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Abstract 

This article investigates the effects of Atwood numbers on the flow physics of shock-driven elliptical gas inhomogeneity based on 

numerical simulations. We examine five different gases—He, Ne, Ar, Kr, and SF6—that are filled inside an elliptical bubble and 

surrounded by N2 in order to study flow physics. A high-order modal discontinuous Galerkin finite element approach is used to 

solve compressible Euler equations for all numerical simulations. In terms of validation studies, the numerical outcomes match the 

existing experimental data quite well. The findings show that the Atwood number has a significant impact on the characteristics of 

flow, including wave patterns, the development of vortices, the generation of vorticity, and bubble deformation. When the value of 

At is greater than zero i.e. At > 0, there is a notable divergence between the incident wave outside the bubble and the transmitted 

shock wave inside the bubble. Complex wave patterns, including reflected and newly transmitted shock, are seen during the 

encounter. Interestingly, the transmitted shock and incident shock waves move with the same rates at At ≈ 0. While, compared to 

the incident shock wave, the transmitted shock wave moves more quickly for At < 0. The influence of Atwood number is then 

investigated in depth by looking at the vorticity production at the elliptical interface. Furthermore, in the analysis of vorticity 

production processes, the important spatial integrated domains of average vorticity, dilatational and baroclinic vorticity production 

terms, and evolution of enstrophy are extended. Finally, a quantitative research based on the interface qualities delves deeply into 

the influence of the Atwood number on the flow mechanics. 

 

Keywords- Shock wave, Elliptical bubble, Atwood number, Vorticity generation.  

 

 

 

1. Introduction 
The impulsive driving of geometrically severe gas-density inhomogeneities by incident shock waves has 

been extensively investigated over the past almost half-century. The remarkable shock-driven 

inhomogeneous flows (SDIFs) are distinguished by the active coupling of numerous fluid dynamic 

processes, such as mixing flows, the creation of vorticities, and interactions between gas interfaces and 
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shocks (Ranjan et al., 2011; Danaila et al., 2017; Zeng et al., 2018; Singh et al., 2018, Singh et al., 2021a). 

The generation of baroclinic vorticity on the interface of the inhomogeneity by the incident shock is thought 

to be the fundamental driving mechanism of the Richtmyer-Meshkov instability in these dynamic processes 

(Richtmyer, 1960; Meshkov, 1969). Numerous topics, such as compressible turbulence, inertial 

confinement fusion, supersonic combustion, supernova explosion, and many more, have been the subject 

of research on the function of SDIFs. Readers interested in a thorough and up-to-date overview of the 

literature on SDIFs can be referred to the works of Zhou (2017a, b), Daniel (2020), Brouillette (2002), and 

Zhou et al. (2021). 

 

In the SDIFs investigations, comprehensive experimental, computational, and theoretical studies have 

provided rich insights into the shock-driven gas bubbles. Haas and Sturtevant (1987) studied the flow 

physics of shock-driven cylindrical bubbles with heavy and light gas interfaces. Jacobs (1992, 1993) used 

experimental research on the interplay of cylindrical gas bubbles and weak shock waves to successfully 

visualize flow at a higher quality. Using shock tube experiments, Ranjan et al. (2008) studied the flow 

mechanism of shocked spherical bubble filled with light and heavy gases. Later, Si et al. (2012) and Zhai 

et al. (2012) conducted experimentally important studies on planar shock interactions at a 

cylindrical/spherical density interface using high-speed Schlieren photography. Generally, a dimensionless 

quantity known as the Atwood number, defined by A𝑡 = (𝜌2 − 𝜌1)/(𝜌2 + 𝜌1)  is typically used in a 

multiphase flow to depict the flow mixing between the gas interface and the surrounding gas. In the above-

mentioned expression, 𝜌1 is the density of surrounding gas, while 𝜌2 denote the density of the interface gas. 

The shock-driven inhomogeneous flows exhibit distinct flow structure evolutions when different gases with 

varying Atwood numbers are involved. The fundamental mechanisms governing shock-driven 

inhomogeneous flows remain consistent in terms of instabilities, vortex formation, shock interaction, while 

the turbulent mixing, the specific behavior and evolution of these mechanisms can vary with the Atwood 

number. The Atwood number influences the growth rate of instabilities, the intensity of mixing, the 

structure of vortices, and the timing of transitions from laminar to turbulent flow. Understanding these 

variations is essential for predicting and controlling the behavior of such flows in different applications. In 

order to determine the effect of the Atwood number on the shocked cylindrical bubble, Haehn et al. (2012) 

experimentally investigated two different values of this property. Zhu et al. (2019) performed numerical 

simulations of the shocked spherical gas bubble at different Atwood numbers. Recently, Singh et al. (2021a, 

b) investigated the shocked hydrodynamic instability at the light/heavy cylindrical interface at three distinct 

Atwood numbers in the context of thermal nonequilibrium circumstances for non-monatomic gases using 

numerical simulations. 

 

However, all the previously stated experimental and numerical SDIFs research focuses on the interactions 

between shock waves and circular/spherical bubbles. However, in practical applications, the majority of 

bubbles turn non-circular when they approach a wall or come into contact with an external force field. In 

this context, some studies are conducted on the shocked-driven polygonal gas bubbles because the constant 

incident angle at the interface edge may provide the optimal conditions for the shock-refraction process 

(Zhai et al., 2014; Luo et al., 2015; Igra and Igra, 2020). Such SDIFs research could potentially have several 

beneficial uses, such as cavitation erosion, shock wave lithotripsy in medical therapy, ultrasonic cleaning, 

and volcanic eruption predictions. Motivated by these researches on SDIFs, Singh and colleagues 

investigated the shock-induced square/rectangular density inhomogeneity through numerical simulations, 

taking into account multiple factors such as Atwood numbers, shock wave intensities, aspect ratios, 

coupling impact, and thermal non-equilibrium behavior of non-monatomic gases (Singh, 2020; Singh and 

Battiato, 2022; Singh and Torrilhon, 2023; Singh, 2023; Singh and Battiato, 2023; Singh and Jallelii, 2023). 
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Fascinatingly, a variety of theoretical and practical research on the flow field mechanism of shock-driven 

gas bubbles in various forms has been carried out. A few investigations are conducted to study the flow 

physics of elliptical bubbles driven by shock waves in non-monatomic gas medium, which is commonly 

found in the ignition process of inertial confinement fusion and the combustion process in scramjet. 

