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Abstract 

Currently, researchers are continually thinking of intelligent and sustainable manufacturing methods. Surface grinding is the 

finishing machining process performed for dimensional accuracy and surface smoothness. The heat caused during grinding hinders 

these responses, leading to poor quality and rejection of the workpiece, which has been produced to its entire value. So, optimizing 

the surface grinding input parameters controlling the output responses is crucial. This is generally achieved using Taguchi and other 

optimization methods. In the case of multiple responses, equal weightage is considered for all the responses to get an optimized 

input parameter setting. This gives less flexibility for the decision-maker to choose the grinding parameters following his priorities 

for the responses. The issue is addressed with two effective Multi-Attribute Decision-Making (MADM) methods, namely Grey 

Relational Analysis (GRA) and Combined Compromise Solution (CoCoSo). This paper focuses on applying the above MADM 

methods for ranking the grinding input parameters settings obtained from the Taguchi analysis of the selected case study, surface 

grinding of EN8 steel plates using a Cashew Nut Shell Liquid (CNSL), a green Cutting Fluid (CF). Two sets of weights are 

considered for the dual responses of the selected study to obtain the ranking of the grinding parameters to aid the decision-maker 

in making flexible decisions. The ranking correlation studies showing high correlation and statistical significance are also presented. 

Both the GRA and CoCoSo approaches are efficient, relatively simple to comprehend, and provide a flexible strategy for the 

decision-maker to make intelligent decisions, avoiding trial and error. 

 

Keywords- Sustainable grinding, Green cutting fluid, Cashew nut shell liquid/oil (CNSL), Multi-attribute decision making 

(MADM), Grey relational analysis (GRA), Combined compromise solution (CoCoSo). 

 

Abbreviations 

AHP   Analytical Hierarchy Process 

CF  Cutting Fluid 

CNSL  Cashew Nut Shell Liquid/Oil 

CoCoSo  Combined Compromise Solution method 

COPRAS  COmplex PRoportional ASsessment  

DEA   Data Envelopment Analysis  

DOC  Depth of Cut 

DOE   Design of Experiments 

GRA  Grey Relational Analysis  

GRC   Grey Relational Coefficient 

GRG   Grey Relational Grade 

GWG  Grinding Wheel Grade 

GWS  Grinding Wheel Speed 

MADM  Multi-Attribute Decision-Making Methods 

MRR   Material Removal Rate 

Ra  Surface Roughness 

SAW  Simple Additive Weighing 

Temp  Grinding Temperature 
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TODIM  TOmada de Decisao Interativa Multicriterio 

TOPSIS  Technique for Order Preference by Similarity to Ideal Solution 

UNGA  United Nations General Assembly 

VIKOR  VIšekriterijumsko KOmpromisno Rangiranje 

WS  Work Speed 

 

 

 

1. Introduction  
United Nations General Assembly (UNGA), in a resolution 2030 Agenda (September 2015), formulated 

and adopted seventeen Sustainable Development Goals, also known as Global Goals, which are roadmaps 

for the well-being of people and the planet. Goal number twelve is to ensure responsible or sustainable 

consumption and production. Sustainable production deals with safeguarding the environment with 

efficient use of resources and the least impact due to the manufacturing processes (Cf, 2015; Jamwal et al., 

2022). 

 

Currently, engineers and researchers continually think of intelligent, sustainable, and eco-friendly 

production and machining methods (Ajay et al., 2023b; John et al., 2021). The researchers found that smart 

manufacturing and Industry 4.0 have eight dimensions, including technology, human resources, processes, 

goods, and services, where processes play an essential role (Kumar et al., 2023). The machining process is 

a very important and integral part of production, to manufacture most of the varied products such as tools, 

components, equipment, etc., having high precision and surface quality (Goindi and Sarkar, 2017). Surface 

grinding is a crucial finishing process of machining performed to achieve dimensional and geometric 

accuracy and create a high-quality surface finish for a workpiece (Garcia et al., 2020). The increased 

temperatures involved in grinding cause deterioration of dimensional accuracy, surface integrity, and 

surface texture of the workpiece, including a reduction in tool life due to wear. The tool and the job 

experience thermal deformation due to the intricate thermal stresses also brought on by these higher 

temperatures (Ravi et al., 2021; Weiss et al., 2015). This extreme heat generated during the process 

significantly hinders the workpiece's quality (Sinha et al., 2023). This is highly disadvantageous because 

the workpiece has already been produced to its entire value, and scrapping it costs money (de Martini 

Fernandes et al., 2019). Also, Surface Roughness (Ra) is a crucial quality characteristic that directly impacts 

the tribological performance, wear resistance, and useful life of many parts and components (Ghosh et al., 

2019). 

 

The use of Cutting Fluid (CF) is one of the solutions for keeping the above-mentioned problems associated 

with grinding in control (Gajrani and Sankar, 2020; Gugulothu and Pasam, 2019; Irani et al., 2005; Pervaiz 

et al., 2018). Mineral oil with petroleum as a base and synthetic oils are two primary categories of CFs that 

are used most frequently in the market (Sankaranarayanan et al., 2021). These traditionally used CFs made 

from petroleum and chemicals pose a serious menace to the ecosystem and are also dangerous to the health 

of humans (Hassan et al., 2023). Also, tough regulations have been laid down by regulatory agencies 

regarding the use of traditionally used harmful CFs (Lee et al., 2017). These issues compelled researchers 

to focus on CFs as a significant area of their concern and to investigate and find better eco-friendly 

substitutes to replace the harmful, toxic CFs that are being used presently for machining (Katna et al., 2020). 

Numerous studies demonstrate that vegetable oil-based (natural oil) CFs can replace conventional 

petroleum-based CFs with all necessary competing qualities. They are highly biodegradable, low, or 

nontoxic, leading to more environmentally friendly and sustainable manufacturing processes. They thus 

rank as one of the most popular options (Debnath et al., 2014). 
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The surface grinding input variables, Grinding Wheel Grade (GWG), CF, Grinding Wheel Speed (GWS), 

Work Speed (WS), and Depth of Cut (DOC), significantly impact the other responses along with the 

Grinding Temperature (Temp), such as Ra, Material Removal Rate (MRR), and tool wear, etc. Therefore, 

to obtain the intended workpiece quality, the input parameters must be set correctly (Ajay and Mittal, 2020; 

Usgaonkar and Prabhu Gaonkar, 2023b; Kumar et al., 2018; Kumar and Gulati, 2019). Usually, this is 

performed by applying the Taguchi technique, Design of Experiments (DOE), and other optimization 

techniques like Response Surface Methodology (RSM), evolutionary algorithms like genetic algorithms, 

particle swarm optimization, etc., and Artificial Neural Networks (ANN), among others (Chandrasekaran 

et al., 2010; Kumar et al., 2020). The most common method for optimizing the experimental input 

parameters is the DOE with the Taguchi technique (Bose and Pain, 2018; Dowey and Matthews, 1998). In 

the case of multiple responses, equal weightage is considered for all the responses to get an optimized input 

parameter setting (Das et al., 2022). This gives less flexibility for the decision-maker to choose the grinding 

parameters following his priorities for the responses and sometimes forces him to adopt a trial-and-error 

strategy. The use of Multi-Attribute Decision-Making (MADM) methods can be thought of to find the 

solution to the above problem (Chaube et al., 2024). In this study, this problem is very well tackled by using 

two effective Multi-Attribute Decision Making (MADM) methods, Grey Relational Analysis (GRA) and 

Combined Compromise Solution (CoCoSo) in this current study. 

