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Abstract

The global urgency to combat climate change has led to the widespread adoption of carbon emission trading schemes as market-
based instruments. This study introduces a scalable and interpretable machine learning-based framework for evaluating, clustering,
and predicting city-level carbon trading strategies. This study fills a gap in localized policy evaluation by combining economic,
social, environmental, and political factors to make carbon regulation more adaptive and based on evidence. The hybrid framework
that was suggested combines Multi-Objective Optimization (MOO), Multi-Criteria Decision Making (MCDM), Particle Swarm
Optimization—Self-Organizing Maps (PSOM), and Random Forest classification. Criteria are weighted using a combination of
Fuzzy Delphi Method (FDM) and Stepwise Weight Assessment Ratio Analysis (SWARA), with prioritization executed via
MABAC. Cities are clustered through PSOM based on weighted indicators, and policy predictions are generated using Random
Forest trained on these clusters. The framework effectively demonstrated regional differences and putting cities into separate policy
groups based on their social, economic, environmental, and institutional characteristics. It also demonstrated strong predictive
accuracy in recommending feasible carbon trading strategies using the Random Forest classifier. Combining fuzzy logic and
machine learning made it possible to deal with the unpredictability and non-linearity that are common in city-level statistics. This
study introduces a new and adaptable decision support system based on machine learning that improves the accuracy and
responsiveness of evaluations in the carbon market. The integrated methodology furnishes policymakers with an all-encompassing
instrument to evaluate and project localized strategies, thereby promoting more equitable and effective carbon governance across
heterogeneous urban environments.

Keywords- Carbon trading, Multi-objective optimization (MOQO), Multi-criteria decision making (MCDM), Particle swarm
optimization — Self-organizing maps (PSOM), Machine learning.

Abbreviations

MCDM Multi-Criteria Decision Making

MOO Multi-Objective Optimization

PSOM Particle Swarm Optimization - Self-Organizing Maps
FDM Fuzzy Delphi Method

SWARA Stepwise Weight Assessment Ratio Analysis
MABAC Multi-Attributive Border Approximation Area Comparison
NSGA Non-Dominated Sorting Genetic Algorithm
TFN Triangular Fuzzy Number

GDP Gross Domestic Product

IC Industrial Composition

EE Energy Efficiency

ICA Innovation Capabilities

1Q Infrastructure Quality

PD Population Density

EIl Equity and Inclusion

PTQ Public Transport Quality

UP Urban Planning

PCE Per Capita Emissions

IMR Energy Mix Renewable

W2E Waste to Energy

LUP Land Use Planning

CRP Climate Resilience Plans

GI Green Infrastructure

RS Regulatory Support
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1. Introduction

Dealing with climate change has become a global priority, which has led governments to pass stricter
environmental rules (Adetama et al., 2022; Cui et al., 2024). Cities are central to these efforts, as they are
major consumers of energy and significant sources of carbon dioxide emissions. But many cities still don't
have plans that are specific to their needs for being carbon neutral (Zhang et al., 2024). Moving toward a
low-carbon economy is now a necessary step to make sure that economic growth and environmental
protection go hand in hand (Wang et al., 2024a).

Trade openness and foreign direct investment make growth cleaner by making it easier to use technology
that are good for the environment (Wang et al., 2023b). This shows how important it is to have good carbon
market mechanisms that cut emissions by giving people price incentives and letting them trade freely
(Zhang and Lin, 2023). Government-led carbon trading programs have proven effective in prompting
cleaner production, strengthening monitoring, and fostering innovation (Nasir et al., 2021; Wang et al.,
2021). For instance, regulatory frameworks in Indonesia emphasize the importance of enforcing sanctions
to enhance corporate compliance (Torodji et al., 2023). In the energy sector, carbon trading policies have
improved productivity and resource use efficiency through mechanisms such as cost compensation and
innovation stimulation (An and Whitcomb, 2024; Chen et al., 2024).

At the regional level, these programs advance sustainability by strengthening environmental governance
and enhancing carbon productivity (Shen et al., 2021). In the international trade context, they reduce risk
and create opportunities in green sectors (Mao, 2024). However, in numerous developing nations, reliance
on fossil fuels remains substantial, and unregulated expansion persists as a source of environmental concern
(Han et al., 2023). To counteract these trends, carbon trading has also been shown to improve energy
efficiency and enhance the impact of policy assessments (Hu et al., 2023). As economies expand, energy
consumption increases in tandem, bringing with it heightened environmental impacts (Wang et al., 2024b).
However, evidence of declining emissions intensity suggests that low-carbon development is achievable
(Du et al., 2022). Differentiated regional regulations and tailored emissions trading strategies are essential
for aligning environmental goals with local development needs (Kang and Zhao, 2022).

New developments in data science have facilitated these transitions. In particular, machine learning
especially explainable approaches is being applied more frequently to reveal complex, non-linear linkages
among emissions, economic performance, and urban structure (Zhu et al., 2021). Unsupervised and guided
learning approaches have enhanced model accuracy and interpretability for emissions forecasting and
policy evaluation (Du et al., 2023; Liu & Xu, 2024). Nevertheless, the integration of machine learning into
carbon trading research is still largely limited and insufficiently explored Owing to the economic, social,
and environmental complexities of carbon markets, decision-support approaches like Multi-Criteria
Decision Making (MCDM) have emerged as vital tools (Wu and Niu, 2024). Researchers have emphasized
the importance of accounting for spatial and temporal policy effects (Chang and Zhao, 2024) and utilizing
causal inference techniques to evaluate policy impacts (Wang et al., 2023¢; Liu et al., 2024a). Carbon
emission trading systems are some of the most scalable and useful market-based tools. China’s national
market, initiated in 2021 after a decade of pilot projects, has rapidly become a global leader (Zhang and
Deng, 2025). Yet, pronounced spatial and temporal disparities in pricing, enforcement, trading practices,
technological capacity, ecological constraints, and land use continue to undermine equity and efficiency in
carbon governance (Mandal et al., 2025).

Moreover, the cascading transformation of urban, cropland, and ecological landscapes directly influences

carbon storage and crop production, reinforcing the need for integrated, spatially aware policy design using
Multi-Objective Optimization framework integrated with interpretable machine learning (Chen et al.,
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2025). Addressing these complexities calls for machine learning-based frameworks to evaluate carbon
trading performance, identify regional trade-offs, and cluster strategies in a manner that supports informed,
adaptive, and data-driven climate decision-making (Rochd et al., 2025).

Machine learning and artificial intelligence have been applied in forecasting carbon prices, identifying key
policy levers, and supporting the design of dynamic trading strategies (Wu et al., 2024; Zhao et al., 2025).
The interpretability of these models has been further improved through techniques like Shapley Additive
Explanations, enabling more informed, evidence-driven policymaking. Moreover, adaptive strategy
models, such as deep reinforcement learning and federated learning, have enabled the real-time
optimization of trading decisions, even in decentralized and heterogeneous environments (Singh and Singh,
2025). Complementary policy tools, such as energy quota trading, have also proven effective in reducing
regional carbon inequality and promoting social equity (Wang et al., 2025).

By integrating supervised evaluation, unsupervised clustering, and MCDM, the model addresses the
following objectives:

e Determine carbon policy priorities using an MOO and MCDM approach.

o Identify regional carbon policy patterns through mapping and clustering using a hybrid PSOM.

e Predict feasible carbon trading policies for cities using the Random Forest classification model.

This study proposes a novel hybrid framework that integrates the MOO, MCDM, PSOM, and Random
Forest algorithms that can be used in the evaluation, grouping, and adaptive prediction process in a single
integrated system of city-level carbon trading strategies. Further, the framework offers scalable, context-

sensitive decision support in addressing spatial heterogeneity, and enables data-driven policy planning.

The comprehensive study is depicted in Figure 1, delineating the sequential methodological procedures
and the integration of key analytical components within the study framework.
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Figure 1. Proposed framework.

The remainder of this paper is organized as follows: Section 2 reviews related works on carbon trading
policies and frameworks; Section 3 presents the materials and methods used in this study, including the
development of the proposed hybrid model; Section 4 discusses the experimental results and analysis; and
Section 5 concludes the paper while outlining potential directions for future research.