Furthermore, the flow physics of shock-driven one or two types of elliptical gas bubbles is the primary 

focus of these earlier investigations. Moreover, the effects of the Atwood number on the flow physics in 

shock-driven elliptical bubble have not been thoroughly analyzed, especially from the perspective of 

quantitative analysis, even when the shock waves interacting with elliptical bubbles filled with different 

kinds of gases are taken into consideration. Notably, Atwood number is often associated with shock-driven 

interface flows, such as Richtmyer-Meshkov and Rayleigh-Taylor instabilities, its practical applications 

extend beyond these specific phenomena.  

 

Here are some practical applications of different Atwood numbers in aerospace engineering (such as, 

inertial confinement fusion (ICF), aircraft design), meteorology (such as, atmospheric fronts, hurricane and 

cyclone dynamics), nuclear engineering (such as, nuclear safety), chemical and process engineering (such 

as, chemical reactors, pharmaceuticals and biotechnology) and many more. For example, in ICF research, 

the Atwood number is crucial for understanding and controlling the behavior of fuel capsules and 

implosions. It influences the growth of instabilities, which can impact the success of fusion reactions. 

Therefore, the current study examines the effects of the Atwood number on the flow physics of shock-

driven elliptical gas inhomogeneity, both qualitatively and quantitatively. These values are A𝑡 = −0.773, 
−0.218, 0.074, 0.466, and 0.667 corresponding to He, Ne, Ar, Kr, and SF6 gases in N2 gas, respectively. 

For the numerical simulations, a high-resolution grid and the high-order DG method are used. The rest of 

this study is structured as follows: Section 2 provides the present problem setup. Section 3 illustrates the 

computational procedure, including the governing equations, computational approach, and validation study. 

Section 4 discusses the numerical results to explore the Atwood number effect on the shock-driven elliptical 

gas bubble. Finally, section 5 draws conclusion on the current investigation.  

 

2. Problem Setup 
The computational configuration of the shock-driven elliptical gas inhomogeneity is illustrated in Figure 1. 

For the computational domain, a rectangular measuring by 150×50 mm2 is selected. In this configuration, 

an x-directed shock wave traveling with strength of Mach number 𝑀𝑠 = 1.25 from the left to the right sides 

collides with a stationary oblate elliptical bubble. The major and minor axes of the considered elliptical 

bubble are chosen as a=20 mm, and b=10 mm, respectively. The initial temperature and pressure are taken 

to be 𝑇0 = 298 K  and 𝑃0 = 101,325 Pa, respectively, around the elliptical interface. Nitrogen (N2) is 

thought to represent the ambient gas of the elliptical bubble, while five tested gases— helium (He), argon 

(Ar), sulfur hexafluoride (SF6), krypton (Kr), and neon (Ne)—are inside the oblate elliptical bubble and are 

investigated to examine the influence of the Atwood numbers. The properties of the considered gases are 

shown in Table 1. The upper, bottom, and right boundaries represent the outflow in the computational 

domain, whereas the left boundary is referred to as the inflow. The numerical simulation is initiated by 

using the ambient state on the right side of the shock wave, and the primitive variables at the left side of the 

shock wave are determined by help of the Rankine-Hugoniot criteria (Singh, 2023). 
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Figure 1. Computational configuration of shock-driven elliptical gas inhomogeneity. 

 

 

3. Computational Procedure 

3.1 Governing Equations 
The current study also uses a two-dimensional system of compressible Euler equations to simulate two-

component gas flows, building on the prior investigation on shock-driven interface gas inhomogeneity 

(Singh, 2022; Singh and Torrilhon, 2023). The mechanisms of shocked acceleration, vorticity formation, 

and mixing are examined independently in this computational setup, whereas the effects of surface tension, 

reactions, viscosity, ionization, and interactions between numerous inhomogeneities are believed to be 

minimal and hence ignored. Notably, the selected shock limitation and discretization serve as a source of 

dissipation to constrict the range of scales. The conservative form of the resulting equations is given as, 
 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)
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+
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𝜕𝑥
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𝜕𝑥
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𝜕(𝜌𝑣𝜙)
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where, 𝜌 is the density; 𝑢 and 𝑣 are the velocity components in the 𝑥 − and 𝑦 − directions, respectively; 𝐸 

is the energy, 𝜙 is the mass fraction; and 𝑝 is the pressure which is evaluated from the mathematical 

expression as follows: 

𝑝 = 𝛾𝑚𝑎𝑥  (𝜌𝐸 −
1

2
(𝑢2 + 𝑣2))                                                                                                                     (2) 

 

In this context, 𝛾𝑚𝑎𝑥 represents the mixture's specific heat ratio. The equation that describes the relationship 

between pressure (𝑝), density (𝜌), temperature (𝑇), and the mixture-specific gas constant (R) is given is 

