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Abstract 

A task frequently encountered in digital circuit design is the solution of a two-valued Boolean equation of the form 

ℎ(𝑿,𝒀,𝒁)=1, where ℎ: 𝐵2
𝑘+𝑚+𝑛→ 𝐵2 and 𝑿,𝒀, and 𝒁 are binary vectors of lengths 𝑘, 𝑚, and 𝑛, representing inputs, 

intermediary values, and outputs, respectively. The resultant of the suppression of the variables 𝒀 from this equation could 

be written in the form 𝑔(𝑿,𝒁)=1 where 𝑔: 𝐵2
𝑘+𝑛→ 𝐵2. Typically, one needs to solve for 𝒁 in terms of  𝑿, and hence it 

is unavoidable to resort to ‘big’ Boolean algebras which are finite (atomic) Boolean algebras larger than the two-valued 

Boolean algebra. This is done by reinterpreting the aforementioned 𝑔(𝑿,𝒁) as 𝑔(𝒁): 𝐵2𝐾
𝑛 → 𝐵2𝐾, where  𝐵2𝐾 is the free 

Boolean algebra 𝐹𝐵(𝑋1,𝑋2…….𝑋𝑘), which has 𝐾= 2𝑘 atoms, and 2𝐾 elemnets. This paper describes how to unify many 

digital specifications into a single Boolean equation, suppress unwanted intermediary variables 𝒀, and solve the equation 

𝑔(𝒁)=1 for outputs  𝒁 (in terms of inputs  𝑿) in the absence of any information about 𝒀. The paper uses a novel method 

for obtaining the parametric general solutions of the ‘big’ Boolean equation 𝑔(𝒁)=1. The parameters used do not belong 

to 𝐵2𝐾 but they belong to the two-valued Boolean algebra 𝐵2, also known as the switching algebra or propositional 

algebra. To achieve this, we have to use distinct independent parameters for each asserted atom in the Boole-Shannon 

expansion of 𝑔(𝒁). The concepts and methods introduced herein are demonsrated via several detailed examples, which 

cover the most prominent type among basic problems of digital circuit design. 

 

Keywords- Digital design, Suppression of variables, ‘Big’ Boolean algebras, Boolean-equation solving, Parametric 

solutions. 

 

 

 

1. Introduction 
In a seminal work, done more than half a century ago, Ledley (1959, 1960) posed three 

‘elementary problems of digital circuit design’ inspired by the arrangement in Fig. 1, which 

entails five quantities 𝑿,𝒀,𝒁,𝒔 and 𝒕 that belong to 𝐵2
𝑘,𝐵2

𝑚,𝐵2
𝑛,𝐵2

𝑙, and 𝐵2
𝑙, respectively. This 

arrangement includes a ‘parent’ combinational network 𝐶 of two (vectorial) inputs 𝑿 and 𝒀 and a 

vectorial output 𝒕(𝑿,𝒀). Network 𝐶 consists of two subnetworks 𝐴 and 𝐵, where subnetwork 𝐴 has 

the single (vectorial) input 𝑿 and the (vectorial) output 𝒁(𝑿), while network 𝐵 has the two 

vectorial inputs 𝒁(𝑿) and  𝒀 and the (vectorial) output 𝒔(𝒁,𝒀), which is exactly the same as the 

(vectorial) output 𝒕(𝑿,𝒀) of network 𝐶. The above arrangement involves three vectorial Boolean 

functions, namely 𝒁(𝑿), 𝒔(𝒁,𝒀) and 𝒕(𝑿,𝒀). Three problems arise when one utilizes the 

information that 𝒔(𝒁(𝑿),𝒀) and 𝒕(𝑿,𝒀) are equal, together with knowledge of two of the three 

functions 𝒁(𝑿), 𝒔(𝒁,𝒀) and 𝒕(𝑿,𝒀) in order to deduce the third function. Therefore, one obtains 

three distinct problems, viz. 

 

1. Type-1 problem: Given 𝒁(𝑿) and 𝒔(𝒁,𝒀), find 𝒕(𝑿,𝒀).  
2. Type-2 problem: Given 𝒁(𝑿) and 𝒕(𝑿,𝒀), find 𝒔(𝒁,𝒀).  
3. Type-3 problem: Given 𝒔(𝒁,𝒀) and 𝒕(𝑿,𝒀), find 𝒁(𝑿). 
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Table 1 shows taxonomy of these three problems, together with an outline on how to solve them 

according to the scheme set by Ledley (1959, 1960) in his seminal work. It is obvious that the 

Type-1 Problem necessitates only direct substitution and hence does not warrant any further 

consideration. The Type-2 Problem is, in fact, the inverse problem of logic. This problem was 

treated extensively by nineteen-century logicians such as Jevons (1872, 1874), Venn (1894) and 

Poretsky (1898). Though interest in this problem faded away for more than half a century, it 

witnessed a revival at the hands of pioneers of modern digital design including Ledley (1960), 

Bell (1968), Cerny and Marin (1974, 1977), Cerny (1976) and Brown (1974, 1975a, 1975b), and 

it remains an essential element in contemporary digital design practice (Brown, 1990, 2003; 

Rushdi and Ba-Rukab, 2003; Steinbach and Posthoff, 2003; Baneres et al., 2009; Brown and 

Vranesic, 2014; Knodel et al., 2014; Rushdi, 2018b; Rushdi and Ahmad, 2018). Ledley devoted 

his 1959 paper entirely to the Type-3 Problem, and further illustrated it by several examples in his 

1960 book, and (admirably) managed to handle it via very tedious and definitely outdated 

techniques. In this paper, we revisit the Type-3 Problem using four major enhancements inspired 

by certain new techniques, which became available only very recently, namely: 

 

1. Instead of Ledley’s representation of Boolean variables via (the now outdated) ‘black-box’ 

designation numbers and numerical Boolean matrices, we use a transparent algebraic 

representation all throughout, possibly aided by a pictorial interpretation via natural maps 

(variable-entered Karnaugh maps) (Rushdi, 1987, 2001, 2004, 2012, 2017; Rushdi and Ahmad, 

2016; Rushdi and Al-Yahya, 2000, 2001; Rushdi and Amashah, 2010, 2011, 2012; Rushdi and 

Albarakati, 2014; Rushdi and Ba-Rukab, 2017; Rushdi, 2018a; Ahmad and Rushdi, 2018). 

 

2. We do not follow exactly the scheme outlined in Table 1. We do not separate our requirements 

into an antecedence requirement (𝒔→𝒕) and a consequence requirement (𝒕→𝒔), but instead 

combine these two requirements into a single requirement (𝒔↔𝒕) = (𝒔⊙𝒕). Therefore, we end 

up with a single equation to solve 

 

ℎ(𝑿,𝒀,𝒁)= ⋀ (𝑠𝑖(𝒁,𝒀)⊙ 𝑡𝑖(𝑿,𝒀))= 1

𝑖=1

. 

 

3. We do not solve the aforementioned equation to obtain values of independent variables 𝑿, 𝒀 

and 𝒁 in 𝐵2
𝑘,𝐵2

𝑚,𝐵2
𝑛,  respectively, but instead we solve for the dependent variables 𝒁 in terms of 

the independent variables 𝑿, and 𝒀. This means that instead of viewing the function ℎ above as 

ℎ: 𝐵2
𝑘+𝑚+𝑛→ 𝐵2, we treat it as ℎ: 𝐵𝑛→ 𝐵, where 𝐵 is a ‘big’ Boolean algebra equivalent to the 

free Boolean algebra 𝐹𝐵(𝑿,𝒀). As such, the roles of 𝑿 and 𝒀 as variables is relegated to those of 

generators. Since 𝐵 has (𝑘+𝑚) scalar generators, it has 2(𝑘+𝑚) atoms and hence 22
(𝑘+𝑚)

 elements. 