2. Related Works

2.1 Carbon Trade Policy

Both governments and investors need to devise an effective carbon asset trading strategy if they want to
reach their long-term economic and environmental goals (Zhang and Chen, 2024). By allowing the
exchange of emission credits, carbon trading systems provide a market-based way to lower emissions (Xu
et al., 2024). Bekkers and Cariola (2022) came up with the carbon club structure, which encourages regulatory
harmonization and more people to get involved in global climate governance.

Cities are the most essential sites to work on climate change because they are responsible for more than
70% of carbon emissions. Most policy research, on the other hand, is still focused on the national level and
often doesn't take into account how emissions change in different localities (Liu et al., 2024b). Research by
Ma (2023) revealed that employing both taxes and carbon trading systems together can isolate emissions
from economic growth. But most assessments still rely primarily on historical data and don't have the
methodological flexibility to account for changes in space and time at the city level (Wu et al., 2022). Wong
(2022) called for clear and open policy frameworks that take into account the needs of cities, given these
restrictions. Even though there have been some big improvements, creating adaptive, real-time city-level
models that show how policies change and emissions change in specific areas is still a problem.
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2.2 MOO and MCDM in Urban Policy

MCDM and MOO frameworks are increasingly used to guide sustainability assessments in complex urban
systems. Ferdous et al. (2024) introduced a decision-tree model that integrates MOO optimization under
uncertainty, offering a structured analysis despite data gaps. Gallo and Maheut (2023) showed how MCDM
approaches can be used in many different ways in urban logistics and policy evaluation. Reyes-Norambuena
et al. (2024) came up with a Grey MCDM framework to make pedestrian infrastructure better. This app
shows how MCDM can help with city planning. Keshavarz-Ghorabaee et al. (2022) also talked about how
MCDM may help with city transportation planning. But MOO and MCDM are not fully integrated into
urban carbon policy yet, and there aren't many studies that offer a unified framework for optimization,
assessment, and prediction.

2.3 Applications in Energy and Emission Reduction

In response to global climate issues, there is an international consensus that carbon emissions must be
reduced (Cao et al., 2024a), with several studies focusing on carbon trading policies and emission
reductions. Xia et al. (2021) provided empirical evidence of carbon trading’s role in emission reductions
within construction and land use, highlighting the necessity of multi-criteria evaluation frameworks like
MOO and MCDM. Zinatizadeh et al. (2017) underscored the importance of MCDM in evaluating trade-
offs across environmental, economic, and social dimensions in urban sustainability.

Kokkinos et al. (2020) built a tool to help people make decisions about decarbonization strategies in the
optimization of energy systems. However, they noted a need to further explore social and behavioral
impacts on household-level energy choices. Esmat et al. (2023) have built a model to help people choose
decentralized heating sources. This proves that MCDM helps city planners establish a balance between
their economic and environmental goals. Even while these kinds of apps are helpful, most research are still
focused on descriptive analysis and haven't made any headway on building tools that can anticipate how
well carbon trading would work at the municipal level. These studies reveal a gap in understanding how
carbon trading policies influence individual decision-making.

2.4 Advances in Hybrid Models and Future Directions

Recent studies show that hybrid models could help with the problems that come up in carbon trading. Bian
et al. (2024) looked at bidding techniques in energy storage markets, and Qin et al. (2024) stressed the need
for systems that can handle several objectives quickly. Baars et al. (2023) made progress on integrated
evaluations for the sustainability of electric vehicles and suggested that MOO should be improved even
more. Cao et al. (2024b) came up with an optimization model that uses a chaotic artificial hummingbird
method for regional dispatch. However, their method is not clear about how prioritizing techniques are put
into action in optimization algorithms.

Zhang et al. (2022) stated that quasi-natural experiments and synthetic controls are also good ways to find
out how well carbon trading works. Most hybrid models are only useful in few areas, and they have trouble
scaling, adapting, and being used in real time in cities.

2.5 Advantages of the Hybrid MOO-MCDM-PSOM-Random Forest Methods

Recent progress in machine learning has made it even more important to choose the right features and fine-
tune hyperparameters when creating predictive models (Alahmari et al., 2025). Shang et al. (2025) indicated
that hybrid deep learning models might be helpful, but they also brought out issues with multivariate
analysis. These limits highlight how crucial it is to create frameworks that can adapt to many different parts
of a city.
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Xu and Zhang (2023) research showed how hard it is to find a compromise between accuracy and usefulness
when measuring emissions in cities. The suggested system combines the Fuzzy Delphi Method (FDM),
Stepwise Weight Assessment Ratio Analysis (SWARA), Multi-Attributive Border Approximation Area
Comparison (MABAC), PSOM, and Random Forest algorithms to overcome these challenges. This
integration allows for dynamic criterion weighting, strong clustering, and accurate prediction, which makes
it possible to do scaled, context-aware evaluations of carbon trading policies. The use of machine learning
for urban classification (Xing et al., 2024) and predictive carbon mapping has showed potential, although
it is still not fully developed in integrated frameworks. The proposed approach solves this problem by
connecting clustering with machine learning to help optimize carbon trading in each city.

2.6 Research Gap

The growing need to do something about climate change has led to more academic writing about carbon
trading frameworks, optimization methods, and sustainability evaluations. Dynamic policy studies (Xu et
al., 2024) and global cooperation frameworks like the carbon club (Bekkers and Cariola, 2022) are useful,
but they usually only look at national-level situations and don't take into account differences between cities.
In the same way, hybrid models and optimization methods like carbon tax (Ma, 2023), volatility modeling
in carbon pricing (Wu et al., 2022), and MOO-MCDM integration (Ferdous et al., 2024) generally focus on
theoretical frameworks without putting them into practice in specific cities.

Many current approaches rely primarily on historical or static datasets (Li et al., 2020), which makes it hard
for them to adjust to quickly changing urban settings. Also, decision-making tools often don't take into
account social and behavioral factors, like in energy policy models (Kokkinos et al., 2020). Also, even
while multi-agent and hybrid optimization models (Cao et al., 2024b) have made certain areas of business
run more smoothly, they frequently can't be scaled up, respond in real time, or be used in a variety of urban
contexts.

3. Materials and Methods

3.1 Identification of Aspect and Criteria

Based on a review of several previous studies, several aspects are summarized, including economic aspects
(Chen et al., 2021) involving Gross Domestic Product (GDP), Industrial Composition (IC), Energy
Efficiency (EE), Innovation Capabilities (ICA), and Infrastructure Quality (IQ) as criteria. Moreover, the
social aspects (Yao et al., 2023) involve Population Density (PD), Equity and Inclusion (EI), Public
Transport Quality (PTQ), and Urban Planning (UP). The environmental aspects (Li et al., 2022; Yu and
Luo, 2022) involve Per Capita Emissions (PCE), Energy Mix Renewable (IMR), Waste to Energy (W2E),
Land Use Planning (LUP), Climate Resilience Plans (CRP), and Green Infrastructure (GI) as criteria.
Finally, the political aspect (Wang et al., 2023a) involves the Regulatory Support (RS) criterion, which
relates to implementing carbon trade policies for a city.

3.2 Design of Hybrid MOO-MCDM-PSOM

MOO and MCDM are operations research disciplines that aim to help make the best decisions in complex
problems (Neira-Rodado et al., 2023). The process of assigning weights to criteria employs the reciprocal
methodology, which computes the magnitude of the weight values, taking into account the varying
significance of the order of indices (Faisal and Rahman, 2023a). The Fuzzy Delphi offers a resilient
framework adept at managing uncertainties and ambiguities, acknowledging that decision-making
processes are often hindered by incomplete or imprecise information (Shen et al., 2021).

The approach of FDM-SWARA is particularly relevant for organizations and policymakers who want to
strategize based on uncertain data while still obtaining reliable results (Thompson et al., 2024). The
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SWARA method is an efficient approach to evaluating criteria by prioritizing criteria in ascending order
based on expected meaning through consultation with experts (Sarvari et al., 2024; Faisal et al., 2025).
Furthermore, Torrey et al. (2024) support it, stating that the FDM enables comprehensive analysis without
additional computational load and steep learning curves compared to more complex methods. The
explanation of decision-making using the hybrid approach of MOO-MCDM-PSOM based on the flowchart
is as follows:

Step 1. The threshold value is determined using the Equation (1).
d (7, ) =J§* [ (M; + My + M3)] (1)

The dataset utilizes triangular fuzzy numbers to determine a threshold value (d).

