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Abstract 

This paper presents a methodology for determining the optimal portfolio that maximizes the Sharpe ratio within a bilevel 

framework. The upper-level of the model maximizes the Sharpe ratio of the portfolio, while the lower-level minimizes the risk for 

a given expected return, which is treated as a parameter. In the methodology, a gradient-based active set approach is proposed to 

solve the bilevel portfolio optimization model. The proposed method generates a sequence of portfolios converging to the optimal 

portfolio. To validate the method, the results are tested and verified using real-world portfolio datasets collected from the Bombay 

Stock Exchange, India. It is observed in the numerical experiment that the Sharpe ratio obtained in a bilevel framework is better 

than that of the traditional method. 

 

Keywords- Bilevel optimization problem, Portfolio selection problem, Sharpe ratio, Markowitz model. 

 

 

 

1. Introduction 
The portfolio selection problem focuses on distributing the investment budget among a set of assets to 

obtain minimal risk while maximizing investment returns. Investors commonly reduce the risk through 

portfolio diversification, which entails allocating investments across multiple assets. Key inputs to facilitate 

the portfolio selection model include expected return, variance, and covariance of the return of the assets. 

The optimization-based approach in the selection of portfolio gained significant attention after the work of 

Markowitz (1952). Markowitz's model is efficient, but it does not include real-world trading scenarios in 

its original form. Investors often adapt it with practical considerations of various trading restrictions. This 

involves incorporating additional constraints such as cardinality constraints, transaction costs, and 

bounding constraints (Lobo et al., 2007; Yen & Yen, 2014; Hooshmand et al., 2023). In addition to this, 

handling uncertainty in the inputs of portfolio selection problems is a prominent challenge. The uncertain 

parameters in a portfolio optimization model in interval form are explored in the works by Sahu et al. 

(2024), and Bhurjee et al. (2025). In recent years, machine learning techniques have been adopted in solving 

portfolio optimization models (see, Alzaman, 2024; Cui et al., 2024; Behera & Kumar, 2025).  

 

The evaluation of portfolio performance is carried out using measures like the Sharpe ratio, Treynor ratio, 

Information ratio, and Sortino ratio, which are summarized in Marhfor (2016). The Sharpe ratio is relatively 

efficient as it accounts both the systematic and unsystematic risks. Traditionally, the optimal portfolio that 

maximizes the Sharpe ratio is derived by solving the capital asset pricing model within a mean–covariance 

framework. In this paper, we propose an alternative approach, where the Sharpe ratio is obtained through a 

bilevel framework.  
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Some portfolio optimization models can be studied in a hierarchical process, where each level is associated 

with a financial strategy. Many hierarchical decision-making situations are modeled as bilevel optimization 

problems. Bilevel optimization in portfolio selection has recently gained attention due to its hierarchical 

structure (see, Benita et al., 2019; Leal et al., 2020; González-Díaz et al., 2021; Kobayashi et al., 2021; 

Stoilov et al., 2021; Cesarone et al., 2023; Salehi et al., 2023; Bayat et al., 2024; Crisci et al., 2025). Benita 

et al. (2019) studied a hierarchical model in which an investor allocates a budget to determine a 

decentralized global investment strategy through an intermediatory acting as a follower to maximize the 

return. Stoilov et al. (2021) presented a bilevel model where the upper-level problem estimates the Value 

at Risk, while the lower-level problem addresses a multi-objective optimization with return and risk as 

objective functions. Leal et al. (2020) and González-Díaz et al. (2021) proposed bilevel portfolio models in 

which the broker acts as a leader and fixes transaction costs with the portfolio, while the investor acts as a 

follower and minimizes the tail risk. Salehi et al. (2023) proposed a bilevel model in which the investor 

(acting as leader) at the upper level allocates budgets among various subsidiaries, which are followers, 

thereby forming a multi-objective lower-level problem in the bilevel formulation. Bayat et al. (2024) 

formulated the risk budgeting problem as a bilevel model, with the upper-level allocating risk budgets and 

the lower level computing the associated risk budgeting portfolio. Kobayashi et al. (2021) considered a 

mean–risk portfolio model using conditional value-at-risk with a cardinality constraint. To handle the 

complexity of the cardinality constraint in the model, they reformulated it as a bilevel optimization problem 

and proposed a cutting-plane bilevel approach to solve it. In Cesarone et al. (2023), a financial service 

providers construct ESG-oriented portfolios to optimize the firm’s overall ESG impact at the upper level of 

the bilevel model. The lower level considers multiple account holders optimizing various portfolio features 

such as risk, return, transaction costs, and ESG scores, while maintaining a Nash equilibrium among 

themselves. Crisci et al. (2025) considered a multiperiod sparse mean–variance model, incorporating 

uncertainty in the covariance matrix through box constraints. 

 

The maximum Sharpe ratio of a portfolio can be computed by solving the capital asset pricing model in a 

mean-variance sense, which is a traditional approach. The traditional capital asset pricing model often fails 

to achieve the optimal Sharpe ratio due to the non-concave behavior of the Sharpe ratio. The sub-optimal 

solution of the corresponding optimization problem often leads inefficient portfolio. A smoothing direct 

search method by Chen et al. (2018) is applied to solve a bilevel model, where the Sharpe ratio is maximized 

at the upper-level while minimizing risk based on the Markowitz framework at the lower-level, considering 

expected return and weight bounds as parameters. Jing et al. (2022) incorporated cardinality constraints in 

the lower-level by considering a similar type of bilevel model. 

 

The motivation of this study is to evaluate the maximum Sharpe ratio ensuring the efficient portfolio within 

a bilevel framework. The upper level maximizes the Sharpe ratio, while the lower level focuses on 

minimizing covariance risk under a parameterized expected return. The upper-level objective function is a 

nonconcave function, whereas the lower-level problem is a convex quadratic program. The methodology 

of this paper is based on the gradient-based line search technique which is different from the derivative-

free method by Chen et al. (2018) and Jing et al. (2022). In the proposed methodology, the active set strategy 

on the lower-level problem is employed to handle the nonconvex and non-smooth nature of the bilevel 

formulation. Using this approach, a sequence of portfolios is generated that converge to an optimal 

portfolio. The methodology is tested on some portfolio problems with real datasets for validation. In 

addition, the simulation approach of Jorion (1992) is used to test the quality of the results obtained. From 

the numerical experiments, it can be concluded that the bilevel framework for maximizing the Sharpe ratio 

performs better than the traditional mean–variance approach. 
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This study is organized into several sections. Section 2 explains the bilevel portfolio optimization model 

and some prerequisites. The active set strategy is explained in Section 3. In Section 4, the methodology is 

applied to financial data taken from Bombay Stock Exchange (BSE), India. 

