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Abstract 

The global urgency to combat climate change has led to the widespread adoption of carbon emission trading schemes as market-

based instruments. This study introduces a scalable and interpretable machine learning-based framework for evaluating, clustering, 

and predicting city-level carbon trading strategies. This study fills a gap in localized policy evaluation by combining economic, 

social, environmental, and political factors to make carbon regulation more adaptive and based on evidence. The hybrid framework 

that was suggested combines Multi-Objective Optimization (MOO), Multi-Criteria Decision Making (MCDM), Particle Swarm 

Optimization—Self-Organizing Maps (PSOM), and Random Forest classification. Criteria are weighted using a combination of 

Fuzzy Delphi Method (FDM) and Stepwise Weight Assessment Ratio Analysis (SWARA), with prioritization executed via 

MABAC. Cities are clustered through PSOM based on weighted indicators, and policy predictions are generated using Random 

Forest trained on these clusters. The framework effectively demonstrated regional differences and putting cities into separate policy 

groups based on their social, economic, environmental, and institutional characteristics. It also demonstrated strong predictive 

accuracy in recommending feasible carbon trading strategies using the Random Forest classifier. Combining fuzzy logic and 

machine learning made it possible to deal with the unpredictability and non-linearity that are common in city-level statistics. This 

study introduces a new and adaptable decision support system based on machine learning that improves the accuracy and 

responsiveness of evaluations in the carbon market. The integrated methodology furnishes policymakers with an all-encompassing 

instrument to evaluate and project localized strategies, thereby promoting more equitable and effective carbon governance across 

heterogeneous urban environments.  

 

Keywords- Carbon trading, Multi-objective optimization (MOO), Multi-criteria decision making (MCDM), Particle swarm 

optimization – Self-organizing maps (PSOM), Machine learning. 

 

 

 

Abbreviations 
MCDM  Multi-Criteria Decision Making 

MOO Multi-Objective Optimization 

PSOM  Particle Swarm Optimization - Self-Organizing Maps 

FDM  Fuzzy Delphi Method 

SWARA Stepwise Weight Assessment Ratio Analysis 

MABAC Multi-Attributive Border Approximation Area Comparison 

NSGA  Non-Dominated Sorting Genetic Algorithm 

TFN  Triangular Fuzzy Number 

GDP  Gross Domestic Product  

IC  Industrial Composition  

EE  Energy Efficiency 

ICA  Innovation Capabilities 

IQ  Infrastructure Quality  

PD  Population Density  

EI  Equity and Inclusion 

PTQ  Public Transport Quality 

UP  Urban Planning 

PCE  Per Capita Emissions 

IMR  Energy Mix Renewable  

W2E  Waste to Energy 

LUP  Land Use Planning  

CRP  Climate Resilience Plans 

GI  Green Infrastructure 

RS  Regulatory Support 
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1. Introduction 
Dealing with climate change has become a global priority, which has led governments to pass stricter 

environmental rules (Adetama et al., 2022; Cui et al., 2024). Cities are central to these efforts, as they are 

major consumers of energy and significant sources of carbon dioxide emissions. But many cities still don't 

have plans that are specific to their needs for being carbon neutral (Zhang et al., 2024). Moving toward a 

low-carbon economy is now a necessary step to make sure that economic growth and environmental 

protection go hand in hand (Wang et al., 2024a). 

 

Trade openness and foreign direct investment make growth cleaner by making it easier to use technology 

that are good for the environment (Wang et al., 2023b). This shows how important it is to have good carbon 

market mechanisms that cut emissions by giving people price incentives and letting them trade freely 

(Zhang and Lin, 2023). Government-led carbon trading programs have proven effective in prompting 

cleaner production, strengthening monitoring, and fostering innovation (Nasir et al., 2021; Wang et al., 

2021). For instance, regulatory frameworks in Indonesia emphasize the importance of enforcing sanctions 

to enhance corporate compliance (Torodji et al., 2023). In the energy sector, carbon trading policies have 

improved productivity and resource use efficiency through mechanisms such as cost compensation and 

innovation stimulation (An and Whitcomb, 2024; Chen et al., 2024).  

 

At the regional level, these programs advance sustainability by strengthening environmental governance 

and enhancing carbon productivity (Shen et al., 2021). In the international trade context, they reduce risk 

and create opportunities in green sectors (Mao, 2024). However, in numerous developing nations, reliance 

on fossil fuels remains substantial, and unregulated expansion persists as a source of environmental concern 

(Han et al., 2023). To counteract these trends, carbon trading has also been shown to improve energy 

efficiency and enhance the impact of policy assessments (Hu et al., 2023). As economies expand, energy 

consumption increases in tandem, bringing with it heightened environmental impacts (Wang et al., 2024b). 