 

The GRA was developed from the grey systems theory proposed by Professor Julong Deng (Sifeng and 

Yingjie, 2015), which emphasizes analyzing issues with small samples and insufficient data. It handles 

uncertain systems with partially known information. The incomplete and undetermined is termed “Grey.” 

Grey relations are those that involve incomplete information. So, GRA deals with systems with uncertainty 

and incompletely known information to generate, excavate, and extract data from partially available 

information. The GRA is one of the potent tools for analyzing processes with multiple responses. The 

complicated multiple response optimization problem in GRA is brought down to optimizing a single 

response Grey Relational Grade (GRG), based on this ranking and optimum parameter setting levels are 

identified (Jozić et al., 2015). CoCoSo is a novel method that combines simple additive weight and the 

exponential weight product model of MADM. The approach offers potential compromise options for the 

decision-maker to consider. It ranks the alternatives on relative performance scores (Yazdani et al., 2019). 

Both the methods, GRA and CoCoSo, are adopted to rank and determine the best grinding input parameter 

combination that would give the optimal performance of the responses. Two sets of weightings have been 

considered for ranking the output responses in both these methods. Correlation and statistical significance 

studies are also presented. 

 

The paper is set up as follows: The literature study with a literature summary table is presented in Section 

2. A short explanation regarding the implementation of both the ranking methods, GRA and CoCoSo, is 

given in Section 3. Section 4 highlights the case study selected for the analysis. The application of both 

methods to the selected experimental study with detailed analysis and results and their comparison have 

been discussed in Section 5, along with the results of the correlation and statistical significance studies. 

Section 6 concludes the study, followed by the list of references at the end. 

 

2. Literature Review 

In their experimental investigation of surface grinding EN8 steel considering Cashew Nut Shell Liquid 

(CNSL) as a green CF, Usgaonkar and Prabhu Gaonkar (Usgaonkar and Prabhu Gaonkar, 2023a) took into 

consideration the CF used, rotational speed, and grade of the grinding wheel, as well as DOC and table 

speed, as significant grinding parameters that can influence the output variable, surface finish. They used 

the DOE and half-fraction factorial methods for analysis. Jozić et al. (2015) applied Taguchi's DOE 
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approach with GRA to optimize multiple objectives of input constraints and machining conditions for end 

milling operations. Cooke et al. (2007) optimized the input variables of the electric wire arc spray method 

to coat the sugarcane mill rollers with ferrous-based material to improve their wear properties. Segu et al. 

(2013) used Laser surface texturing in combination with solid lubrication to improve tribological properties. 

The tribological tests were performed on a pin-on-disc tribometer, and the analysis was done using the 

Taguchi method. Rathod et al. (2023) optimized the input variables to turn AISI 304 stainless steel, applying 

Taguchi, GRA, and Principal Component Analysis techniques to extend tool life, reduce machining times, 

and enhance surface finish. Das et al. (2022) applied the GRA technique along with the Taguchi method to 

obtain the optimum face milling parameters for the Ti6Al4V metal matrix composite. Rajan et al. (2021) 

used the GRA approach to analyze surface texture, flank wear, and machining power to determine the ideal 

input parameters for turning Ti-6Al-4V ELI alloy. Chakraborty et al. (2022) conducted a study of the wire 

electrical discharge method with powder for machining Ti6Al4V alloy to improve the machining efficiency. 

Optimal solutions are obtained and compared from different methods, such as the responsive surface 

method, GRA, and particle swarm optimization. Jeyaraj and Sivasakthivel (2022) optimized the process 

input parameters using GRA, which were then validated by performing confirmation experiments in the 

experimental study to electrodeposit nickel and chromium composite using a nickel plating bath.  

 

Yazdani et al. (2019) were the first to introduce this CoCoSo algorithm. The steps of the algorithm are 

discussed in detail, along with the advantages and its comparison with the other established methods of 

MADM. A real-life case study has been taken up and compared with other methods by performing 

sensitivity analysis to validate the proposed algorithm of CoCoSo. They claim that the results are very close 

to the other existing methods. The newly proposed CoCoSo method is advantageous in accurate decision 

decision-making and can help the industry achieve its goals. Kharwar et al. (2022) applied the CoCoSo 

method for multi-response optimization of competing outcomes: surface texture, torque, and thrust force to 

drill epoxy composites with multiwall carbon nanotube reinforcement. This CoCoSo method was one of 

the other methods used by Nguyen et al. (2023) who conducted an experimental study of friction stir 

welding of distinct aluminium alloys to optimize control variables like the tool spin rate, travel velocity, 

plunging depth, and tilting angle to reduce the energy consumed in welding time and increase the ultimate 

tensile strength and percent elongation. They have used an adaptive neuro-based fuzzy inference system 

approach for optimization, GRA for deciding weights for responses, and CoCoSo for deciding the best 

alternative solution. The experimental outcomes of tool steel 90CrSi cylindrical workpieces milled using 

powder-mixed electrical discharge machining were used by Bui et al. (2023) to apply the CoCoSo approach 

in addition to other MCDM approaches. The output response focused is MRR and Ra. They inferred that 

the CoCoSo method results are equally efficient compared to other methods applied. Kumar and Verma 

(2021) optimized output machining variables of surface finish in terms of Ra and Rz values and circularity 

error using the CoCoSo method and found it to have potential. 

 

The literature summary is as shown in Table 1. 
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Table 1. Summary of the literature studies. 
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1. Kumar and Gulati (2019) Single Point Incremental sheet metal 

Forming 

Yes Taguchi, DOE, ANOVA No No 

2. Usgaonkar and Prabhu 

Gaonkar (2023b) 

Surface Grinding Yes Taguchi, 

Regression Analysis 

No No 

3. Cooke et al. (2007) Electric wire arc spray process No Taguchi No No 

4. Segu et al. (2013) Laser surface texturing, Tribological 

experiments on pin-on-disc tribometer 

No Taguchi No No 

5. Das et al. (2022) Turning YES Taguchi, ANOVA NO NO 

6. Sifeng and Yingjie (2015) No No GRA Yes, GRA Yes 

7. Jozić et al. (2015) End Milling Operation Yes Taguchi, GRA Yes, GRA No 

8. Yazdani et al. (2019) No No CoCoSo Yes, CoCoSo No 

9. Rathod et al. (2023) Turning NO Taguchi, ANOVA, GRA, 
Principle Comp. Analysis 

Yes, GRA NO 

10. Rajan et al. (2021) Turning YES Taguchi, GRA Yes, GRA NO 

11. Chakraborty et al. (2022) Powder mixed Wire Electrical 

Discharge Machining 

NO Response Surface Methodology, 

GRA, Particle Swarm 
Optimization 

Yes, GRA NO 

12. Jeyaraj and Sivasakthivel 

(2022) 