The task of solving ℎ(𝑿,𝒀,𝒁)=1 over such an algebra is facilitated by a two-century effort that 

culminated recently in a technique for a compact listing of all particular solutions of any ‘big’ 

Boolean equation (Rushdi and Ahmad, 2017a, 2017b). 

 

4. We avoid the task of extensive search among the solutions of ℎ(𝑿,𝒀,𝒁)=1 for those 

solutions that interrelate 𝒁 and 𝑿 independently of 𝒀. Instead, we employ a technique, recently 

developed by Brown (2011), that suppresses the undesired variables 𝒀 in the equation 

ℎ(𝑿,𝒀,𝒁)=1, replacing that equation by another 𝑔(𝑿,𝒁)=1, where 𝑔 is not directly 

interpreted as 𝑔: 𝐵2
𝑘+𝑛→ 𝐵2 but is interpreted as 𝑔: 𝐵

2𝐾
𝑛 → 𝐵2𝐾, where 𝐵2𝐾 is a ‘big’ Boolean 

algebra of 𝐾= 2𝑘 atoms and 2𝐾 elements constructed as 𝐹𝐵(𝑿)= 𝐹𝐵(𝑋1,𝑋2…….𝑋𝑘). 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 3, No. 4, 404–428, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.4-029 

406 

According to Brown’s technique the equation 𝑔(𝑿,𝒁)=1 is constructed such as to have exactly 

all the solutions for 𝒁 in terms of 𝑿 that are independent of 𝒀. 

 

The organization of the remainder of this paper is as follows. Section 2 reviews our method for 

handling Ledley’s Type-3 Problem of digital design. The section explains how to unify given 

digital specifications (such as the 𝒔=𝒕 one) into a single Boolean equation. It also summarizes 

the method of suppression of variables, derives parametric solutions of any Boolean equation 

such that they can be recast into a very compact listing of all particular solutions, which enables 

one to easily locate particular solutions of certain desirable features. Section 3 illustrates the 

mathematical details of our proposed method by applying it to five examples of Ledley (1959, 

1960). This section demonstrates clearly the dramatic advantages of the method including its 

conceptual clarity, high speed, avoidance of unwarranted cumbersome tasks, and better control on 

outcomes. These advantages do not pertain only to pedagogical issues, but also suggest some 

enhancements of contemporary practice of digital design. The paper is concluded in Section 4. 

 

 
 

Fig. 1. An outline of digital networks pertaining to the three elementary problems of digital design posed by 

Ledley (1959, 1960) 

 

 
Table 1. Taxonomy of Ledley’s elementary problems of digital design 

 
Problem Given Find How 

Type 1 𝒁(𝑿) 𝒔(𝒁,𝒀) 𝒕(𝑿,𝒀) 𝒕(𝑿,𝒀) = 𝒔(𝒁(𝑿),𝒀), i.e., just direct and straightforward substitution. 

Type 2 𝒁(𝑿) 𝒕(𝑿,𝒀) 𝒔(𝒁,𝒀) *Solve for 𝑿(𝒁), i.e., perform logical inversion (solve an inverse problem of logic). 

* 𝒔(𝒁,𝒀)= 𝒕(𝑿(𝒁),𝒀). 

Type 3 𝒔(𝒁,𝒀) 𝒕(𝑿,𝒀) 𝒁(𝑿) *Find antecedence solutions 𝒁𝒂(𝑿) such that   𝒔𝒂(𝒁𝒂(𝑿),𝒀)→ 𝒕(𝑿,𝒀). 
*Find consequence solutions 𝒁𝒄(𝑿) such that   𝒕(𝑿,𝒀)→ 𝒔𝒄=𝒔(𝒁𝒄(𝑿),𝒀). 
*Find the intersection of the sets of antecedence solutions and consequence solutions, so 

as to obtain solutions satisfying ((𝒔→𝒕) ∩(𝒕→𝒔))↔(𝒔⊙𝒕)↔⋀ (𝑠𝑖⊙𝑡𝑖)
𝒏
𝒊=𝟏 =1. 

*Obtain solutions of this equation that specify values of 𝒁,𝑿,𝒀 in 𝐵2. 
*Select solutions that relate 𝒁 to 𝑿 independently of 𝒀. 
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2. Steps of the Method 

2.1 Unifying Specifications into a Single Boolean Equation  
Without loss of generality, let us assume that the digital system at hand is specified by the system 

of 𝑙 Boolean equations (suggested by Fig. 1) of the form 

 

𝒔=𝒕                                                                                                                                             (1a) 

or equivalently 

𝑠𝑖= 𝑡𝑖 ,          1≤  𝑖  ≤  𝑙                                                                                                           (1b) 

 

where 𝑠𝑖= 𝑠𝑖(𝐗,𝐘,𝐙) and 𝑡𝑖= 𝑡𝑖(𝐗,𝐘,𝐙), and occasionally we might have  𝑡𝑖=0 or 𝑡𝑖=1. 
The system (1) of  𝑙 scalar equations reduces to a single Boolean equation of the form  

 

ℎ(𝑿,𝒀,𝒁)=1                                                                                                                              (2a) 

 

where  

ℎ(𝑿,𝒀,𝒁) ≡  ∧𝑖=1
𝑙 (𝑠𝑖 ⊙𝑡𝑖)                                                                                                    (2b) 

 

or of the form  

𝑟(𝑿,𝒀,𝒁)=0                                                                                                                             (3a) 

 

where  

𝑟(𝑿,𝒀,𝒁)= ℎ̅(𝑿,𝒀,𝒁) ≡  ∨𝑖=1
𝑙 (𝑠𝑖 ⊕𝑡𝑖)                                                                                  (3b) 

 

The symbols ∧ ,∨,⊕, and ⊙ in Equations (2b) and (3b) depict the AND operator, the OR 

operator, the XOR (Exclusive-OR) operator and the XNOR (coincidence or equivalence) 

operator, respectively, defined as shown in Table 2. The relation between (2b) and 3(b) is just an 

expression of the two De’ Morgan’s laws. Note that the AND and OR operators are dual ones, 

while the XNOR and XOR operators are both complementary and dual ones.  

 

 
Table 2. Definition of binary Boolean operators in equations (2b) and (3b) 

 
𝑠𝑖 𝑡𝑖 𝑠𝑖 ∧𝑡𝑖 𝑠𝑖 ∨𝑡𝑖 𝑠𝑖 ⊙𝑡𝑖 𝑠𝑖 ⊕𝑡𝑖 
0 0 0 0 1 0 

0 1 0 1 0 1 

1 0 0 1 0 1 

1 1 1 1 1 0 

 

 

2.2 Suppression of Variables 
Brown (2011) proved that the resultant of suppression of the variables 𝒀 from the Boolean 

equation (3a) (called the parent equation) is the derived Boolean equation  

 

𝑓(𝑿,𝒁)=0                                                                                                                                   (4a) 

 

where 

𝑓(𝑿,𝒁) ≡  ∨𝐀 ∈ {0,1}𝑚  𝑟(𝑿,𝑨,𝒁)                                                                                                 (4b) 
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and that the solutions of the derived equation (4a) are exactly those of the parent equation (3a) 

that do not involve the suppressed variables 𝒀. 

 

We will herein utilize the dual of the above result, namely that if we use (2a) instead of (3a) as a 

parent equation, then the resultant of suppression of the variables 𝒀 is now the complementary 

derived Boolean equation 

 

𝑔(𝑿,𝒁)=1                                                                                                                                         (5a) 

 

where 

𝑔(𝑿,𝒁) ≡  ∧𝐀 ∈ {0,1}𝑚 ℎ(𝑿,𝑨,𝒁)                                                                                                      (5b) 

 

and the solutions of the derived equation (5a) are exactly those of the parent equation (2a) that do 

not involve the suppressed variables 𝒀. 