 

2. Model Formulation 
A bilevel optimization problem is an optimization model with a hierarchical structure in which a nested 

parametric problem appears in the constraint set. A general optimistic bilevel problem with equality and 

inequality constraints is mathematically expressed as 
(𝑃):   max

𝑥,𝑦
  𝐹(𝑥, 𝑦)

        s.t. 𝐺(𝑥, 𝑦) ≤ 0,𝐻(𝑥, 𝑦) = 0,

    𝑦 ∈ argmin
𝑦

{𝑓(𝑥, 𝑦) s.t. 𝑔(𝑥, 𝑦) ≤ 0, ℎ(𝑥, 𝑦) = 0},
 

 

where, 𝐹:ℝ𝑛 × ℝ𝑚 → ℝ,𝑓:ℝ𝑛 × ℝ𝑚 → ℝ,𝐺:ℝ𝑛 × ℝ𝑚 → ℝ𝑝1 , 𝐻:ℝ𝑛 × ℝ𝑚 → ℝ𝑝2 , 𝑔: ℝ𝑛 ×ℝ𝑚 →

ℝ𝑞1 , ℎ:ℝ𝑛 × ℝ𝑚 → ℝ𝑞2. The upper-level or leader's problem is, 

max 
𝑥,𝑦

  𝐹(𝑥, 𝑦) s.t. 𝐺(𝑥, 𝑦) ≤ 0,𝐻(𝑥, 𝑦) = 0,  

 

where, 𝑦 is the solution of the lower-level or follower's problem, which is, 

min
𝑦
  𝑓(𝑥, 𝑦) s.t. 𝑔(𝑥, 𝑦) ≤ 0, ℎ(𝑥, 𝑦) = 0.  

 

Let the lower-level problem be uniquely solved and 𝑦(𝑥) be the optimal solution for given upper-level 

parameter 𝑥. Then, we say 𝑑𝑥 is an ascent feasible direction at 𝑥 if there exists 𝛼‾ > 0 such that 

𝐹(𝑥 + 𝛼𝑑𝑥 , 𝑦(𝑥 + 𝛼𝑑𝑥)) ≥ 𝐹(𝑥, 𝑦(𝑥)), 

and 𝐺(𝑥 + 𝛼𝑑𝑥 , 𝑦(𝑥 + 𝛼𝑑𝑥)) ≤ 0,𝐻(𝑥 + 𝛼𝑑𝑥 , 𝑦(𝑥 + 𝛼𝑑𝑥)) = 0 for each 𝛼 ∈ (0, 𝛼‾].  
 

A point (𝑥, 𝑦(𝑥)) is a local optimal solution of the bilevel optimization problem if there exists a 

neighborhood 𝑈𝑥 about 𝑥 such that 𝐹(𝑥′, 𝑦(𝑥′)) ≤ 𝐹(𝑥, 𝑦(𝑥)), where (𝑥′, 𝑦(𝑥′)) satisfies 𝐺(𝑥′, 𝑦(𝑥′)) ≤

0,𝐻(𝑥′, 𝑦(𝑥′)) = 0 for each 𝑥′ ∈ 𝑈𝑥. If these conditions hold for any neighbourhood about 𝑥 then (𝑥, 𝑦(𝑥)) 
is a global optimal solution of the bilevel optimization problems. For the necessary and sufficient conditions 

for the existence of a solution of bilevel optimization problems, the reader may see Chapter 5 of Dempe 

(2002) for the uniquely solved lower-level problem. 

 

If the lower-level problem is convex and a suitable constraint qualification holds for the fixed upper-level 

variable 𝑥, the bilevel problem can be reformulated into a single-level optimization problem using its 

Karush-Kuhn-Tucker (KKT) optimality conditions (Allende & Still, 2013). This reformulation introduces 

dual variables of the lower-level problem together with complementarity constraints into the single-level 

formulation. Moreover, when the lower-level constraints satisfy the linear independence constraint 

qualification, KKT multipliers are unique, and the resulting single-level problem is equivalent to the 

original bilevel problem in terms of solutions (Dempe & Dutta, 2012). In this paper, we consider a bilevel 

optimization model in finance, known as the bilevel portfolio optimization problem, and develop an 

algorithm by using the active set method explained in Section 4.3 of Dempe (2002) and Khatana & Panda 

(2025) to estimate the optimal portfolio. The following notations are used to propose this model. 
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Notations 

• 𝐴𝑖   : 𝑖𝑡ℎ asset of the portfolio 𝑃 = (𝐴1, 𝐴2, ⋯ , 𝐴𝑛). 
• 𝑇  : Total number of observations for which data is collected. 

• 𝑟𝑖𝑗  : Return of asset 𝐴𝑖 at time 𝑡𝑗. 

• 𝜎𝑖𝑗  : Covariance between returns of the assets 𝐴𝑖 and 𝐴𝑗. 

• 𝜇𝑖  : Expected return of the asset 𝐴𝑖. 
• 𝜇 : (𝜇1, 𝜇2,⋯ , 𝜇𝑛)

𝑇 . 
• 𝑤 : (𝑤1, 𝑤2,⋯ ,𝑤𝑛)

𝑇 , ∑  𝑛
𝑖=1 𝑤𝑖 = 1, where 𝑤𝑖 is the proportion of the invested capital in 𝐴𝑖. 

• 𝜌 : 𝜇𝑇𝑤 Expected return of the portfolio or investment. 

• Σ  : Covariance matrix of the return of the assets. 

• 𝑢 : (𝑢1
𝑢2
) ∈ ℝ2. 

• 𝑣 : (𝑣𝑎
𝑣𝑏
) ∈ ℝ𝑛+𝑛. 