However, evidence of declining emissions intensity suggests that low-carbon development is achievable 

(Du et al., 2022). Differentiated regional regulations and tailored emissions trading strategies are essential 

for aligning environmental goals with local development needs (Kang and Zhao, 2022). 

 

New developments in data science have facilitated these transitions. In particular, machine learning 

especially explainable approaches is being applied more frequently to reveal complex, non-linear linkages 

among emissions, economic performance, and urban structure (Zhu et al., 2021). Unsupervised and guided 

learning approaches have enhanced model accuracy and interpretability for emissions forecasting and 

policy evaluation (Du et al., 2023; Liu & Xu, 2024). Nevertheless, the integration of machine learning into 

carbon trading research is still largely limited and insufficiently explored Owing to the economic, social, 

and environmental complexities of carbon markets, decision-support approaches like Multi-Criteria 

Decision Making (MCDM) have emerged as vital tools (Wu and Niu, 2024). Researchers have emphasized 

the importance of accounting for spatial and temporal policy effects (Chang and Zhao, 2024) and utilizing 

causal inference techniques to evaluate policy impacts (Wang et al., 2023c; Liu et al., 2024a). Carbon 

emission trading systems are some of the most scalable and useful market-based tools. China’s national 

market, initiated in 2021 after a decade of pilot projects, has rapidly become a global leader (Zhang and 

Deng, 2025). Yet, pronounced spatial and temporal disparities in pricing, enforcement, trading practices, 

technological capacity, ecological constraints, and land use continue to undermine equity and efficiency in 

carbon governance (Mandal et al., 2025). 

 

Moreover, the cascading transformation of urban, cropland, and ecological landscapes directly influences 

carbon storage and crop production, reinforcing the need for integrated, spatially aware policy design using 

Multi-Objective Optimization framework integrated with interpretable machine learning (Chen et al., 



Faisal et al.: A Machine Learning-Driven Framework for Evaluating and Clustering City … 
 

 

2174 | Vol. 10, No. 6, 2025 

2025). Addressing these complexities calls for machine learning-based frameworks to evaluate carbon 

trading performance, identify regional trade-offs, and cluster strategies in a manner that supports informed, 

adaptive, and data-driven climate decision-making (Rochd et al., 2025). 

 

Machine learning and artificial intelligence have been applied in forecasting carbon prices, identifying key 

policy levers, and supporting the design of dynamic trading strategies (Wu et al., 2024; Zhao et al., 2025). 

The interpretability of these models has been further improved through techniques like Shapley Additive 

Explanations, enabling more informed, evidence-driven policymaking. Moreover, adaptive strategy 

models, such as deep reinforcement learning and federated learning, have enabled the real-time 

optimization of trading decisions, even in decentralized and heterogeneous environments (Singh and Singh, 

2025). Complementary policy tools, such as energy quota trading, have also proven effective in reducing 

regional carbon inequality and promoting social equity (Wang et al., 2025). 

 

By integrating supervised evaluation, unsupervised clustering, and MCDM, the model addresses the 

following objectives: 

 

• Determine carbon policy priorities using an MOO and MCDM approach. 

 

• Identify regional carbon policy patterns through mapping and clustering using a hybrid PSOM. 

 

• Predict feasible carbon trading policies for cities using the Random Forest classification model. 

 

This study proposes a novel hybrid framework that integrates the MOO, MCDM, PSOM, and Random 

Forest algorithms that can be used in the evaluation, grouping, and adaptive prediction process in a single 

integrated system of city-level carbon trading strategies. Further, the framework offers scalable, context-

sensitive decision support in addressing spatial heterogeneity, and enables data-driven policy planning.  

 

The comprehensive study is depicted in Figure 1, delineating the sequential methodological procedures 

and the integration of key analytical components within the study framework. 
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Figure 1. Proposed framework. 

 

 

The remainder of this paper is organized as follows: Section 2 reviews related works on carbon trading 

policies and frameworks; Section 3 presents the materials and methods used in this study, including the 

development of the proposed hybrid model; Section 4 discusses the experimental results and analysis; and 

Section 5 concludes the paper while outlining potential directions for future research. 