 

2.3 Derivation of Parametric Solutions 
We seek solutions of the Boolean equation  

 

𝑔(𝑿,𝒁)=1                                                                                                                                            (6) 

  

where 𝑔(𝑿,𝒁): 𝐵2
𝑘+𝑛→ 𝐵2, is a two-valued Boolean function of 𝑘 two-valued variables 𝑿=

[ 𝑋1 𝑋2 ...  𝑋𝑘 ] 
𝑇 and 𝑛 two-valued variables 𝒁=[ 𝑍1 𝑍2 ...  𝑍𝑛 ] 

𝑇. However, we do not need a 

listing of binary solutions for  𝑿 and 𝒁, but instead we want to express 𝒁 in terms of 𝑿. This is a 

prominent case when the use of ‘big’ Boolean algebras (ones other than the two-valued algebras) is 

unavoidable. We view 𝑔(𝑿,𝒁) as 𝑔(𝑿;𝒁) or simply 𝑔(𝒁) and rewrite (1) as  

 

𝑔(𝒁)=1                                                                                                                                              (6a) 

 

where 𝑔(𝒁): 𝐵
2𝐾
𝑛 → 𝐵2𝐾, and 𝐵2𝐾 is the free Boolean algebra 𝐹𝐵(𝑋1,𝑋2…….𝑋𝑘) with 𝐾= 2𝑘 

atoms and 2𝐾 elements. Now we express 𝑔(𝒁) by its Minterm Canonical Form (MCF) (Brown, 

1990)  

𝑔(𝒁) ≡  ∨𝐀 ∈ {0,1}𝑛 𝑔(𝑨) 𝒁
𝑨                                                                                                                (7) 

 

For 𝒁=[ 𝑍1 𝑍2 ...  𝑍𝑛 ] 
𝑇∈  𝐵

2𝐾
𝑛,𝑨=[ 𝑎1 𝑎2 ...  𝑎𝑛 ]

𝑇 ∈  {0,1}𝑛, the symbol 𝒁𝑨 is defined as  

 

𝒁𝑨= 𝑍1
𝑎1  𝑍2

𝑎2 ...  𝑍𝑛
𝑎𝑛                                                                                                                    (8) 

 

where 𝑍𝑖
𝑎𝑖  takes the value 𝑍𝑖 (complemented literal) if  𝑎𝑖=0, and takes the value 𝑍𝑖 

(uncomplemented literal) if 𝑎𝑖=1. For 𝑨 ∈{0,1}𝑛, the symbol 𝒁𝑨 spans the minterms of 𝒁, which 

are the 2𝑛 elementary or primitive products 

 

𝑍1̅̅̅ 𝑍2̅̅̅… 𝑍𝑛−1̅̅̅̅̅̅ 𝑍�̅̅̅�,    𝑍1̅̅̅ 𝑍2̅̅̅… 𝑍𝑛−1̅̅̅̅̅̅ 𝑍𝑛,   . . . .,  𝑍1 𝑍2… 𝑍𝑛−1 𝑍𝑛                                                    (9) 

 

The constant values 𝑔(𝑨) in equation (7) are elements of 𝐵2𝐾 called the discriminants of 𝑔(𝒁). 

These discriminants are the entries of the natural map of 𝑔(𝒁) which has an input domain {0,1}𝑛 Ì 

𝐵
2𝐾
𝑛. The Boolean algebra 𝐵2𝐾= 𝐹𝐵(𝑋1,𝑋2…….𝑋𝑘), has generators 𝑋𝑖 (1≤  𝑖  ≤  𝑘 ) which 
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look like variables (In fact, they were originally our input variables before we changed their roles 

to generators). Therefore, we can accept the name assigned (for historical reasons) to the natural 

map of 𝑔(𝒁), namely the name of the Variable-Entered Karnaugh Map (VEKM). We now 

observe that the minterms of  𝑿 , which are the 2𝑘=𝐾 elementary or primitive products  

 

𝑋1̅̅̅ 𝑋2̅̅̅… 𝑋𝑘−1̅̅̅̅̅̅ 𝑋�̅̅̅̅�,    𝑋1̅̅̅ 𝑋2̅̅̅… 𝑋𝑘−1̅̅̅̅̅̅ 𝑋𝑘,   . . . ,   𝑋1 𝑋2… 𝑋𝑘−1 𝑋𝑘                                                  (10) 

 

are exactly the atoms of the underlying Boolean algebra. For convenience, we call these atoms 𝑇𝑖 
(0≤  𝑖  ≤  (𝐾−1)), and hence 𝑔(𝑨) can be written as  

 

𝑔(𝑨) = ∨𝑖=0
𝐾−1 (𝑒𝑖(𝑨)∧ 𝑇𝑖 )                                                                                                        (11) 

 

where we use the symbol 𝑒𝑖(𝑨) to denote an indicator of the event that atom 𝑇𝑖 appears in the 

expression of 𝑔(𝑨), i.e., 

 

 𝑒𝑖(𝑨)={
1,𝑖𝑓 𝑇𝑖 → 𝑔(𝑨)

0,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}= 𝑔(𝑨)/𝑇𝑖                                                                                 (12) 

 

where the symbol (𝒓 / 𝒔) =(𝒓)𝒔=1 denotes the Boolean quotient of  𝒓 by 𝒔 (Brown, 1990). 

Equation (12) means that 𝑒𝑖(𝑨) indicates whether atom 𝑇𝑖 appears in the cell 𝑨 of the natural map 

for 𝑔(𝒁). Now, we define 𝑛𝑖 (0≤ 𝑛𝑖 ≤ 2
𝑛)  as the total number of actual appearances of 𝑇𝑖 in the 

expression (11) for 𝑔(𝑨), i.e., 

 

𝑛𝑖= ∑   𝑒𝑖(𝑨)A ∈ {0,1}𝑛                                                                                                                (13) 

 

The total number 𝑁𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 of unconditional particular solutions of (1a) over 𝐵2𝐾 (as it is) is 

given by 

 

𝑁𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙= ∏   𝑛𝑖
𝐾−1
𝑖=0                                                                                                        (14) 

 

This number is zero if some 𝑛𝑖=0, i.e., if an atom 𝑇𝑖 never makes its way to any expression 𝑔(𝑨) 
where 𝑨 ∈{0,1}𝑛 (i.e., if  𝑇𝑖 does not appear in any cell of the map for 𝑔(𝒁)). To avoid such a 

situation, one must insist on the consistency condition that any atom 𝑇𝑖 such that 𝑛𝑖=0 must be 

forbidden or nullified. This means that the underlying Boolean algebra loses these atoms and 

hence collapses to a smaller algebra, i.e., to one of its strict sub algebras. The number of solutions 

over this new Boolean algebra is  

 

𝑁𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙= ∏   𝑛𝑖
𝐾−1
𝑖=0
𝑛𝑖≠0

                                                                                                           (15) 

 

Now we introduce a set of parameters 𝒑𝒊 (0≤  𝑖  ≤  (𝐾−1),𝑛𝑖≠0) to construct an 

orthonormal set of tags to attach to instances of appearances of the asserted atom 𝑇𝑖 in the 

discriminants 𝑔(𝑨) (i.e., in the cells 𝑨 ∈{0,1}𝑛 of the natural map of 𝑔(𝒁)). The number of 

parameters for atom 𝑇𝑖 (the length of vector 𝒑𝒊) is given by 

 

l(pi)=[log2 ni],  0≤  𝑖  ≤  (𝐾−1), 𝑛𝑖≠0                                                                            (16) 
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Here, ⌈𝑥⌉ denotes the ceiling of the real number  𝑥, i.e., the smallest integer greater than or equal to 

𝑥. The  parameters 𝒑𝒊 can be used to generate a set of 𝑛𝑖 ≤ 2
𝑙(𝒑𝒊) orthonormal tags 

{𝑡1,𝑡2 ...  𝑡𝑛𝑖}, such that   

 

𝑡1 ∨ 𝑡2 ∨ ...∨ 𝑡𝑛𝑖=1                                                                                                               (17a) 

 

𝑡𝑗1 ∧ 𝑡𝑗2=0                 "  𝑗1,𝑗2 ∈{ 1,2,...,𝑛𝑖}                                                                     (17b) 

 

When 𝑛𝑖 = 2
𝑙(𝒑𝒊) the set of orthonormal tags can be visualized as the products of cells in a 

Karnaugh map whose map variables are the underlying parameters. If 2𝑙(𝒑𝒊)−1<𝑛𝑖< 2𝑙(𝒑𝒊), some 

cells of such a map are merged, and the map reduces to a map-like structure.  