• 𝐼(𝑤) : {𝑖, 𝑗: − 𝑤𝑖 + 𝑎𝑖 = 0,𝑤𝑗 − 𝑏𝑗 = 0, 𝑖, 𝑗 = 1,2,⋯ , 𝑛}. 

• 𝐽(𝑣) : {𝑖, 𝑗: 𝑣𝑎𝑖 > 0, 𝑣𝑏𝑗 > 0, 𝑖, 𝑗 = 1,2,⋯ , 𝑛}. 

 

The portfolio optimization problem determines the optimal strategy for investing capital in financial assets. 

The Markowitz mean-variance model aims to minimize the risk and maximize the portfolio's return. A 

general mean-variance model is 

min
𝑤
  𝑤𝑇Σ𝑤 s.t. 𝑒𝑇𝑤 = 1, 𝜇𝑇𝑤 = 𝜌, 

 

where, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 , 𝑤𝑗 is the proportion of investment in 𝑗𝑡ℎ asset of the portfolio, 𝜇 = 

(𝜇1, 𝜇2, … , 𝜇𝑛)
𝑇 , 𝜇𝑗 is the expected rate of return of 𝑗th  asset over a time period 𝑇, 𝜌 ∈ ℝ is the target of 

return fixed by the investor, and Σ is the covariance matrix of returns. Many researchers have contributed 

to the variations of the Markovitz mean-variance model in different directions, which are summarized in 

Section 1. This paper focuses on the Sharpe ratio and structures the Markovitz model in two levels, which 

can be treated as a bilevel portfolio optimization model. The upper-level maximizes Sharpe ratio of the 

portfolio, whereas lower-level takes care of the return. The Sharpe ratio of the portfolio is defined as the 

ratio of the expected return of the portfolio and the square root of the risk, mathematically computed as 
𝜇𝑇𝑤−𝑟𝑓

√𝑤𝑇Σ𝑤
, where 𝑟𝑓 corresponds to the rate of return for a risk-free asset. Let 𝜇𝑇𝑤 = 𝜌, where 𝜌 is a decision 

variable.  

 

The following bilevel model of a single-period investment portfolio problem is investigated here. 

(𝐵𝑃):   max
𝜌,𝑤

 
𝜌−𝑟𝑓

√𝑤𝑇Σ𝑤
  

            s.t.  ρ≥α,  

            𝑤 ∈ argmin
w
 {𝑤𝑇Σ𝑤 s.t. 𝑒𝑇𝑤 = 1, 𝜇𝑇𝑤 = 𝜌, 𝑎 ≤ 𝑤 ≤ 𝑏}.  

 

In BP, 𝑎, 𝑏, ∈ ℝ𝑛 and the vector inequality 𝑎 ≤ 𝑤 ≤ 𝑏 is considered componentwise, and 𝛼 > 0 is a small 

real number, which ensures that the model provides a positive expected return on the investment. The upper-

level of the portfolio optimization model is 

(𝑈𝑃):  max
𝜌,𝑤

  
𝜌 − 𝑟𝑓

√𝑤𝑇Σ𝑤
 s.t. 𝜌 ≥ 𝛼, 
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where, 𝑤 is determined through a lower-level problem, which is 

(𝐿𝑃𝜌):  min
𝑤
 𝑤𝑇Σ𝑤 s.t. 𝑒𝑇𝑤 = 1, 𝜇𝑇𝑤 = 𝜌, 𝑎 ≤ 𝑤 ≤ 𝑏. 

 

For the diversification of the optimal portfolio, the investor imposes the lower and upper bounds 𝑎 and 𝑏 

on the weights. The lower bound on the weights ensures that a small proportion of weights can be excluded 

from the optimal portfolio. On the other hand, the upper bound on the weights is imposed to limit the 

proportion of capital allocated to a single asset to enable diversification in the portfolio. 

 

For given expected return 𝜌 in the 𝐿𝑃𝜌 model, an optimal risk 𝑤(𝜌) can be obtained by solving the 𝐿𝑃𝜌, and 

the corresponding Sharpe ratio 
𝜇𝑇𝑤(𝜌)−𝑟𝑓

√𝑤(𝜌)𝑇Σ𝑤(𝜌)
 can be evaluated. The problem UP determines the value of 𝜌 

that maximizes the Sharpe ratio. BP identifies the optimal portfolio weights 𝑤∗ so that the Sharpe ratio is 

maximized at the optimal expected return 𝜌∗. Note that 𝐿𝑃𝜌 is a convex quadratic programming problem, 

which is computationally tractable. UP is a nonlinear maximization problem with a non-concave objective 

function. Hence this model can’t be solved using traditional optimization techniques. In the next section, 

an iterative scheme is developed to obtain the solution of this model. A sequence of points {(𝜌𝑘 , 𝑤𝑘)} is 

generated, starting with an initial return target 𝜌0 and initial portfolio 𝑤0, the limit point of {(𝜌𝑘 , 𝑤𝑘)} is 

considered as {(𝜌∗, 𝑤∗)}, which solves the above bilevel portfolio optimization model. This iterative 

scheme is in the light of an active set strategy. 

 

3. Methodology 
For a given return parameter 𝜌, 𝐿𝑃𝜌 is a convex quadratic programming problem. Hence, 𝐿𝑃𝜌 is uniquely 

solved at 𝜌, and the solution can be obtained by solving the KKT optimality conditions of 𝐿𝑃𝜌. As a result, 

the bilevel hierarchical model is reformulated into a single-level problem with complementarity conditions, 

which is challenging to handle. Here, an active state strategy in the light of Section 4.4.2 of Dempe (2002) 

and the work in Khatana & Panda (2025) is used to address the complementarity condition. The Lagrange 

function for 𝐿𝑃𝜌 is given by 

𝐿(𝜌,𝑤, 𝑢, 𝑣) = 𝑤𝑇Σ𝑤 + 𝑢1(𝑒
𝑇𝑤 − 1) + 𝑢2(𝜇

𝑇𝑤 − 𝜌) + 𝑣𝑎
𝑇(𝑎 − 𝑤) + 𝑣𝑏

𝑇(𝑤 − 𝑏), 
 

where, (𝑢1, 𝑢2) ∈ ℝ × ℝ and (𝑣𝑎, 𝑣𝑏) ∈ ℝ
𝑛 × ℝ𝑛 are the associated Lagrange multipliers with the equality 

constraints and inequality constraints of 𝐿𝑃𝜌 respectively. The KKT optimality conditions for the 

minimization problem 𝐿𝑃𝜌 are 

2Σ𝑤 + 𝑢1𝑒 + 𝑢2𝜇 − 𝑣𝑎 + 𝑣𝑏 = 0                                                                                                                 (1) 

