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Abstract 

We investigate a portfolio selection model with several objective functions, whose coefficients are uncertain and vary 

between some bounds. A preferable efficient portfolio of the model is obtained, which provides the range within which 

the portfolio return and the moments would vary. An optimal portfolio for the forecasted returns of stocks is found with 

actual market data from the Bombay Stock Exchange, India. 

 

Keywords- Nonlinear interval programming, Multi-objective optimization, Portfolio selection, Forecasting, Efficient 

portfolio. 

 

 

 

1. Introduction  
Theory of portfolio optimization has grown in popularity in investment management and now 

forms an important tool for portfolio managers to assist in asset allocation. But uncertainty in the 

market often leads to uncertainty with respect to the returns of the individual securities, which in 

turn translates into uncertainty with respect to the different moments of the return and thereby, 

increases the complexity of the portfolio optimization model. Portfolio optimization in its 

mathematical form was initiated by Markowitz (1952) with the classical Mean-Variance portfolio 

selection model, which is widely considered as the foundation of modern portfolio theory. 

However, over the years a number of alternative models have been proposed (Konno and 

Yamazaki, 1991; Elton et al., 2009; Longerstaey and Spencer, 1996; Rockafellar and Uryasev, 

2002 and references therein are some recent developments). One of the key concerns among the 

refined models, that has been proposed subsequently, is the uncertainty in price movements 

(King, 1993). 

 

In order to analyze the uncertainty in the financial market, the portfolio optimization theory has 

been increasingly focused on multivariate data analysis and modified in several directions using 

https://dx.doi.org/
mailto:mjana@ddn.upes.ac.in
mailto:mrinal.jana88@gmail.com
mailto:geetanjali@maths.iitkgp.ac.in


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 3, No. 4, 335–350, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.4-024 

 

336 

various mathematical tools. Due to uncertainty in the financial market, the return of the asset is 

not fixed and usually expected return is estimated from historical data. This expected return of the 

assets affects the risk and performances, which further controls the selection process for an 

efficient portfolio. Recently many researchers have tried to select efficient portfolios by solving 

portfolio optimization models, which deal the parameters like return, risk etc. using probability 

theory (Owen and Rabinovitch, 1983; Hong et al., 1987; Laloux et al., 2000; Korn and Korn, 

2001) and fuzzy set theory (Korn and Korn, 2001; Abiyev and Menekay, 2007; Li et al., 2010). 

These methods have certain limitations while calculating suitable probability distribution 

functions and membership functions respectively, which also depend upon decision maker's 

choice. Selection of suitable distribution function and membership function can be avoided if we 

consider the lower and upper level of the return from historical data. In that case the return of an 

asset will lie in the closed interval which can cover all types of market uncertainties. But if the 

return is considered as a closed interval then the risk and performance of the portfolio have to be 

expressed in terms of intervals, which may be treated as interval valued functions in the 

mathematical sense. For example if 𝑥1 and 𝑥2 are the proportion of the total fund, invested in two 

assets 𝐴 and 𝐵; lower and upper bounds of the return of 𝐴 are considered as 𝑎𝐿, 𝑎𝑈 and lower and 

upper bounds of the return 𝐵 are considered as 𝑏𝐿, 𝑏𝑈 respectively, then the total return of the 

portfolio is [𝑎𝐿 , 𝑎𝑈]𝑥1 + [𝑏
𝐿, 𝑏𝑈]𝑥2 . Variance of the portfolio will be [𝜎1

2𝐿, 𝜎1
2𝑈] 𝑥1

2 +

2[𝜎12
𝐿 , 𝜎12

𝑈 ]𝑥1𝑥2 + [𝜎2
2𝐿, 𝜎2

2𝑈] 𝑥2
2 , where 𝜎1

2𝐿(𝜎1
2𝑈)  is the lower (upper) bound of variance of 

expected return of asset 𝐴, 𝜎2
2𝐿(𝜎2

2𝑈) is the lower (upper) bound of variance of expected return of 

asset 𝐵  and 𝜎12  is the covariance between assets 𝐴  and 𝐵 . In these situations the portfolio 

optimization model can not be handled using general optimization technique and hence becomes 

a challenging factor. There exist few contributions in the literature to deal such type of portfolio 

optimization models. Lin et al. (2012) studied portfolio selection model with interval values 

based on fuzzy probability distribution functions. Jong (2012) introduced the concept of 

satisfaction index to consider interval portfolio selection with uncertain objective functions, but it 

was not extended to address uncertainty in constraints. Li et al. (2010) proposed an interval semi-

absolute deviation model for portfolio selection, which can be transformed into a class of linear 

programming problem. This paper discussed a class of linear programming problems with 

interval uncertainties in both the objective functions and constraints. 

 

These uncertainties originate due to the real-world conditions existing in the financial markets 

which render investors incapable of predicting the exact rate of future returns. In order to obtain 

an optimal portfolio for a future period, this uncertainty thus needs to be necessarily accounted 

for. So if instead, an investor considers the lower bound and the upper bound of the future price 

movements of the portfolio's assets and employ these to derive the optimal portfolio, it would 

provide a broader and a more prudent estimate of the portfolio's performance. This therefore 

motivates the use of interval analysis in the portfolio optimization theory. An uncertainty in the 

returns of the portfolio's assets is also translated in that of the higher moments such as variance, 

skewness and kurtosis, which are subsequently reflected as interval uncertainty in the non-linear 

objective functions. 