Electrodeposition technique NO Taguchi, GRA Yes, GRA NO 

13. Kharwar et al. (2022) Drilling NO Response Surface Methodology, 
Principal Components Analysis, 

CoCoSo 

Yes, CoCoSo NO 

14. Nguyen et al. (2023) Friction Stir Welding YES Adaptive Neuro-based Fuzzy 
Inference System Approach, 

GRA, CoCoSo 

Yes, GRA, 
CoCoSo 

NO 

15. Bui et al. (2023) Powder-Mixed Electrical Discharge 
Machining 

NO Taguchi, CoCoSo, 
MARCOS, SPOTIS 

Yes, CoCoSo, 
MARCOS, 

SPOTIS 

NO 

16. Kumar and Verma (2021) Drilling NO Response Surface Methodology, 

ANOVA, Principal Component 
Analysis, CoCoSo 

Yes, CoCoSo no 

17. Do and Nguyen (2022) Turning NO Taguchi, CoCoSo, MABAC, 

MAIRCA, EARM, TOPSIS 

Yes, CoCoSo, 

MABAC, 
MAIRCA, 

EARM, TOPSIS 

YES 

18. Present Paper Surface Grinding YES Taguchi, GRA, CoCoSo Yes, GRA, 

CoCoSo 

YES 

 

 

The following points and gaps are observed from the literature reviewed:  

• The traditionally used hazardous petroleum and chemical-based CFs are required to be replaced urgently 

as they pose a threat to humans as well as the environment. 

• Using environment-friendly non-edible bio-CFs is one of the alternatives. 

• The selection of the right machining or grinding parameters setting with the right CF will lead to better 

quality of the workpiece with lesser costs. 

• In addition to the CF selection, other input parameters such as GWG, GWS, WS, and DOC, also affect 

the surface grinding output responses such as Ra, Temp, etc. It is therefore essential that these input 

parameters are configured correctly to achieve the desired workpiece quality. 

• The Taguchi method is the most commonly used method to optimize the machining or grinding input 

parameters to get optimized responses. 

• In the case of multiple responses, the Taguchi method and the other optimization methods consider equal 

weightage to the responses and provide a single input machining or grinding parameter setting for 
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response optimization (Das et al., 2022). These methods do not provide alternative solutions considering 

differential weightages to the multiple responses as per the need and priorities of the design.  

• The MADM methods like GRA and CoCoSo are capable of optimizing and ranking the input machining 

and grinding parameter settings obtained from Taguchi DOE considering differential weightages to the 

multiple responses. There are numerous MADM methods proposed such as R- method, BHARAT, 

Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS), Simple Additive Weighing (SAW), TOmada de Decisao Interativa Multicriterio (TODIM), 

Data Envelopment Analysis (DEA), COmplex PRoportional ASsessment (COPRAS), VIšekriterijumsko 

KOmpromisno Rangiranje (VIKOR) etc. including GRA and CoCoSo (Rao, 2024). 

• GRA is an established method and many researchers have used this method for optimizing machining 

parameters as reported in the literature. The method CoCoSo is also reported as a stable method when 

compared to the other methods and has been applied to the machining process (Do and Nguyen, 2022). 

It was thought to try these two methods for the present study and compare the results with the Taguchi 

analysis of the selected study. 

• Using Taguchi DOEs in combination with MADM methods such as GRA, CoCoSo, etc. will provide a 

flexible strategy to the decision maker in deciding the input machining or grinding parameter settings for 

multi-response optimization with differential weightages to the responses. This will save the time, money, 

and energy of the decision maker avoiding trial and error methods. 

• The above was the motivation for the current study. The experimental case study selected for the present 

work is surface grinding of EN8 steel using CNSL and traditional synthetic CF (Usgaonkar and Prabhu 

Gaonkar, 2023b). The use of CNSL, which is environment-friendly, and bio-degradable obtained from 

waste cashew nut shells will enhance sustainability (Ajay et al., 2023a). Nineteen experiments were 

conducted applying Taguchi’s Orthogonal Array along with validation experiments wherein input 

parameters considered are GWG, CF, GWS, WS, and DOC. Output responses of interest were the Ra and 

the Temp. This paper analyses the optimal performance of the grinding operation in terms of identifying 

optimal settings of the input parameters and ranking them. Two effective MADM methods, GRA and 

CoCoSo, are applied to the experimental data which provide optimized input grinding parameter settings 

considering differential weightages to the responses Ra and Temp. 

 

3. The Research Methodology 

3.1 The GRA Method 
In a "grey system," just a portion of the data is known while the remaining portion is unknown; because of 

this ambiguity, it will provide a variety of solutions. The GRA is one of the potent tools for analyzing 

processes with multiple responses. In GRA, the intricate multiple response optimization challenges are 

reduced to the optimization of a single response GRG based on which ranking and optimum parameter 

setting levels are identified (Jozić et al., 2015). 

 

3.1.1 Steps in the GRA Method 
The stepwise procedure of the GRA method (Jozić et al., 2015) is as follows 

 

Step I: Arrange the data of response variables in tabular form 

Arrange the experimental results regarding input and response variable values in tabular form.  

 

Step II: Data preprocessing and normalizing 

Data of response variables is preprocessed to change the original sequence to a sequence that can be 

compared. The most crucial part of the GRA is a linear normalization of the response variables. Linear 

normalization is typically required as the response variable range and units differ. According to the type of 

quality characteristics of the response variable, either larger-the-better or smaller-the-better, the initial 
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sequence is transferred to a sequence that can be compared by normalizing the response variable data 

between zero and one using the Equation (1) & Equation (2) (Jozić et al., 2015) given below. In this study, 

for normalizing the values of surface finish and grind temperature, which are required to be smaller-the-

better, Equation (1) (Jozić et al., 2015) is used. 

𝑏𝑖𝑗 =
𝑚𝑎𝑥 (𝑎𝑖𝑗) − (𝑎𝑖𝑗)

𝑚𝑎𝑥 (𝑎𝑖𝑗) − 𝑚𝑖𝑛 (𝑎𝑖𝑗)
                                                                                                                                  (1) 

 

For normalizing the response variable performance characteristic larger-the-better Equation (2) can be used. 

𝑏𝑖𝑗 =
(𝑎𝑖𝑗) − 𝑚𝑖𝑛 (𝑎𝑖𝑗) 

𝑚𝑎𝑥 (𝑎𝑖𝑗) − 𝑚𝑖𝑛 (𝑎𝑖𝑗)
                                                                                                                                  (2) 

 

where, 𝑎𝑖𝑗 are original data and 𝑏𝑖𝑗 are normalized data. 

 

Step III: Determining the deviation sequence 

From the values obtained using Equation (1), if any setting value is equal to 1 or close to 1, then that setting 

i is taken as the top for the response j. The reference sequence 𝑎0 is demarcated as (𝑎01, 𝑎02, …, 𝑎0𝑗, …, 

𝑎0𝑛) which is equal to (1, 1, …, 1, …, 1), with 𝑎0𝑗 being the reference value for the jth response and which 

determines the setting with the comparability sequence nearest to the reference sequence. i.e. Δij = 

|𝑎0𝑗 − 𝑎𝑖𝑗  | (Jozić et al., 2015). 