𝑒𝑇𝑤 = 1,           𝜇𝑇𝑤 = 𝜌                                                                                                                                (2) 

 −𝑤𝑖 + 𝑎𝑖 ≤ 0,     𝑣𝑎𝑖 ≥ 0, 𝑖 = 1,2,⋯ , 𝑛                                                                                                       (3) 

𝑤𝑗 − 𝑏𝑗 ≤ 0, 𝑣𝑏𝑗 ≥ 0, 𝑗 = 1,2,⋯ , 𝑛                                                                                                              (4) 

(−𝑤𝑖 + 𝑎𝑖)𝑣𝑎𝑖 = 0,     (𝑤𝑗 − 𝑏𝑗)𝑣𝑏𝑗 = 0, 𝑖, 𝑗 = 1,2,⋯ , 𝑛                                                                            (5) 

 

For the sake of simplicity, we further denote the objective function of 𝑈𝑃 as 𝐹(𝑤) =
𝜇𝑇𝑤−𝑟𝑓

√𝑤𝑇Σ𝑤
, and Lagrange 

multiplier vectors by 𝑢 = (𝑢1
𝑢2
), and 𝑣 = (𝑣𝑎

𝑣𝑏
). Using the above optimality conditions of 𝐿𝑃𝜌, the following 

single-level problem can be obtained from 𝐵𝑃. 
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max
𝜌,𝑤,𝑢,𝑣

  𝐹(𝑤).
  

s.t. 𝜌 ≥ 𝛼, (𝜌, 𝑤, 𝑢, 𝑣) satisfies Equations (1) to (5). 

 

The above problem is a mathematical program with complementarity constraints, which is difficult to 

handle due to the presence of the nonlinear and nonconvex complementarity constraints in the expression 

(5). Using the active set strategy on the constrains (3)-(5), these are decomposed in the linear constraints 

and a subproblem is constructed to determine the feasible ascent direction. 

 

3.1 Construction of the Subproblem  

Let 𝜌𝑘 be the expected return and 𝑤𝑘 be the optimal portfolio of model 𝐿𝑃𝜌𝑘  with 𝑣𝑎
𝑘 and 𝑣𝑏

𝑘 as the 

Lagrange multiplier vectors associated with the constraints 𝑎 − 𝑤 ≤ 0 and 𝑤 − 𝑏 ≤ 0 respectively. 

Consider the active set 𝐼(𝑤𝑘) and the index set 𝐽(𝑣𝑘) of positive multipliers of the constraints function as 

𝐼(𝑤𝑘) = {𝑖, 𝑗: − 𝑤𝑖
𝑘 + 𝑎𝑖 = 0,𝑤𝑗

𝑘 − 𝑏𝑗 = 0, 𝑖, 𝑗 = 1,2,⋯ , 𝑛},

and 𝐽(𝑣𝑘) = {𝑖, 𝑗:  𝑣𝑎𝑖
𝑘 > 0, 𝑣𝑏𝑗

𝑘 > 0, 𝑖, 𝑗 = 1,2,⋯ , 𝑛}.
  

 

Let 𝑊 be any active index set satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘). The complementarity constraints 

(−𝑤𝑖 + 𝑎𝑖)𝑣𝑎𝑖 = 0, (𝑤𝑗 − 𝑏𝑗)𝑣𝑏𝑗 = 0 of the KKT optimality conditions can be decomposed corresponding 

to the active set 𝑊 as follows 

−𝑤𝑖 + 𝑎𝑖 = 0, 𝑣𝑎𝑖 ≥ 0, 𝑖 ∈ 𝑊                                                                                                                     (6) 

𝑤𝑗 − 𝑏𝑗 = 0, 𝑣𝑏𝑗 ≥ 0, 𝑗 ∈ 𝑊                                                                                                                        (7) 

−𝑤𝑖 + 𝑎𝑖 ≤ 0, 𝑣𝑎𝑖 = 0, 𝑖 ∉ 𝑊                                                                                                                     (8) 

𝑤𝑗 − 𝑏𝑗 ≤ 0,          𝑣𝑏𝑗 = 0, 𝑗 ∉ 𝑊                                                                                                                 (9) 

 

The main objective is to impose a proper strategy to generate a sequence of portfolios {𝑤𝑘} starting with 

an initial portfolio 𝑤0, which can lead to the optimal portfolio for large 𝑘. Let 𝜌𝑘 be the return target and 

𝑢𝑘 , 𝑣𝑘 are the associated KKT multiplier vectors corresponding to the portfolio 𝑤𝑘 at 𝑘th  iteration. The 

next iterating point ( 𝜌𝑘+1, 𝑤𝑘+1 ) is associated with the dual vector 𝑢𝑘+1, 𝑣𝑘+1, computed as 

𝜌𝑘+1 = 𝜌𝑘 + 𝛼𝑘𝑑𝜌𝑘 , 𝑤
𝑘+1 = 𝑤𝑘 + 𝛼𝑘𝑑𝑤𝑘 , 𝑢

𝑘+1 = 𝑢𝑘 + 𝛼𝑘𝑑𝑢𝑘 , 𝑣
𝑘+1 = 𝑣𝑘 + 𝛼𝑘𝑑𝑣𝑘, 

 

where, 𝛼𝑘 is the step length satisfying the following relation, 

𝐹(𝑤𝑘+1) ≥ 𝐹(𝑤𝑘) + 𝛼𝑘𝛿∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘                                                                                               (10) 

 

Inequality (10) ensures the increase in the objective function 𝐹 at each iteration. Hence, (𝑑𝜌𝑘 , 𝑑𝑤𝑘) is the 

ascent direction at (𝜌𝑘 , 𝑤𝑘). Denote  

𝑑𝑘: = (𝑑𝜌𝑘 , 𝑑𝑤𝑘 , 𝑑𝑢𝑘 , 𝑑𝑣𝑘).  