 

2. Related Works 

2.1 Carbon Trade Policy 
Both governments and investors need to devise an effective carbon asset trading strategy if they want to 

reach their long-term economic and environmental goals (Zhang and Chen, 2024). By allowing the 

exchange of emission credits, carbon trading systems provide a market-based way to lower emissions (Xu 

et al., 2024). Bekkers and Cariola (2022) came up with the carbon club structure, which encourages regulatory 

harmonization and more people to get involved in global climate governance. 

 

Cities are the most essential sites to work on climate change because they are responsible for more than 

70% of carbon emissions. Most policy research, on the other hand, is still focused on the national level and 

often doesn't take into account how emissions change in different localities (Liu et al., 2024b). Research by 

Ma (2023) revealed that employing both taxes and carbon trading systems together can isolate emissions 

from economic growth. But most assessments still rely primarily on historical data and don't have the 

methodological flexibility to account for changes in space and time at the city level (Wu et al., 2022). Wong 

(2022) called for clear and open policy frameworks that take into account the needs of cities, given these 

restrictions. Even though there have been some big improvements, creating adaptive, real-time city-level 

models that show how policies change and emissions change in specific areas is still a problem. 
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2.2 MOO and MCDM in Urban Policy 
MCDM and MOO frameworks are increasingly used to guide sustainability assessments in complex urban 

systems. Ferdous et al. (2024) introduced a decision-tree model that integrates MOO optimization under 

uncertainty, offering a structured analysis despite data gaps. Gallo and Maheut (2023) showed how MCDM 

approaches can be used in many different ways in urban logistics and policy evaluation. Reyes-Norambuena 

et al. (2024) came up with a Grey MCDM framework to make pedestrian infrastructure better. This app 

shows how MCDM can help with city planning. Keshavarz-Ghorabaee et al. (2022) also talked about how 

MCDM may help with city transportation planning. But MOO and MCDM are not fully integrated into 

urban carbon policy yet, and there aren't many studies that offer a unified framework for optimization, 

assessment, and prediction. 

 

2.3 Applications in Energy and Emission Reduction 
In response to global climate issues, there is an international consensus that carbon emissions must be 

reduced (Cao et al., 2024a), with several studies focusing on carbon trading policies and emission 

reductions. Xia et al. (2021) provided empirical evidence of carbon trading’s role in emission reductions 

within construction and land use, highlighting the necessity of multi-criteria evaluation frameworks like 

MOO and MCDM. Zinatizadeh et al. (2017) underscored the importance of MCDM in evaluating trade-

offs across environmental, economic, and social dimensions in urban sustainability. 

 

Kokkinos et al. (2020) built a tool to help people make decisions about decarbonization strategies in the 

optimization of energy systems. However, they noted a need to further explore social and behavioral 

impacts on household-level energy choices. Esmat et al. (2023) have built a model to help people choose 

decentralized heating sources. This proves that MCDM helps city planners establish a balance between 

their economic and environmental goals. Even while these kinds of apps are helpful, most research are still 

focused on descriptive analysis and haven't made any headway on building tools that can anticipate how 

well carbon trading would work at the municipal level. These studies reveal a gap in understanding how 

carbon trading policies influence individual decision-making. 

 

2.4 Advances in Hybrid Models and Future Directions 
Recent studies show that hybrid models could help with the problems that come up in carbon trading. Bian 

et al. (2024) looked at bidding techniques in energy storage markets, and Qin et al. (2024) stressed the need 

for systems that can handle several objectives quickly. Baars et al. (2023) made progress on integrated 

evaluations for the sustainability of electric vehicles and suggested that MOO should be improved even 

more. Cao et al. (2024b) came up with an optimization model that uses a chaotic artificial hummingbird 

method for regional dispatch. However, their method is not clear about how prioritizing techniques are put 

into action in optimization algorithms.  

 

Zhang et al. (2022) stated that quasi-natural experiments and synthetic controls are also good ways to find 

out how well carbon trading works. Most hybrid models are only useful in few areas, and they have trouble 

scaling, adapting, and being used in real time in cities. 

 

2.5 Advantages of the Hybrid MOO-MCDM-PSOM-Random Forest Methods 
Recent progress in machine learning has made it even more important to choose the right features and fine-

tune hyperparameters when creating predictive models (Alahmari et al., 2025). Shang et al. (2025) indicated 

that hybrid deep learning models might be helpful, but they also brought out issues with multivariate 

analysis. These limits highlight how crucial it is to create frameworks that can adapt to many different parts 

of a city. 
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Xu and Zhang (2023) research showed how hard it is to find a compromise between accuracy and usefulness 

when measuring emissions in cities. The suggested system combines the Fuzzy Delphi Method (FDM), 

Stepwise Weight Assessment Ratio Analysis (SWARA), Multi-Attributive Border Approximation Area 

Comparison (MABAC), PSOM, and Random Forest algorithms to overcome these challenges. This 

integration allows for dynamic criterion weighting, strong clustering, and accurate prediction, which makes 

it possible to do scaled, context-aware evaluations of carbon trading policies. The use of machine learning 

for urban classification (Xing et al., 2024) and predictive carbon mapping has showed potential, although 

it is still not fully developed in integrated frameworks. The proposed approach solves this problem by 

connecting clustering with machine learning to help optimize carbon trading in each city. 