 

The development of the paper is organized into several sections as follows: Section 2 provides the 

framework and formulation of the proposed portfolio optimization model. Section 3 discusses the 

methodology used to forecast the parameters and subsequently derives the preferable efficient 

portfolio for the portfolio optimization problem. Section 4 provides the result analysis, its 
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subsequent validation through the Bombay Stock Exchange (BSE), India data and also provides 

some concluding remarks. All figures are tables are provided in Appendix. 

 

2. Model Formulation  
Balancing reward against risk is the base of a general mean-variance portfolio optimization 

problem. The reward is measured by the portfolio expected return and risk is measured by the 

portfolio variance. In the most basic form, portfolio optimization model determines the proportion 

of the total investment of 𝑛 number of assets of a portfolio. In general, rate of expected returns of 

the assets of a portfolio are estimated from previous data. Due to the presence of uncertainty in 

market an investor can not estimate the exact rate of expected return. As we discussed in Section 

1, if the investor finds the lower bound 𝑟𝑖
𝐿 and upper bound 𝑟𝑖

𝑈 of the return of the assets from 

previous data for a fixed time period then the expected rate of return of 𝑖𝑡ℎ  asset lies in the 

interval [𝑟𝑖
𝐿 , 𝑟𝑖

𝑈] and can cover all uncertainties. In a portfolio optimization problem, an investor 

wants to maximize the expected return of the portfolio with minimum risk. Some more realistic 

factors also affect the portfolio selection like skewness and kurtosis. In this situation, an investor 

needs to maximize the expected return as well as skewness of the expected return and to 

minimize the variance and kurtosis. Since variance, covariance, skewness and kurtosis depend 

upon the rate of expected returns, so they are also in the form of intervals. 

 

The following definitions and notations are used in the models: 

𝑖: Asset index. 

𝑡: Time period. 

𝑛: Total number of assets in the portfolio. 

𝑟𝑖
𝐿(𝑟𝑖

𝑈): Lower (Upper) bound of the returns of asset 𝑖. 

𝜎𝑖
2𝐿(𝜎𝑖

2𝑈):  Lower (Upper) bound of variance of expected returns of 𝑖𝑡ℎ asset. 

𝜎𝑖𝑗 :  The covariance between 𝑖𝑡ℎ and 𝑗𝑡ℎ assets returns. 

𝜎𝑖𝑗
𝐿 (𝜎𝑖𝑗

𝑈):  Lower (Upper) bound of covariance of return between 𝑖𝑡ℎ and 𝑗𝑡ℎ assets,   

              i.e., 𝜎𝑖𝑗
𝐿 ≤ 𝜎𝑖𝑗 ≤ 𝜎𝑖𝑗

𝑈, this implies 𝜎𝑖𝑗 ∈  [𝜎𝑖𝑗
𝐿 , 𝜎𝑖𝑗

𝑈]. 

𝑠𝑖𝑖𝑗
𝐿 (𝑠𝑖𝑖𝑗

𝑈 ): Lower (Upper) bound of co-skewness of expected returns of 𝑖𝑡ℎ and 𝑗𝑡ℎ assets. 

𝑘𝑖𝑖𝑖𝑗
𝐿 (𝑘𝑖𝑖𝑖𝑗

𝑈 ): Lower (Upper) bound of co-kurtosis of expected returns of 𝑖𝑡ℎ and 𝑗𝑡ℎ assets. 

𝑥𝑖:  The proportion of the total funds invested on 𝑖𝑡ℎ assets. 

 

In a portfolio optimization problem, an investor wants to maximize the expected return of the 

portfolio with minimum risk. Some more realistic factors also affect the portfolio selection like 

skewness and kurtosis. In an attempt to better approximate investor preferences, and because 

most asset returns exhibit strong deviations from normality, optimal portfolio selection techniques 

should involve higher-order co-moments like skewness and kurtosis of asset return distribution as 

inputs, in addition to the covariance matrix (Martellini and Ziemann, 2009). In this situation, an 

investor needs to maximize the expected return as well as skewness of the expected return and to 

minimize the variance and kurtosis. Since variance, covariance, skewness and kurtosis depend 

upon the rate of expected returns, so they are also in the form of intervals. 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 3, No. 4, 335–350, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.4-024 

 

338 

Suppose, the expected return, variance, skewness and kurtosis of portfolio are denoted by 

𝑅̂(𝑥), 𝜎̂2(𝑥), 𝑆̂(𝑥) and 𝐾̂(𝑥) respectively, which can be defined as follows. 

 

 
𝑅̂(𝑥) =∑[𝑟𝑖

𝐿, 𝑟𝑖
𝑈]𝑥𝑖

𝑛

𝑖=1

 (1) 

   

 
𝜎̂2(𝑥) =∑𝑥𝑖

2[𝜎𝑖
2𝐿, 𝜎𝑖

2𝑈] +∑∑[𝜎𝑖𝑗
𝐿 , 𝜎𝑖𝑗

𝑈]𝑥𝑖𝑥𝑗,

𝑛

𝑗=1

𝑛

𝑖=1

(𝑖 ≠ 𝑗) 

𝑛

𝑖=1

 

 

(2) 

 