𝑝 = 𝜌𝑅𝑇. The assumption is made that both gas components are in thermal equilibrium and behave as 

calorically perfect gases. These gases are characterized by their specific heats at constant pressure (𝐶𝑝1, 
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𝐶𝑝2), specific heats at constant volume (𝐶𝑣1, 𝐶𝑣2), and specific heat ratios (𝛾1, 𝛾2). The specific heat ratio 

of a mixture can be evaluated by,  
 

𝛾𝑚𝑎𝑥 =  
𝐶𝑝1𝜙+𝐶𝑝2(1−𝜙)

𝐶𝑣1𝜙+𝐶𝑣2(1−𝜙)
                                                                                                                                  (3) 

 

where, subscripts 1 and 2 denotes for bubble and ambient gas, respectively. Remarkably, in numerical 

experiments, spurious oscillations can be caused by the jump in the specific heat ratio across an interface, 

especially in issues involving compressible flow. Adaptive strategies, artificial viscosity, boundary 

conditions, and careful numerical method selection are frequently needed to address this problem and 

reduce or eliminate oscillations while preserving simulation accuracy. 

 
Table 1. Properties of the selected gases.  

 

Selected gas Density 

(𝜌, 𝑘𝑔/𝑚3) 

Specific heat ratio (𝛾) Sound speed 

(𝑐, 𝑚/𝑠) 

Acoustic impedance  
(𝑍 = 𝜌𝑐, 𝑃𝑎 𝑠/𝑚) 

Atwood number 

(𝐴𝑡) 

He 0.16 1.66 1007 161 -0.773 

Ne 0.80 1.03 452 362 -0.218 

N2 1.25 1.40 352 401 Ambient 

Ar 1.45 1.66 319 462 0.074 

Kr 3.43 1.66 222 761 0.466 

SF6 6.03 1.09 135 814 0.667 

 

 

 
 

Figure 2. Validation study: comparison between experimental and present results for the shock-driven light 

cylinder. 
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Figure 3. Validation study: comparison of evolving interfaces between experimental and present results for the 

shock-driven light gas cylinder. 

 

3.2 Computational Method 
In the last several decades, discontinuous Galerkin (DG) method has become ubiquitous for the solution of 

intricate partial differential equation systems in a wide range of domains, including computational biology, 

quantum physics, plasma physics, fluid dynamics, and multiphase flows (Karchani, 2017; Singh, 2018; 

Singh and Battiato, 2021a, b; Singh et al., 2022; Singh et al., 2023; Singh and Msmali, 2023). This method 

is well-suited to handle complex geometries with structured and unstructured, local conservative nature, 

stability, and high-order precision. This study employs a high-order modal DG scheme to address the 

governing equations of two-component gas flows, as detailed by Singh (2023). To conduct the numerical 

simulations, the computational domain is partitioned into equally sized rectangular elements. The approach 

utilizes a third-order DG scheme, employing the first nine hierarchical modal basis functions that are 

associated with scaled Legendre polynomials. The HLLC Riemann method, which is specifically developed 

for two-phase flows, is employed to reconstruct numerical fluxes at the elemental interfaces. The numerical 

integration of the volume and surface integral terms utilizes the Gauss-Legendre quadrature rule. In 

addition, a highly accurate third-order Runge-Kutta method with Total Variation Diminishing is utilized to 

solve the differential equations that depend on time. The computational solutions incorporate a moment 

limiter proposed by Krivodonova (2007) to diminish the occurrence of nonphysical oscillations. 

 

 
 

Figure 4. Grid resolution analysis with four different grids (a) 200×100, (b) 400×200, (c) 800×400, and (d) 

1200×600 in the shock-driven elliptical He bubble at 𝜏 = 7. 
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3.3 Validations 
The present numerical model and associated solver for various light/heavy bubbles with cylindrical and 

polygonal shapes stimulated by an incoming shock wave have been verified in our earlier research. (Singh, 

2020; Singh, 2021a, b; Singh and Battiato, 2022; Singh and Torrilhon, 2023; Singh, 2023; Singh and 

Battiato, 2023; Singh and Jallelii, 2023). In order to confirm the accuracy of the current numerical solver, 

we conduct an extra validation using the shocked spherical bubble experiment conducted by Ding et al. 

(2017). The validation process involves comparing the numerical representation of a shocked cylindrical 

bubble at a Mach number of 1.29 with the experimental results of a shocked spherical bubble. In this 

experiment, the bubble is enclosed by SF6 and contains N2 gas. Figure 2 illustrates the comparison between 

the shadowgraph images acquired from both the experimental observations and the numerical simulation 

results at the selected time instances, demonstrating a strong concurrence between the two. Moreover, 

Figure 3 demonstrates the temporal evolution of the interfacial characteristic scales for the N2 cylindrical 

bubble as the interface undergoes changes. The experimental study conducted by Ding et al. (2017) aligns 

well with the current numerical findings, indicating a strong correlation between the two. 

 

 
 

Figure 5. Grid resolution analysis with four different grids: (a) density, and (b) pressure distributions profiles along 

the centerline of the shock-driven elliptical He bubble at 𝜏 = 3. 

 

 

3.4 Grid Resolution Analysis 
All subsequent experiments assume a dimensionless timescale (τ) provided by a computational flow time: 
 

𝜏 = 𝑡.
𝑐.𝑀𝑠

𝑚𝑎𝑥(𝑎,𝑏)
                                                                                                                                                 (4) 

 

where, 𝑎 and 𝑏 represent the major and minor axes lengths of the oblate elliptical bubble, respectively, and  

𝑐 and 𝑡 represent the local sound speed and real-time sound speed, respectively. 