 

2.6 Research Gap 
The growing need to do something about climate change has led to more academic writing about carbon 

trading frameworks, optimization methods, and sustainability evaluations. Dynamic policy studies (Xu et 

al., 2024) and global cooperation frameworks like the carbon club (Bekkers and Cariola, 2022) are useful, 

but they usually only look at national-level situations and don't take into account differences between cities. 

In the same way, hybrid models and optimization methods like carbon tax (Ma, 2023), volatility modeling 

in carbon pricing (Wu et al., 2022), and MOO-MCDM integration (Ferdous et al., 2024) generally focus on 

theoretical frameworks without putting them into practice in specific cities.  

 

Many current approaches rely primarily on historical or static datasets (Li et al., 2020), which makes it hard 

for them to adjust to quickly changing urban settings. Also, decision-making tools often don't take into 

account social and behavioral factors, like in energy policy models (Kokkinos et al., 2020). Also, even 

while multi-agent and hybrid optimization models (Cao et al., 2024b) have made certain areas of business 

run more smoothly, they frequently can't be scaled up, respond in real time, or be used in a variety of urban 

contexts. 

 

3. Materials and Methods 

3.1 Identification of Aspect and Criteria 
Based on a review of several previous studies, several aspects are summarized, including economic aspects 

(Chen et al., 2021) involving Gross Domestic Product (GDP), Industrial Composition (IC), Energy 

Efficiency (EE), Innovation Capabilities (ICA), and Infrastructure Quality (IQ) as criteria. Moreover, the 

social aspects (Yao et al., 2023) involve Population Density (PD), Equity and Inclusion (EI), Public 

Transport Quality (PTQ), and Urban Planning (UP). The environmental aspects (Li et al., 2022; Yu and 

Luo, 2022) involve Per Capita Emissions (PCE), Energy Mix Renewable (IMR), Waste to Energy (W2E), 

Land Use Planning (LUP), Climate Resilience Plans (CRP), and Green Infrastructure (GI) as criteria. 

Finally, the political aspect (Wang et al., 2023a) involves the Regulatory Support (RS) criterion, which 

relates to implementing carbon trade policies for a city. 

 

3.2 Design of Hybrid MOO-MCDM-PSOM 
MOO and MCDM are operations research disciplines that aim to help make the best decisions in complex 

problems (Neira-Rodado et al., 2023). The process of assigning weights to criteria employs the reciprocal 

methodology, which computes the magnitude of the weight values, taking into account the varying 

significance of the order of indices (Faisal and Rahman, 2023a). The Fuzzy Delphi offers a resilient 

framework adept at managing uncertainties and ambiguities, acknowledging that decision-making 

processes are often hindered by incomplete or imprecise information (Shen et al., 2021). 

 

The approach of FDM-SWARA is particularly relevant for organizations and policymakers who want to 

strategize based on uncertain data while still obtaining reliable results (Thompson et al., 2024). The 
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SWARA method is an efficient approach to evaluating criteria by prioritizing criteria in ascending order 

based on expected meaning through consultation with experts (Sarvari et al., 2024; Faisal et al., 2025). 

Furthermore, Torrey et al. (2024) support it, stating that the FDM enables comprehensive analysis without 

additional computational load and steep learning curves compared to more complex methods. The 

explanation of decision-making using the hybrid approach of MOO-MCDM-PSOM based on the flowchart 

is as follows: 

 

Step 1. The threshold value is determined using the Equation (1). 

𝑑(𝑚̅, 𝑛̅) = √
1

3
∗ [ (𝑀1 + 𝑀2 + 𝑀3)]                                                                                                           (1) 

 

The dataset utilizes triangular fuzzy numbers to determine a threshold value (d).  

 

Step 2. Defining fuzzy score value using Equation (2). 

