2010). An efficient cultural self-organizing migrating strategy for 

economic dispatch optimization with valve-point effect. Energy Conversion and Management, 51(12), 

2580-2587. 

Fan, S. K. S., Liang, Y. C., & Zahara, E. (2006). A genetic algorithm and a particle swarm optimizer 

hybridized with Nelder–Mead simplex search. Computers and Industrial Engineering, 50(4), 401-425. 



International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 2, No. 3, 185–212, 2017 

ISSN: 2455-7749 

207 

Ghare, P. M., & Taylor, R. E. (1969). Optimal redundancy for reliability in series systems. Operations 

Research, 17(5), 838-847. 

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning ‘addison-wesley, 

1989. Reading, MA. 

Goldberg, D., Deb, K., & Korb, B. (1989). Messy genetic algorithms: Motivation, analysis, and first 

results. Complex systems, (3), 493-530. 

Gupta, R. K., Bhunia, A. K., & Roy, D. (2009). A GA based penalty function technique for solving 

constrained redundancy allocation problem of series system with interval valued reliability of 

components. Journal of Computational and Applied Mathematics, 232(2), 275-284. 

Ha, C., & Kuo, W. (2006). Reliability redundancy allocation: An improved realization for nonconvex 

nonlinear programming problems. European Journal of Operational Research, 171(1), 24-38. 

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with 

applications to biology, control, and artificial intelligence. U Michigan Press. 

Jabeen, S. D., & Bhunia, A. K. (2006). Real-coded genetic algorithm with variable rates of cross-over and 

mutation: a basis of global optimization for multi-modal functions via interval technique. International 

Journal of Computer Mathematics, 83(12), 853-866. 

Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous mappings, and constrained 

parameter optimization. Evolutionary computation, 7(1), 19-44. 

Kuo, W. (2001). Optimal reliability design: fundamentals and applications. Cambridge University Press. 

Michalewicz, Z. (1996). Genetic algorithms data structures evolution programs. Springer, Berlin. 

Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter 

optimization problems. Evolutionary Computation, 4(1), 1-32. 

Nahas, N., & Nourelfath, M. (2005). Ant system for reliability optimization of a series system with 

multiple-choice and budget constraints. Reliability Engineering & System Safety, 87(1), 1-12. 

Nakagawa, Y., Nakashima, K., & Hattori, Y. (1978). Optimal reliability allocation by branch-and-bound 

technique. IEEE Transactions on Reliability, 1, 31-38. 

Nauss, R. M. (1978). The 0–1 knapsack problem with multiple choice constraints. European Journal of 

Operational Research, 2(2), 125-131. 

Nolle, L., Zelinka, I., Hopgood, A. A., & Goodyear, A. (2005). Comparison of a self-organizing migration 

algorithm with simulated annealing and differential evolution for automated waveform 

tuning. Advances in Engineering Software, 36(10), 645-653. 

Nourelfath, M., & Nahas, N. (2003). Quantized hopfield networks for reliability optimization. Reliability 

Engineering & System Safety, 81(2), 191-196. 

Pedamallu, C. S., & Ozdamar, L. (2008). Investigating a hybrid simulated annealing and local search 

algorithm for constrained optimization. European Journal of Operational Research, 185(3), 1230-

1245. 

Renders, J. M., & Flasse, S. P. (1996). Hybrid methods using genetic algorithms for global 

optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(2), 243-

258. 

Sahoo, L., Bhunia, A. K., & Kapur, P. K. (2012). Genetic algorithm based multi-objective reliability 

optimization in interval environment. Computers and Industrial Engineering, 62(1), 152-160. 



International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 2, No. 3, 185–212, 2017 

ISSN: 2455-7749 

208 

Sakawa, M., & Kato, K. (2002). An interactive fuzzy satisficing method for general multiobjective 0–1 

programming problems through genetic algorithms with double strings based on a reference 

solution. Fuzzy Sets and Systems, 125(3), 289-300. 

Salhi, S., & Queen, N. M. (2004). A hybrid algorithm for identifying global and local minima when 

optimizing functions with many minima. European Journal of Operational Research, 155(1), 51-67. 

Senkerik, R., Zelinka, I., Davendra, D., & Oplatkova, Z. (2010). Utilization of SOMA and differential 

evolution for robust stabilization of chaotic Logistic equation. Computers and Mathematics with 

Applications, 60(4), 1026-1037. 