Step 2. Defining fuzzy score value using Equation (2).
= (1 1 1
A= (; i=1 b, Mg my, - Xy ui) 2

where, n is the number of authorities. Inconstant /, m, and u are the combined bounds of lower, middle, and
upper, respectively.

MCDM makes it easier for participants to voice their opinions and helps them find the best computational
solution (Carneiro et al., 2021). The SWARA method is an efficient approach to evaluating criteria based
on knowledge, experience, and implicit information, as well as the opinions of experts or group interests
on the importance of the weighting process (Lorenzoni et al., 2024).

Step 3. Summarize the expert assessments for each criterion and calculate the average value for each
opinion (Soltani and Aliabadi, 2023), as detailed in Equation (3).

_ S ti
Step 4. Finding the comparative value (S;) and value of the coefficient (K;) using Equation (4).

L ifj=1
K =15 “4)
1, ifj>1

Step 5. Recalculate the weight of q; using the Equation (5).

B2 drj=1
q;= kj (%)
1, ifj>1
Step 6. Determine the weight using Equation (6).
= U

After assigning weights to each criterion, the next step is to apply the procedure to the MABAC method as
follows (Dai et al., 2024):
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Step 7. Construct the evaluation matrix (X) by assessing m alternatives against n criteria, where each
alternative is represented as a vector 4; = (X1, Xi,..., Xu). Here, x; denotes the evaluation value of the i
alternative under the j criterion (fori = 1, 2,.., mandj = 1, 2,.., n), and is determined using Equation (7).

¢, C .. C,
X = 721X21 X2 ... Xop @)
Am Xm1 Xm2 - Xmn

Step 8. The elements in the original matrix are normalized using Equation (8).

¢, C, .. Cp
Al t11 tiz - lip

N = 42|ty tyy ... tyy (®)
Am tm1 tmz o Umn

Step 9. The normalized matrix (N) elements are calculated using Equation (9).

for the benefit type is written: t;; = zﬂf — f_,
it
. . . _ xij - Xi
for the cost type is written: t;; = P )
i

i

Step 10. Compute the weighted matrix (V) elements using Equation (10).
vij = fwity; (10)

where, #; represents the elements of the normalized matrix (V), and fw; denotes the weight coefficients
assigned to the factors and criteria.

Step 11. Determine the border approximation area matrix G for each criterion by applying Equation (11).
1/m

gi = ([T}, vij) (11)

Step 12. Calculate the distance of each alternative from the border approximation area to obtain the matrix
elements (Q), using Equation (12).
0=V-G (12)

A Self-Organizing Map (SOM) neural network is a type of competitive and unsupervised learning that can
learn and regulate itself (Qu et al., 2020). This study uses the Particle Swarm Optimization (PSO) approach
to find the best starting weights to use in the Self-Organizing Map (SOM) clustering model. The reason for
this pick is that PSO is said to be very adaptable and flexible, which makes it a good choice for solving a
wide range of optimization problems (Peng et al., 2023). The PSO method helps to improve the process of
finding the best parameters by making it easier to explore different weight combinations. This leads to faster
convergence and more accurate neural network topologies.

Step 13. Evaluate the SOM clustering by calculating the quantization error using Equation (13).

1 i , .
QE = XL " llxi — wjll (13)
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This error quantifies the extent to which the SOM has mapped the data, with lower values indicating better
clustering performance.

Step 14. Based on the training data, adjust the SOM weights using Equation (14).
— (t) 2
0;(x) = exp <_ M) (14)

202(t)

This Equation adjusts the weights of neurons in the SOM based on their proximity to the input data point,
with closer neurons having a larger influence.

Step 15. Update particle position and velocity using Equation (15).
Vit = w . Vi® + cl.rand().(pBest® — xi®®) + c2.rand() .(gBest — xi) (15)

The values of w, c¢1, and ¢2 are constants controlling the influence of previous velocity and the attraction
to the best-known positions. The update process ensures particles move toward promising regions in the

solution space based on personal and collective experiences.

Step 16. Update the position of the particle based on its new velocity using Equation (16).
xit+D = 5 ® 4 pE+D) (16)

The Equation moves particles through the solution space toward optimal solutions.

Step 17. Determine the shortest distance between each output neuron and the input data by applying
Equation (17).

D; = Xi(w; — x)? (17)
where, D; is the distance from the input data point x; to the weight vector w; .

This Equation helps identify the best-matching neuron for each input point, a core process in SOM.

Step 18. Update the neighbouring for each weight (w;; ) using Equation (18).

This Equation adjusts the weights of neurons in the BMU to help the SOM map the data more accurately.

Step 19. Each cluster's centroid is the final weight of the neurons, as written in Equation (19).
Centroidy, = Weight; (19)

where, Wy is the weight vector of neuron ;j in cluster .

Step 20. Construct the dataset for the Random Forest using SOM clustering results.

Each data point x; is labelled according to its corresponding cluster identified by SOM. Formulate the
training set written using Equation (20):

Xpr={(x;, ClusterLabel;)}, i=1_2,..,.N (20)

This dataset will be utilized as the training set for classification and prediction.

2180 | Vol. 10, No. 6, 2025



Faisal et al.: A Machine Learning-Driven Framework for Evaluating and Clustering City ... gfmsﬁgg

Step 21. Training data using Equation (21).
RFp04e1 = RandomForest(Xgg, Ygrr) (21)

where, X are data points, and Yz are the corresponding cluster labels.

Step 22. Calculate the importance of the feature's impact on the clustering using Equation (22).
1
FI = 23 (14() (22)

where, FI; is the importance of feature j, T is the number of trees, and [;(t) is the importance of feature j
in tree ¢.

Step 23. Utilize the trained Random Forest for prediction and decision support using Equation (23).
ClusterLabel,o,, = RFnoqe1Xnew) (23)

The proposed framework employs a sequential approach to improve clustering accuracy and predictive
performance.

3.3 Data Collection

The dataset included information from multiple dimensions that came from a number of reputable
organizations. This study got economic, environmental, and regional indicators from the accessible data
from the Organisation for Economic Co-operation and Development and the World Bank. The Indonesian
Ministry of Environment and Forestry and the Central Bureau of Statistics of Indonesia gathered city-
specific data from Indonesia, which was then augmented by reports from local governments. This study got
further information on the context and policies from peer-reviewed scholarly journals. This study chose 15
cities, which included a mix of big cities, medium-sized cities, and up-and-coming cities. This made sure
that this study covered a wide range of socio-economic and geographic circumstances. Cross-checking with
other sources of information makes sure that the data is strong and that the multifunctional model keeps the
dataset's trustworthiness.

3.4 Data Preprocessing

The collected city-level carbon trading dataset underwent several preprocessing steps to ensure consistency,

completeness, and model compatibility:

e Handling Missing Data
Any missing entries in numerical criteria were imputed using the mean value of their respective features.
For categorical or ordinal fields, the mode value was used for imputation.

e Normalization
Since the data included features with different scales, min-max normalization was applied to scale all
values into the [0, 1] range, facilitating convergence in clustering and prediction models.

e Data Consistency Verification
Cross-validation against multiple sources was performed to confirm the integrity and consistency of
each city’s indicators.

3.5 Rationale for Machine Learning Method Selection

The selection of the PSOM and Random Forest algorithms in the proposed framework is guided by their
complementary strengths. PSOM enhances clustering precision by dynamically optimizing the weight
initialization of the SOM, thereby improving the ability to reveal topological relationships and enhancing
the quality of data grouping. As Bensaoud and Kalita (2025) stated, in the context of urban carbon trading
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data, which is often high-dimensional and heterogeneous, requiring scalable and adaptive methods.