 

The following subproblem 𝑃𝑊(𝜌
𝑘, 𝑤𝑘) is solved to obtain the direction vector 𝑑𝑘, which is constructed 

using the linear approximation of the functions (1)-(2) and (6)-(9), and the objective function 𝐹(𝑤) about 

𝑤𝑘 as 
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(𝑃𝑊(𝜌
𝑘, 𝑤𝑘)) :  max

𝑑𝜌,𝑑𝑤,𝑑𝑢,𝑑𝑣
  ∇𝑤𝐹(𝑤

𝑘)
𝑇
𝑑𝑤

            𝑠. 𝑡.        𝑒𝑇𝑑𝑤 = 0, 𝜇
𝑇𝑑𝑤 = 𝑑𝜌 , −𝜌

𝑘 − 𝑑𝜌 ≤ −𝛼,

            2Σ𝑑𝑤 + 𝑒𝑑𝑢1 + 𝜇𝑑𝑢2 −∑  

𝑖∈𝑊

 𝑑𝑣𝑎𝑖 − ∑  

𝑗∈𝑊

 𝑑𝑣𝑏𝑗 = 0,

       𝑑𝑤𝑖 = 0,                      𝑑𝑣𝑎𝑖 ≥ 0, 𝑖 ∈ 𝑊,

       𝑑𝑤𝑗 = 0,                              𝑑𝑣𝑏𝑗 ≥ 0, 𝑗 ∈ 𝑊,

       −𝑤𝑖
𝑘 − 𝑑𝑤𝑖 + 𝑎𝑖 ≤ 0,       𝑑𝑣𝑎𝑖 = 0, 𝑖 ∉ 𝑊,

        𝑤𝑗
𝑘 + 𝑑𝑤𝑗 − 𝑏𝑗 ≤ 0,         𝑑𝑣𝑏𝑗 = 0, 𝑗 ∉ 𝑊.

 

 

𝑃𝑊(𝜌
𝑘, 𝑤𝑘) is a linear programming problem, and its solution is denoted by 𝑑𝑘 at (𝜌𝑘 , 𝑤𝑘) corresponding 

to the index set 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘). Note that the active set 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆

𝐼(𝑤𝑘) is not necessarily uniquely determined. Number of possible such 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘) 

is 2(|𝐼(𝑤
𝑘)|−|𝐽(𝑣𝑘)|), where notation |, | denote the cardinality of a set. The vector (𝜌𝑘 , 𝑤𝑘) is the optimal 

point of 𝐵𝑃 if ∇𝑤𝐹(𝑤
𝑘)𝑑𝑤𝑘 = 0 corresponding to each active set 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘). This 

condition is used as a stopping criterion in Algorithm 1. 

 

Let the sequence {(𝜌𝑘, 𝑤𝑘)} be obtained by solving the subproblem 𝑃𝑊(𝜌
𝑘, 𝑤𝑘), and (𝜌∗, 𝑤∗) be the 

limiting point of the sequence {(𝜌𝑘, 𝑤𝑘)}. If (𝜌∗, 𝑤∗) is not the stationary point of 𝐵𝑃, that is, 

∇𝑤𝐹(𝑤
∗)𝑑𝑤∗ ≠ 0 for some 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘), then, to address the situation, the current 

iterative point (𝜌𝑘 , 𝑤𝑘, 𝑢𝑘 , 𝑣𝑘) can be updated through a two-step procedure, as explained in the Step 2 of 

the algorithm. This concept is followed from the reference (Zhang et al., 2004).  

 

3.2 Outline of the Method 

Let the vector (𝜌𝑘 , 𝑤𝑘, 𝑢𝑘 , 𝑣𝑘) be obtained at 𝑘𝑡ℎ iterative point. First, a new point (𝜌̂𝑘 , 𝑤̂𝑘, 𝑢̂𝑘 , 𝑣̂𝑘) with 

information of (𝜌𝑘 , 𝑤𝑘 , 𝑢𝑘 , 𝑣𝑘) is computed for given 𝛿′ > 0 as follows. Consider the approximate active 

set 

𝐼𝑘(𝛿
′) = {𝑖, 𝑗 ∈ {𝑖, 𝑗 = 1,2,⋯ , 𝑛} ∶  −𝛿′ < −𝑤𝑖

𝑘 + 𝑎𝑖 ≤ 0,−𝛿
′ < 𝑤𝑗

𝑘 − 𝑏𝑗 ≤ 0}, 

 

and the approximate positive multiplier set  

𝐽𝑘(𝛿
′) = {𝑖, 𝑗 ∈ {𝑖, 𝑗 = 1,2,⋯ , 𝑛} ∶  𝑣𝑎𝑖

𝑘 > 𝛿′, 𝑣𝑏𝑗
𝑘 > 𝛿′}. 

 

In the case, when 𝐼(𝑤𝑘) ≠ 𝐼𝑘(𝛿
′) and 𝐽(𝑤𝑘) ≠ 𝐽𝑘(𝛿

′), the iterative point ( 𝜌𝑘 , 𝑤𝑘, 𝑢𝑘 , 𝑣𝑘 ) is projected on 

the set 𝑆(𝐼𝑘(𝛿
′), 𝐽𝑘(𝛿

′)), where 

𝑆(𝐼𝑘(𝛿
′), 𝐽𝑘(𝛿

′)) =

{
  
 

  
 

𝑒𝑇𝑤 = 1, 𝜇𝑇𝑤 = 𝜌,−𝜌 ≤ −𝛼,
          2Σ𝑤 + 𝑢1𝑒 + 𝑢2𝜇 − 𝑣𝑎𝑖 + 𝑣𝑏𝑖 = 0,

(𝜌, 𝑤, 𝑢, 𝑣) :    − 𝑤𝑖 + 𝑎𝑖 = 0, 𝑖 ∈ 𝐼𝑘(𝛿
′),     𝑣𝑎𝑖 ≥ 0, 𝑖 ∈ 𝐽𝑘(𝛿

′),

                                 𝑤𝑗 − 𝑏𝑗 = 0, 𝑗 ∈ 𝐼𝑘(𝛿
′),    𝑣𝑏𝑗 ≥ 0, 𝑗 ∈ 𝐽𝑘(𝛿

′),

                           −𝑤𝑖 + 𝑎𝑖 ≤ 0, 𝑖 ∉ 𝐼𝑘(𝛿
′),       𝑣𝑎𝑖 = 0, 𝑖 ∉ 𝐽𝑘(𝛿

′),

                                 𝑤𝑗 − 𝑏𝑗 ≤ 0, 𝑗 ∉ 𝐼𝑘(𝛿
′),      𝑣𝑏𝑗 = 0, 𝑗 ∉ 𝐽𝑘(𝛿

′)}
  
 