𝑆̂(𝑥) =∑[𝑠𝑖
3𝐿, 𝑠𝑖

3𝑈] 𝑥𝑖
3 + 3∑(∑[𝑠𝑖𝑖𝑗

𝐿 , 𝑠𝑖𝑖𝑗
𝑈 ]𝑥𝑖

2𝑥𝑗 +∑[𝑠𝑖𝑗𝑗
𝐿 , 𝑠𝑖𝑗𝑗

𝑈 ]𝑥𝑖𝑥𝑗
2

𝑛

𝑗=1

𝑛

𝑗=1

) , (𝑖 ≠ 𝑗)

𝑛

𝑖=1

𝑛

𝑖=1

 (3) 

   

 

𝐾̂(𝑥) =∑[𝑘𝑖
4𝐿, 𝑘𝑖

4𝑈] 𝑥𝑖
4

𝑛

𝑖=1

+ 4∑(∑[𝑘𝑖𝑖𝑖𝑗
𝐿 , 𝑘𝑖𝑖𝑖𝑗

𝑈 ]𝑥𝑖
3𝑥𝑗 +∑[𝑘𝑖𝑗𝑗𝑗

𝐿 , 𝑘𝑖𝑗𝑗𝑗
𝑈 ]𝑥𝑖𝑥𝑗

3

𝑛

𝑗=1

𝑛

𝑗=1

)

𝑛

𝑖=1

+ 6∑∑[𝑘𝑖𝑖𝑗𝑗
𝐿 , 𝑘𝑖𝑖𝑗𝑗

𝑈 ]𝑥𝑖
2𝑥𝑗

2, (𝑖 ≠ 𝑗).

𝑛

𝑗=1

𝑛

𝑖=1

 

(4) 

  

If 𝑅̅𝑖
̂ = [𝑟𝑖

𝐿
, 𝑟𝑖
𝑈
] denotes the range of expected return of asset 𝑖 in time period 𝑡, then 

 

 
[𝑠𝑖𝑖𝑗
𝐿 , 𝑠𝑖𝑖𝑗

𝑈 ] =
1

𝑡
∑∑(𝑅̂𝑖 − 𝑅̂̅𝑖)

2
(𝑅̂𝑗 − 𝑅̂̅𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

  

   

 
[𝑠𝑖𝑗𝑗
𝐿 , 𝑠𝑖𝑗𝑗

𝑈 ] =
1

𝑡
∑∑(𝑅̂𝑗 − 𝑅̂̅𝑗)

2
(𝑅̂𝑖 − 𝑅̂̅𝑖)

𝑛

𝑗=1

𝑛

𝑖=1

  

   

 
[𝑘𝑖𝑖𝑖𝑗
𝐿  , 𝑘𝑖𝑖𝑖𝑗

𝑈 ] =
1

𝑡
∑∑(𝑅̂𝑖 − 𝑅̂̅𝑗)

3
(𝑅̂𝑗 − 𝑅̂̅𝑖)

𝑛

𝑗=1

𝑛

𝑖=1

 

 

 

 
[𝑘𝑖𝑗𝑗𝑗
𝐿  , 𝑘𝑖𝑗𝑗𝑗

𝑈 ] =
1

𝑡
∑∑(𝑅̂𝑗 − 𝑅̂̅𝑖)

3
(𝑅̂𝑖 − 𝑅̂̅𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

 

 

 
[𝑘𝑖𝑖𝑗𝑗
𝐿  , 𝑘𝑖𝑖𝑗𝑗

𝑈 ] =
1

𝑡
∑ ∑ (𝑅̂𝑖 − 𝑅̂̅𝑗)

2
𝑛
𝑗=1  𝑛

𝑖=1 (𝑅̂𝑗 − 𝑅̂̅𝑗)
2
. 

 
 

The arithmetic operations in these expressions are sum, difference and product of interval 

arithmetic operations. In classical method, an arithmetic operation ∗∈ {+,−,⋅,/}  in a set of 

intervals is defined as follows. For two intervals: 
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𝐴̂ = [𝑎𝐿 , 𝑎𝑈]  and 𝐵̂ = [𝑏𝐿 , 𝑏𝑈],  𝐴̂ ∗  𝐵̂ = {𝑎 ∗  𝑏: 𝑎 ∈ 𝐴̂, 𝑏 ∈  𝐵̂}. For 𝐴̂ \ 𝐵 , 0 ∉ 𝐵̂ . − =

[−𝑎𝑈, −𝑎𝐿].  
 

So, the objective of the model is to minimize the functions −𝑅̂′(𝑥), 𝜎̂′2(𝑥), −𝑆̂′(𝑥) and 𝐾̂′(𝑥). 
In the most basic form, portfolio optimization model determines the proportion of the total 

investment 𝑥𝑖  of 𝑖𝑡ℎ  asset of a portfolio 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where ∑ 𝑥𝑖
𝑛
𝑖=1 = 1. In case short 

selling is not allowed, 𝑥𝑖 ≥ 0, ∀ 𝑖. 
 

Hence, the portfolio model can be represented mathematically as 

(𝐏) min{−𝑅̂(𝑥), 𝜎̂2(𝑥), 𝑆̂(𝑥), 𝐾̂(𝑥)}    
Subject to ∑ 𝑥𝑖 = 1, 𝑥𝑖 ≥ 0𝑛

𝑖=1 . 
 

 

This is an interval nonlinear multi-objective programming problem. Solution methodology to 

solve a general interval multi-objective programming problem is described in Jana and Panda 

(2014). We say the solution of the portfolio optimization problem (P) as a preferable efficient 

portfolio. 