 

Step IV: Calculation of grey relational coefficient (GRC) (Jozić et al., 2015)  

The GRC is determined by Equation (3) (Jozić et al., 2015). GRA tells us how close 𝑎𝑖𝑗 is to 𝑎0𝑗. The larger 

the GRA, the closer the 𝑎𝑖𝑗 and 𝑎0𝑗. 

𝛾(𝑎0𝑗, 𝑎𝑖𝑗  ) =  
(Δ𝑚𝑖𝑛+ 𝜉𝛥𝑚𝑎𝑥)

(𝛥𝑖𝑗+ 𝜉𝛥𝑚𝑎𝑥)
                                                                                                                        (3) 

 

for i = 1, 2, 3, ………, m and j = 1, 2, 3, ………, n where, 𝛾(𝑎0𝑗, 𝑎𝑖𝑗 ) is the GRC between 𝑎𝑖𝑗 and 𝑎0𝑗, 

𝛥𝑖𝑗 =  |𝑎0𝑗 − 𝑎𝑖𝑗| (Jozić et al., 2015) 

Δ𝑚𝑖𝑛 = 𝑚𝑖𝑛 {𝛥𝑖𝑗 , 𝑓𝑜𝑟 𝑖 =  1, 2, 3, … … … , 𝑚 𝑎𝑛𝑑 𝑗 =  1, 2, 3, … … … , 𝑛 } 

Δ𝑚𝑎𝑥 = 𝑚𝑎𝑥 {𝛥𝑖𝑗, 𝑓𝑜𝑟 =  1, 2, 3, … … … , 𝑚 𝑎𝑛𝑑 𝑗 =  1, 2, 3, … … … , 𝑛 }  

𝜉 - distinguishing coefficient, 𝜉 ∈ (0, 1).  

 

Step V: Determining the GRG 

The GRA is quantified in terms of GRG. The GRG is a weighted sum of the GRCs, determined using 

Equation (4) (Jozić et al., 2015).  

Γ(𝐴0 , 𝐴𝑖) = ∑ 𝑊𝑗(𝑛
𝑗=1 𝑎0𝑗, 𝑎𝑖𝑗)                                                                                                                    (4) 

 

for i = 1, 2, 3, ………, m where, ∑ 𝑊𝑖𝑗
𝑛
𝑗=1  = 1. 

 

Γ(𝐴0 , 𝐴𝑖) is the GRG between comparability sequence 𝐴𝑖 and reference sequence 𝐴0 . The weightage of 

response variable j is 𝑊𝑗 and the decision maker can decide it based on his priorities. The GRG shows the 

similarity between the comparison and reference sequences.  

 

Step VI: Ranking the experiments based on the GRG 

The ranks are allocated for experiments in decreasing order of the GRG, the highest GRG experiment taking 

the rank 1, and so on. 
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3.2 The CoCoSo Method 
CoCoSo is a novel method combining additive weight and the exponential weight product model of 

MADM. This technique presents potential compromise alternatives that the decision-maker may consider. 

It ranks the alternatives on relative performance scores (Yazdani et al., 2019). 

 

3.2.1 Steps in the CoCoSo Method 
Following are the steps to implement the CoCoSo technique (Yazdani et al., 2019).  

 

Step I: Prepare the decision table 

Arrange the experimental results in terms of input and response variable values in a table (Table 2) shown 

below (Yazdani et al., 2019).  

 

 
Table 2. Decision table (Do and Nguyen, 2022). 

 

 CRITERIA 

SOLUTIONS 

Sr. No. R1 R2 Rj Rn 

T1 t11 t12 tij t1n 

T2 t21 t22 t2j t2n 

Ti ti1 ti2 tij tin 

Tm tm1 tm2 tmj tmn 

 
 

m- the number of solutions, n- the number of the criteria, Ti- the solution i, Rj- the criterion j, tij- the value 

of criterion j at the solution i. i = 1; 2; ...; m and j = 1; 2; ...; n. 

 

Step II: Normalize the data 

Normalize the data using Equation (5) (Yazdani et al., 2019) for condition smaller-the-better & Equation 

(6) (Yazdani et al., 2019) for condition larger the better as given below: 

𝑛𝑖𝑗 =
𝑚𝑎𝑥 (𝑡𝑖𝑗) − (𝑡𝑖𝑗)

𝑚𝑎𝑥 (𝑡𝑖𝑗) − 𝑚𝑖𝑛 (𝑡𝑖𝑗)
                                                                                                                                   (5) 

𝑛𝑖𝑗 =
(𝑡𝑖𝑗)− 𝑚𝑖𝑛 (𝑡𝑖𝑗) 

𝑚𝑎𝑥 (𝑡𝑖𝑗) − 𝑚𝑖𝑛 (𝑡𝑖𝑗)
                                                                                                                                   (6) 

 

Step III: Compute the Si and Pi 

The Si and Pi are to be calculated using Equation (7) and Equation (8) (Yazdani et al., 2019).  

𝑆𝑖 = ∑ (𝑤𝑗𝑛𝑖𝑗)𝑛
𝑗=1                                                                                                                                           (7) 

𝑃𝑖 = ∑ (𝑛𝑖𝑗)𝑛
𝑗=1

𝑤𝑗                                                                                                                                         (8) 

 

where, 𝑆𝑖 is the total of the weighted comparability sequence, 𝑃𝑖  is the sum of the power weight of 

comparability sequences, and 𝑤𝑗  is the weight of the criterion j. The CoCoSo methodology has the 

provision for selecting the value for 𝑤𝑗 depending upon the priorities and the significance of the response 

criteria. 

 

Step IV: Compute the relative weights for the alternatives 

The CoCoSo methodology uses three appraisal score strategies, Kia, Kib, and Kic, to generate relative weights. 

Kia, Kib, and Kic are calculated using Equations (9), (10), and (11), respectively (Yazdani et al., 2019), which 

are given below: 
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𝐾𝑖𝑎 =
𝑃𝑖+𝑆𝑖

∑ (𝑃𝑖+𝑆𝑖)𝑚
𝑖=1

                                                                                                                                            (9) 

𝐾𝑖𝑏 =  
𝑆𝑖

𝑚𝑖𝑛 𝑆𝑖
𝑖

+
𝑃𝑖

𝑚𝑖𝑛 𝑃𝑖
𝑖

                                                                                                                                   (10) 

𝐾𝑖𝑐 =  
𝜆(𝑆𝑖)+(1−𝜆)(𝑃𝑖)

𝜆𝑚𝑎𝑥 𝑆𝑖 
𝑖

+(1−𝜆)𝑚𝑎𝑥 𝑃𝑖

𝑖

 ; 0 ≤ 𝜆 ≤ 1                                                                                                      (11) 

 

The value of λ decides the weightages of 𝑆𝑖, the total of the weighted comparability sequence and the 𝑃𝑖, 

the sum of the power weight of comparability sequences. It is the measure of distinguishability and 0 ≤
𝜆 ≤ 1. Distinguishability increases as λ decreases. The value for λ is usually taken as λ = 0.5, but the method 

provides the flexibility to the decision maker to keep it in the range of 0 and 1. In this analysis, the λ is 

taken as 0.5 (Yazdani et al., 2019). 

 

Step V: Rank the alternatives 

The alternatives are finally ranked by determining ki using Equation (12) (Yazdani et al., 2019). The highest 

value of 𝐾𝑖 becomes the best option. 