 

For the grid resolution analysis, one test case of shock-driven elliptical bubble is carried out with four 

different grid refinements, including 200 × 100, 400 × 200, 800 × 400, and 1200 × 600 grid points. As 

seen in Figure 4, the diverging shape is produced when the incident shock wave completely compresses the 

volume of the elliptical bubble at 𝜏 = 7. Furthermore, the flow field generates two major vortex rings. The 

KH instability is observed in terms of rolled-up small-scale vortices on the bubble interface, which is one 

of the primary variances between the four testing examples. As the grid fineness rises, the interface gets 
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sharper and the KH instability at the interface is more apparent. The density and pressure distribution 

profiles along the computer elliptical bubble's centerline at 𝜏 = 3 are displayed in Figure 5. The findings 

show that as grid resolution increases, the dissipations of the density and pressure profiles decrease. 

However, the subsequent computational tests using 1200 × 600  grid points are carried out to ensure 

enough numerical precision while conserving computer resources. 

 

 
 

Figure 6. Flow structure evolution for the shock-driven elliptical SF6 bubble at A𝑡 = 0.667.  
 

 

4. Results of Atwood Effect on Shock-Driven Elliptical Gas Bubble, and Discussion  
This section discusses how the flow physics of shock-driven elliptical gas bubble is affected by the Atwood 

number. Particular attention is paid to the effects of initial interface disturbance on the distribution of 

vorticity, flow morphology, wave patterns, interface features, and qualitative analysis. For the numerical 

simulation, the shock wave with 𝑀𝑠 = 1.25 is taken into consideration. Based on the density gradient field 

magnitude, we employ numerical schlieren pictures to study the impact of Atwood numbers on the shock-

driven elliptical gas bubble. 

𝑆𝑖,𝑗 =  𝑒𝑥𝑝 (−𝑘(𝜙𝑖,𝑗)
|∇𝜌𝑖,𝑗|

𝑚𝑎𝑥𝑖,𝑗|∇𝜌𝑖,𝑗|
)                                                                                                                   (5) 

 

where, 𝑘(𝜙𝑖,𝑗) = {
20      𝑖𝑓 𝜙𝑖,𝑗 > 0.25 

100     𝑖𝑓 𝜙𝑖,𝑗 < 0.25.
 

 

4.1 Visualization of Flow Structure 
The phenomena of visualizing the flow structure in shock-driven inhomogeneous flows is said to be the 

most fascinating one. Here, we carried out in-depth studies of the flow structure evolution for the shocked 

elliptical gas bubble with various Atwood numbers in order to comprehend this phenomenon.  
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Figure 6 shows the flow structure generated by the shock-driven elliptical SF6 bubble with A𝑡 = 0.667. 

Due to the higher acoustic impedance, the shock wave inside the elliptical SF6 bubble travels at a slower 

pace compared to its propagation in the surrounding medium. As a result, the transmitted shock (TS1) wave 

within the bubble is far behind the IS wave outside of it. The bubble starts to compress inwards when the 

IS wave collides the bubble interface. At the same time, a reflected shock (RS) wave travels upstream and 

the TS1 wave propagates downstream inside the bubble. The compressed volume initially takes the shape 

of a crescent, and the TS1 wave is initially plainly visible inside the volume and slightly converging. It is 

also possible to observe the incident shock wave along the bubble interface (ISB), which moves more 

slowly than the IS wave. The curvature of the TS1 wave increases as the IS wave crosses the bubble 

interface's top point. It is also seen that the top and bottom ends of the two straight sections of the IS wave 

are related to a curved diffracted shock (DS) wave outside the bubble. Remarkably, in the course of this 

procedure, one novel inner transmitted shock (ITS) is discovered. As the IS wave passes through the outer 

bubble, the curved TS1 constantly pushes it back. Later, outside the bubble, the ends of the DS wave that 

connected to the IS wave are severely deformed. A portion of the bubble-ambient gas interface is seen to 

be thicker behind the TS1 wave than it is in front of it when it crosses the bubble. The Kelvin-Helmholtz 

instability (KHI) is responsible for the roll-up of small-scale vortices. As the DS and TS1 waves converge 

over time, a shock-focusing zone is formed toward the downstream end point of the bubble on its axis. A 

new transmitted shock (NTS) wave is created when the downstream interior bubble experiences a 

simultaneous upstream movement of a reversed transmitted shock (RTS) wave.  

 

 
 

Figure 7. Flow structure evolution for the shock-driven elliptical Kr bubble at A𝑡 = 0.466.  
 

Since the elliptical SF6 bubble has a larger acoustic impedance than the ambient medium, the IS wave 

propagates more slowly within it. Figure 7 illustrates the flow structure evolution of the shock-driven Kr 

elliptical bubble in the ambient N2 gas, which can be studied in more detail in order to examine these 

discrepancies. In contrast to Figure 6, the transmitted shock (TS1), reflected transmitted shock (RTS), 

diffracted shock (DS), and other shock configurations are also visible in the frontal region of the elliptical 
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bubble, along with the reflected shock (RS) wave. The area of the unshocked region in the Kr bubble is 

lower than in the SF6 bubble, though, since the shock waves in the Kr bubble travel faster than in the SF6 

bubble due to the smaller acoustic impedance of Kr. The shock wave then focuses, but in contrast to the 

SF6 bubble, it does so at a location that is a little closer to the downstream pole of the Kr bubble, and it also 

occurs at a time that is earlier than expected. At the Kr bubble interface, primary and secondary vortex pairs 

(PVR and SVR) are created with lower strengths than in the SF6 bubble scenario. Remarkably, due to the 

high pressure caused by the shock focusing phenomena, a distinct SVR pattern is seen at the center of the 

back surface of the Kr bubble. The main tendencies of the Kr and SF6 elliptical bubbles in the evolution of 

shock waves and bubble deformation are essentially consistent, despite some specific variances between 

the two different situations caused by the values of the Atwood number for the Kr and SF6 gases. 