The Random Forest approach, on the other hand, is used because it can classify data well and works better
with complicated, non-linear datasets. It serves as a core analytical component for model benchmarking
and classification, offering interpretability and reliability in predictive modelling tasks (Ziakopoulos et al.,
2023). Its proven effectiveness across similar domains makes it well-suited for analyzing city-level
readiness and variability in carbon trading strategies (Herawati et al., 2024). By combining supervised and
unsupervised learning approaches, the hybrid framework fixes the difficulties with standard single-
paradigm models. This synergy enhances detection accuracy, adaptability to data complexity, and resilience
in predictive performance, thereby providing a comprehensive and context-sensitive decision-support tool
for evaluating urban carbon policy.

4. Result and Discussion

4.1 Application of hybrid MOO-MCDM-PSOM

MOO significantly enhances decision-making in engineering contexts, demonstrating its potential to
address complex and conflicting decision scenarios with conflicting objectives in production environments
(Faisal et al., 2024). This study engages experts to determine the priority index scale for each criterion,
using the FDM with a fuzzy-scale evaluation system by a Triangular Fuzzy Number (TFN) to capture
subjective judgments more effectively, as follows:

o Totally Agree (T) =5{1.0;0.8;0.6}
o Agree(A) =4{0.8;0.6;0.4}
o Simply Agree (S) =3{0.6;0.4;0.2}
o Less Agree (L) =2{0.4;0.2;0.0}
o Disagree (D) =1{0.2;0.0;0.0}

This fuzzy linguistic scale enables a more nuanced evaluation of qualitative data, supporting improved
decision-making under uncertainty. The scoring results and calculations are displayed in Table 1.

Table 1. Scoring data and consensus values.

Expert PCE | GDP 1C IMR | EE PD EI RS | ICA | IQ | PTQ | UP | W2E | LUP | CRP | GI
1 T A T T T T T T A T A S A T A T
2 S A T T T T T T A T A S A S A T
3 T T A T T T A T A A A A A S T T
4 T T T T T T A S A T A T S S T S
5 T T T A A T A S A T A S T T T A
6 A T T T A T T T A T S S T T T T
7 T T T T T T T T A T T A A A T A
8 T T T T A T T T A T S A A A A A
9 A T A T T T T A A T A A T A A A
10 T T T T T A T A A T A A A A A T
11 T T T A T A T T A A A A T T A T
12 T T T A T A T T A T A A A A T A
13 T T T A A A A A A A T T A T T S
14 T T A T T T T T S T A A A A T T
15 T T A T A A A A A A T T S A A A
16 A T T T A A A A A A S T A T A A
Threshold 0.09 0.04 | 0.07 | 0.08 | 0.09 | 0.09 [ 0.09 | 0.10 | 0.02 | 0.08 | 0.07 | 0.10 | 0.08 0.12 0.10 | 0.11
F-Evaluation 11.8 12.4 12 12 11.6 | 116 | 11.6 | 11.6 9.4 11.8 9.6 9.6 10 10.2 11.2 | 10.8
F-Number 074 | 078 1 0.75 | 075 | 0.72 | 0.72 | 0.72 | 0.72 | 0.58 | 0.75 0.6 0.6 0.62 0.63 0.70 | 0.67
Construction 0.086
Consensus 0.960
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The optimization results for each criterion, as presented in Figure 2, demonstrate that the FDM method
achieves more comprehensive and balanced optimization across a broader spectrum of criteria. In
collocation, the NSGA-II algorithm demonstrates a more limited optimization efficacy, concentrating
predominantly on a more specific range of criteria. Consequently, the decision indices for the evaluated
criteria are established as EE, PCE, GDP, IC, EI, PD, ICA, RS, GI, IMR, LUP, CRP, W2E, UP, 1Q, and
PTQ.

W2E

[ FDM Bl NSGA

Figure 2. The MOO results for each criterion based on NSGA-II and FDM.

The first step in implementing MCDM is to determine the weight of each criterion using the SWARA,
where an index between 1 and 16 influences the weight value of each criterion, as shown in Table 2.

Table 2. Criteria weight based on SWARA.

Criteria Index Comparative value (5)) Coefficient value (X)) Relative weight (¢:) Criteria Weights (1))
EE 1 0 0 1 0.18753
PCE 2 0.30 1.30 0.7692 0.14425
GDP 3 0.25 1.25 0.6154 0.11540
IC 4 0.20 1.20 0.5128 0.09617
EI 5 0.15 1.15 0.4459 0.08362
PD 6 0.10 1.10 0.4054 0.07602
ICA 7 0.05 1.05 0.3861 0.07240
RS 8 0.40 1.40 0.2758 0.05172
GI 9 0.35 1.35 0.2043 0.03831
IMR 10 0.30 1.30 0.1571 0.02947
LUP 11 0.25 1.25 0.1257 0.02357
CRP 12 0.20 1.20 0.1048 0.01964
W2E 13 0.15 1.15 0.0911 0.01708
UP 14 0.10 1.10 0.0828 0.01553
1Q 15 0.05 1.05 0.0789 0.01479
PTQ 16 0.02 1.02 0.0773 0.01450
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Table 3. Subcriterion weights based on SWARA.

Subcriterion ([Benefit] ; [Cost]) Comparative value (S)) Coefficient value (X)) Relative weight (i) Result
[Extremely High] ; [Low] 1 1 0.3966
[High] ; [Average] 0.3333 1.3333 0.75 0.2974
Moderate 0.6666 1.6666 0.45 0.1784
[Average] ; [High] 1 2 0.225 0.0892
[Low] ; [Extremely High] 1.3333 2.3333 0.0964 0.0382

Based on the data in Table 3, it is stated that each subcriterion consists of a benefit or cost category, where
the value is determined based on the character of a criterion (Jufri, 2024), as shown in Table 4.

Table 4. Potential scoring levels for each criterion.

Criteria Low Average Moderate High Extremely High
EE <0.50 0.50 - 0.60 0.60 - 0.70 0.70 - 0.80 > 0.80
PCE <1 ton 1-4ton 4 -7 ton 7 -10 ton > 10 ton
GDP <$5000 $5000 - $10000 $10000 - $20000 $20000 - $30000 > $30000
IC <0.10 0.10- 0.20 0.20 - 0.35 0.35 - 0.50 > 0.50
EI <0.30 0.30 - 0.50 0.50-0.70 0.70 - 0.90 >0.90
PD <2000 2000 - 4000 4000 - 7000 7000 - 10000 > 10000
ICA <0.10 0.10-0.30 0.30 - 0.50 0.50-0.70 >0.70
RS 0-0.10 0.10-0.30 0.30 - 0.50 0.50 - 0.70 >0.70
GI <0.05 0.05-0.15 0.15-0.30 0.30 - 0.50 > 0.50
IMR <0.05 0.05-0.15 0.15-0.30 0.30 - 0.50 >0.50
LUP <0.10 0.10- 0.20 0.20 - 0.30 0.30 - 0.40 > 0.40
CRP <0.05 0.05-0.15 0.15-0.30 0.30 - 0.50 >0.50
W2E <0.10 0.10-0.30 0.30 - 0.50 0.50 - 0.70 >0.70
UP <0.05 0.05-0.15 0.15-0.30 0.30 - 0.50 > 0.50

1Q <0.10 0.10-0.30 0.30 - 0.50 0.50-0.70 >0.70
PTQ <0.10 0.10- 0.30 0.30 - 0.50 0.50 - 0.70 >0.70

After determining the weight and scale of the assessment based on the criteria and subcriteria, the test data
of each city were calculated using the MABAC method. The score data for each city is shown in Table 5.

Table 5. Criterion scores for each city based on the carbon trading policy.