  
 

. 
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The new point using this projection is denoted by (𝜌̂𝑘 , 𝑤̂𝑘, 𝑢̂𝑘 , 𝑣̂𝑘). The next step identifies a suitable active 

set 𝑊 from all possible choices of 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘) and corresponding subproblem 𝑃𝑊 

which can provide the ascent direction (𝑑𝜌𝑘 , 𝑑𝑤𝑘 , 𝑑𝑢𝑘 , 𝑑𝑣𝑘). There are a finite number of choices of the 

active set 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘) as 𝐽(𝑣𝑘) and 𝐼(𝑤𝑘) are finite sets. 

 

A sufficient increase in the objective function 𝐹 is required at each iteration of the algorithm to accelerate 

the iterative process, which depends on the value of ∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘. According to Step 4(a), for a given 

𝜖 > 0, if ∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 > 𝜖 then there is a possibility of an increase in the objective value along this 

direction. Hence, we proceed to compute the step size in Step 6. According to Step 4(b), if 

∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 < 𝜖 then we need to consider a different active set 𝑊 satisfying 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘), and 

repeat Step 3 till ∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 > 𝜖. According to Step 4(c), if ∇𝑤𝐹(𝑤

𝑘)
𝑇
𝑑𝑤𝑘 < 𝜖 for each 𝑊 satisfying 

𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘) then we can update 𝑑𝑤𝑘 corresponding to the maximum value of ∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 as 

follows: 

𝑑𝑤𝑘 ← argmax {∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 ∣ 𝑑𝑘 solves 𝑃𝑊(𝜌

𝑘, 𝑤𝑘), 𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘)}                                    (11) 

 

This process is outlined in Step 4 of the algorithm. 

 

3.3 Algorithmic Steps 

The following algorithm is developed based on the steps mentioned above. We denote the suitable subsets 

of the active set at 𝑘𝑡ℎ iteration as 𝒜k ≔ {𝑊 ∶  𝐽(𝑣𝑘) ⊆ 𝑊 ⊆ 𝐼(𝑤𝑘)} in the following algorithm. 

Algorithm 1 Iterative process for (𝐵𝑃) 

Step 0: (Initialization) Select the initial point 𝜌0 ≥ 𝛼 for given 𝛼 > 0 and compute 𝑤0 by solving 𝐿𝑃𝜌0. 

            The corresponding dual variables are 𝑢0 and 𝑣0, and the initial active set is 𝑊0 = 𝐼(𝑤0). Choose 

             parameters 0 < 𝛿, 𝛿0, 𝜂, 𝜎, 𝜖 < 1. 

Step 1: Set 𝛿′ = 𝛿0. Compute 𝐼(𝑤𝑘), 𝐼𝑘(𝛿
′), 𝐽(𝑣𝑘), and 𝐽𝑘(𝛿

′). Obtain the set 𝒜k. 
Step 2:(Projection step) Perform the following sub steps sequentially: 

       (2a). If 𝐼𝑘(𝛿
′) = 𝐼(𝑤𝑘) and 𝐽𝑘(𝛿

′) = 𝐽(𝑣𝑘) then update 𝑊 ← 𝐼(𝑤𝑘). Go to Step 3. 

       (2b). If 𝑆(𝐼𝑘(𝛿
′), 𝐽𝑘(𝛿

′)) ≠ ∅ then project ( 𝜌𝑘 , 𝑤𝑘, 𝑢𝑘 , 𝑣𝑘 ) on the set 𝑆(𝐼𝑘(𝛿
′), 𝐽𝑘(𝛿

′) ) and obtain    

                  (𝜌̂𝑘, 𝑤̂𝑘, 𝑢̂𝑘 , 𝑣̂𝑘). 

       (2c). If 𝐹(𝑤̂𝑘) > 𝐹(𝑤𝑘) then update (𝜌𝑘 , 𝑤𝑘, 𝑢𝑘 , 𝑣𝑘) ← (𝜌‾𝑘 , 𝑤̂𝑘, 𝑢‾𝑘 , 𝑣‾𝑘) and 𝑊 ← 𝐼(𝑤̂𝑘) and go to 

               the Step 3. 

       (2d). Otherwise update 𝛿′ = 𝜎𝛿′. Start over Step 2. 

Step 3: (Direction searching step) Solve 𝑃𝑊(𝜌
𝑘, 𝑤𝑘) to obtain the solution 𝑑𝑘. 

Step 4: (Sufficient increase step) Perform the following sub steps sequentially: 

       (4a). If ∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 ≥ 𝜖 then go to Step 6. 

       (4b). If ∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 < 𝜖 and 𝒜k ≠ ∅ then select 𝑊 ∈ 𝒜k, set 𝒜k = 𝒜k ∖𝑊, and go to      

               Step 3.       

       (4c). If 𝒜k = ∅ then set 𝜖 = 𝜎𝜖 and determine 𝑑𝑤𝑘 using Equation (11). Go to Step 5. 

Step 5: (Stopping criteria) If ∇𝑤𝐹(𝑤
𝑘)
𝑇
𝑑𝑤𝑘 = 0 then terminate with (𝜌𝑘 , 𝑤𝑘). 

Step 6: (Step length computation) Compute 𝛼𝑘 = 𝜂
𝑗, 𝑗 ∈ {0,1,2,… } such that 𝑗 is the smallest number     

             and 𝛼𝑘 satisfies Armijo condition (11). 
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Step 7: Update (𝜌𝑘+1, 𝑤𝑘+1, 𝑢𝑘+1, 𝑣𝑘+1) = (𝜌𝑘 + 𝛼𝑘𝑑𝜌𝑘 , 𝑤
𝑘 + 𝛼𝑘𝑑𝑤𝑘 , 𝑢𝑘 + 𝛼𝑘𝑑𝑢𝑘 , 𝑣

𝑘 + 𝛼𝑘𝑑𝑣𝑘), 

and set 𝑘 = 𝑘 + 1, and go back to Step 1. 