 

 
 

Figure 8. Flow structure evolution for the shock-driven elliptical Ar bubble at A𝑡 = 0.074.  
 

The density of Ar, which is slightly higher than that of the surrounding N2, can be distinguished by a 

positive Atwood number (At = 0.074) as the elliptical gas density decreases. This arrangement indicates 

that the elliptical bubble, propelled by the shock, is in a configuration where it alternates between slow and 

fast speeds. Figure 8 illustrates the time evolution of flow structure for the shocked elliptical Ar bubble at 

A𝑡 = 0.074. The wave pattern in this particular setup would differ from the one previously shown with 

A𝑡 = 0.466 and A𝑡 = 0.667 due to the similar acoustic impedance between the gases involved (nitrogen 

and argon), as expected. It can be noted that the IS and TS1 waves exhibit comparable velocities. During 

the initial phase of interaction between the IS wave and the square bubble, the TS1 wave travels at a slightly 

slower speed within the bubble compared to the IS wave outside. This discrepancy arises due to the Ar gas 

having a slightly lower acoustic impedance than N2. Simultaneously, it is noted that the interaction between 

the IS wave and the bubble results in the generation of an expansion wave (EW) close to the left interface 

of the elliptical bubble. The arrival of the TS1 wave inside the Ar bubble at its rear surface coincides with 

the arrival time of the IS wave at the same location. After the TS1 shock wave travels to the rear surface of 
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the elliptical bubble, it transmits a shock wave into the surrounding N2 gas. Simultaneously, an internal 

shock wave, known as a reflected transmitted shock (RTS) wave, is produced within the bubble. The 

reflected transmitted shock (RTS) wave leaves the bubble through its front surface and moves in the 

opposite direction, upstream, into the ambient gas. It is worth noting that the weak shock wave generated 

from the frontal surface of the initial elliptical bubble does not result in the formation of a vortex ring at the 

front of the bubble. Nevertheless, the front surface of the bubble appears somewhat level throughout the 

observed period. 

 

 

 
 

Figure 9. Flow structure evolution for the shock-driven elliptical Ne bubble at A𝑡 = −0.218.  
 

The evolution of flow structure for the elliptical Ne bubble driven by shock at A𝑡 = −0.218 is presented in 

Figure 9. When the IS wave first encounters the elliptical bubble, the speed at which the transmitted shock 

(TS1) wave travels within the bubble are significantly greater than that of the IS wave outside the bubble. 

This is due to the slightly lower acoustic impedance of Ne gas compared to nitrogen gas. Simultaneously, 

it is noted that the collision between the IS and bubble generates a reflected rarefaction shock (RRS) and 

expansion wave (EW) in close proximity to the interface of the left bubble. As the interaction between the 

shock wave and the Ne elliptical bubble continues, the bubble begins to compress, resulting in a somewhat 

level appearance of the left interface. Similar to the He case, when the first transmitted shock wave (TS1) 

impacts the back surface of an elliptical bubble, it sends a shock wave (TS2) into the surrounding nitrogen 

gas, resulting in the creation of a reflected transmitted shock wave (RTS). Following that, the TS2 wave 

combines with a linear surface ahead of the bubble, whereas the RTS emerges from the frontal side of the 

bubble and continues to move against the flow into the nitrogen gas. Over a period of time, the left side of 

the bubble undergoes a gradual inward bending, accompanied by a slow curvature of the primary vortex 

rings (PVR) on the surface. 
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Figure 10. Flow structure evolution for the shock-driven elliptical He bubble at A𝑡 = −0.773.  
 

Figure 10 depicts the evolution of the flow structure over time in an elliptical He bubble driven by a shock 

wave, with A𝑡 = −0.773. The speed at which the incident shock wave travels within the elliptical helium 

bubble is greater than that of the surrounding medium because of its lower acoustic impedance (i.e., Z = 

161 Pa s/m). The shock wave that is transmitted within the bubble is positioned far behind the shock wave 

that exists outside the bubble. The compression of the bubble commences as soon as the IS wave reaches 

the bubble interface. Furthermore, the elliptical He bubble generates a transmitted shock wave (TS1) that 

moves downstream. At the same time, an expansion wave (EW) and a reflected rarefaction wave (RRS) 

travel upstream. The TS1 undergoes refraction upon reaching the bubble interface, causing it to emit a new 

shock wave called the precursor shock (PS) at an oblique angle into the surrounding gas. As the interaction 

progresses, the incident shock and transmitted shock waves combine to create a fourfold shock pattern in 

the surrounding gas, exhibiting irregular refraction. As a result, the formation of a Mach reflection 

configuration occurs, comprising of a Mach stem (MS) and triple point (TP). Subsequently, a secondary 

shock wave (TS2) becomes noticeable in the vicinity of the interface downstream. Also, a shock wave 

known as the reflected transmitted shock (RTS) wave is generated within the helium bubble, originating 

from the upstream surface and currently propagating in the opposite direction towards the front of the 

bubble. In addition, a shock wave that has undergone diffraction (DS) moves along the boundary of the 

bubble. The vorticity arises on the bubble interface because of the baroclinic effect, leading to an inward 

air jet from the bubble's surroundings. As a result, the left side of the bubble interface, which was previously 

flattened, starts to move inward. Over time, the vorticity gradually gives rise to a compact vortex pair (V), 

which exhibits a counterclockwise rotation in the upper portion of the distorted helium bubble. 