Sinha, P., & Zoltners, A. A. (1979). The multiple-choice knapsack problem. Operations Research, 27(3), 

503-515. 

Sun, X. L., & Li, D. (2002). Optimality condition and branch and bound algorithm for constrained 

redundancy optimization in series systems. Optimization and Engineering, 3(1), 53-65.  

Sung, C. S., & Cho, Y. K. (2000). Reliability optimization of a series system with multiple-choice and 

budget constraints. European Journal of Operational Research, 127(1), 159-171. 

Sung, C. S., & Lee, H. K. (1994). A branch-and-bound approach for spare unit allocation in a series 

system. European journal of operational research, 75(1), 217-232. 

Tillman, F. A., Hwang, C. L., & Kuo, W. (1977). Optimization Techniques for System Reliability with 

RedundancyߞA Review. IEEE Transactions on Reliability, 26(3), 148-155. 

Tillman, F. A., Hwang, C. L., & Kuo, W. (1980). Optimization of systems reliability (Vol. 4). Marcel 

Dekker Inc. 

Zelinka, I, & Lampinen, J. (2000). SOMA – self-organizing migrating algorithm. Proceedings of the 6th 

international Mendel conference on soft computing, Brno, Czech Republic; 177–187.  

Zelinka, I. (2004). SOMA—self-organizing migrating algorithm. In New optimization techniques in 

engineering (pp. 167-217). Springer Berlin Heidelberg. 

Zelinka, I., Lampinen, J., & Nolle, L. (2001). On the theoretical proof of convergence for a class of SOMA 

search algorithms, In: Proceedings of the 7th International MENDEL Conference on Soft Computing., 

pp. 103-110. ISBN 0802141894X. 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 2, No. 3, 185–212, 2017 

ISSN: 2455-7749 

209 

Appendix: The data for the four examples [15] that have been used in this paper and given 

below (see Table A.1, A.2, A.3 and A.4). 

 

 

 

 

 
Sub-

system  
Technology 

1 
Technology 

2 
Technology 

3 
Technology 

4 
Technology 

5 
Technology 

6 
Technology 

7 
Technology 

8 

1 
Reliability 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999999 

Cost($) 20 40 60 80 100 120 140 180 

2 
Reliability 0.85 0.9775 0.9966 0.9995 0.9999 – – – 

Cost($) 30 60 90 120 150 – – – 

3 
Reliability 0.8 0.96 0.99 0.998 0.9997 – – – 

Cost($) 20 40 60 80 100 – – – 

4 
Reliability 0.75 0.938 – – – – – – 

Cost($) 30 40 – – – – – – 

5 
Reliability 0.85 0.99 0.999 – – – – – 

Cost($) 20 40 65 – – – – – 

6 
Reliability 0.9 0.95 0.999 0.9999 – – – – 

Cost($) 25 30 50 70 – – – – 

7 
Reliability 0.95 0.99 – – – – – – 

Cost($) 40 60 – – – – – – 

8 
Reliability 0.85 0.995 0.999 0.9999 0.99999 – – – 

Cost($) 10 30 60 80 120 – – – 

9 
Reliability 0.9 0.95 – – – – – – 

Cost($) 30 50 – – – – – – 

10 
Reliability 0.99 0.999 0.9999 0.99999 0.999999 – – – 

Cost($) 15 40 70 100 130 – – – 

11 
Reliability 0.95 0.999 0.9998 0.99999 0.999998 0.9999999 – – 

Cost($) 20 40 60 80 100 120 – – 

12 
Reliability 0.8 0.9 0.99 – – – – – 

Cost($) 40 60 85 – – – – – 

13 
Reliability 0.75 0.85 0.99 0.999 – – – – 

Cost($) 30 50 80 100 – – – – 

14 
Reliability 0.8 0.95 0.99 – – – – – 

Cost($) 10 30 40 – – – – – 

15 
Reliability 0.99 0.999 0.9999 0.99999 – – – – 

Cost($) 50 80 110 140 – – – – 

 