 

3. Finding Preferable Efficient Portfolio for Model (P) 
In this section, we have discussed a methodology to find preferable efficient portfolio for the 

model (P) following the steps. 

 

3.1. Collection of Data 
As previously stated, the uncertainty in the stock prices presents itself as uncertainty in the higher 

moments when historical values of the returns are used, which leads to an implicit inaccuracy in 

the final optimal solution. In order to better account for this uncertainty in the returns for the 

stock prices, we consider the range of fluctuations of these returns instead of their actual values. 

In an exchange, the daily low and daily high prices respectively form the lower and upper bounds 

for the prices of the respective stocks for the day are as follows: 

 

 
𝐻𝑡 =

𝐻𝑃𝑡 − 𝐶𝑃𝑡−1
𝐶𝑃𝑡−1

,   𝐿𝑡 =
𝐿𝑃𝑡 − 𝐶𝑃𝑡−1
𝐶𝑃𝑡−1

,   
 

where  

𝐻𝑡: Upper bound for returns on day 𝑡, 
𝐿𝑡: Lower bound for returns on day 𝑡, 
𝐶𝑃𝑡−1: Closing price for previous day (𝑡 − 1), 
𝐻𝑃𝑡: Daily high price on day 𝑡, 
𝐿𝑃𝑡: Daily low price on day 𝑡. 

 

We consider the daily low and high price of return data for the 15 stocks of BSE-India from 

Yahoo for the period of Feb '09-Feb '14 and forecast the upper and lower bound for each scrip 

for March '14. Detail of these fifteen stocks is provided in Table 1. Subsequently we determine 

the lower and upper bounds for each of the parameters of the objective function (Expressions (1)-
(4)) using the moments of forecasted return bounds for March '14. Finally, we analyze the 

performance of the optimal portfolio for March 2014. 
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The softwares R and MATLAB are used to derive the preferable efficient solution for the 

portfolio optimization model (P). 

 

 
Table 1. Code of fifteen stocks 

 
Stock Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 

Code Axis Bank of Baroda Cairn Hindalco HDFC 

Stock Stock 6 Stock 7 Stock 8 Stock 9 Stock 10 

Code Jindal JP Associates JSW Steel Ltd. Maruti RCom 

Stock  Stock 11 Stock 12 Stock 13 Stock 14 Stock 15 

Code SBI Tata Motors Tata Steel United Spirits Lt Yes bank 

 

 

 

3.2. Forecasting 
In order to forecast the upper and lower bound for each scrip for March '14, the statistical 

computing software R is used with the packages `fractal' and `rugarch'. To forecast the data, we 

require the specifications of the model that can be used to fit the series. So, start with the tests for 

stationarity and lag length to identify the model and the corresponding order which best explains 

the given series. 

 

3.2.1. Test for Stationarity 
To test the stationarity, we use the Augmented Dickey Fuller (ADF) test to check the presence of 

a unit root with the tool `adf.test’• in R under the package `tseries'. Table 2 lists the ADF 

statistics for historical upper bound series for returns of all the scrips. As can be inferred from the 

table of critical values, the ADF statistics for each of the daily high return found, is outside the 

critical values corresponding to the conventional significance levels. Similar results are obtained 

for the lower bound series for returns suggesting their non-stationarity. 

 

 

 
Table 2. Augmented Dickey Fuller Test statistics for daily high and low returns 

 
Scrip Upper bound series Lower bound series 

Axis -10.8993 -11.0706 

Bank of Baroda -7.8598 -8.0448 

Cairn -7.8933 -9.3538 

Hindalco -8.1577 -9.3641 

HDFC -6.9063 -8.4997 

Jindal -7.9997 -9.1153 

JP Associates -7.2178 -9.2099 

JSW Steel Ltd. -6.7258 -8.0934 

Maruti -8.1134 -9.4397 

RCom -7.2167 -9.6262 

SBI -8.1307 -8.9645 

Tata Motors -8.3630 -9.6856 

Tata Steel -6.8896 -9.0783 

United Spirits Ltd. -10.6754 -10.6450 

Yes Bank -6.9669 -7.4365 
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The returns series appears not to have a trend component. This can be seen in Fig. 1 through the 

time series plot for the Axis bank stock for the period from Feb '09- Feb '14. This is further 

confirmed using the Augmented Dickey Fuller test, which reveals the absence of a trend, but the 

presence of a unit root. 

 

 

 
 

 

Fig. 1. Time series plot for the Axis Bank stock from Feb’09-Feb ’14 

 

 

 

 

Next, proceed to differencing the returns series so as to eliminate the unit root. First differencing 

the returns followed by the Augmented Dickey Fuller test on the first differences, indeed 

confirms that the returns are difference stationary (DS). 