Subsequently, a secondary shock wave (TS2) becomes noticeable in the vicinity of the interface 

downstream. At the same time, the incident shock (IS), reflected transmitted shock (RTS), and diffracted 

shock (DS) combine to form a flat shock, leading to an increase in complexity of the flow patterns close to 

the interface downstream. Over time, the helium bubble that has been distorted gives rise to two large vortex 

pairs (referred to as LV and RV). In our previous study (Singh et al., 2021), we observed that the difference 
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in area between the LV and RV is less pronounced in the elliptical helium bubble case. This finding 

highlights the distinction between the elliptical and cylindrical cases, underscoring the importance of our 

current study. Eventually, the jet reaches the downstream bubble interface, resulting in the emergence and 

almost symmetrical growth of a pair of vortex rings (LV, RV) that are linked by a bridge (CB). Over time, 

the vortex rings take full control of the flow field. 

 

 
 

Figure 11. Effect of Atwood number on the flow structures at τ = 3: (a) A𝑡 = −0.773 (He), (b) A𝑡 = −0.218 (Ne), 
(c) A𝑡 = 0.074 (Ar), (d) A𝑡 = 0.466 (Kr) and (e) A𝑡 = 0.677 (SF6). 

 

Figure 11 depicts the comparative examination of the flow pattern in the shock-driven elliptical bubble at 

various Atwood numbers during the initial stages when τ = 3. The density and acoustic impedance play a 

crucial role in determining the deformation of the elliptical bubble during the penetration of the shock wave 

for different Atwood numbers. The He and Ne gases exhibit the greatest penetration speed, surpassing that 

of the regular IS wave. In both instances, the elliptical bubbles experience a faster passage of the transmitted 

shock compared to the incoming shock wave beyond the boundary of the bubbles. The speed of the 

transmitted wave within the elliptical bubble is slower in helium compared to neon. Surprisingly, the 

scenario changes when considering the Ar elliptical bubble, as the slight disparity in the speeds of 

transmitted shock and incoming shock waves leads to a lesser distortion of the bubble. Conversely, the 

situation in Kr and SF6 presents an opposite scenario to that of Ne and He gases. The SF6 bubble exhibits 

the slowest penetration speed, which interestingly surpasses the speed of the regular IS wave. 

 

Interestingly, in shock-driven interface flows, the onset and development of KHI are influenced by the 

Atwood number, which characterizes the density difference between the two fluids, and by differences in 

acoustic impedance, which can affect pressure gradients and the overall stability of the interface. A larger 

Atwood number and significant differences in acoustic impedance can enhance KHI and lead to the 

formation of more pronounced vortices and turbulent mixing. The specific behavior of KHI in different 

gas-gas interfaces would require detailed numerical simulations or experimental studies, as the outcomes 

can vary depending on the exact properties of the gases involved. Understanding the role of variations in 

acoustic impedance among different gases, along with their respective Atwood numbers, in the context of 
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Kelvin-Helmholtz instabilities (KHI) and shock-induced flow behaviors is crucial in several applications, 

particularly in the field of fluid dynamics, aero- and hydrodynamics. 
 

4.2 Vorticity Transport Equation and Associated Flow Physics 

By carefully analyzing the components within the vorticity transport equation (VTE), one can enhance their 

comprehension of the processes involved in the dynamics of vortices. The VTE can be expressed for 

compressible inviscid flows as: 
 

𝐷𝜔

𝐷𝑡
= (𝜔. ∇)𝒖 − (∇. 𝒖)𝜔 +

1

𝜌2 ∇𝜌 × ∇𝑝                                                                                                        (6) 

 

The vorticity transport equation involves several variables, namely vorticity (𝜔), velocity (𝒖), density (𝜌), 

and pressure (𝑝), which collectively describe the flow field. The left-hand side of the equation represents 

the material derivatives, encompassing the unsteady (𝜕𝜔/𝜕𝑡) and convection (𝒖. ∇)𝜔 terms. On the right-

hand side, the first term characterizes vorticity stretching caused by velocity gradients, becoming negligible 

in turbulent and two-dimensional mixing flows. The second term accounts for vorticity stretching due to 

flow compressibility. The third term signifies the creation of small-scale vortices at the bubble surface, 

known as baroclinic vorticity production, which is particularly significant in shock-driven interface flows 

due to the disparity between density and pressure gradients. 

 

 
 

Figure 12. Diagram of vorticity generation process in (a) light gas interface, and (b) heavy gas interface. 

 

The generation and distribution of baroclinic vorticity occur as the IS wave moves through the elliptical 

gas. This process primarily takes place at the interface of the elliptical region, where density gradients are 

present. The misalignment between the density gradient (∇𝜌), and the pressure gradient (∇𝑝) results in the 

generation of baroclinic vorticity. This misalignment significantly affects the development of 

hydrodynamic instability. Figure 12 displays the schematic representation of the generation of vorticity 

within an elliptical bubble driven by a shock wave, which is filled with either a light or a heavy gas. A 

rolled-up vortex is generated at the leftmost elliptical interface when the incident shock contacts the 
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perfectly aligned pressure and density gradients, creating a small amount of vorticity. The incident shock 

wave travels along the top horizontal interface, resulting in an uneven reflection where the Mach stem links 

the shock wave with the elliptical interface. Hence, the Mach stem generates the pressure gradient that leads 

to the development of vorticity on the interface. Consequently, the baroclinic vorticity component is 

gradually activated as the incident shock moves upward across the elliptical interface. Surprisingly, the 

formation of rolled-up vortices is less prominent at the downstream end of a heavy gas bubble interface as 

compared to the downstream end of a light gas bubble interface. 

 

 
 

Figure 13. Effect of Atwood number on vorticity generation at the same time instant 𝜏 = 8: (a) A𝑡 = −0.773, (b) 

A𝑡 = −0.218, (c) A𝑡 = 0.074, (d) A𝑡 = 0.466, and (e) A𝑡 = 0.667. 
 