Table A.1. Data for example 1 (with 61 variables) 
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Sub-

system  

Technology 

1 

Technology 

2 

Technology 

3 

Technology 

4 

Technology 

5 

Technology 

6 

Technology 

7 

Technology 

8 

1 
Reliability 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999999 

Cost($) 20 40 60 80 100 120 140 180 

2 
Reliability 0.85 0.9775 0.9966 0.9995 0.9999 – – – 

Cost($) 30 60 90 120 150 – – – 

3 
Reliability 0.8 0.96 0.99 0.998 0.9997 – – – 

Cost($) 20 40 60 80 100 – – – 

4 
Reliability 0.75 0.938 0.97 0.99 0.995 – – – 

Cost($) 30 40 60 70 80 – – – 

5 
Reliability 0.85 0.99 0.999 0.9999 – – – – 

Cost($) 20 40 65 80 – – – – 

6 
Reliability 0.9 0.95 0.999 0.9999 – – – – 

Cost($) 25 30 50 70 – – – – 

7 
Reliability 0.95 0.99 0.999 0.9999 – – – – 

Cost($) 40 60 80 100 – – – – 

8 
Reliability 0.85 0.995 0.999 0.9999 0.99999 – – – 

Cost($) 10 30 60 80 120 – – – 

9 
Reliability 0.9 0.95 0.98 0.995 0.9999 – – – 

Cost($) 30 50 70 90 120 – – – 

10 
Reliability 0.99 0.999 0.9999 0.99999 0.999999 – – – 

Cost($) 15 40 70 100 130 – – – 

11 
Reliability 0.95 0.999 0.9998 0.99999 0.999998 0.9999999 – – 

Cost($) 20 40 60 80 100 120 – – 

12 
Reliability 0.8 0.9 0.99 0.999 0.9999 0.99999 0.999997 0.9999995 

Cost($) 40 60 85 100 120 140 155 170 

13 
Reliability 0.75 0.85 0.99 0.999 – – – – 

Cost($) 30 50 80 100 – – – – 

14 
Reliability 0.8 0.95 0.99 0.996 0.9993 0.9999 0.99996 0.999998 

Cost($) 10 30 40 60 80 95 120 140 

15 
Reliability 0.99 0.999 0.9999 0.99999 – – – – 

Cost($) 50 80 110 140 – – – – 

 

Table A.2. Data for example 2 (with 80 variables) 
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Sub-

system  

Technology 

1 

Technology 

2 

Technology 

3 

Technology 

4 

Technology 

5 

Technology 

6 

Technology 

7 

Technology 

8 

1 
Reliability 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999999 

Cost($) 20 40 60 80 100 120 140 180 

2 
Reliability 0.85 0.9775 0.9966 0.9995 0.9999 – – – 

Cost($) 30 60 90 120 150 – – – 

3 
Reliability 0.8 0.96 0.99 0.998 0.9997 0.9999 0.99999 0.999999 

Cost($) 20 40 60 80 100 120 140 160 

4 
Reliability 0.75 0.938 0.98 0.999 0.9999 – – – 

Cost($) 30 40 50 60 70 – – – 

5 
Reliability 0.85 0.99 0.999 0.9999 0.99998 0.999998 0.9999998 0.99999998 

Cost($) 20 40 65 80 100 120 140 155 

6 
Reliability 0.9 0.95 0.999 0.9999 0.99999 – – – 

Cost($) 25 30 50 70 90 – – – 

7 
Reliability 0.95 0.99 0.997 0.9997 0.99997 0.999997 0.9999997 0.99999997 

Cost($) 40 60 80 100 120 140 160 180 

8 
Reliability 0.85 0.995 0.999 0.9999 0.99999 – – – 

Cost($) 10 30 60 80 120 – – – 

9 
Reliability 0.9 0.95 0.995 0.9995 0.99995 0.999995 0.9999995 0.99999995 

Cost($) 30 50 70 90 110 130 150 170 

10 
Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 – – 

Cost($) 15 40 70 100 130 160 – – 

11 
Reliability 0.95 0.999 0.9998 0.99999 0.999998 0.9999999 0.99999997 0.99999999 

Cost($) 20 40 60 80 100 120 140 160 

12 
Reliability 0.8 0.9 0.99 0.999 0.9999 – – – 

Cost($) 40 60 85 110 130 – – – 

13 
Reliability 0.75 0.85 0.99 0.999 0.9996 0.99996 0.999996 0.9999996 

Cost($) 30 50 80 100 120 140 160 180 

14 
Reliability 0.8 0.95 0.99 0.999 0.9999 – – – 

Cost($) 10 30 40 60 80 – – – 

15 
Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999998 0.99999999 

Cost($) 50 80 110 140 160 180 200 220 

 