City EE PCE | GDP IC EI PD ICA | RS GI | IMR | LUP | CRP | W2E | UP 1Q | PTQ
Jakarta 0.75 6.0 40000 | 0.50 | 0.80 | 15000 | 0.70 | 0.85 [ 0.80 | 025 | 0.70 | 0.85 0.30 | 0.80 | 0.80 | 0.07
Surabaya 0.80 45 30000 | 0.40 | 0.75 | 12000 | 0.65 | 0.80 | 0.75 | 0.30 | 0.65 | 0.80 035 | 0.75 | 0.75 | 0.65
Bandung 0.85 3.5 25000 | 0.30 | 0.85 | 14000 | 0.80 | 0.75 [ 0.85 | 035 | 0.80 | 0.75 040 | 0.85 | 0.85 | 0.80
Medan 0.70 4.0 20000 | 0.35 | 0.70 | 10000 | 0.60 | 0.70 | 0.70 | 0.20 | 0.60 | 0.70 0.25 | 0.70 | 0.70 | 0.60
Semarang 0.90 3.0 15000 | 0.25 | 0.90 | 11000 | 0.75 | 0.90 | 0.90 | 040 | 0.75 | 0.90 045 | 090 | 090 | 0.75
Makassar 0.82 32 16000 | 0.30 | 0.82 | 10500 | 0.68 | 0.78 | 0.82 | 032 | 0.68 | 0.78 032 | 0.82 | 0.82 | 0.68
Palembang 0.84 3.7 18000 | 0.33 | 0.84 | 10800 | 0.72 | 0.82 | 0.84 | 034 | 0.72 | 0.82 037 | 0.84 | 0.84 | 0.72
Denpasar 0.78 2.8 14000 | 0.28 | 0.78 | 9500 | 0.66 | 0.76 | 0.78 | 028 | 0.66 | 0.76 0.28 | 0.78 | 0.78 | 0.66
Balikpapan 0.80 2.9 14500 | 0.29 | 0.80 | 9800 | 0.70 | 0.80 | 0.80 | 0.30 | 0.70 | 0.80 0.30 | 0.80 | 0.80 | 0.70
Yogyakarta 0.75 2.6 13000 | 0.26 | 0.75 | 8600 | 0.65 | 0.75 | 0.75 | 025 | 0.65 | 0.75 025 | 0.75 | 0.75 | 0.65
Malang 0.77 3.1 15500 | 0.31 | 0.77 | 10200 | 0.69 | 0.77 | 0.77 | 027 | 0.69 | 0.77 0.27 | 0.77 | 0.77 | 0.69
Batam 0.80 3.3 16500 | 0.35 | 0.80 | 10700 | 0.70 | 0.80 | 0.80 | 0.30 | 0.70 | 0.80 0.30 | 0.80 | 0.80 | 0.70
Pekanbaru 0.83 3.4 17000 | 0.32 | 0.83 | 10900 | 0.73 | 0.83 | 0.83 | 033 | 0.73 | 0.83 033 | 0.83 | 0.83 | 0.73
Banjarmasin 0.79 3.0 15000 | 0.30 | 0.79 | 9000 | 0.67 | 0.79 | 0.79 | 0.29 | 0.67 | 0.79 0.29 [ 0.79 | 0.79 | 0.67
Pontianak 0.81 2.7 13500 | 0.27 | 0.81 9300 | 0.71 | 0.81 | 0.81 | 0.31 0.71 0.81 0.31 0.81 | 0.81 | 0.71

Next, the decision matrix for each city is determined based on the criteria, as shown in Table 6.
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Table 6. Decision matrix calculation results.

City EE PCE GDP IC EI PD ICA RS Gl IMR LUP CRP W2E UP 1Q PTQ
Jakarta 0.290 | 0.289 0.231 0.192 | 0.167 0.152 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.030 | 0.015
Surabaya 0.290 | 0.289 0.178 0.192 | 0.167 0.152 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.034 | 0.016 | 0.030 | 0.025
Bandung 0.375 0.144 0.178 0.096 | 0.167 0.152 0.145 0.103 0.038 0.059 | 0.024 0.020 | 0.034 | 0.016 | 0.030 | 0.029
Medan 0.188 0.144 0.115 0.096 | 0.084 0.076 | 0.072 0.052 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.015 0.025
Semarang 0.375 0.144 0.115 0.096 | 0.167 0.152 0.145 0.103 0.038 0.059 | 0.024 0.020 | 0.034 [ 0.016 | 0.030 | 0.029
Makassar 0.375 0.144 0.115 0.096 | 0.167 0.152 0.072 0.103 0.038 0.059 | 0.024 0.020 | 0.034 | 0.016 | 0.030 | 0.025
Palembang 0.375 0.144 0.115 0.096 | 0.167 0.152 0.145 0.103 0.038 0.059 | 0.024 0.020 | 0.034 [ 0.016 | 0.030 | 0.029
Denpasar 0.290 | 0.144 0.115 0.096 | 0.167 0.076 | 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.030 | 0.025
Balikpapan 0.290 | 0.144 0.115 0.096 | 0.167 0.076 | 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.030 | 0.025
Yogyakarta 0.290 | 0.144 0.115 0.096 | 0.167 0.076 | 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.030 | 0.025
Malang 0.290 | 0.144 0.115 0.096 | 0.167 0.152 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.030 | 0.025
Batam 0.290 | 0.144 0.115 0.096 | 0.167 0.152 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.030 | 0.025
Pekanbaru 0.375 0.144 0.115 0.096 | 0.167 0.152 0.145 0.103 0.038 0.059 | 0.024 0.020 | 0.034 [ 0.016 | 0.030 | 0.029
Banjarmasin | 0.290 | 0.144 0.115 0.096 | 0.167 0.076 | 0.072 0.103 0.038 0.029 | 0.024 0.020 | 0.017 0.016 | 0.030 | 0.025
Pontianak 0.375 0.144 0.115 0.096 | 0.167 0.076 | 0.145 0.103 0.038 0.059 | 0.024 0.020 | 0.034 | 0.016 | 0.030 | 0.029

The next stage is to calculate estimated the border area matrix (G) against 16 criteria (1/16), where the
results are as follows:

G = [{EE: 0.336};{PCE: 0.178};{GDP: 0.146};
{IC: 0.121};{EI: 0.179};{PD: 0.132};
{ICA: 0.106};{RS: 0.114};{GI: 0.047};
{IMR: 0.048};{LUP: 0.030};{CRP:0.025};
{W2E: 0.030};{UP: 0.020};{IQ: 0.035};{PTQ: 0.032}].

The border area matrix is used to determine the values of the alternative distance matrix elements of the
approximate border area (Q) as shown in Figure 3.

0.039 0.039 0.039 0.009 0.039

0.02 0.02
0.009
0.005 0.005 0.005 A 0.005

! 0.013
0.011 4 0.018

0.03.
003 603 - 0.3 : 003

B Se—
0.034 0.034 -0.633, 03 3 -
0.046 0.046 40.046 0.046 0.046 0.046
0,056 0.056. 0056

Jakarta  Surabaya Bandung  Meadan  Semarang Makassar Palembang Denpasar Balikpapan Yogyakarta Malang Batam  Pekanbaru Banjarmasin Pontianak

Figure 3. Visualization of the value of the approximate border area (Q).
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The MABAC technique can put the cities into three rough border areas based on their economic, social,
political, and environmental performance:

Positive Border Area.

Jakarta, Surabaya, Bandung, and Semarang are all cities that are known for being good places for
development and resources. These cities get a lot of investment and people moving there because they
have good infrastructure and stable governments.

Intermediate Border Area.

This comprises Yogyakarta, Makassar, and Palembang, which are located between areas with moderate
growth and stability. These cities connect core and periphery areas and have the potential to flourish
thanks to spillover effects and focused initiatives.

Negative Border Area.

This includes Medan, Pontianak, Denpasar, and Banjarmasin, which have lower economic and social
metrics, usually because they don't have enough resources or are cut off from other places. These cities
have more problems with development and need help with infrastructure, governance, and economic
prospects in specific areas.

Next, the values generated by grouping cities based on indicators serve as the input for the clustering process
of each city's carbon trade policy using PSOM. Carbon trading policies are categorized into distinct clusters,
each representing a specific regulatory and incentive strategy: Policy-A (C1) promotes carbon trading
through fiscal incentives for green industries; Policy-B (C2) enforces carbon trading with strict regulations
and penalties for non-compliance; and Policy-C (C3) adopts a flexible cap-and-trade scheme to
accommodate carbon trading dynamics.

The distance matrix data in Tables 7 and 8 serve as inputs for the PSOM clustering process, which iterates
until convergence. Upon completion, the global best position, which represents the lowest quantization
error, determines the optimal SOM weights. These weights are reshaped into a 1x3 SOM grid, yielding the
final configuration [0.592; 0.688; 0.781], [0.640; 0.270; 0.288], [0.428; 0.689; 0.641], which minimizes
quantization errors and ensures optimal data. The final centroid cluster values are shown in Table 9.