Figure 13 illustrates how the Atwood number influences the generation of vorticity in the shock-driven 

elliptical bubble at the specific time τ = 8. After the interaction, noticeable variations in the distribution of 

vorticity can be observed among different Atwood numbers. When the Atwood number is negative (A𝑡 <
0), vorticity is produced on the upper side of the bubble interface, resulting in positive vorticity. On the 

other hand, the lower side of the interface generates negative vorticity. This can be observed in Figures 

13(a) and 13(b). The reason for this is the propagation of the shock wave moving in a rightward direction 

across the interface of the bubble. Consequently, the density gradient extends outward in a radial manner 

at the interface of the bubble, while the pressure gradient exists along the upstream shock wave. Moreover, 

the upper interface exhibits a vortical configuration characterized by positive vorticity at its core, 

accompanied by negative vorticity tails. Conversely, the lower interface of the elliptical bubble displays the 

opposite scenario. When the Atwood number is approximately zero, specifically at A𝑡 = 0.074, it can be 

observed that there is an absence of vorticity generation in the vertical interfaces located on the leftmost 

and rightmost sides of the elliptical bubble. In the case of a positive Atwood number (A𝑡 > 0), an intriguing 

observation is that both negative and positive vorticity are generated on the upper and lower interfaces of 

the elliptical bubble. This phenomenon can be clearly seen in Figures 13(d)-(e). The upper and lower 

interfaces of the elliptical interface contain a substantial level of vorticity. Following shock focusing, the 

distorted shock wave generates a minor amount of both negative and positive vorticity on the upper and 

lower interfaces. The prevailing positive (negative) vorticity is also concentrated on the upper-half (lower-
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half) plane within the inward jet. The higher amplitude attenuation of the deformed shock wave at the 

downstream pole of the bubble may potentially explain the concentration of dominant positive (negative) 

vorticity in the upper-half (lower-half) plane of the outward jet head. The presence of positive (negative) 

vorticity on the upper (lower) jet head facilitates the inward movement of the jet, indicating the connection 

between the formation of the jet and the generation of vorticity. In summary, the Atwood number directly 

influences vorticity generation and mixing in flows involving two different gases. Variations in Atwood 

number lead to differences in the intensity of vortical structures and the efficiency of mixing. These 

principles can be generalized and applied to a wide range of flow configurations and geometries, making 

them valuable tools for optimizing mixing processes and flow control in various applications across 

engineering and science. 

 

At this point, it is necessary to discuss the important spatially integrated fields, which can help us for further 

understanding of vorticity production phenomena. These quantities are the following – average vorticity 

(𝜔𝑎𝑣) , dilatational vorticity production (𝑃𝜔,𝑑𝑖𝑙) , and baroclinic vorticity production (𝑃𝜔,𝑏𝑎𝑟𝑜) . The 

mathematical expression of these spatially integrated fields is given as, 

𝜔𝑎𝑣(𝜏) =
∫|𝜔|𝑑𝑥𝑑𝑦

∫ 𝑑𝑥𝑑𝑦
                                                                                                                                         (7) 

𝑃𝜔,𝑑𝑖𝑙(𝜏) = −
∫|𝜔(∇.𝒖)|𝑑𝑥𝑑𝑦

∫ 𝑑𝑥𝑑𝑦
                                                                                                                            (8) 

𝑃𝜔,𝑏𝑎𝑟𝑜(𝜏) =
∫|

1

𝜌2∇𝜌×∇𝑝|𝑑𝑥𝑑𝑦

∫ 𝑑𝑥𝑑𝑦
                                                                                                                         (9) 

 

Figure 14 displays the spatial integrated fields of average vorticity, dilatational and baroclinic vorticity 

productions in shock-driven elliptical bubbles with different Atwood numbers. Vorticity at its interface can 

have a major role in influencing the gas mixing both inside and outside of the elliptical bubble. To put it 

more precisely, the average vorticity experiences an increment as a result of the interaction of the incident 

and reflected shock waves with the elliptical bubbles. The intensified vorticities aid in the mixing of gases 

inside and outside the gas bubble, thereby facilitating the transfer and utilization of vorticity energy, which 

may eventually result in a gradual reduction in the average vorticity intensity in the bubble area. 

Nonetheless, the average vorticity usually increases because of the more robust development of the RM 

instability as the Atwood number increases. Interestingly, the largest average vorticity is observed at highest 

positive Atwood number i.e., A𝑡 = 0.667, as shown in Figure 14(a). On the other hand, the dilatational and 

baroclinic vorticity production terms associated with the generation of vorticity exhibit considerable 

magnitudes when they interact and decrease soon after they pass through the IS wave. In Figure 14(b), the 

dilatational vorticity production term displays the occurrence of compressed structures around the vortex 

core because of compressibility effects that arise from local regions of compression and expansion. One 

can observe that the smallest value of dilatational production term is found at A𝑡 = 0.667, while the largest 

value is seen at A𝑡 = −0.773. In Figure 14(c), the baroclinic vorticity production term reveals the vorticity 

created by the misalignment of pressure and density gradients, which is caused by the presence of reflected 

shock structures and interface discontinuity. The collision of the shock wave with the bubble generates 

vortices that facilitate the mixing of the elliptical bubble with the surrounding gas. During the second impact 

of the reflected shock waves on the deformed bubble, the spatially integrated fields experience their 

maximum growth rate, implying a significant increase in vorticity during this phase. Subsequently, the rate 

of growth in the flow field decreases.  
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Figure 14. Effect of Atwood number on the spatial integrated fields of (a) average vorticity, (b) dilatational 

vorticity, and (c) baroclinic vorticity production terms. 

 

4.3 Time Evolution of Enstrophy and Kinetic Energy 

Understanding the physical mechanisms of vorticity creation or attenuation during the encounter can be 

aided by looking at the time evolution of the enstrophy. It is defined as the area in the flow field that is 

integral to the square of the vorticity. 