𝐾𝑖 = (𝐾𝑖𝑎𝐾𝑖𝑏𝐾𝑖𝑐)
1

3 +
1

3
(𝐾𝑖𝑎 + 𝐾𝑖𝑏+𝐾𝑖𝑐)                                                                                                    (12) 

 

4. The Case Study: Surface Grinding of EN 8 Steel 
In an experimental study of surface grinding EN8 steel, Usgaonkar and Prabhu Gaonkar (2023b) compared 

the performance of environmentally friendly non-edible CNSL and the conventional chemical synthetic CF 

to optimize the grinding responses, Ra, and Temp making use of the L16 Orthogonal Array and 25 Taguchi 

design. EN 8 steel flat plates measuring 150 mm × 25 mm × 10 mm were the workpiece of the experiment. 

The grinding operation was performed on the SFW1 HMT LIMITED surface grinder. The run orders were 

randomly selected for the experimentation with every run being replicated five times and the average value 

was considered for the analysis. Before grinding, the grinding wheel was dressed regularly from time to 

time. The workpiece was thoroughly cleaned after grinding using Carbon Tetrachloride. The SurfTest SJ-

210 Mitutoyo recorded the Ra with a cut-off length of 0.8 mm and a sampling length of 4 mm. For every 

workpiece and run, five readings for Ra were taken along the lay at various places and the average value 

was used for the analysis as entered in Table 3. FLUKE Ti10 Thermal Imager was used to record the Temp. 

Each run recorded five temperature readings, with the average value being considered for analysis, as 

entered in Table 3. The input parameters with two levels focused were the CF type (Synthetic, CNSL), 

GWG (A46K5V10- G46, A60K5V10- G60), GWS (1500 RPM, 3000 RPM), DOC (10 µm, 20 µm) and 

WS (10 m/ min, 15 m/ min). Minitab software was used to conduct the investigation. The optimization 

results were also confirmed by conducting validation experiments. The authors inferred that the CNSL 

performed well in comparison to the synthetic CF, and it is obtained from waste cashew nut shells and can 

be thought of as a potential eco-friendly bio-CF, to substitute the harmful traditionally used CFs. This was 

a motivation to select this case study to improve further. So, the data from all the performed experiments 

were chosen for the current investigation, as shown in Table 3. Some optimized results of Taguchi analysis 

were falling outside the L16 Orthogonal Array of 25 Taguchi design, they have been validated by conducting 

validation and confirmation experiments separately. The DOE data are from Sr. No. 1 to 16, and the 

validation experiment data are from Sr. No. 17 to 19 as entered in Table 3 (Usgaonkar and Prabhu Gaonkar, 

2023b). Arranging the data in a tabular form called a decision table (Table 3), is the first step (Step I) of 

both the methods, GRA & CoCoSo. 
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Step I: Arrange the data in tabular form/ Prepare the decision table 

The Step I for the GRA method (Section 3.1.1, Step I) and the CoCoSo method (Section 3.2.1, Step I) is 

the same. Accordingly, the experimental results regarding input and response variable values are arranged in 

tabular form to prepare the decision table as shown in Table 3. 

 
Table 3. Decision table (experimental results of surface grinding EN8 steel) (Usgaonkar and Prabhu Gaonkar, 

2023b). 
 

Sr. No. 
Grinding input parameters (Alternate optimal solutions) Objectives (responses) 

CF GWS (RPM) GWG DOC (µm) WS (m/min) Ra (µm) Temperature (OC) 

1. Synthetic 1500 G46 10 10 0.126 38.7 

2. Synthetic 1500 G46 20 15 0.110 39 

3. Synthetic 1500 G60 10 15 0.185 35.8 

4. Synthetic 1500 G60 20 10 0.141 37.5 

5. Synthetic 3000 G46 10 15 0.097 37 

6. Synthetic 3000 G46 20 10 0.121 38.5 

7. Synthetic 3000 G60 10 10 0.137 35.2 

8. Synthetic 3000 G60 20 15 0.102 39 

9. CNSL 1500 G46 10 15 0.202 34 

10. CNSL 1500 G46 20 10 0.199 36 

11. CNSL 1500 G60 10 10 0.114 34 

12. CNSL 1500 G60 20 15 0.095 36.5 

13. CNSL 3000 G46 10 10 0.090 36 

14. CNSL 3000 G46 20 15 0.093 38.5 

15. CNSL 3000 G60 10 15 0.083 35 

16. CNSL 3000 G60 20 10 0.116 37.5 

17. CNSL 3000 G60 20 15 0.055 38.8 

18. Synthetic 1500 G60 10 10 0.147 35.9 

19. CNSL 3000 G60 10 10 0.073 34.5 

 

 

5. Analysis and Discussion 

5.1 Using GRA 
Step II: Data preprocessing and normalizing (refer to Table 4) 

Data preprocessing brings the responses with different units to one comparable unit. The response data 

normalization is performed and brought between zero and one. The normalized original data of responses 

Ra and Temperature, with the smaller-the-better condition, is as entered in Table 4, using Equation (1) 

(Section 3.1.1, Step II), as the responses Ra and Temperature are required to be minimized (Usgaonkar and 

Prabhu Gaonkar, 2023b; Jozić et al., 2015). Here, the maximum value of 𝑎𝑖𝑗 for Ra is 0.202 µm, with a 

minimum value of 0.055 µm. Similarly, the maximum value for 𝑎𝑖𝑗  of Temperature is 390C, and the 

minimum is 340C (refer to Table 3). 

 

Step III: Determining the deviation sequence 

Table 5 shows the deviation sequence determined as per Section 3.1.1, Step III. 

 

Step IV: Calculation of GRC 

The GRC is determined using Equation (3) (Section 3.1.1, Step IV) as entered in Table 6. The 

distinguishing coefficient 𝜉 is the measure of distinguishability and 𝜉 ∈ (0, 1). Distinguishability increases 

as distinguishing coefficient 𝜉 decreases. The distinguishing coefficient ξ is taken as 0.5 in this analysis 

(Jozić et al., 2015). 
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Step V: Determining the GRG & Step VI: Ranking the experiments based on the GRG 

The GRG is determined using Equation (4) (Section 3.1.1, Step V), and the grades are ranked with the 

highest grade, taking the rank 1 and so on (Table 7). Table 7 shows the ranking for two combinations of 

weights. i.e. 1). When Ra and Temp have been allotted the equal weightage as 0.5.2). When the weightage 

for Ra is taken as 0.6 and Temp as 0.4.  

 
Table 4. Normalized data. 

 

Sr. No. Data Normalization 

Ra (µm)  Temp (°C) Ra (µm)  Temp (°C) 

1. 0.126 38.8 0.5145 0.0500 

2. 0.110 39.0 0.6236 0.0000 

3. 0.186 35.9 0.1089 0.6250 

4. 0.142 37.5 0.4102 0.3000 

5. 0.098 37.0 0.7102 0.4000 

6. 0.122 38.5 0.5462 0.1000 

7. 0.138 35.3 0.4375 0.7500 

8. 0.102 39.0 0.6773 0.0000 

9. 0.202 34.0 0.0000 1.0000 

10. 0.199 36.0 0.0162 0.6000 

11. 0.114 34.0 0.5966 1.0000 

12. 0.096 36.5 0.7224 0.5000 

13. 0.091 36.0 0.7555 0.6000 

14. 0.093 38.5 0.7409 0.1000 

15. 0.083 35.0 0.8068 0.8000 

16. 0.117 37.5 0.5782 0.3000 

17. 0.055 38.8 1.0000 0.0400 

18. 0.147 35.9 0.3727 0.6200 

19. 0.073 34.5 0.8773 0.9000 

 

 

 
Table 5. Deviation sequence. 