 

When each appearance of an atom 𝑇𝑖 is tagged by a particular member of its orthonormal set of tags, 

an auxiliary function 𝐺(𝒁,𝒑𝒊) (0≤  𝑖  ≤  (𝐾−1),𝑛𝑖≠0) results. The parametric solution is 

now given by (Brown, 1970, 2003; Rushdi and Amashah, 2011). 

  

𝑍𝑢 = ∨{𝐀 ∈{0,1}𝑛|𝐴𝑢 =1} 𝐺(𝑨,𝒑𝒊). 1≤ 𝑢 ≤𝑛, (0≤ 𝑖≤ (𝐾−1),𝑛𝑖≠0)                             (18) 

 

The total number of parameters used in (18) to construct the tags for all atoms is given by  

 

𝐸= ∑  𝑙(𝒑𝒊)
𝑘
𝑖=1 =  ∑  ⌈log2 (𝑛𝑖)⌉

𝑘
𝑖=1                                                                                       (19) 

 

The conventional method is to select the parameter vectors from a shared pool of parameters so as 

to minimize the number of parameters used, which then becomes  

 

𝐸′=max 
𝑖
 𝑙(𝒑𝑖)= max

𝑖
 ⌈log2𝑛𝑖⌉= ⌈log2 (max

𝑖
𝑛𝑖)⌉                                                                 (20) 

 

However, parameters used must then belong to the underlying Boolean algebra (possibly 

collapsed due to the consistency condition). We now propose to use independent parameters 𝒑𝒊 
for each atom  𝑇𝑖 (0≤  𝑖  ≤  𝐾−1,𝑛𝑖≠0). The expressions (18) will not be as compact as 

they are in the conventional case, but the independent parameters 𝒑𝒊 now belong to the two-valued 

Boolean algebra 𝐵2 (Brown, 2003; Rushdi and Amashah, 2011), a fact that facilitates the generation 

of all particular solutions as will be seen shortly in the next subsection. 

 

2.4 Listing of All Particular Solutions 
The parametric solutions (18) can be used to generate all particular solutions through the use of 

an expansion tree. Generally, in the conventional method, this expansion tree is a complete tree 

that entails the assignment of 2𝐾
′
 values to each of 𝐸′ parameters where 𝐾′≤𝐾 is the final 

number of atoms of the underlying Boolean algebra (possibly after some collapse due to the 

consistency condition). Each parent node has 2𝐾
′
 children nodes and the tree has 𝐸′ levels 

beyond its root. Therefore, the tree has (2𝐾
′
)𝐸
′
= 2𝐾

′𝐸′ leaves. These leaves constitute the whole 

set of particular solutions, possibly with repetitions. However, to avoid repetitions, we make sure, 

right from the first expansion level, to combine any sibling nodes that share the same solution 

value. With this kind of combining, the tree ceases to be a complete one, and its leaves become 

exactly the particular solutions, i.e., without repetitions. If we further allow combining cousin 
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(same-level) nodes, the tree is replaced by an acyclic graph that lists particular solution compactly 

(Rushdi, 2012). 

 

In the method proposed herein, a complete version of the expansion tree requires the assignment 

of binary values {0,1} to each of 𝐸 independent parameters. Since the complete binary tree has 𝐸 

levels beyond its root, it has 2𝐸 leaves. With merging of sibling nodes of equal solution values, 

the tree is no longer complete, and its leaves are just the particular solutions without repetitions. 

The size of the expansion tree in the proposed method is typically less than that in the 

conventional method since typically 𝐸 < 𝐾′𝐸′ (though 𝐸 > 𝐸′). However, the true advantage 

of the proposed method is that it allows us to avoid the use of an expansion tree (or an expansion 

acyclic graph) altogether. The key to this is the observation that the parametric solution (18) can 

be rewritten as the weighted sum of the atoms 𝑇𝑖 that appear in the discriminants 𝑔(𝑨) (as 

expressed in (11)) of the function 𝑔(𝒁), viz. 

 

𝒁 = ∨𝑖=0
𝑛𝑖≠0

𝐾−1(𝑪𝒐(𝑇𝑖)∧ 𝑇𝑖 )                                                                                                                   (21) 

 

where we call the vector 𝑪𝒐(𝑇𝑖) the ‘contribution’ of the asserted atom 𝑇𝑖 and call the conjunction 

(𝑪𝒐(𝑇𝑖)∧ 𝑇𝑖 ) the ‘total contribution’ of that atom. We now note that 𝑪𝒐(𝑇𝑖) {or 𝑪𝒐(𝑇𝑖)∧ 𝑇𝑖} has 

exactly 𝑛𝑖 possible values, which can be conveniently listed via the same Karnaugh-map-like 

structure used in the representation of the associated tags. Therefore, we interpret (21) as a method of 

conveniently listing all particular solutions as a disjunction of total contributions of asserted atoms 

𝑇𝑖, where the total contribution is given in all its 𝑛𝑖 possibilities. To obtain a specific particular 

solution, one has simply to pick up arbitrarily one of the possibilities of the total contribution for 

every atom, and then add the selected total contributions together. The total number of particular 

solutions obtained this way agrees with that given by (15). 

 

2.5 Picking up a Particular Solution of Specific Features 
Equation (21) is of a paramount importance, as it provides a listing of a (possibly huge) number 

of all particular solutions in a compact space. As such, it allows picking up certain solutions 

enjoying particular desirable features simply by a quick inspection of the aforementioned listing. 

This point will be clarified further by way of examples in the next section. 

 

3. Examples 
In the following, we illustrate the method of Section 2 by revisiting five Type-3 examples 

handled by Ledley (1959, 1960). In each of these, we recover the results of Ledley in a much 

faster, more systematic and transparent, and less error-prone way. In one particular case, we 

resolve and circumvent a certain discrepancy that Ledley’s technique fell short of handling 

completely. 

 

Example 1 
This example was studied before by Ledley (1960) and Brown (2011). For this example, the 𝒔 
and 𝒕 functions are scalars of the form 

 

𝑠= 𝑍1𝑍3 ∨ 𝑌1𝑍1𝑍2 ∨ 𝑌2𝑍2𝑍3                                                                                                     (22a) 

𝑡= 𝑋1𝑋2 ∨ 𝑋2𝑋3𝑌1 ∨ 𝑋1𝑋3𝑌2 ∨ 𝑋2𝑌2                                                                                       (22b) 
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where  

𝑠=𝑡.                                                                                                                                                  (22c) 

 

Equation (22c) can be reduced into an equation similar to (2a) of the form (2b), viz., 

 

ℎ(𝑿,𝒀,𝒁)=𝑠⊙𝑡                                                                                                                     (23) 

 

Fig. 2 is an expression of ℎ(𝑿,𝒀,𝒁) in terms of a variable-entered Karnaugh map (VEKM) of 

map variables 𝑌1 and 𝑌2. The map has entries in terms of the ⊙ operator in Fig. 2(a). These terms 

are rewritten with the ⊙ operator replaced by its POS form in Fig. 2(b). The 𝑌 variables are 

suppressed via (5b) by ANDing the entries in Fig. 2(b), namely 

 

𝑔(𝑿,𝒁)=(𝑍1𝑍3 ∨ 𝑋1 ∨ 𝑋2) (𝑍1𝑍3 ∨𝑍1𝑍2 ∨ 𝑋1𝑋2 ∨ 𝑋2𝑋3)(𝑍1𝑍3 ∨𝑍2𝑍3 ∨ 𝑋1𝑋2 ∨
 𝑋2𝑋3)(𝑍1𝑍3 ∨𝑍1𝑍2∨𝑍2𝑍3 ∨ 𝑋1𝑋2𝑋3 )(𝑍1∨𝑍3 ∨ 𝑋1𝑋2 )(𝑍1𝑍3 ∨𝑍1𝑍2 ∨ 𝑋1𝑋2 ∨
 𝑋2𝑋3)(𝑍1𝑍3 ∨𝑍2𝑍3 ∨ 𝑋1𝑋3 ∨ 𝑋2)(𝑍1𝑍2𝑍3 ∨𝑍1𝑍2𝑍3 ∨ 𝑋1∨𝑋2 ∨ 𝑋3)                             (24) 

 

The function 𝑔(𝑿;𝒁) is computed via its natural map of map variables 𝑍1,𝑍2, and 𝑍3 in Fig. 3a. 