 

4. Results and Discussions 
Suppose an investor is interested in trading 𝑛 risky assets, 𝐴𝑖 , 𝑖 = 1,2, … , 𝑛. Let 𝐫𝑖 be the return of asset 𝐴𝑖, 
which is a random variable following normal distribution 𝑁(𝜇, 𝜎), 𝜎𝑖𝑘 be the covariance of returns of the 

assets 𝐴𝑖 and 𝐴𝑘 , and 𝑟𝑖𝑗 denote the return of asset 𝐴𝑖 at time 𝑡𝑗, where 𝑗 = 1,2,… , 𝑇. The expected return 

of the asset 𝐴𝑖 is 𝜇𝑖: =
1

𝑇
∑  𝑇
𝑗=1 𝑟𝑖𝑗 and 𝜎𝑖𝑘:=

1

𝑇−1
∑  𝑇
𝑗=1 (𝑟𝑖𝑗 − 𝜇𝑖)(𝑟𝑘𝑗 − 𝜇𝑘). 

 

A simulation approach is used to test the results obtained through the model. In the process, historical data 

including daily and hourly data from different periods in the Bombay Stock Exchange India, are collected. 

To ensure diversity in the data, stocks are selected from various categories such as banking, information 

technologies, automobiles, and others, which are listed under the category Nifty 50, Nifty Small cap 50, 

and Nifty Midcap 50 indexes. Table 𝟏 displays the historical data between March 2018 and November 

2024. The dataset is divided in two subsets, which are training and testing data sets. The training data (in-

sample data) contain the first part of the dataset, which is used to estimate the optimal portfolio using the 

simulation technique. The testing data (out-of-sample data) comprises the second part of the dataset, used 

to test the quality of the results obtained from the in-sample period. Here, Data 1, 2, and 3 are collected on 

the daily basis, while Data 4, 5, and 6 are collected on the hourly basis. 

 
Table 1. Details of the data sets. 

 

Data set 𝒏 𝑻 In sample data Out sample data 

Data 1 10 498 16 September 2021 to 25 April 2023 29 April 2023 to 15 September 2023 

Data 2 25 639 3 January 2022 to 24 July 2023 25 July 2023 to 31 July 2024 

Data 3 50 639 3 January 2022 to 25 Jan 2024 29 January 2024 to 31 July 2024 

Data 4 70 11409 12 March 2018 to 26 October 2021 26 October 2021 to 29 November 2024 

Data 5 100 5704 26 October 2022 to 4 April 2023 4 April 2023 to 29 November 2024 

Data 6 139 11409 12 March 2018 to 23 December 2022 23 December 2022 to 29 November 2024 

 

 

The high and low peak in the historical data along with the uncertainty in the data, is addressed using the 

smoothing technique. To reduce the effect of the noise in the data, the data are first processed to smooth 

fluctuations and then used in the experiments for the estimation of the optimal parameters. A suitable 

process cleans hourly data before the applicability. Missing entries in the rate matrix of the dataset are filled 

using the rolling mean of data from the previous trading days, with a seven-point window. If some entries 

remain missing, the corresponding periods across all stocks are removed for the sake of consistency. To 

smooth the rate matrix and reduce noise, an exponential moving average technique with a 35-point span is 

applied, which is equivalent to one week of trading. This provides a more stable representation of the rate 

of change for each stock and improves the reliability of the analysis. We perform a well-known simulation 

approach (see (Jorion, 1992)) in portfolio optimization to evaluate the performance of the model. For 𝜉 ∈
(0,1), we use the first 𝑇𝜉 observations to compute the mean and covariance as follows: 

𝜇𝑖 =
1

𝜉𝑇
∑  
𝜉𝑇
𝑗=1 𝑟𝑖𝑗, 𝜎𝑖𝑘

 ̅̅ ̅̅
 
 =

1

𝜉𝑇−1
∑  
𝜉𝑇
𝑗=1 (𝑟𝑖𝑗 − 𝜇𝑖)(𝑟𝑘𝑗 − 𝜇𝑘).  

 

Based on this information, we simulate the data for the next (1 − 𝜉)𝑇 observations using the inbuilt code 

MVNRND from the machine learning toolbox of MATLAB. Let 𝜇𝑖𝑛 and 𝐶𝑖𝑛 denote the mean and 

covariance matrix of the simulated data. The bilevel model 𝐵𝑃 is then solved using these estimated values 

of mean and covariance using Algorithm 1. 
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• Algorithm 1 is implemented by developing MATLAB code, and all the numerical experiments are 

conducted on a Windows 10 PC using MATLAB (2023b). 

• The following accuracies are accepted in the code: In Step 1 of Algorithm 1, the index sets are 

determined with a tolerance of 10−6, and the algorithm is terminated at Step 5 with an optimal tolerance 

of 10−8. The various parameters values in the algorithm are as follows. 

𝑎 = −𝑒, 𝑏 = 𝑒, 𝛿 = 10−3, 𝛿0 = 10
−4, 𝜂 = 0.5, 𝜎 = 10−3, 𝜖 = 10−1, 𝛼 = 10−3, 𝑟𝑓 = 0. 

• LINPROG function of MATLAB is used to solve the subproblem 𝑃𝑊(𝜌
𝑘 , 𝑤𝑘) in Step 4 for calculation 

of 𝑑𝑤𝑘. 

 

Let 𝜌∗ be the optimal expected return and 𝑤∗ be the corresponding optimal portfolio allocation. In that case 

in-sample Sharpe ratio is calculated using the formula 
𝜌∗−𝑟𝑓

√𝑤∗𝑇𝐶𝑖𝑛𝑤∗
. Next, let 𝜇out and 𝐶out  represent the mean 

and covariance matrix of the out-of-sample data. Using this data, out-sample Sharpe Ratio is calculated as 
𝜌∗−𝑟𝑓

√𝑤∗𝑇𝐶𝑜𝑢𝑡𝑤∗
. The result obtained from the out-sample data represents one observation of the optimal 

portfolio. The out-sample data results are then compared with the results obtained with a naive strategy. 