Table 7. Input data for the application of PSOM.

City EE PCE GDP IC El PD ICA RS

Jakarta -0.046 0.111 0.085 0.071 -0.012 0.020 -0.034 -0.011
Surabaya -0.046 0.111 0.033 0.071 -0.012 0.020 -0.034 -0.011
Bandung 0.039 -0.033 0.033 -0.025 -0.012 0.020 0.039 -0.011
Medan -0.148 -0.033 -0.030 -0.025 -0.095 -0.056 -0.034 -0.062
Semarang 0.039 -0.033 -0.030 -0.025 -0.012 0.020 0.039 -0.011
Makassar 0.039 -0.033 -0.030 -0.025 -0.012 0.020 -0.034 -0.011
Palembang 0.039 -0.033 -0.030 -0.025 -0.012 0.020 0.039 -0.011
Denpasar -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011
Balikpapan -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011
Yogyakarta -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011
Malang -0.046 -0.033 -0.030 -0.025 -0.012 0.020 -0.034 -0.011
Batam -0.046 -0.033 -0.030 -0.025 -0.012 0.020 -0.034 -0.011
Pekanbaru 0.039 -0.033 -0.030 -0.025 -0.012 0.020 0.039 -0.011
Banjarmasin -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011
Pontianak 0.039 -0.033 -0.030 -0.025 -0.012 -0.056 0.039 -0.011
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Table 8. Input data for the application of PSOM (Continued).
City GI IMR LUP CRP W2E UP 1Q PTQ
Jakarta -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 -0.006
Surabaya -0.009 -0.018 -0.006 -0.005 0.004 -0.005 0.009 0.005
Bandung -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009
Medan -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 -0.005 0.005
Semarang -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009
Makassar -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.005
Palembang -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009
Denpasar -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005
Balikpapan -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005
Yogyakarta -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005
Malang -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005
Batam -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005
Pekanbaru -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009
Banjarmasin -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005
Pontianak -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009
Table 9. Clustering results using PSOM.
City C1 C2 C3 Cluster Policy
Jakarta 2.5791 2.3419 0.7960 3 C
Surabaya 1.0409 1.7120 2.6131 1 A
Bandung 0.6810 1.3807 2.1166 1 A
Medan 0.5233 1.1751 2.0222 1 A
Semarang 1.1352 0.6548 1.8289 2 B
Makassar 1.8333 1.8541 1.4470 3 C
Palembang 1.9556 1.7045 1.0995 3 C
Denpasar 1.0735 0.3752 1.7772 2 B
Balikpapan 1.0996 0.1237 1.8631 2 B
Yogyakarta 1.4825 0.7092 1.4648 2 B
Malang 1.1821 0.1242 1.8760 2 B
Batam 1.2125 0.1593 1.8829 2 B
Pekanbaru 1.2075 0.4581 1.5841 2 B
Banjarmasin 1.2125 0.1593 1.8829 2 B
Pontianak 1.7270 0.8534 2.1285 2 B

Based on the testing results in Table 9, the analysis aligns each city's characteristics with its cluster and

corresponding policy, emphasizing a tailored approach to carbon trading strategies:

e Policy-A, with Fiscal Incentives. This policy targets cities with high sustainability potential yet
developing economic and infrastructure indicators by encouraging green industry growth through
targeted incentives.

e Policy-B, with Strict Regulations. This policy, applied to cities with balanced development, relies on

penalties to uphold sustainable practices and prevent non-compliance.

e Policy-C, with Flexible Cap-and-Trade. This policy supports economically strong cities with limited

sustainability infrastructure in their gradual adaptation to carbon targets.

4.2 Sensitivity Test
In evaluating the effectiveness of carbon trade policies, sensitivity tests can help identify sensitive changes
in the weight of criteria. Changes in the weight of the criteria based on 4 aspects are shown in Table 10.

The sensitivity test is conducted by incrementally increasing each criterion’s weight by 0.5 within its

respective aspect. Given an example:

Input = [EE;0.75], [PCE;6], [GDP;40000], [IC;0.5], [EIL;0.8], [PD;15000], [ICA;0.7],[RS; 0.85],
[GL;0.8], [IMR;0.25], [LUP;0.7], [CRP;0.85], [W2E;0.3], [UP;0.8], [1Q;0.8], [PTQ;0.07].
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Decision Matrix (X):

EE (0.5) =((0.297-0.3966) / (0.178-0.3966)), PCE (0) = ((0.389-0.3966) / (0.389-0.3966))
Weighted matrix Border (V): EE (1.063) = (1.063 * 0.68753) + 1.063.
Element Border (Q):
EE (-0.072) =1.063 — 1.135.
Score (S) =(-0.072) +(0.111) + (0.531) + (0.521) + (-0.012) + 0.020 + (-0.164) + (-0.011) + (-0.009) +
(-0.018) + (-0.006) + (-0.005) + (-0.013) + (-0.005) + (1.009) + (-0.006)
= 1.8728 (Positive Area).
Table 10. Aspect and criterion weights for sensitivity test.
Aspect Criteria Initial Weight Type Sensitivity Weight
GDP 0.11540 Benefit 0.61540
IC 0.09617 Cost 0.59617
Economics EE 0.18753 Benefit 0.68753
ICA 0.07240 Benefit 0.57240
1Q 0.01479 Benefit 0.51479
PD 0.07602 Cost 0.57602
Social EI 0.08362 Benefit 0.58362
PTQ 0.01450 Benefit 0.51450
Up 0.01553 Benefit 0.51553
PCE 0.14425 Cost 0.64425
IMR 0.02947 Benefit 0.52947
Environment W2E 0.01708 Benefit 0.51708
LUP 0.02357 Benefit 0.52357
CRP 0.01964 Benefit 0.51964
GI 0.03831 Benefit 0.53831
Politics RS 0.05172 Benefit 0.55172
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Figure 4. The result of the sensitivity test for each aspect and criterion.
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Table 11. MCDM accumulation results based on aspects.

City Normal Economics Social Environment Politics
Jakarta 0.1332 1.8728 -0.0949 0.1776 0.1971
Surabaya 0.1083 1.6207 0.2419 0.6527 0.1722
Bandung 0.0590 1.7986 0.3309 0.6034 0.1229
Medan -0.5406 -0.5737 -1.4070 -0.9961 -0.9766
Semarang -0.0040 1.4630 0.2679 0.5405 0.0600
Makassar -0.0804 0.8865 0.0532 0.4641 -0.0164
Palembang -0.0040 1.4630 0.2679 0.5405 0.0600
Denpasar -0.2882 0.4515 -0.6546 -0.7437 -0.2242
Balikpapan -0.2882 0.4515 -0.6546 -0.7437 -0.2242
Yogyakarta -0.2882 0.4515 -0.6546 -0.7437 -0.2242
Malang -0.2122 0.5275 -0.0786 -0.6677 -0.1482
Batam -0.2122 0.5275 -0.0786 -0.6677 -0.1482
Pekanbaru -0.0040 1.4630 0.2679 0.5405 0.0600
Banjarmasin -0.2882 0.4515 -0.6546 -0.7437 -0.2242
Pontianak -0.0800 1.3869 -0.3081 0.4645 -0.0160

As shown in Table 10, weight adjustments were analyzed across several cities, indicating that an enhanced
hybrid approach with SWARA's adaptive weighting mechanism can effectively respond to different
priorities. This outcome affirms the robustness of the proposed methodology in capturing the diverse
characteristics of urban environments within the evaluation framework.

Based on the calculation results, it is evident that economic criteria influence the carbon trade policy in the
city of Medan. Furthermore, the social aspect affects carbon trade policies in Jakarta, Medan, Denpasar,
Balikpapan, Yogyakarta, Malang, Batam, Banjarmasin, and Pontianak. The results of the calculation of
each aspect and criterion are illustrated in Figure 4.

The cities that were not affected by changes in criterion weights are Surabaya and Bandung. The
accumulation result is shown in Table 11.

Overall, the data in Table 11 indicate that economic performance is strong; however, social, environmental,
and political issues require attention to achieve balanced development.