The final result of the computation is shown in Fig. 3b which is again redrawn as Fig. 3c such 

that every discriminant (cell entry) of 𝑔(𝑿;𝒁) is given as a minterm expansion (disjunction of 

atoms). Each of the eight atoms of 𝐹𝐵(𝑋1,𝑋2,𝑋3) appears twice in Fig. 3c, which means that the 

consistency condition is the identity 

 

0=0                                                                                                                                            (25) 

and the total number of particular solutions is 

 

𝑁= 28=256                                                                                                                             (26) 

 

Each atom 𝑇𝑖 requires a single parameter 𝑝𝑖 to produce a set of orthonormal tags {𝑝𝑖,𝑝𝑖}. The 

corresponding auxiliary function 𝐺(𝑿;𝒁,𝒑) is shown in Fig. 4. The parametric solution is then 

given by either of the following equations 

 

[
𝑍1
𝑍2
𝑍3

]= [

𝑇0𝑝0∨𝑇1∨𝑇2𝑝2∨𝑇3𝑝3∨𝑇4𝑝4∨𝑇5
𝑇0𝑝0∨𝑇2∨𝑇3∨𝑇4∨𝑇6𝑝6∨𝑇7𝑝7
𝑇0𝑝0∨𝑇1𝑝1∨𝑇5𝑝5∨𝑇6∨𝑇7

]                                                                         (27a) 

 

 

[
𝑍1
𝑍2
𝑍3

]= [

𝑋1𝑋2𝑋3𝑝0∨𝑋2𝑋3∨𝑋1𝑋2𝑋3𝑝2∨𝑋1𝑋2𝑋3𝑝3∨𝑋1𝑋2𝑋3𝑝4
𝑋1𝑋2𝑋3𝑝0∨𝑋1𝑋2∨𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3𝑝6∨𝑋1𝑋2𝑋3𝑝7

𝑋1𝑋2𝑋3𝑝0∨𝑋1𝑋2𝑋3𝑝1∨𝑋1𝑋2𝑋3𝑝5∨𝑋1𝑋2

]                                        (27b) 

 

 

where the symbols 𝑇𝑖= 𝑿
𝑰 denote the eight atoms of 𝐹𝐵(𝑋1,𝑋2,𝑋3) and 𝑰=(𝑖1 𝑖2 𝑖3) expresses 

the integer 𝑖 in binary notation (𝑖=4𝑖1+2𝑖2+𝑖3). Fig. 5 displays all 256 particular solutions of 

this example. Each particular solution is a disjunction of possible contributions of atoms  𝑇𝑖 (0≤
𝑖 ≤7). Here the contribution of each atom is represented by a single-variable (2-cell) Karnaugh 

map. As an example of identifying one particular solution (without any deliberate effort to achieve 

compactness), we select the possible contribution in the top cell for each atom. Hence, we obtain 
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[
𝑍1
𝑍2
𝑍3

]= [

𝑋2𝑋3
𝑋1𝑋2∨𝑋1𝑋2𝑋3

𝑋1𝑋2

]                                                                                                            (28) 

 

An obvious slight improvement is possible if we use the lower-cell contribution of 𝑇6=
𝑋1𝑋2𝑋3, instead of the upper-cell one, to obtain   

 

[

𝑍1
𝑍2
𝑍3

]= [

𝑋2𝑋3
𝑋1𝑋2∨𝑋1𝑋3
𝑋1𝑋2

]                                                                                                                (29) 

 

A better solution was found via informal means by Ledley (1960); and re-obtained by branch-

and-bound search (Brown, 2011). This solution is 

 

[

𝑋2
𝑋2∨𝑋3

𝑋1𝑋2∨𝑋1𝑋2

] = [

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3

] ∨[
𝑋1𝑋2𝑋3
0

𝑋1𝑋2𝑋3

] ∨[
0

𝑋1𝑋2𝑋3
0
] ∨[

0
𝑋1𝑋2𝑋3
0
] ∨[

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3
0

] ∨[
𝑋1𝑋2𝑋3
0
0

] ∨

[

0
𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3

] ∨[
0

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3

]                                                                                                                 (30) 

 

 
 

(a) ℎ(𝑿,𝒀,𝒁) in terms of the ⊙ operator 

 

 
 

(b) ℎ(𝑿,𝒀,𝒁)  with the NOR function replaced by its pos form 

 

Fig. 2. A map expression of the function in Example 1 
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(a) 𝑔(𝑿,𝒁) 
 

 
 

(b) 𝑔(𝑿,𝒁) 
 

 
 

(c) 𝑔(𝑿,𝒁) 
 

Fig. 3. The function 𝑔(𝑿,𝒁) in Example 1 

 

𝑋1𝑋2𝑋3
𝑋1𝑋2 ∨
𝑋1𝑋2𝑋3

𝑋1𝑋2 ∨
𝑋1𝑋2𝑋3

𝑋2𝑋3

𝑋1𝑋2 𝑋1𝑋2 𝑋1𝑋2𝑋3 𝑋2𝑋3

𝑍2

𝑍3

𝑍1

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3∨
𝑋1𝑋2𝑋3∨
𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3∨
𝑋1𝑋2𝑋3∨
𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3∨
𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3 𝑋1𝑋2𝑋3∨
𝑋1𝑋2𝑋3

𝑍2

𝑍3

𝑍1
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𝑔(𝑿; 𝒁,𝒑) 
 

Fig. 4. The auxiliary function for Example 1 

 

 

 

 
 

Fig. 5. A display of all 256 particular solutions of Example 1 as a disjunction of possible contributions of 

atoms Ti ( 0 ≤i ≤7) 
 

 

Example 2a 
Ledley (1959, 1960) described this example as one that illustrates a normally complicated 

solution. While this example has solutions such that 𝑠= 𝑡, a minor modification of it in Example 

2b produces a situation in which no solutions can be produced such that 𝑠= 𝑡. We start with two 

scalar functions 𝑠 and 𝑡, viz. 