The naive strategy, also known as the equal-weight strategy, is obtained by assigning equal weights to all 

assets and is widely accepted as a benchmark in portfolio selection problems to test the quality of the results. 

Figure 𝟏 and Figure 𝟐 represent in-sample Sharpe ratio and out-sample Sharpe ratio plotted with respect 

to the expected return 𝜌. The optimal expected return 𝜌∗ is plotted to indicate the optimal Sharpe ratio, 

represented by dashed line. In general, to evaluate the Sharpe ratio, investor determines the risk-free return 

corresponding to the investment in the government securities, bonds, or treasury bills etc. However, for 

simplicity, we consider the risk-free return 𝑟𝑓 = 0. 

 

 
 

Figure 1. Sharpe ratio on daily data. 
 

 
 

Figure 2. Sharpe ratio on hourly data. 
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The results obtained on the data sets of Table 𝟏 are summarized in Table 𝟐. In this table, the optimal 

expected return is computed by solving the model with the algorithm's code using the in-sample data 

estimates (𝜇𝑖𝑛, 𝐶𝑖𝑛). The corresponding in-sample Sharpe ratio is reported using the simulated data. Using 

the out-of-sample estimates (𝜇out , 𝐶out ), optimal Sharpe ratio is obtained by solving the bilevel model, 

which we report as the actual portfolio Sharpe ratio. 

 
Table 2. Numerical results for bilevel model. 

 

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Optimal Expected Return 1.02 × 10−2 6.23 × 10−3 1.19 × 10−2 2.36 × 10−3 4.17 × 10−3 5.06 × 10−3 

Actual Sharpe ratio 5.31 × 10−1 3.87 × 10−1 1.10 1.55 × 10−1 2.47 × 10−1 2.65 × 10−1 

In Sample Sharpe ratio 4.13 × 10−1 3.89 × 10−1 1.00 1.94 × 10−1 3.00 × 10−1 2.48 × 10−1 

Out Sample Sharpe ratio 4.76 × 10−1 3.21 × 10−1 5.35 × 10−1 2.39 × 10−1 2.49 × 10−1 2.56 × 10−1 

Average Sharpe ratio 4.93 × 10−1 8.95 × 10−2 1.46 × 10−1 2.33 × 10−3 6.61 × 10−2 5.78 × 10−2 

 

 

Figure 𝟑 is plotted to visualize the results of Table 𝟐. The following observations are made from this 

figure. 

• Better results are reported with hourly data compared to daily data, as the gap among in-sample Sharpe 

ratio, out-of-sample Sharpe ratio, and actual Sharpe ratio are relatively smaller. This is because hourly 

data provides a better estimation of the covariance matrix. 

• For the nonstationary data, the gap between the in-sample and out-of-sample results is significant, as 

the performance of the model deteriorates due to sudden changes and regime shifts in the market data. 

• The gap between the in-sample Sharpe ratio and the out-sample Sharpe ratio increased with the size of 

portfolio for the daily data. 

• In-sample Sharpe ratio provides a good approximation of the actual Sharpe ratio. 

• By comparing with the naive strategy, we see a larger Sharpe ratio is obtained than the naive strategy 

for each data set. 

 

 
 

Figure 3. Shape ratio on daily data. 

 

Comparison with traditional approach: The proposed maximum Sharpe ratio model is formulated in two 

levels, and the methodology developed for the model is a gradient-based approach in which the active set 

plays an important role at every iteration. It is well-known that the maximum Sharpe ratio of a portfolio 
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can be obtained by solving the Capital Asset Pricing Model (CAPM). We test the Sharpe ratio of our model 

against the Markowitz model and Capital Asset Pricing Model (CAPM) using out-of-sample data of the 

data sets of Table 𝟏. The results obtained by various methods are listed in Table 𝟑. The following notations 

are used in the table. BP: Sharpe ratio obtained in the bilevel framework using Algorithm 𝟏. 

 

CAPM: Sharpe ratio obtained by solving the CAPM model. The capital asset pricing model is a nonconcave 

maximization problem, which is solved using the particle swarm optimization method. It is a derivative-

free approach. 

 

Markowitz: Sharpe ratio obtained after solving Markowitz mean-variance model corresponding to the 

optimal portfolio. The Markowitz model is a convex quadratic problem, which we solve using quadprog in 

MATLAB. 

 

Table 3 displays these results, and empirically conclude that the two-level model 𝐵𝑃 outperforms these 

standard models in estimating the Sharpe ratio. 

 
Table 3. Comparison of Sharpe ratio on different models. 

 

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

BP 5.31 × 10−1 3.87 × 10−1 1.10 1.55 × 10−1 2.47 × 10−1 2.65 × 10−1 

Markowitz 3.37 × 10−1 5.06 × 10−2 2.18 × 10−1 2.61 × 10−2 3.84 × 10−2 4.06 × 10−2 

CAPM 4.09 × 10−1 1.99 × 10−1 4.23 × 10−1 6.66 × 10−2 9.08 × 10−2 9.81 × 10−2 

 
 

5. Conclusion 
In this paper, an iterative method is developed using an active set strategy to obtain the efficient portfolio 

of a bilevel portfolio optimization model for maximizing the Sharpe ratio. The method finds the optimal 

expected return in the bilevel model, corresponding to an efficient portfolio. The scheme is implemented in 

a financial data set. The results are compared with the capital asset pricing model. The existing methods 

(Chen et al., 2018; Jing et al., 2022) that deal with these models are direct search approaches, which 

compare the objective values and require a large number of function evaluations and lower-level solution 

computations. The proposed approach is based on the gradient information of the objective function and 

adopts an active set strategy at the lower-level problem. 

 

The key limitation of the proposed method is the brute-force technique for the search of suitable active set 

in Step 4 of the algorithm, which may become computationally expensive for large size portfolios. 

However, these computations are not required at every iteration, and in practice, the search is not costly for 

small-sized portfolios.  

 

The current model considers only covariance-based risk, and does not account for various market 

nonstationary conditions. The model could be extended to include value-at-risk (VaR) or conditional value-

at-risk (CVaR) as risk measures, which may be considered as future contributions of the present work. 
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