 

 

 

3.2.2. Identification of the Best Fit Model 
All the series are first order DS, so we proceed to identify the orders 𝑝, 𝑞 for the model ARIMA 

(𝑝, 1, 𝑞), that would provide the best fit for our series. For this purpose, we form the initial 

estimate using the autocorrelation (ACF) and partial autocorrelation (PACF)) plots. The likely 

candidates for the values of 𝑝 and 𝑞 are then used to fit different ARMA (𝑝, 𝑞) models for the 

first differences. For instance, Fig. 2 provides the ACF and PACF plots for the Hindalco daily 

high returns. The plot reveals that the correlation decays relatively slowly, but in any case this 

needs to be studied no further than order 2 for both AR and MA components. 
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Fig. 2. ACF and PACF plots for Hindalco high returns series 

 

 

 

Once we have the estimates of the AR and MA process orders for the first differences of the 

returns series, we proceed to estimate the ARMA (𝑝, 𝑞) for the same. For this, we use the 

`arma'• function under the package `tseries' in R. It fits an ARMA model to a univariate time 

series by conditional least squares. Depending on the lag specification of the model (given using 

the initial estimates obtained from the ACF-PACF plots), the estimated residuals are then used for 

computing a least squares estimator of the full ARMA model. Fig. 3 displays the output by 

`arma'• for the Hindalco daily high returns discussed above. The output reveals that the AR(1) 

and MA(1) coefficients are highly significant. This suggests ARMA (1,1)  for the first 

differences of the Hindalco daily high returns series. This in turn implies ARIMA (1,1,1) model 

for Hindalco daily high returns data. 

 
 

 
 

Fig. 3. R output by function arma for Hindalco daily returns (BSE) 
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The entire process is replicated for all the 15 scrips, both for the daily high returns and daily low 

returns data to obtain the ARIMA (𝑝, 𝑑, 𝑞) model, which would be used further for forecasting 

future returns in each series. 

 

The next important estimation is the appropriate ARCH/ GARCH process to model the variance 

of the errors obtained through estimation by the ARIMA (𝑝, 𝑑, 𝑞) model, identified for each 

returns series. 

 

The GARCH estimation is done using the Akaike Information Criterion (AIC), Bayesian 

information criterion (BIC) and log likelihood corresponding to the different combinations (𝑎, 𝑏). 
The order (𝑎, 𝑏) providing the least AIC and BIC values and the maximum log likelihood values 

corresponds to the best fit model. Since most of the time series rarely go any further than 𝑎 and/or 

𝑏 = 2, we try to find the above coefficients corresponding to all possible combinations of 𝑎 − 𝑏. 

 

Table 3 displays the values of the three parameters for the Hindalco daily high returns series. It is 

evident that the (𝑎, 𝑏) = (1,2) yields highest value of log likelihood and the minimum for AIC 

and BIC. We thus consider GARCH (1,2) to be the model to best fit the Hindalco daily high 

series. The process is similarly repeated for other scrips, for both the daily high and daily low 

series. 

 

 

 

 
Table 3. AIC, BIC, Loglikelihood coefficients for the Hindalco daily high series 

 
Coefficients GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

Loglikelihood 3376.3190 3382.463 3376.51 3382.463 

AIC -4.9520 -4.9596 -4.9508 -4.9581 

BIC -4.9463 -4.9404 -4.9317 -4.9531 

 

 

 

 

 

Next, we proceed to use these to forecast the returns for the month of March 2014. 

 

3.2.3. Forecasting for March 2014 
 As mentioned earlier, we employ the package `rugarch' in R and its functions- `Ugarchspec'•, 

`Ugarchfit'• and `Ugarchforecast' particularly. `Ugarchspec'• is used to provide a specification 

for the model to be used for the series and using which subsequent forecasting would be done. 

We input the appropriate specifications: the order of ARIMA (𝑝, 𝑑, 𝑞) along with the GARCH 

(𝑎, 𝑏) estimated previously. 

 

`Ugarchfit'• is then subsequently used to fit the model. Once we have the required fitted model, 

the expected returns (daily low and daily high individually) for March '14, can be forecasted 

using the function `Ugarchforecast'•, which provides the lower and upper bound respectively for 

the expected returns. 
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The forecasted returns (both daily high and daily low) for the month of March '14 are provided in 

Table 4 and 5. This data will be used to compute the values of moments to be the input in the 

portfolio optimization problem using the Matlab. 

 

 

 
Table 4. The forecasted returns (daily high) for the month of March 14 

 

 

 

 

Table 5. The forecasted returns (daily low) for the month of March 14 
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3.3. Solving (P) for Preferable Efficient Portfolio 
In Jana and Panda (2014), the theory of nonlinear vector optimization models with interval 

uncertainty in both objective function and constraints is studied. Since the portfolio selection 

model of this paper is a nonlinear multi objective optimization problem whose objective functions 

are nonlinear interval valued functions so the methodology by Jana and Panda (2014) can be 

comfortably implemented for this model.  

 

Recall the portfolio selection model (P). One may observe that uncertainty is associated with (P) 

in the form of intervals in four objective functions. Any portfolio 𝑥 satisfying ∑𝑥𝑖  = 1 can be a 

compromise solution of (P) if it minimizes four objective functions simultaneously. Since every 

objective function is an interval valued mapping, so interval vectors have to be compared 

corresponding to every feasible portfolio 𝑥. To compare interval valued objective functions in 

(P), we accept ≼𝐿𝑈 and ≼𝐿𝑈
𝑛  partial orderings which are as follows. 

 

For two intervals 𝐴̂ = [𝑎𝐿 , 𝑎𝑈] and 𝐵̂ = [𝑏𝐿, 𝑏𝑈], 𝐴̂ ≼𝐿𝑈 𝐵̂ iff 𝑎𝐿 ≤ 𝑏𝐿 and 𝑎𝑈 ≤ 𝑏𝑈. 

 

For two interval vectors 𝐴̂𝑣 = (𝐴̂1, 𝐴̂2, … , 𝐴̂𝑛)
𝑇

 and 𝐵̂𝑣 = (𝐵̂1, 𝐵̂2, … , 𝐵̂𝑛)
𝑇

, 

𝐴̂𝑣 ≺𝐿𝑈
𝑛  𝐵̂𝑣  iff 𝐴̂𝑖 ≼𝐿𝑈 𝐵̂, ∀ 𝑖 = 1,2,… , 𝑛. 