Ω(𝜏) =
1

2
∬ 𝜔2𝑑𝑥𝑑𝑦                                                                                                                                      (10) 

 

In the flow field, the spatial integral of the square of the velocity can be used to define the time evolution 

of the kinetic energy (K.E.). 

K. E. (𝜏) =
1

2
∬ 𝒖2𝑑𝑥𝑑𝑦                                                                                                                               (11) 

 

In the shock-driven elliptical bubble, Figure 15 shows the Atwood number impacts on the time development 

of enstrophy and kinetic energy distribution. Following the collision, the kinetic energy and enstrophy at 

different Atwood numbers differ significantly. Unless the shock wave reaches the bubble's upstream pole, 

it is zero in the case of enstrophy evolution. Subsequently, the creation of baroclinic vorticity causes it to 

rise as the shock wave passes. The enstrophy rises at the bubble interface where the incoming shock and 

reflected shock waves impinge. The heightened vorticities promote the blending of gases both inside and 

outside the gas bubble, accelerating the exchange and utilization of energy. Consequently, this process 
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gradually diminishes the magnitude of enstrophy within the bubble region. The all-Atwood numbers exhibit 

the same phenomena. Interestingly, at the maximum negative Atwood number A𝑡 = −0.773, the highest 

value of enstrophy is seen. To delve deeper into the impacts of the Atwood number, we present visual 

representations of the cumulative kinetic energy fields over time. The Atwood number influences the kinetic 

energy's development, which varies. With the Atwood numbers falling, it is evident that the kinetic energy 

is much increased. 

 

 
 

Figure 15. Effect of Atwood number on time evolution of enstrophy, and kinetic energy. 

 
 

 
 

Figure 16. Schematic diagram of the interface characteristics quantities: interface height, and interface length. 

 
 

 
 

Figure 17. Atwood number effect on the time variations of normalized interface height and length. 
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4.4 Quantitative Analysis Based on Interface Features 

Ultimately, a numerical examination grounded in the interface features is showcased to investigate the 

Atwood number impacts on the shock-driven elliptical bubbles. Figure 16 illustrates a schematic diagram 

the interface characteristics quantities such as interface length and interface height. Figure 17 illustrates the 

effect of Atwood number on the time evolution of the normalized interface length (𝑖. 𝑒. 𝐿/2𝑎), and the 

normalized interface height (𝑖. 𝑒. 𝐻/2𝑏) for the shock-driven elliptical bubbles. As the incoming shock 

wave compression collides the bubble during the early stages of interaction, it significantly reduces the 

length of the growing interface. Afterward, the acceleration of the vorticity-induced velocity causes the 

inward jet and vortex pair to form in the bubble's upstream interface, causing the bubble width to rise fast. 

It is interesting to note that all the Atwood number exhibits similar physical features. The interface length 

remains nearly constant for a considerable amount of time after the compression phase. Then, as the jet and 

upstream vortex pairs expand, it gradually rises. The interface length gradually reduces for the remaining 

𝐴𝑡 values before becoming largely constant. However, until the wall-reflected shock waves hit the interface 

and slow down the interface height growth rate, the interface height rises steadily as a result of the vortex 

pair's continued rotation. The figure illustrates that the longest interface height is observed at 𝐴𝑡 = 0.667, 

and the smallest interface height is recorded for 𝐴𝑡 = = 0.074. 

 

In summary, the observed variations in vorticity, kinetic energy, and interface deformation with changing 

Atwood numbers provide valuable information for optimizing the design and efficiency of practical 

applications, such as supersonic propulsion systems and the prediction and control of turbulence in shock-

driven flows. These insights enable engineers and researchers to make informed decisions and 

improvements in their respective fields. 

 

5. Concluding Remarks  
This study investigates the Atwood number influence on the flow physics of shock-driven elliptical gas 

inhomogeneity via numerical simulations. To delve into the study of fluid dynamics, we examine the 

behavior of gases within an elliptical bubble, which is filled with five different gases: Neon (Ne), Helium 

(He), Argon (Ar), Sulfur Hexafluoride (SF6), Krypton (Kr), and, which are enclosed in a nitrogen (N2) 

environment. The focus was directed towards visualizing flow patterns, wave behavior, changes in interface 

shape and position, vorticity creation, and performing a quantitative analysis. Utilizing the compressible 

Euler equations for all numerical simulations, these equations were solved using a modal discontinuous 

Galerkin scheme-based solver. Numerical outcomes exhibit a strong concordance when contrasted with 

established experimental findings, providing a validation of the computational model. The computational 

findings showed that the flow properties of shock-driven elliptical gas inhomogeneity are significantly 

influenced by the Atwood number. This influence encompasses intricate wave patterns, alterations in 

bubble shape, vorticity generation, and features of the interface. When At > 0, the incoming shock wave 

outside the bubble and the transmitted shock wave inside the bubble diverge significantly. Complex wave 

patterns, including reflected and newly transmitted shock, are seen during the encounter. Interestingly, the 

transmitted shock and incident shock waves move with the same rates at At ≈ 0. While, compared to the 

incoming shock wave, the transmitted shock wave moves more quickly for At < 0. Subsequently, a detailed 

examination of the Atwood number effect is investigated by the creation of vorticity at the elliptical 

interface. Additionally, the study of vorticity generation processes was expanded to include significant 

spatial integrated fields such as kinetic energy, average vorticity, dilatational production, baroclinic 

production, and evolution of enstrophy. Finally, an extensive examination of the effects of the Atwood 

number on the flow dynamics was carried out through a quantitative analysis centered on the characteristics 

of the interface. 
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