Table A.3. Data for example 3 (with 100 variables) 
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Sub-

system  

Technology 

1 

Technology 

2 

Technology 

3 

Technology 

4 

Technology 

5 

Technology 

6 

Technology 

7 

Technology 

8 

1 
Reliability 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999999 

Cost($) 20 40 60 80 100 120 140 180 

2 
Reliability 0.85 0.9775 0.9966 0.9995 0.9999 – – – 

Cost($) 30 60 90 120 150 – – – 

3 
Reliability 0.8 0.96 0.99 0.998 0.9997 0.9999 0.99999 0.999999 

Cost($) 20 40 60 80 100 120 140 160 

4 
Reliability 0.75 0.938 0.98 0.999 0.9999 – – – 

Cost($) 30 40 50 60 70 – – – 

5 
Reliability 0.85 0.99 0.999 0.9999 0.99998 0.999998 0.9999998 0.99999998 

Cost($) 20 40 65 80 100 120 140 155 

6 
Reliability 0.9 0.95 0.999 0.9999 0.99999 – – – 

Cost($) 25 30 50 70 90 – – – 

7 
Reliability 0.95 0.99 0.997 0.9997 0.99997 0.999997 0.9999997 0.99999997 

Cost($) 40 60 80 100 120 140 160 180 

8 
Reliability 0.85 0.995 0.999 0.9999 0.99999 – – – 

Cost($) 10 30 60 80 120 – – – 

9 
Reliability 0.9 0.95 0.995 0.9995 0.99995 0.999995 0.9999995 0.99999995 

Cost($) 30 50 70 90 110 130 150 170 

10 
Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 – – 

Cost($) 15 40 70 100 130 160 – – 

11 
Reliability 0.95 0.999 0.9998 0.99999 0.999998 0.9999999 0.99999997 0.999999999 

Cost($) 20 40 60 80 100 120 140 160 

12 
Reliability 0.8 0.9 0.99 0.999 0.9999 – – – 

Cost($) 40 60 85 110 130 – – – 

13 
Reliability 0.75 0.85 0.99 0.999 0.9996 0.99996 0.999996 0.9999996 

Cost($) 30 50 80 100 120 140 160 180 

14 
Reliability 0.8 0.95 0.99 0.999 0.9999 – – – 

Cost($) 10 30 40 60 80 – – – 

15 
Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999998 0.999999995 

Cost($) 50 80 110 140 160 180 200 220 

16 
Reliability 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 0.99999999 

Cost($) 20 40 60 80 100 120 140 180 

17 
Reliability 0.85 0.9775 0.9966 0.9995 0.9999 – – – 

Cost($) 30 60 90 120 150 – – – 

18 
Reliability 0.8 0.96 0.99 0.998 0.9997 0.9999 0.99999 0.999999 

Cost($) 20 40 60 80 100 120 140 160 

19 
Reliability 0.75 0.938 0.98 0.999 0.9999 – – – 

Cost($) 30 40 50 60 70 – – – 

20 
Reliability 0.85 0.99 0.999 0.9999 0.99998 0.999998 0.9999998 0.99999998 

Cost($) 20 40 65 80 100 120 140 155 

21 
Reliability 0.9 0.95 0.999 0.9999 0.99999 – – – 

Cost($) 25 30 50 70 90 – – – 

22 
Reliability 0.95 0.99 0.997 0.9997 0.99997 0.999997 0.9999997 0.99999997 

Cost($) 40 60 80 100 120 140 160 180 

23 
Reliability 0.85 0.995 0.999 0.9999 0.99999 – – – 

Cost($) 10 30 60 80 120 – – – 

24 
Reliability 0.9 0.95 0.995 0.9995 0.99995 0.999995 0.9999995 0.99999995 

Cost($) 30 50 70 90 110 130 150 170 

25 
Reliability 0.99 0.999 0.9999 0.99999 0.999999 0.9999999 – – 

Cost($) 15 40 70 100 130 160 – – 
 

Table A.4. Data for example 4 (with 166 variables) 