 

In the light of the definition of the solution of a general vector optimization problem Jana and 

Panda, 2014, 𝑥∗ is the efficient solution of (P) with respect to ≼𝐿𝑈
4  partial ordering if there does 

not exists any feasible solution 𝑥  of (P) such that 𝑓(𝑥) ≼𝐿𝑈
4 𝑓(𝑥∗)  with 𝑓(𝑥) ≠ 𝑓(𝑥∗).  Here 

𝑓(𝑥) = {−𝑅̂(𝑥), 𝜎̂2(𝑥),−𝑆̂(𝑥), 𝐾̂(𝑥)}. 
 

To solve (P), we will assign a target/goal to every interval valued objective functions 

−𝑅̂(𝑥), 𝜎̂2(𝑥),−𝑆̂(𝑥), 𝐾̂(𝑥). These goals may be provided by the decision maker, otherwise we 

can assign these goals using the following procedure. 

 

Determination of goal to the objective functions: 

Consider the following single objective problems corresponding to the feasible set 𝑆 =
{𝑥: ∑ 𝑥𝑖 = 1

𝑛
𝑖=1 , 𝑥𝑖 ≥  0} as, 

 

(𝑃1
𝐿): min

x∈S
−𝑅𝑈(𝑥) ;  (𝑃1

𝑈): min
x∈S

−𝑅𝐿(𝑥) 

(𝑃2
𝐿): min

x∈S
 𝜎2𝐿(𝑥) ;  (𝑃2

𝑈): min
x∈S

 𝜎2𝑈(𝑥)  

(𝑃3
𝐿): min

x∈S
 −𝑆𝑈(𝑥) ;  (𝑃3

𝑈): min
x∈S

−𝑆𝐿(𝑥)  

(𝑃4
𝐿): min

x∈S
 𝐾𝐿(𝑥) ;  (𝑃4

𝑈): min
x∈S

 𝐾𝑈(𝑥) . 

 
 

 

Denote the solution of the problems 

 

(𝑃1
𝐿), (𝑃1

𝑈), (𝑃2
𝐿), (𝑃2

𝑈), (𝑃3
𝐿), (𝑃3

𝑈), (𝑃4
𝐿) and  (𝑃4

𝑈)𝑎𝑠 𝑥1
𝐿 , 𝑥1

𝑈, 𝑥2
𝐿, 𝑥2

𝑈, 𝑥3
𝐿 , 𝑥3

𝑈 , 𝑥4
𝐿 and  𝑥2

𝑈 

respectively, and 𝑆𝑖𝑑𝑒𝑎𝑙 = {𝑥𝑖
𝐿 , 𝑥𝑖

𝑈, 𝑖 ∈ Λ4}. 
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Let 

 l1
𝐿 = min

x∈S
−𝑅𝑈(𝑥), 𝑢1

𝐿 = max
x∈S

−𝑅𝑈(𝑥), 𝑙1
𝑈 = min

x∈S
−𝑅𝐿(𝑥), 𝑢1

𝑈 = max
x∈S

−𝑅𝐿(𝑥). 
 

𝑙1
𝐿 , 𝑢1

𝐿 and 𝑙1
𝑈, 𝑢1

𝑈 can be treated as the goals of −𝑅𝑈(𝑥) and −𝑅𝐿(𝑥)  respectively. 

 

For every 𝑥 ∈ 𝑆, deviation of −𝑅𝑈(𝑥) from the goals 𝑙1
𝐿 and 𝑢1

𝐿 and of −𝑅𝐿(𝑥) from the goals 𝑙1
𝑈 

and 𝑢1
𝑈 may be more or less acceptable for the decision maker. This implies that −𝑅𝑈(𝑥) and 

−𝑅𝐿(𝑥) are associated with certain degree of flexibility from their goals. For every 𝑥 ∈ 𝑆, the 

degree of flexibility of −𝑅𝑈(𝑥) is higher if deviation of −𝑅𝑈(𝑥) from 𝑙1
𝐿 is less and the degree of 

flexibility is less if deviation of −𝑅𝑈(𝑥) from 𝑢1
𝐿 is more. Similar interpretation can be made for 

the upper bound function −𝑅𝐿(𝑥). Hence the degree of flexibility of −𝑅𝑈(𝑥) and −𝑅𝐿(𝑥) can be 

measured through some functions 𝜂1
𝐿  and 𝜂1

𝑈  from ℝ to [0,1] respectively. Mathematically we 

may write this function as 

𝜂1
𝐿(−𝑅𝑈(𝑥)) =

{
 
 

 
 1, −𝑅𝑈(𝑥) ≤ 𝑙1

𝐿

𝑢1
𝐿 + 𝑅𝑈(𝑥)

𝑢1
𝐿 − 𝑙1

𝐿 ,   𝑙1
𝐿 ≤ −𝑅𝑈(𝑥) ≤ 𝑢1

𝐿

0, −𝑅𝑈(𝑥) ≥ 𝑢1
𝐿

 

 

𝜂1
𝑈(−𝑅𝐿(𝑥)) =

{
 

 
1, 𝑅𝐿(𝑥) ≤ 𝑙1

𝑈

𝑢1
𝑈+𝑅𝐿(𝑥)

𝑢1
𝑈−𝑙1

𝑈 ,   𝑙1
𝐿 ≤ −𝑅𝐿(𝑥) ≤ 𝑢1

𝑈

0, 𝑅𝐿(𝑥) ≥ 𝑢1
𝑈

. 