4.3 Identification of Patterns in Policy Effectiveness Using PSOM

Changes in the results of carbon trade policy mapping are influenced by the input value of the criterion that
describes the city's condition from the perspective of implementing carbon trade policy. The PSOM
methodology encompasses data preparation and normalization, weight optimization using the PSO
algorithm, training data, identifying centroids, and analyzing cities in clusters with SOM, as outlined in
Figure 5 and Table 12.

Based on the results of calculating the centroid of PSOM for cities across various aspects, it is evident that
cities have diverse economic, social, environmental, and political profiles.

Analysis of fifteen cities shows significant variations in readiness based on economic, social, environmental,
and political dimensions. The results provide an idea that the implementation of carbon trading needs to be
tailored to the characteristics and readiness of each city. A gradual, local strength-based approach is key to
the success of effective and sustainable carbon trading policies at the city level.

2189 | Vol. 10, No. 6, 2025



Faisal et al.: A Machine Learning-Driven Framework for Evaluating and Clustering City ... Ram Arti

Publishers
€0
[} J)
6 4’ b
‘i j
: <
5
y i
1
<
; ; 1
54 % Y z
S 5 d 2 E ®
2 < < i <
g T i 3 1 1 i
53 ? !‘f < = ‘f' ‘T: =
9] ] < 'l ? o J: Q) < )
1 < B gim 7 [ ! i
b i & 1 1 g A 5 1
2 = 1 ) f < & C <
3 T 2 1 1 1
1 1 1 9 @ £
< i 2 i i 1
i ; =
I &
& S
= . s .t 08 -t ; h " ; K 5
I Gl S ‘,6\@“\)&‘;@“@5\‘\‘, oo™
s Normal Economics Social Environment Politics
Figure 5. Results of mapping carbon trade policies in each city based on specific aspects.
Table 12. Determination of carbon trading policy in each city based on multiple aspects.
City Normal Economics Social Environment Politics
Jakarta 0.7960 1.5100 0.2442 1.2000 2.4000
Surabaya 1.4090 0.6824 1.9000 1.2000 1.6900
Bandung 0.6810 0.5176 0.6479 0.8781 0.6105
Medan 0.5233 1.7000 1.6000 0.1233 0.0663
Semarang 0.6548 0.4382 0.3777 0.7237 0.3020
Makassar 1.4470 0.8460 0.7389 0.8418 1.0200
Palembang 1.0995 0.3502 0.3777 0.7237 0.3020
Denpasar 0.3752 0.3013 0.2912 1.3000 0.5154
Balikpapan 0.1237 0.3002 0.2912 1.4000 0.5154
Yogyakarta 0.7092 0.3286 0.2912 1.4000 0.5154
Malang 0.1242 0.7651 0.8118 1.1000 0.8657
Batam 0.1593 0.7663 0.8118 1.1000 0.8657
Pekanbaru 0.4581 0.4288 0.3777 0.7237 0.3020
Banjarmasin 0.1593 0.3074 0.2912 1.4000 0.5154
Pontianak 0.8534 1.1600 0.8710 0.7237 0.7065

4.4 Comparative Analysis

This study compared the suggested method to three different clustering algorithms that are extensively used:
Self-Organizing Maps (SOM), K-Medoids, and K-Means. This was done to see how well it worked. The
stage calculation process in each method utilizes the data in Tables 7 to 8 as input, as shown in Table 13.

2190 | Vol. 10, No. 6, 2025



Faisal et al.: A Machine Learning-Driven Framework for Evaluating and Clustering City ... E&msﬁg;

Table 13. Comparison results of SOM, PSOM, K-means, and K-medoid methods.

City SOM PSOM K-Means K-Medoid
C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Jakarta 2.3919 | 0.8807 | 2.8223 | 2.5791 | 2.3419 | 0.7960 | 0.2308 | 0.2159 | 0.0279 | 6.4981 | 7.8268 | 0.0000
Surabaya 1.7616 | 2.5742 | 0.5397 | 1.0409 | 1.7120 | 2.6131 | 0.2112 | 0.1938 | 0.0279 | 5.3791 | 5.7606 | 3.9550
Bandung 1.4402 | 2.0665 | 0.9104 | 0.6810 | 1.3807 | 2.1166 | 0.0553 | 0.1533 | 0.2102 | 4.9053 | 1.8555 | 7.2203
Medan 1.2318 | 1.9759 | 0.7694 | 0.5233 | 1.1751 | 2.0222 | 0.2315 | 0.1234 | 0.2526 | 7.2022 | 8.8650 | 9.7004
Semarang 0.6973 | 1.7835 | 1.3176 | 1.1352 | 0.6548 | 1.8289 | 0.0204 | 0.1397 | 0.2267 | 4.5407 | 4.2146 | 7.8268
Makassar 1.8821 | 1.4217 | 1.9202 | 1.8333 | 1.8541 | 1.4470 | 0.0631 | 0.1191 | 0.2145 | 3.8589 | 2.3931 | 6.9846
Palembang 1.7276 | 1.0121 | 2.2628 | 1.9556 | 1.7045 | 1.0995 | 0.0204 | 0.1397 | 0.2267 | 4.5407 | 4.2146 | 7.8268
Denpasar 0.4525 | 1.7330 | 1.2620 | 1.0735 | 0.3752 | 1.7772 | 0.1272 | 0.0296 | 0.2091 | 0.0000 | 4.5407 | 6.4981
Balikpapan 0.2157 | 1.8113 | 1.2971 | 1.0996 | 0.1237 | 1.8631 | 0.1272 | 0.0296 | 0.2091 | 0.0000 | 4.5407 | 6.4981
Yogyakarta 0.7200 | 1.4155 | 1.7496 | 1.4825 | 0.7092 | 1.4648 | 0.1272 | 0.0296 | 0.2091 | 0.0000 | 4.5407 | 6.4981
Malang 0.1033 | 1.8238 | 1.3784 | 1.1821 | 0.1242 | 1.8760 | 0.1110 | 0.0579 | 0.1948 | 2.0412 | 4.0561 | 6.1692
Banjarmasin 0.0930 | 1.8307 | 1.4079 | 1.2125 | 0.1593 | 1.8829 | 0.1272 | 0.0296 | 0.2091 | 0.0000 | 4.5407 | 6.4981
Pontianak 0.4426 | 1.5233 | 1.4640 | 1.7270 | 0.8534 | 2.1285 | 0.0653 | 0.1306 | 0.2391 | 4.0561 | 2.0412 | 8.0886

The clustering comparison result indicates that a substantial proportion of cities (84.9%) are categorized
within Cluster C3. This predominance suggests that the implementation of a Flexible Cap-and-Trade policy
may constitute the most context-appropriate regulatory mechanism for these municipalities. The clustering
analysis is illustrated in Figure 6.

The results of the visualization reveal that PSOM makes a considerably superior three-dimensional data
surface that is coherent and continuous than K-Means, K-Medoids, and SOM. The surface made by PSOM
is smoother and holds its shape better. This cuts down on noise and makes it easier to analyze complex data
distributions. The clustering results using K-Means, K-Medoids, and SOM, on the other hand, display more
uneven surfaces, which could mask patterns in the data. These findings confirm the robustness of PSOM in
handling non-linear data structures and its effectiveness in improving the visualization and interpretability
of clustering outcomes (Faisal and Rahman, 2023b).

Based on the enhanced clustering outputs, the created system uses machine learning to forecast the effects
of low-carbon policies based on the improved clustering results, using both past data and new trends.
Specifically, the Random Forest method is used for prediction, utilizing the clustering outputs (Table 5) as
input data and the policy categories (Table 9) as labels. This predictive model is validated using test data
from other cities, as shown in Table 14, to support the formulation of effective and responsive low-carbon
policies that adapt to environmental and economic dynamics.

The integration of the Random Forest algorithm within the MOO-MCDM framework enables a more
nuanced assessment of policy alternatives by classifying and prioritizing criteria according to their relative
importance, thereby enhancing the rigour of the decision-making process. Within the domain of carbon
trading, Random Forest supports the prediction of policy impacts at the city level, informing optimal
strategic pathways facilitated through the PSOM method. As noted by Sipper and Moore (2021), Random
Forest constructs an ensemble of decision trees derived from random samples and feature subsets,
aggregating their predictions through majority voting to enhance classification accuracy and mitigate the
risks of overfitting.
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Figure 6. Visualization of clustering using SOM, PSOM, K-medoid, and K-means.