 

Sr. No. Ra µm Temp °C 

1. 0.4855 0.9500 

2. 0.3764 1.0000 

3. 0.8911 0.3750 

4. 0.5898 0.7000 

5. 0.2898 0.6000 

6. 0.4538 0.9000 

7. 0.5625 0.2500 

8. 0.3227 1.0000 

9. 1.0000 0.0000 

10. 0.9838 0.4000 

11. 0.4034 0.0000 

12. 0.2776 0.5000 

13. 0.2445 0.4000 

14. 0.2591 0.9000 

15. 0.1932 0.2000 

16. 0.4218 0.7000 

17. 0.0000 0.9600 

18. 0.6273 0.3800 

19. 0.1227 0.1000 
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Table 6. The GRC. 

 

Sr. No. 
GRC 

Ra µm Temp °C 

1. 0.5074 0.3448 

2. 0.5705 0.3333 

3. 0.3594 0.5714 

4. 0.4588 0.4167 

5. 0.6331 0.4545 

6. 0.5242 0.3571 

7. 0.4706 0.6667 

8. 0.6077 0.3333 

9. 0.3333 1.0000 

10. 0.3370 0.5556 

11. 0.5535 1.0000 

12. 0.6430 0.5000 

13. 0.6716 0.5556 

14. 0.6587 0.3571 

15. 0.7213 0.7143 

16. 0.5424 0.4167 

17. 1.0000 0.3425 

18. 0.4435 0.5682 

19. 0.8029 0.8333 

 

 

Table 7. The GRG and Ranks allotted with different weights. 
 

Sr. No. 
Wj= (0.5, 0.5) Wj= (0.6, 0.4) 

Grade Rank Grade Rank 
1. 0.4261 19 0.4424 17 
2. 0.4519 15 0.4757 14 
3. 0.4654 14 0.4442 16 
4. 0.4377 18 0.4420 18 
5. 0.5438 9 0.5617 8 
6. 0.4407 17 0.4574 15 
7. 0.5686 8 0.5490 9 
8. 0.4705 13 0.4980 11 
9. 0.6667 5 0.6000 6 

10. 0.4463 16 0.4244 19 
11. 0.7767 2 0.7321 3 
12. 0.5715 7 0.5858 7 
13. 0.6136 6 0.6252 5 
14. 0.5079 10 0.5381 10 
15. 0.7178 3 0.7185 4 
16. 0.4796 12 0.4921 13 
17. 0.6712 4 0.7370 2 
18. 0.5059 11 0.4934 12 
19. 0.8181 1 0.8151 1 

 

 

5.2 Using CoCoSo 
Step II: Normalize the data 

The original data is normalized using Equation (5) (Section 3.2.1, Step II), which is for cost criteria, the 

smaller-the-better, as the responses are Ra and Temp, both of which are required to be minimized. Since 

the formula of normalization for both the methods GRA and CoCoSo is the same (refer to Equation (1), 

Section 3.1.1, Step II & Equation (5), Section 3.2.1, Step II), Table 4 may be referred for normalized data 

(Jozić et al., 2015; Yazdani et al., 2019). The maximum and minimum values of 𝑡𝑖𝑗for surface texture Ra 

is 0.202 µm and 0.055 µm respectively. Similarly, the maximum value of 𝑡𝑖𝑗 for Temp is 39 0C, and the 

minimum value is 34 0C (refer to Table 4). 
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Step III: Compute the values of Si & Pi 

The Si and Pi values are calculated using Equation (7) & Equation (8) (Section 3.2.1, Step III) and entered 

in Table 8. The Ra and Temp have been allotted equal weightage as 0.5 for this case. 

 
Table 8. The Si and Pi values  

 

Sr. No. Si Pi 

1. 0.2823 0.9409 

2. 0.3118 0.7897 

3. 0.3669 1.1205 

4. 0.3551 1.1882 

5. 0.5551 1.4752 

6. 0.3231 1.0553 

7. 0.5938 1.5275 

8. 0.3386 0.8230 

9. 0.5000 1.0000 

10. 0.3081 0.9020 

11. 0.7983 1.7724 

12. 0.6112 1.5571 

13. 0.6778 1.6438 

14. 0.4205 1.1770 

15. 0.8034 1.7927 

16. 0.4391 1.3081 

17. 0.5200 1.2000 

18. 0.4964 1.3979 

19. 0.8886 1.8853 

 

 

Step IV: Compute the relative weights of the alternatives & Step V: Rank the alternatives 

The relative weights. Kia, Kib, Kic, and the final weight Ki are calculated using Equation (9), Equation (10), 

Equation (11) & Equation (12) (Section 3.2.1, Step IV), respectively, as entered in Table 9. The value for 

λ is taken as λ = 0.5. The final ranking is done by referring to Ki values with the highest value with rank 1 

and so on (Section 3.2.1, Step IV, Table 9). 

 
Table 9. The values of Kia, Kib, Kic, K & Ranks. 

 

λ = 0.5    Weights (0.5, 0.5) 

Sr. No. Kia Kib Kic Sr. No. Kia 

1. 0.0358 2.1915 0.4410 1 0.0358 

2. 0.0323 2.1047 0.3971 2 0.0323 

3. 0.0436 2.7188 0.5362 3 0.0436 

4. 0.0452 2.7627 0.5564 4 0.0452 

5. 0.0595 3.8346 0.7319 5 0.0595 

6. 0.0404 2.4810 0.4969 6 0.0404 

7. 0.0621 4.0377 0.7647 7 0.0621 

8. 0.0340 2.2418 0.4188 8 0.0340 

9. 0.0439 3.0376 0.5407 9 0.0439 

10. 0.0354 2.2338 0.4362 10 0.0354 

11. 0.0753 5.0725 0.9267 11 0.0753 

12. 0.0635 4.1370 0.7816 12 0.0635 

13. 0.0680 4.4826 0.8369 13 0.0680 

14. 0.0468 2.9799 0.5759 14 0.0468 

15. 0.0760 5.1162 0.9359 15 0.0760 

16. 0.0512 3.2122 0.6299 16 0.0512 

17. 0.0504 3.3617 0.6201 17 0.0504 

18. 0.0555 3.5286 0.6829 18 0.0555 

19. 0.0812 5.5355 1.0000 19 0.0812 

 

 



Usgaonkar & Gaonkar: Multiclass Image Segmentation using Deep Residual Encoder-Decoder Models … 
 

 

14 | Vol. 10, No. 1, 2025 

Table 10 shows the ranking for two combinations of weights. i.e. 1). When Ra and Temp have been allotted 

the same weightage as 0.5.2). When the weightage for Ra is taken as 0.6 and Temp as 0.4. 