 

Similarly, the degree of flexibility of the other objective functions is calculated. Suppose goals of 

the other objective functions are given as follows. 

 

For 𝛿 ∈ {𝐿, 𝑈} , goals of 𝜎2 𝛿(𝑥)  are 𝑙2
𝛿  and 𝑢2

𝛿 , goals of −𝑆𝛿(𝑥)  are 𝑙3
𝛿  and 𝑢3

𝛿  and goals of 

𝐾𝛿(𝑥) are 𝑙4
𝛿 and 𝑢4

𝛿. 

 

Then the degree of flexibility of the lower and upper bound of the objective functions are given 

by the functions 𝜂2
𝐿(𝜎2𝐿(𝑥)) ; 𝜂2

𝑈(𝜎2𝑈(𝑥)) , 𝜂3
𝐿(−𝑆𝑈(𝑥)) ; 𝜂3

𝑈(−𝑆𝐿(𝑥))  and 𝜂4
𝐿(𝐾𝐿(𝑥)) ; 

𝜂4
𝑈(𝐾𝑈(𝑥)), which are mathematically defined by 

 

 

𝜂2
𝐿(𝜎2𝐿(𝑥)) =

{
 
 

 
 1, 𝜎2𝐿(𝑥) ≤ 𝑙2

𝐿

𝑢2
𝐿 − 𝜎2𝐿(𝑥)

𝑢2
𝐿 − 𝑙2

𝐿 ,   𝑙2
𝐿 ≤ 𝜎2𝐿(𝑥) ≤ 𝑢2

𝐿

0, 𝜎2𝐿(𝑥) ≥ 𝑢2
𝐿

;   

 

 

 

𝜂2
𝑈(𝜎2𝑈(𝑥)) =

{
 
 

 
 1, 𝜎2𝑈(𝑥) ≤ 𝑙2

𝑈

𝑢2
𝐿 − 𝜎2𝑈(𝑥)

𝑢2
𝐿 − 𝑙2

𝐿 ,   𝑙2
𝑈 ≤ 𝜎2𝑈(𝑥) ≤ 𝑢2

𝑈

0, 𝜎2𝑈(𝑥) ≥ 𝑢2
𝑈

;    
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𝜂3
𝐿(−𝑆𝑈(𝑥)) =

{
 
 

 
 1, −𝑆𝑈(𝑥) ≤ 𝑙3

𝑈

𝑢3
𝐿 + 𝑆𝑈(𝑥)

𝑢3
𝐿 − 𝑙3

𝐿 ,   𝑙3
𝑈 ≤ −𝑆𝑈(𝑥) ≤ 𝑢3

𝑈

0, −𝑆𝑈(𝑥) ≥ 𝑢3
𝑈

;    

 

 

 

𝜂3
𝑈(−𝑆𝐿(𝑥)) =

{
 
 

 
 1, −𝑆𝐿(𝑥) ≤ 𝑙3

𝑈

𝑢3
𝐿 + 𝑆𝐿(𝑥)

𝑢3
𝐿 − 𝑙3

𝐿 ,   𝑙3
𝑈 ≤ −𝑆𝐿(𝑥) ≤ 𝑢3

𝑈

0, −𝑆𝐿(𝑥) ≥ 𝑢3
𝑈

;    

 

 

 

𝜂4
𝐿(𝐾𝐿(𝑥)) =

{
 
 

 
 1, 𝐾𝐿(𝑥) ≤ 𝑙4

𝐿

𝑢4
𝐿 − 𝐾𝐿(𝑥)

𝑢4
𝐿 − 𝑙4

𝐿 ,   𝑙4
𝐿 ≤ 𝐾𝐿(𝑥) ≤ 𝑢4

𝐿

0, 𝐾𝐿(𝑥) ≥ 𝑢4
𝐿

;    

 

 

 

𝜂4
𝑈(𝐾𝑈(𝑥)) =

{
 
 

 
 1, 𝐾𝑈(𝑥) ≤ 𝑙4

𝑈

𝑢4
𝑈 −𝐾𝑈(𝑥)

𝑢4
𝑈 − 𝑙4

𝑈 ,   𝑙4
𝑈 ≤ 𝐾𝑈(𝑥) ≤ 𝑢4

𝑈

0, 𝐾𝑈(𝑥) ≥ 𝑢4
𝑈

.  

 

That is, the objective functions are characterized by their degree of flexibility. So a decision 𝑥 in 

this uncertain environment is the selection of activities that simultaneously satisfies all the 

objective functions, which is 

 

 min
{i,l}∈Λ4

{𝜂𝑖
𝐿(. ); 𝜂𝑙

𝑈(. ); 𝑥 ∈ 𝑆}. (7) 

 

This problem can be rewritten in expanded form as 

 max𝜃 

subject to 𝜃 ≤ 𝜂1
𝐿(−𝑅𝑈(𝑥)), 𝜃 ≤ 𝜂1

𝑈(−𝑅𝑈(𝑥)) 

𝜃 ≤  𝜂2
𝐿(𝜎2𝐿(𝑥)), 𝜃 ≤ 𝜂2

𝑈(𝜎2𝑈(𝑥)) 

𝜃 ≤ 𝜂3
𝐿(−𝑆𝑈(𝑥)), 𝜃 ≤ 𝜂3

𝑈(−𝑆𝐿(𝑥)) 

𝜃 ≤ 𝜂4
𝐿(𝐾𝐿(𝑥)), 𝜃 ≤ 𝜂4

𝑈(𝐾𝑈(𝑥)) 

𝑥 ∈ 𝑆, 0 ≤ 𝜃 ≤ 1. 