 

𝑠= 𝑍1𝑍2𝑌2 ∨ 𝑍1𝑍2𝑌2 ∨ 𝑍1𝑍2(𝑌1𝑌2 ∨ 𝑌1𝑌2) ∨ 𝑍1𝑍2𝑌1𝑌2                                                      (31) 

 

 

𝑡= (𝑋1𝑋3 ∨ 𝑋2𝑋3)𝑌1𝑌2 ∨(𝑋1𝑋3 ∨ 𝑋1𝑋2)𝑌1𝑌2∨(𝑋1𝑋3 ∨ 𝑋2𝑋3)𝑌1𝑌2 ∨(𝑋1𝑋2𝑋3 ∨
𝑋1𝑋2𝑋3)𝑌1𝑌2                                                                                                                                (32) 

 

The function ℎ(𝑿,𝒀,𝒁) equivalent to (𝑠⊙ 𝑡) is expressed by the map in Fig. 6. Entries of the 

cells of this map are ANDed to form the function 𝑔(𝑿,𝒁) in which 𝑌1 and 𝑌2 are suppressed. The 

natural map for 𝑔(𝑿,𝒁) is gradually developed in Figs. 7(a)-7(d). The final map in Fig. 7(d) has 

entries in minterm form. It shows that each of the 8 atoms of 𝐹𝐵(𝑋1,𝑋2,𝑋3) appears once. Hence, 

𝑋1𝑋2𝑋3(𝑝0)
𝑋1𝑋2𝑋3(𝑝2)
∨𝑋1𝑋2𝑋3(𝑝3)
∨𝑋1𝑋2𝑋3(𝑝4)

𝑋1𝑋2𝑋3(𝑝2ύ
∨𝑋1𝑋2𝑋3(𝑝3ύ
∨𝑋1𝑋2𝑋3(𝑝4)

𝑋1𝑋2𝑋3(𝑝1)∨
𝑋1𝑋2𝑋3(𝑝5ύ

𝑋1𝑋2𝑋3(𝑝6ύ
∨𝑋1𝑋2𝑋3(𝑝7ύ

𝑋1𝑋2𝑋3(𝑝6)
∨𝑋1𝑋2𝑋3(𝑝7)

𝑋1𝑋2𝑋3(𝑝0) 𝑋1𝑋2𝑋3(𝑝5)
∨𝑋1𝑋2𝑋3(𝑝1)

𝑍2

𝑍3

𝑍1

0
0
0
 

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3

𝑝0

𝑋1𝑋2𝑋3
0
0

𝑋1𝑋2𝑋3
0

𝑋1𝑋2𝑋3
𝑝1

0
𝑋1𝑋2𝑋3
0

 

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3
0

𝑝2

0
𝑋1𝑋2𝑋3
0

 

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3
0

𝑝3

0
𝑋1𝑋2𝑋3
0

 

𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3
0

𝑝4

𝑋1𝑋2𝑋3
0
0

 

𝑋1𝑋2𝑋3
0

𝑋1𝑋2𝑋3
𝑝5

0
0

𝑋1𝑋2𝑋3

 

0
𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3

𝑝6

0
0

𝑋1𝑋2𝑋3

 

0
𝑋1𝑋2𝑋3
𝑋1𝑋2𝑋3

𝑝7

∨ ∨ ∨ ∨ ∨ ∨ ∨𝑍1
𝑍2
𝑍3

= 
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the number of particular solutions is 18=1 and the consistency condition is the identity (0 = 0). 

Therefore, the map can be used to represent the auxiliary function 𝐺(𝑿,𝒁,𝒑) as well (since neither 

tagging each atom with 1 nor ORing each entry with 𝑑(0) produces any change). The final 

answer for 𝑍(𝑿) is unique and given by: 

 

 

 
 

ℎ(𝑿,𝒀,𝒁) 
 

Fig. 6. A VEKM representing a function equivalent to (𝑠⊙ 𝑡) in Example 2a 

 
 

(a) 𝑔(𝑿,𝒁) 
 

 
 

(b) 𝑔(𝑿,𝒁) 
 

 

(𝑋1𝑋3∨ 𝑋2𝑋3ύ
(𝑋1𝑋3∨𝑋1𝑋2ύ
(𝑋1∨𝑋3) (𝑋2∨𝑋3)

(𝑋1∨𝑋2∨𝑋3)(𝑋1∨𝑋2∨𝑋3)

(𝑋1∨𝑋3)(𝑋2∨𝑋3)
(𝑋1∨𝑋3)(𝑋1∨𝑋2)

(𝑋1𝑋3∨𝑋2𝑋3ύ
(𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3)

(𝑋1∨𝑋3)(𝑋2∨𝑋3)
(𝑋1𝑋3∨𝑋1𝑋2ύ
(𝑋1𝑋3∨𝑋2𝑋3ύ

(𝑋1∨𝑋2∨𝑋3)(𝑋1∨𝑋2∨𝑋3)

(𝑋1𝑋3∨ 𝑋2𝑋3ύ
(𝑋1∨𝑋3)(𝑋1∨𝑋2)
(𝑋1∨𝑋3) (𝑋2∨𝑋3)

(𝑋1∨𝑋2∨𝑋3)(𝑋1∨𝑋2∨𝑋3)

𝑍2

𝑍1

𝑋1𝑋3 𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3

𝑋1𝑋2 𝑋2𝑋3 𝑍2

𝑍1
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(c) 𝑔(𝑿,𝒁) 

 
 

(d) 𝑔(𝑿,𝒁) or 𝐺(𝑿,𝒁,𝒑) 
 

Fig. 7. Gradual development of the natural map for 𝑔(𝑿,𝒁) obtained by suppressing 𝒀 from ℎ(𝑿,𝒀,𝒁) in 

Fig. 6. The final map in 7(d) also represents the auxiliary function 𝐺(𝑿,𝒁,𝒑) 
 

 

 

𝑍1= 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3  
      =    𝑋1𝑋2∨ 𝑋1𝑋3                                                                                                                   (33) 

𝑍2= 𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3 

      =   𝑋1𝑋2∨ 𝑋2𝑋3                                                                                                                     (34) 

 

 

Example 2b 
Let us keep 𝑡 as given by (32) in Example 2a and augment 𝑠 therein by the term 𝑍1𝑍2𝑌1 so as to 

become: 

 

𝑠= 𝑍1𝑍2(𝑌1 ∨𝑌2) ∨ 𝑍1𝑍2𝑌2 ∨ 𝑍1𝑍2(𝑌1𝑌2 ∨ 𝑌1𝑌2) ∨ 𝑍1𝑍2𝑌1𝑌2                                          (35) 

 

 
 

ℎ(𝑿,𝒀,𝒁) 
 

Fig. 8. A VEKM representing a function equivalent to (𝑠⊙ 𝑡) in Example 2b 

 

 

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑍2

𝑍1
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(a) 𝑔(𝑿,𝒁) 
 

 
 

(b) 𝑔(𝑿,𝒁) 
 

 
 

(c) 𝑔(𝑿,𝒁) 
 

 
 

(d) 𝑔(𝑿,𝒁) 
 

Fig. 9. Gradual development of the natural map for 𝑔(𝑿,𝒁) obtained by suppressing 𝒀 from ℎ(𝑿,𝒀,𝒁) in 

Fig. 8 

 

We reproduce Figs. 6 and 7 modified as Figs. 8 and 9. In Fig. 9(d), only 7 atoms still appear 

(once each) while atom 𝑋1𝑋2𝑋3 is missing. Therefore, there is a single particular solution under 

the consistency condition 𝑋1𝑋2𝑋3=0, and the auxiliary function is given by Fig. 10. Hence the 

conditional solution is: 

 

𝑍1= 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3∨𝑑( 𝑋1𝑋2𝑋3) 
      =𝑋1𝑋2∨ 𝑋1𝑋3∨𝑑( 𝑋1𝑋2𝑋3),                                                                                              (36) 

(𝑋1𝑋3∨ 𝑋2𝑋3ύ
(𝑋1𝑋3∨𝑋1𝑋2ύ
(𝑋1𝑋3∨𝑋2𝑋3ύ

(𝑋1∨𝑋2∨𝑋3)(𝑋1∨𝑋2∨𝑋3)

(𝑋1∨𝑋3)(𝑋2∨𝑋3)
(𝑋1∨𝑋3)(𝑋1∨𝑋2)

(𝑋1𝑋3∨𝑋2𝑋3ύ
(𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3)

(𝑋1∨𝑋3)(𝑋2∨𝑋3)
(𝑋1𝑋3∨𝑋1𝑋2ύ
(𝑋1𝑋3∨𝑋2𝑋3ύ

(𝑋1∨𝑋2∨𝑋3)(𝑋1∨𝑋2∨𝑋3)