 
Table 10. The ranking with different weights. 

 

Sr. No. 

Weights 

(0.5, 0.5)  

K  K  

1. 1.2153 1 1.2153 1 

2. 1.1445 2 1.1445 2 

3. 1.4985 3 1.4985 3 

4. 1.5325 4 1.5325 4 

5. 2.0926 5 2.0926 5 

6. 1.3739 6 1.3739 6 

7. 2.1982 7 2.1982 7 

8. 1.2155 8 1.2155 8 

9. 1.6237 9 1.6237 9 

10. 1.2275 10 1.2275 10 

11. 2.7322 11 2.7322 11 

12. 2.2507 12 2.2507 12 

13. 2.4300 13 2.4300 13 

14. 1.6323 14 1.6323 14 

15. 2.7567 15 2.7567 15 

16. 1.7673 16 1.7673 16 

17. 1.8158 17 1.8158 17 

18. 1.9336 18 1.9336 18 

19. 2.9717 19 2.9717 19 

 
 

5.3 Comparing GRA, CoCoSo and Taguchi Results 
Table 11 shows the optimized settings obtained from the Taguchi analysis of the case study. 

 
Table 11. Optimized settings of Taguchi analysis (Usgaonkar and Prabhu Gaonkar, 2023b). 

 

 
 

Sr. No. 1 is the setting when only Ra is optimized, Sr. No. 2 is the setting when only Temp is optimized, 

and Sr. No. 3 is the setting when both Ra and Temp are optimized together. Table 12 shows the comparison 

of ranking done for the experimental results by both the methods, GRA & CoCoSo, for the combinations 

of weights (0.5, 0.5), (0.6, 0.4), (1, 0), & (0, 1). These weight combinations are selected to compare the best 

solution obtained by both methods to the optimal solutions obtained from the Taguchi analysis. In Taguchi 

analysis, when both the responses Ra and Temp are considered equal weightage, then (0.5, 0.5) weight is 

considered for the GRA and CoCoSo analysis and when only one response either Ra or Temp is optimized, 

then the combination (1, 0) and (0, 1) is selected respectively. The combination of weights for responses 

Ra and Temp (0.6, 0.4) is selected as it is the combination obtained from the R-method of MADM. Out of 

the two responses, Ra and Temp, Ra is given top priority, followed by Temp in second position. By using 

the R-method, the weightage obtained for Ra is 60% and 40% for Temp. For deciding the weights for the 

Sr. 

No. 
CF 

GWS 

RPM 
GWG 

DOC 

µm 

WS 

m/min 

Ra Temp 

Remarks Expt. 

µm 

Pred. 

µm 

Expt. 

°C 

Pred. 

°C 

1. CNSL 3000 G60 20 15 0.055 0.058 38.8 39.7 
When only Ra is 

optimized 

2. CNSL 1500 G60 10 10 0.114 0.112 34 33.9 
When only Temp is 

optimized 

3. CNSL 3000 G60 10 10 0.073 0.072 34.5 34.4 
When both Ra and 

Temp are optimized 
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responses, the decision-maker can use his intuitive experience or preference, or he may use some weight-

determining methods like the R-method, AHP, entropy method, standard deviation method, equal weights, 

rank exponent, rank sum, rank reciprocal and centroid weights, etc. (Rao and Lakshmi, 2021). 

 
Table 12. Comparison of ranking for the surface grinding outcomes by GRA and CoCoSo. 

 

 

Sr. 

No. 

Grinding input parameters (Alternate optimal 

solutions) 

Objectives 

(responses) 
GRA ranks CoCoSo ranks 

CF 
GWS 

RPM 
GWG 

DOC 

µm 

WS 

m/min 

Ra 

µm 

Temp 
OC 

(0.5, 

0.5) 

(0.6, 

0.4) 

(1, 

0) 

(0, 

1) 

(0.5, 

0.5) 

(0.6, 

0.4) 

(1, 

0) 

(0, 

1) 

1. Synthetic 1500 G46 10 10 0.126 38.7 19 17 13 16 18 16 13 16 

2. Synthetic 1500 G46 20 15 0.110 39 15 14 9 18 19 18 10 18 

3. Synthetic 1500 G60 10 15 0.185 35.8 14 16 17 6 14 15 17 6 

4. Synthetic 1500 G60 20 10 0.141 37.5 18 18 15 12 13 12 15 12 

5. Synthetic 3000 G46 10 15 0.097 37 9 8 7 11 7 6 7 11 

6. Synthetic 3000 G46 20 10 0.121 38.5 17 15 12 14 15 13 12 14 

7. Synthetic 3000 G60 10 10 0.137 35.2 8 9 14 5 6 7 14 5 

8. Synthetic 3000 G60 20 15 0.102 39 13 11 8 18 17 17 8 18 

9. CNSL 1500 G46 10 15 0.202 34 5 6 19 1 12 14 19 1 

10. CNSL 1500 G46 20 10 0.199 36 16 19 18 8 16 19 18 9 

11. CNSL 1500 G60 10 10 0.114 34 2 3 10 1 3 3 9 1 

12. CNSL 1500 G60 20 15 0.095 36.5 7 7 6 10 5 5 6 10 

13. CNSL 3000 G46 10 10 0.090 36 6 5 4 8 4 4 4 8 

14. CNSL 3000 G46 20 15 0.093 38.5 10 10 5 14 11 11 5 14 

15. CNSL 3000 G60 10 15 0.083 35 3 4 3 4 2 2 3 4 

16. CNSL 3000 G60 20 10 0.116 37.5 12 13 11 12 10 10 11 12 

17. CNSL 3000 G60 20 15 0.055 38.8 4 2 1 17 9 8 1 17 

18. Synthetic 1500 G60 10 10 0.147 35.9 11 12 16 7 8 9 16 7 

19. CNSL 3000 G60 10 10 0.073 34.5 1 1 2 3 1 1 2 3 

 

 

The comparison of the optimization results of the Taguchi analysis of the selected case study (Usgaonkar 

and Prabhu Gaonkar, 2023b) and the results of the top five Ranks, each by GRA and CoCoSo are displayed 

in Table 13. 

 
Table 13. Comparison of the top five ranks, each by GRA and CoCoSo. 

 

Sr. 

No. 