Table 14. Testing data for predicting and mapping carbon trade policy.

City EE | PCE | GDP 1C EI PD ICA | RS GI | IMR | LUP | CRP | W2E | UP 1Q | PTQ
Bogor 0.63 1.8 12000 | 045 | 0.52 | 14000 | 0.50 | 0.52 | 0.53 | 0.12 | 0.58 0.54 0.18 | 0.53 | 049 | 0.56
Manado 0.67 2.1 11500 | 043 | 0.55 | 10500 | 0.52 | 0.56 | 0.51 | 0.13 0.59 | 0.51 022 | 058 | 0.55 | 0.60
Samarinda | 0.71 2.3 13500 | 0.39 | 0.60 | 12000 | 0.60 | 0.61 | 0.65 | 022 | 0.65 0.61 030 | 0.63 | 0.62 | 0.66
Jambi 0.62 1.7 12500 | 0.35 | 0.48 | 11000 | 049 | 0.54 | 0.50 | 0.10 | 0.57 | 0.49 0.16 | 0.52 | 0.50 | 0.51
Padang 0.69 2.5 16000 | 047 | 0.63 | 15000 | 0.58 | 0.63 | 0.61 | 0.21 0.69 | 0.60 027 | 0.68 | 0.64 | 0.62
Kupang 0.55 1.9 11000 | 0.33 | 047 | 9800 | 044 | 05 | 042 | 0.09 | 0.50 | 047 0.14 | 049 | 044 | 049
Mataram 0.68 24 14500 | 048 | 0.64 | 16000 | 0.59 | 0.64 | 0.67 | 024 | 0.70 | 0.65 028 | 0.71 | 0.69 | 0.72
T.Pinang 0.66 2.1 13000 | 0.38 | 0.54 | 12500 | 0.53 | 0.58 | 0.54 | 0.12 | 0.63 0.54 020 | 0.57 | 0.56 | 0.60
Kendari 072 | 2.0 14000 | 0.44 | 0.61 | 9000 | 0.62 | 0.66 | 0.68 | 0.20 | 0.66 | 0.64 | 025 | 0.66 | 0.62 | 0.64
Palu 074 | 2.6 16000 | 0.46 | 0.66 | 11000 | 0.65 | 0.67 | 0.70 | 0.23 | 0.72 | 0.68 | 0.30 | 0.70 | 0.71 | 0.68
Ambon 0.59 1.5 3000 | 0.37 | 0.51 | 10500 | 0.49 | 0.53 | 0.47 | 0.11 | 0.55 | 0.51 0.17 | 0.54 | 0.51 | 0.55
Bengkulu | 0.65 | 2.3 14500 | 0.42 | 0.57 | 9500 | 0.56 | 0.61 | 0.61 | 0.18 | 0.63 | 0.59 | 0.26 | 0.61 | 0.60 | 0.61

The result of the calculation process is shown in Figure 7, where machine learning predicts and maps each
city's carbon trade policy.
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Figure 7. Prediction and mapping carbon trade policy using random forest.

Based on the predictions generated by the integrated model, a system of adaptive, data-informed policy
recommendations was established. The results show that Policy-A, which supports tax breaks for green
industry growth, works best in cities like Bogor and Ambon that don't do as well economically. Policy-B,
on the other hand, is better for places like Samarinda and Kendari that are seeking to fix the environment
because it contains rigorous guidelines. Policy-C is the greatest choice for cities like Padang and Kupang
that have a variety of diverse development needs because it lets them make progress in both cutting
emissions and making the economy more sustainable.

This customized policy framework lets each community work toward its particular social, economic, and
environmental goals in the way that works best for them. This is excellent for the bigger purpose of fighting
climate change, as well as good for the greater goal of combatting climate change. The multidimensional
evaluation of selected cities across economic, social, environmental, and political dimensions demonstrates
the effectiveness of the proposed machine learning-driven framework in mapping urban carbon profiles,
informing targeted policy interventions, and highlighting the strong predictive potential to guide carbon
trading strategies and support loT-based smart decision-making.

4.5 Baseline Method Comparison for Evaluation
A comparative analysis was conducted against baseline clustering and predictive methods further to validate

the effectiveness of the proposed hybrid framework. The result is shown in Tables 15 and 16.

Table 15. Clustering accuracy comparison.

Methods Adjusted rand index Quantization error
SOM 0.92 0.24
K-Medoids 0.91 0.27
K-Means 0.90 0.30
PSOM 0.96 0.18
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Based on the evaluation results, it is evident that PSOM demonstrated the best overall performance, with
the highest Adjusted Rand Index value (0.96) and the lowest value (0.18). This signifies that PSOM is the
most accurate in mimicking the original label structure and the most precise in data representation.

Table 16. Predictive accuracy comparison.

Predictive model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Decision Trees 90.36 % 90.50 91.00 90.75
Support Vector Machine 92.10 % 91.80 92.00 91.90
PSOM + Random Forest 95.57 % 95.40 95.50 95.45

Based on the confusion matrix evaluation results, it is evident that the combined PSOM and Random Forest
algorithm achieved higher prediction accuracy (95.57%) than simpler baselines, thereby reinforcing the
superiority of the proposed hybrid framework.

4.6 Computational Efficiency

All computational testing was conducted using Google Colab, a cloud-based development platform with a
runtime environment on Intel Xeon CPU 2.20GHz, 12GB RAM, and Python 3.10. This environment allows
for scalable and reproducible analysis across urban datasets. Although the PSOM framework incurs a
slightly longer runtime, its superior clustering precision, topological preservation, and predictive power
justify the trade-off, making it well-suited for complex city-level carbon policy evaluation tasks.

5. Conclusions

5.1 Summary of Contributions

This study introduced a novel hybrid analytical framework that integrates MOO, MCDM, PSOM, and
Random Forest methods to support the evaluation and clustering of city-level carbon trading strategies. The
framework demonstrates strong potential in capturing the spatial heterogeneity of urban emissions, thereby
enhancing the interpretability of carbon readiness classifications and supporting predictive policy
modelling. Empirical results confirm that the PSOM-based clustering improves initialization and stability
over conventional methods, while Random Forest enables accurate classification of cities. Collectively,
these components form a scalable and context-aware decision support system for policymakers.

5.2 Key Results

The critical results of this study include:

e Dynamic Multidimensional Evaluation
The integration of MOO and MCDM enables simultaneous consideration of multiple, often conflicting,
policy criteria, offering a holistic assessment of urban carbon trading strategies.

e Improved Clustering by PSOM
Using PSOM makes city clustering far more accurate and stable than older methods like SOM, K-Means,
and K-Medoids.

e Predictive Modelling with Random Forest
Leveraging the Random Forest trained on PSOM-derived clusters extends the model from static
evaluation to dynamic prediction, facilitating anticipatory carbon policy planning based on evolving
urban datasets.

e Tailored Policy Recommendations
The framework does a good job of putting cities into groups based on how ready they are for carbon
trading, which helps with targeted and stage-appropriate policy changes.
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5.3 Practical Implications

The proposed framework contributes theoretically by advancing the integration of MCDM and machine
learning into a cohesive model for multidimensional policy evaluation. Practically, it offers policymakers
a scalable and context-aware decision-support tool for assessing the performance of carbon trading
initiatives, identifying priority areas, and tailoring interventions to specific urban conditions.

5.4 Limitations and Future Work

The study has several interesting ideas, however it is limited because it only analyzes cross-sectional and
historical data. This could make it less able to adapt to changes in policy. It also did not include variables
linked to behaviour, institutions, and governance, which could have left out critical things that determine
how well carbon trading works in a given area.

Adding Internet of Things (IoT) data, spatial-temporal analytics, and agent-based modeling to the
framework will make it more helpful in real time. This is what future research should focus on. It will also
be important to look into policy simulations, stakeholder dynamics, and behavioral incentives to make the
model better at predicting and adapting to different urban settings.
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