(𝑋1𝑋3∨ 𝑋2𝑋3ύ
(𝑋1∨𝑋3)(𝑋1∨𝑋2)
(𝑋1∨𝑋3) (𝑋2∨𝑋3)

(𝑋1∨𝑋2∨𝑋3)(𝑋1∨𝑋2∨𝑋3)

𝑍2

𝑍1

𝑋1𝑋2𝑋3 𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3

𝑋1𝑋2 𝑋2𝑋3 𝑍2

𝑍1

𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑍2

𝑍1
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𝑍2= 𝑋1𝑋2𝑋3∨𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨𝑑( 𝑋1𝑋2𝑋3) 
      = 𝑋1𝑋2∨ 𝑋2𝑋3∨𝑑( 𝑋1𝑋2𝑋3).                                                                                             (37) 

 

 
 

𝐺(𝑿,𝒁,𝒑) 
 

Fig. 10. The auxiliary function for Example 2b 

 

Example 3 
Suppose that both functions 𝑠 and 𝑡 are scalars of the form 

 

𝑠(𝒁,𝒀)= 𝑍1𝑌1∨ 𝑍1𝑌1                                                                                                                  (38) 

𝑡(𝑿,𝒀)= 𝑋1𝑋2 ∨ 𝑋1𝑌1∨ 𝑋2𝑌1                                                                                                  (39) 

 

Ledley (1960) labeled this example as one of no solutions. He said that subject to the condition 

𝑋1→𝑋2, solutions 𝑍1=𝑋2, and 𝑍2=𝑋1 are antecedent solutions that make 𝑠𝑎→𝑡 but 𝑠≠𝑡. 
According to our method, we construct the function ℎ(𝑿,𝒀,𝒁) according to (2b) in Fig. 11, and 

then suppress 𝑌1 to obtain 𝑔(𝑿,𝒁), represented by the natural map in Fig.12(a). Out of the four 

atoms of 𝐹𝐵(𝑋1,𝑋2), the two atoms 𝑋1𝑋2 and 𝑋1𝑋2, make a single appearance in Fig. 12(b), 

while the two atoms 𝑋1𝑋2 and 𝑋1𝑋2 make no appearance therein. The number of particular 

solutions is 1*1 = 1, and the consistency condition is (𝑋1𝑋2∨ 𝑋1𝑋2=0). We construct the 

auxiliary function 𝐺(𝑿,𝒁,𝒑) via the map in Fig. 13 by tagging each of the asserted atoms 𝑋1𝑋2 
and 𝑋1𝑋2 by 1 and adding each of the nullified atoms don’t-care in each cell of the map of 

𝐺(𝑿,𝒁,𝒑). The parametric solution of 𝑍1 involves no parameters and constitutes a single 

particular solution given by  

 

𝑍1=𝑋1𝑋2∨ 𝑑(𝑋1𝑋2∨ 𝑋1𝑋2)                                                                                                    (40) 

 

The expression above for 𝑍1 might be simplified to either 𝑍1=𝑋1 or 𝑍1=𝑋2. These are not 

alternative solutions as claimed by Ledley (1960) but are the same solution under the above 

consistency condition which is equivalent to requiring that  𝑋1=𝑋2. Reading of the map in Fig. 

13 (or complementing (40)) yields 

 

𝑍1=𝑋1𝑋2∨ 𝑑(𝑋1𝑋2∨ 𝑋1𝑋2)                                                                                                    (41) 

 

Substituting (40) and (41) in (38) produces  

 

𝑠=(𝑋1𝑋2𝑌1∨ 𝑋1𝑋2𝑌1)∨ 𝑑(𝑌1∨ 𝑌1)(𝑋1𝑋2∨ 𝑋1𝑋2) 
    =(𝑋1𝑋2𝑌1∨ 𝑋1𝑋2𝑌1)∨ 𝑑(𝑋1𝑋2∨ 𝑋1𝑋2)                                                                              (42) 

𝑋1𝑋2𝑋3(1)
∨ (𝑋1𝑋2𝑋3)

𝑋1𝑋2𝑋3(1)
∨𝑋1𝑋2𝑋3(1)
∨ (𝑋1𝑋2𝑋3)

𝑋1𝑋2𝑋3(1)
∨𝑋1𝑋2𝑋3(1)
∨ (𝑋1𝑋2𝑋3)

𝑋1𝑋2𝑋3(1)
∨𝑋1𝑋2𝑋3(1)
∨ (𝑋1𝑋2𝑋3)

𝑍2

𝑍1
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which is exactly the same as 𝑡 in (39) under the auxiliary condition that (𝑋1𝑋2∨ 𝑋1𝑋2=0) or 

equivalently 𝑋2=𝑋1, or 𝑋1=𝑋2. This very simple example reveals many of the shortcoming in 

Ledley’s method, including the inadequacy of splitting solutions into antecedence and 

consequence ones, and the difficulty of doing without the concept of a consistency condition. 

 

 

 
 

ℎ(𝑿,𝒀,𝒁) 
 

Fig. 11. Map representation of a function ℎ(𝑿,𝒀,𝒁) whose assertion is equivalent to equality of 𝑠 and 𝑡 in 

Example 3 

 

 

 
 

(a) 𝑔(𝑿,𝒁) 
 

 
 

(b) 𝑔(𝑿,𝒁) 
 

Fig. 12. Resultant of suppression of 𝑌1 in Example 3 

 

 

 

 
 

𝐺(𝑿,𝒁,𝒑) 
 

Fig. 13. The auxiliary function for Example 3 

𝑍1⊙𝑋 2 𝑍1⊙𝑋 1

𝑌1

(1⊙𝑋 2)
(0⊙𝑋1)

(0⊙𝑋 2)
(1⊙𝑋1)

𝑍1

𝑋1𝑋 2(1) ∨
𝑑(𝑋 1𝑋 2∨ 𝑋1𝑋2)

𝑋1𝑋2(1) ∨
𝑑(𝑋1𝑋2∨ 𝑋1𝑋2)

𝑍1
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Example 4 
Ledley (1960) required just a consequence solution (𝑡→𝑠) rather than a complete one {(𝑠→𝑡)∧ 

(𝑡→𝑠)} for this example, where 𝑠 and 𝑡 are given by 

𝑠= 𝑍1                                                                                                                                           (43) 

 

𝑡(𝑿,𝒀)= 𝑋1(𝑋2𝑌 ∨𝑋2𝑋3) ∨𝑋1𝑌(𝑋2𝑋3∨ 𝑋2𝑋3)                                                                    (44) 

 

An obvious (albeit trivial and non-genuine) solution for this problem is 𝑍1=1 (since 1 is implied 

by anything). We now use Figs. 14 and 15 to represent the pertinent maps, noting that now the 

ℎ(𝑿,𝒀,𝒁) function represents (𝑡→𝑠) rather than (𝑠⊙𝑡). The final map in Fig. 15(c) shows that 

all atoms are present, with 5 of them making a single appearance and 3 of them making a double 

appearance each. These three atoms are 𝑇0=𝑋1𝑋2𝑋3 whose instances are tagged by elements of 

the orthonormal set {𝑝0,𝑝0}, 𝑇3=𝑋1𝑋2𝑋3 whose instances are tagged by elements of the 

orthonormal set {𝑝3,𝑝3}, and 𝑇6=𝑋1𝑋2𝑋3 whose instances are tagged by elements of the 

orthonormal set {𝑝6,𝑝6}, while the other 5 atoms are each tagged by (1) as shown in Fig. 16. The 

consistency condition is the identity (0 = 0), and the number of particular solution is 15∗23=8. 
The parametric solution is 

 

𝑍1=𝑋1𝑋2𝑋3𝑝0∨ 𝑋1𝑋2𝑋3𝑝3∨ 𝑋1𝑋2𝑋3𝑝6∨ 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨ 𝑋1𝑋2𝑋3∨
 𝑋1𝑋2𝑋3                                                                                                                                        (45) 

 

where each of 𝑝0,𝑝3, and 𝑝6∈{0,1} according to our novel method (Rushdi and Ahmad; 2017a, 

2017b). If we employ the conventional method, we use a common value 𝑝 for each of 𝑝0,𝑝3, and 

𝑝6, but this 𝑝∈𝐵256= 𝐹𝐵(𝑋1,𝑋2,𝑋3). Equation (45) can be conventionally written as a display of 

8 particular solutions for 𝑍1 as follows. 