(Tabl

e 12) 

CF 
GWS

RPM 

GW

G 

DO

C 

µm 

WS 

m/

mi

n 

Ra 

µm 

Tem

p 

OC 

0.5, 0.5 0.6, 0.4 1, 0 0, 1 

GR

A 

CoCo

So 

GR

A 

CoCo

So 

GR

A 

CoCo

So 

GR

A 

CoCo

So 

9. CNSL 1500 G46 10 15 0.202 34 5 12 6 14 19 19 1 1 

11. CNSL 1500 G60 10 10 0.114 34 2 3 3 3 10 9 1 1 

12. CNSL 1500 G60 20 15 0.095 36.5 7 5 7 5 6 6 10 10 

13. CNSL 3000 G46 10 10 0.090 36 6 4 5 4 4 4 8 8 

14. CNSL 3000 G46 20 15 0.093 38.5 10 11 10 11 5 5 14 14 

15. CNSL 3000 G60 10 15 0.083 35 3 2 4 2 3 3 4 4 

17. CNSL 3000 G60 20 15 0.055 38.8 4 9 2 8 1 1 17 17 

19. CNSL 3000 G60 10 10 0.073 34.5 1 1 1 1 2 2 3 3 
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When both the responses Ra and Temp are optimized considering equal weightage, then the optimized 

parameter setting obtained from the Taguchi analysis is at Sr. No. 3 (Table 11) and Sr. No. 19 (Table 12 

& Table 13) i. e. CF- CNSL, GWS- 3000, GWG- G60, DOC- 10 µm, WS- 10 m/min with Ra- 0.073 µm 

and Temp- 34.5 0C. The same setting is allotted as Rank 1 by GRA and CoCoSo for the weightages (0.5, 

0.5) and (0.6, 0.4) (refer Table 12 & Table 13, Sr. No. 19). When Ra alone is optimized, the setting obtained 

from the Taguchi analysis is at Sr. No. 1 (Table 11) and Sr. No. 17 (Table 12 & Table 13) i. e. CF- CNSL, 

GWS- 3000, GWG- G60, DOC- 20 µm, WS- 15 m/min with Ra- 0.055 µm and Temp- 38.8 0C. The same 

setting is allotted as Rank 1 by GRA and CoCoSo for the weightage (1, 0) (refer to Table 12 & Table 13, 

Sr. No. 17). Also, when Temp alone is optimized, the setting obtained from the Taguchi analysis is at Sr. 

No. 2 (Table 11) and Sr. No. 11 (Table 12 & Table 13) i. e. CF- CNSL, GWS- 1500, GWG- G60, DOC- 

10 µm, WS- 10 m/min with Ra- 0.114 µm and Temp- 34 0C. The same setting is allotted as Rank 1 by GRA 

and CoCoSo for the weightage (1, 0) (refer to Table 12 & Table 13, Sr. No. 11). From the above discussion 

it is seen that the optimized reading obtained from all the three methods Taguchi, GRA and CoCoSo agree 

with each other.  

 

Also, it is observed that in some places the ranks allotted by GRA and CoCoSo do not agree with each other 

(refer to Tables 12 & 13). For example, in ranks at Sr. No. 2 & Sr. No. 11 when only Ra is optimized GRA 

allots the ranks 9 & 10 and CoCoSo allots the ranks 10 & 9 respectively. If we arrange the responses Ra 

for (1, 0) from Table 12 in ascending order and rank, then the ranking given by GRA matches and CoCoSo 

there is little variation especially when the responses are very close (Sr. No.2- Ra is 0.110 µm and Sr. No. 

11- Ra is 0.114 µm). It appears that the method CoCoSo is a little less sensitive than the method GRA 

especially when the responses are very close to each other. 

 

Figure 1 shows the comparison of rankings by GRA & CoCoSo for the weightages (0.5, 0.5) and (0.6, 0.4) 

in graphical form. The X-axis shows the alternate optimal solutions from s1 to s19, with the Y-axis showing 

the ranks. 

 

 
 

Figure 1. The comparison of the solutions of GRA and CoCoSo for the weightages (0.5, 0.5) and (0.6, 0.4). 
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Also, Figure 2 shows the comparison of the top five solutions of GRA and CoCoSo for the weightages 

(0.5, 0.5), (0.6, 0.4), (1, 0), and (0, 1) in graphical form. It can be observed that the lower ranks proposed 

by both methods coincide at some of the places and the ranking obtained from both methods is quite close 

with very little variation indicating a strong correlation between both the methods GRA and CoCoSo. 

 

 
 

Figure 2. The comparison of the top five solutions of GRA and CoCoSo. 

 

To check the correlation and statistical significance between the ranking pairs, (Ra- 0.5, Temp- 0.5) and 

(Ra- 0.6, Temp- 0.4) for GRA & CoCoSo, the Spearman rank correlation test and Kendall's rank correlation 

method are performed, as shown in Table 14. For the two pairs mentioned above, the derived Spearman 

Rank Coefficients are 0.8526 and 0.7982, respectively, establishing a very strong connection (Leclezio et 

al., 2015). The Z values produced by the Kendall's Tau Test performed for the two pairs mentioned above 

are larger than 1.96, and the p-values are less than 0.05, pointing to a statistically significant correlation 

between the respective pairs (refer Table 14). 

 
Table 14. Tests of correlation and statistical significance for GRA and CoCoSo. 

 

  
Sr. No. 1 2 

Test Pair (weights) (0.5, 0.5)  (0.6, 0.4) 

Spearman 

Rank 

Correlation 

Test 

The sum of Squares of Rank Differences 168 230 
Rank Coefficient (r)  0.8526 0.7982 
Critical Value for Spearman Rank (for n = 19, alpha = 0.05) (v) 0.391 0.391 
Check r > v r > v 
Comment Highly correlated Highly correlated 

Kendall's 

Rank 

Correlation 

Method 

The sum of the Number of Concordances (C) 144 140 
The sum of the Number of Discordances (D) 27 31 
Kendall's Tau Value 0.6842 0.6374 
Z Value 4.0933 3.8134 
Check Z > 1.96 Z > 1.96 
p Value 4.25505E-05 0.000137115 
Check p < 0.05 p < 0.05 

Comment (at alpha level 0.05) 
Statistically significant 

correlation 
Statistically significant 

correlation 
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6. Conclusion  
The study covered the step-by-step application of the GRA & CoCoSo approach. The optimization results 

of the selected experimental study obtained from the Taguchi analysis agree with the outcomes of both the 

GRA and CoCoSo methods. The ranking proposed by both methods is almost the same with very little 

variation especially when the responses are very close. In such cases, GRA is more sensitive and accurate 

as compared to the method CoCoSo. The Spearman Rank Correlation Test and Kendall's Rank Correlation 

Method establish strong correlation and statistical significance between the ranking pairs proposed by both 

methods. 

 

The decision-makers flexibility to change the weights of the objectives based on their priorities and needs 

to achieve the ranking for an alternative optimal solution is a particularly intriguing feature of both the GRA 

and CoCoSo methodologies. Also, the novelty and contribution of the current research work is that these 

MADM methods of GRA and CoCoSo are successfully applied to a vital machining operation like surface 

grinding. Here, the decision maker is provided with an efficient, relatively simple to comprehend, and 

flexible strategy to aid him in decision-making in the limited time and capacity he has and to pay attention 

to and process the information and choose the optimal input parameters setting based on their ranking, by 

deciding the weights of the responses as per his need. This study will significantly benefit the industry's 

design, process planning, and production departments. 

 

There is a broad scope in the future to extend these GRA and CoCoSo techniques to other machining areas, 

such as turning, milling, etc., with more input parameters and responses. The present study proposes that 

the weights assigned to the responses should be as per the decision-maker's tastes and priorities based on 

the job's requirements and specifications. Some more novel MADM methods can be thought of to aid the 

decision maker in deciding the weights to be assigned to the responses. Also, the study can be extended by 

studying more methods in the area of MADM for ranking and comparing their efficiency. It will also be 

interesting to try combining these MADM methods with the latest predictive tools like ANN, etc., for 

predicting the ranked optimal input parameter settings and the weights. 
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