 

 
This is a general nonlinear programming problem, which is free from interval uncertainty and can 

be solved using nonlinear programming techniques. By Theorem 4.1 of Jana and Panda (2014), if 

(𝜃𝑜𝑝𝑡, 𝑥𝑜𝑝𝑡) be the solution of the problem (P), then it can be shown that 𝑥𝑜𝑝𝑡  is preferable 

efficient solution of (P). We say this solution as an efficient portfolio. 

 

4. Analysis and Validity of the Result 
Following the discussion of Subsection 3.2.1, Augmented Dickey Fuller test statistics for the 

daily high and low returns of 15  stocks is provided in Table 2. Implementation of the 

transformation of the portfolio model (P) with these 15 stocks to the model (P') is done following 
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the procedure of Subsection 3.3. The solution of (P)' provides the efficient portfolio, which is 

provided in Table 6. 

 

 

 
Table 6. Preferable efficient solution 

 
Scrip Percentage of portfolio investment 

Axis 5.47 

Bank of Baroda 4.38 

Cairn 9.34 

Hindalco 4.56 

HDFC 6.34 

Jindal 6.25 

JP Associates 6.95 

JSW Steel Ltd. 5.75 

Maruti 7.34 

RCom 6.73 

SBI 7.87 

Tata Motors 5.23 

Tata Steel  8.94 

United Spirits Ltd. 5.46 

Yes Bank 9.39 

 

 

 

As per the theory developed in this paper, investment will be made according to this portfolio for 

the month of Mar '14, by an investor, which uses returns data for the period of Feb '09- Feb '14. 

The corresponding expected a range of the returns of the portfolio and the subsequent moments, 

as predicted by the modified (P) model are calculated and provided in Table 7. So, if an investor 

stays invested in the efficient portfolio as in Table 6 for March '14, he would tend to maximize 

his mean returns and skewness while minimizing the risk (variance) and kurtosis, subject to the 

investor expectations and STT constraints given in (P). 

 

Accordingly, the investor would also be able to derive a lower and an upper bound for each of the 

four moments- mean, variance, skewness and kurtosis corresponding to the expected returns of 

the optimal portfolio, as provided in Table 7. 

 

 
Table 7. Expected range of different moments for the optimal portfolio predicted by the model (yearly) 

 
Moments Lower bound Upper bound 

Mean 0.1948 0.2734 

Variance 0.0634 0.0703 

Skewness -4.63 e-05 -3.92 e-05 

Kurtosis 7.32 e-06 8.02 e-06 

 

 

 

In order to check the validity of the results of Table 7 one may look at the actual performance of 

the optimal portfolio predicted by the model at the end of March '14. We obtain the prices for the 

15 scrips from the Bombay Stock Exchange for 1𝑠𝑡 March '14- 31𝑠𝑡 March '14 and derive their 

actual returns for the period. We also compute the different moments corresponding to these 
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realized returns of the optimal portfolio, to check the performance of the model against the values 

predicted above. Results of the same are compiled in Table 8. 

 

 

 
Table 8. Performance of the optimal portfolio for March 2014 

 
Moments Value (yearly) 

Mean  0.0256 

Variance  0.0678 

Skewness -4.02 e-05 

Kurtosis 7.33 e-06 

 

 

 

It is evident from Table 7 and Table 8 that the four moments corresponding to the returns of the 

optimal portfolio lie within the range predicted by the model. Thus, through the aforementioned 

methodology, we are not only able to predict the portfolio, optimizing the returns, but also 

efficiently predict the range within which the performance parameters of the proposed portfolio 

would vary. 

 

 

 

5. Concluding Remarks 
In this present work, we consider a multi-objective portfolio selection model in which the 

objective functions are expected return, variance, skewness and kurtosis of the portfolio of 15 

stocks. The model is applied to find an efficient portfolio of the model. We consider the daily low 

and high price of return data for the 15 stocks of BSE-India from Yahoo for the period of Feb 

'09-Feb '14 and forecast the upper and lower bound for each scrip for March '14. Subsequently 

we determine the lower and upper bounds for each of the parameters of the objective function 

(variance, skewness and kurtosis) using the moments of forecasted return bounds for March '14. 

A methodology to find an efficient portfolio of the model of 15 stocks is illustrated. In this paper, 

we discuss a methodology to derive an efficient portfolio. 

 

Finally, we analyze the performance of the optimal portfolio for March 14 . Comparing the 

predicted range of the four basic moments by the interval vector model and their realized values 

for March '14, it can be concluded that the methodology is able to estimate the expected range of 

all these moments efficiently. 

 

Thus an investor who invests in this portfolio is not only able to optimize the four basic moments 

corresponding to the expected returns of the portfolio but can also be able to estimate the range 

within which these will vary for the future period under consideration. This methodology is also 

applicable to more number of stocks. Further the results obtained in this paper can readily be 

extended to find different portfolio performance measures like Sharpe ratio, Treynor ratios under 

capital market specific constraints. 
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