 

 

 

𝑍1=   
 

 

 

 

 

 

These 8 solutions are also displayed in Fig. 17. They include (beside the trivial solution 𝑍1=1), 
the three minimal genuine solutions identified by Ledley (1960). 

 

 

 

 
 

Fig. 14. The function ℎ(𝑿,𝒀,𝒁)=𝑡→𝑠 in Example 4 

 

(𝑋1𝑋2𝑋3∨𝑋1(𝑋2𝑋3∨𝑋2𝑋3))→𝑍1 (𝑋1𝑋2𝑋3∨𝑋1𝑋2)→𝑍1

𝑌

 

0 
 

 

∨ 

  

0 
 

 

∨ 

  

0 
 

 

∨ 

𝑋1𝑋2𝑋3∨

𝑋1𝑋2𝑋3∨

𝑋1𝑋2𝑋3∨

 𝑋1𝑋2𝑋3∨
𝑋1𝑋2𝑋3

  

𝑋1𝑋2𝑋3 
 

𝑋1𝑋2𝑋3 
 

𝑋1𝑋2𝑋3 
𝑝0 

(46) 

𝑝3 
𝑝6 
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(a) 𝑔(𝑿,𝒁) 

 
 

(b) 𝑔(𝑿,𝒁) 
 

 
 

(c) 𝑔(𝑿,𝒁) 
 

Fig. 15. Gradual development of the natural map for 𝑔(𝑿,𝒁) obtained by suppressing 𝒀 from ℎ(𝑿,𝒀,𝒁) in 

Fig. 14 

 

 

 

 
 

𝐺(𝑿,𝒁,𝒑) 
 

Fig. 16. The auxiliary function for Example 4 

 

 

((𝑋1𝑋2𝑋3∨𝑋1𝑋2)→0)
((𝑋1𝑋2𝑋3∨𝑋1(𝑋2𝑋3∨𝑋2𝑋3))→0)

((𝑋1𝑋2𝑋3∨𝑋1𝑋2)→1)
((𝑋1𝑋2𝑋3∨𝑋1(𝑋2𝑋3∨𝑋2𝑋3))→1)

𝑍1

(𝑋2(𝑋1∨ 𝑋3) ∨𝑋1𝑋2) 
(𝑋1(𝑋2∨ 𝑋3) ∨𝑋1(𝑋2𝑋3∨𝑋2𝑋3))

(1)(1)

𝑍1

𝑋1𝑋2𝑋3𝑝0∨

𝑋1𝑋2𝑋3𝑝3∨

𝑋1𝑋2𝑋3𝑝6

𝑋1𝑋2𝑋3𝑝0∨

𝑋1𝑋2𝑋3𝑝3∨

𝑋1𝑋2𝑋3𝑝6∨

𝑋1𝑋2𝑋3ό1ύ∨
𝑋1𝑋2𝑋3(1)∨
𝑋1𝑋2𝑋3(1)∨
𝑋1𝑋2𝑋3ό1ύ∨
𝑋1𝑋2𝑋3(1)

𝑍1
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Fig. 17. Listing of all particular solutions of Example 4 

 

 

Example 5 
This example taken from Ledley (1959) illustrates the handling of genuinely vectorial function 𝒔 
and 𝒕 (of dimensions 𝑙=3>1), given by 

 

𝑠1=(𝑍1∨ 𝑍2)  𝑍3 ∨𝑍1𝑍2                                                                                                          (47a) 

 

𝑠2=𝑍1𝑍3 ∨𝑍1𝑍3                                                                                                                       (47b) 

 

𝑠3=𝑍2𝑍3 ∨𝑍2𝑍3                                                                                                                       (47c) 

and 

𝑡1= 𝑋1(𝑋2 ∨𝑋3𝑋4) ∨𝑋2𝑋3                                                                                                    (48a) 

 

𝑡2= (𝑋1𝑋3 ∨𝑋1𝑋3) (𝑋2∨𝑋4)                                                                                                (48b) 

 

𝑡3= 𝑋2(𝑋3 ∨𝑋1𝑋4) ∨(𝑋1 ∨𝑋2) 𝑋3𝑋4                                                                                  (48c) 

 

 

In (47c), we had to correct a typo in original expression given by Ledley (1959). This example 

lacks unwarranted 𝒀 variables, and hence we directly construct the function 𝑔(𝑿,𝒁) such that 

 

𝑔(𝑿,𝒁)= ⋀ (𝑠𝑖(𝒁)⊙𝑡𝑖(𝑿))
3
𝑖=1                                                                                                  (49) 

 

This function is represented by the map in Fig. 18(b) inspired by the map in Fig. 18(a) and the 

facts that (1⊙𝑡=𝑡) and (0⊙𝑡) = 𝑡. We compute the entries of the map in Fig. 18(b) via the 

conventional Karnaugh maps in Fig. 19. Our final result for 𝑔(𝑿,𝒁) in Fig. 20 shows that there is 

a single appearance for each of the 16 atoms of 𝐵512= 𝐹𝐵(𝑋1,𝑋2,𝑋3,𝑋4). Therefore, the 

consistency condition is the identity (0 = 0), there is a single particular solution, and the map in Fig. 

20 serves as well to represent the auxiliary function 𝐺(𝑿,𝒁,𝒑). The final solution is  

 

𝑋1𝑋2∨𝑋1𝑋3
∨𝑋2𝑋3
∨𝑋1𝑋2𝑋3

𝑋3∨𝑋1𝑋2
∨ 𝑋1𝑋2

𝑋1∨𝑋2∨𝑋3 𝑋2∨𝑋1𝑋3
∨𝑋1𝑋3

𝑋1∨𝑋2𝑋3
∨𝑋2𝑋3

𝑋1∨𝑋2∨𝑋3 1 𝑋1∨𝑋2∨ 𝑋3

𝑝3

𝑝6

𝑝0
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[
𝑍1
𝑍2
𝑍3

]= [

𝑋1∨𝑋2𝑋4
𝑋2∨𝑋1𝑋3
𝑋3 ∨𝑋2𝑋4

]                                                                                                                   (50) 

in agreement with that found by Ledley (1959). 

 

 

 

 
 

(a) 𝑠1𝑠2𝑠3  
 

 
 

(b) 𝑔(𝒔(𝒁),𝒕) 
 

Fig. 18. Map for the functions 𝑠1,𝑠2,𝑠3, and 𝑔(𝒔(𝒁),𝒕) 
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Fig. 19. Conventional Karnaugh maps used in the evaluation of entries in Fig. 18 

 

 

 

 
 

Fig. 20. Final map for both 𝑔(𝑿,𝒁) and 𝐺(𝑿,𝒁,𝒑) 
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4. Conclusions  
This paper introduced dramatic improvements to the techniques used for handling an elementary 

problem of digital design. These improvements included (a) the use of a transparent algebraic 

representation all throughout the analysis instead of going to a cryptic numerical representation, 

(b) the solution of a single equation instead of solving two sets of equations at two sequential 

stages, (c) the use of powerful techniques of ‘big’ Boolean algebras to express outputs in terms of 

inputs, (d) a better conceptual understanding by imposing certain “consistency conditions” that 

allow complete conditional solutions to emerge instead of resorting to partial solutions or 

accepting that no solutions exist, and (e) the suppression of unwarranted or intermediary 

variables, right from the outset instead of making an extensive search as an afterthought. These 

improvements resulted in much faster (and occasionally corrected) solutions for the examples 

discussed herein. 
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