𝐴̃ = (
1

𝑛
∑ 𝑙𝑖

𝑛
𝑖=1 ,

1

𝑛
∑ 𝑚𝑖

𝑛
𝑖=1 ,

1

𝑛
∑ 𝑢𝑖

𝑛
𝑖=1 )                                                                                                         (2) 

 

where, 𝑛 is the number of authorities. Inconstant l, m, and u are the combined bounds of lower, middle, and 

upper, respectively. 

 

MCDM makes it easier for participants to voice their opinions and helps them find the best computational 

solution (Carneiro et al., 2021). The SWARA method is an efficient approach to evaluating criteria based 

on knowledge, experience, and implicit information, as well as the opinions of experts or group interests 

on the importance of the weighting process (Lorenzoni et al., 2024).  

 

 

Step 3. Summarize the expert assessments for each criterion and calculate the average value for each 

opinion (Soltani and Aliabadi, 2023), as detailed in Equation (3). 

𝑡𝑗̅ =  
∑ 𝑡𝑗𝑘

𝑟
𝑘=1

𝑟
                                                                                                                                                 (3) 

 

Step 4. Finding the comparative value (Sj) and value of the coefficient (Kj) using Equation (4). 

𝐾𝑗 = {

1

𝑆𝑗
, if 𝑗 = 1

1, if 𝑗 > 1
                                                                                                                                      (4) 

 

Step 5. Recalculate the weight of q
j
 using the Equation (5). 

q
j

= {

𝑘𝑗−1

𝑘𝑗
, if 𝑗 = 1

1, if 𝑗 > 1
                                                                                                                                   (5) 

 

Step 6. Determine the weight using Equation (6). 

𝑤𝑗 =  
𝑞𝑗

∑ 𝑞𝑗
𝑛
𝑗=1

                                                                                                                                                 (6) 

 

After assigning weights to each criterion, the next step is to apply the procedure to the MABAC method as 

follows (Dai et al., 2024): 
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Step 7. Construct the evaluation matrix (X) by assessing m alternatives against n criteria, where each 

alternative is represented as a vector Aᵢ = (xᵢ₁, xᵢ₂,..., xᵢₙ). Here, xᵢⱼ denotes the evaluation value of the i 

alternative under the j criterion (for i = 1, 2,.., m and j = 1, 2,.., n), and is determined using Equation (7). 

𝑋 =  

 
𝐴1

𝐴2

…
𝐴𝑚

𝐶1 𝐶2 … 𝐶𝑛

[

𝑥11 𝑥12 … 𝑥1𝑛

𝑥21 𝑥22 . . . 𝑥2𝑛

… … … …
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑛

]
                                                                                                              (7) 

 

Step 8. The elements in the original matrix are normalized using Equation (8). 

𝑁 =  

 
𝐴1

𝐴2

…
𝐴𝑚

𝐶1 𝐶2 … 𝐶𝑛

[

𝑡11 𝑡12 … 𝑡1𝑛

𝑡21 𝑡22 . . . 𝑡2𝑛

… … … …
𝑡𝑚1 𝑡𝑚2 … 𝑡𝑚𝑛

  ]
                                                                                                               (8) 

 

Step 9. The normalized matrix (N) elements are calculated using Equation (9). 

for the benefit type is written: 𝑡𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑖

−

𝑥𝑖
+ − 𝑥𝑖

−, 

for the cost type is written: 𝑡𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑖

+

𝑥𝑖
− − 𝑥𝑖

+                                                                                                      (9) 

 

Step 10. Compute the weighted matrix (V) elements using Equation (10). 

𝑣𝑖𝑗  =  𝑓𝑤𝑖𝑡𝑖𝑗                                                                                                                                             (10) 

 

where, tᵢⱼ represents the elements of the normalized matrix (N), and fwᵢ denotes the weight coefficients 

assigned to the factors and criteria. 

 

Step 11. Determine the border approximation area matrix G for each criterion by applying Equation (11). 

𝑔𝑖 = (∏ 𝑣𝑖𝑗
𝑚
𝑗=1 )

1/𝑚
                                                                                                                                   (11) 

 

Step 12. Calculate the distance of each alternative from the border approximation area to obtain the matrix 

elements (Q), using Equation (12). 

Q = V – G                                                                                                                                                  (12) 

 

A Self-Organizing Map (SOM) neural network is a type of competitive and unsupervised learning that can 

learn and regulate itself (Qu et al., 2020). This study uses the Particle Swarm Optimization (PSO) approach 

to find the best starting weights to use in the Self-Organizing Map (SOM) clustering model. The reason for 

this pick is that PSO is said to be very adaptable and flexible, which makes it a good choice for solving a 

wide range of optimization problems (Peng et al., 2023). The PSO method helps to improve the process of 

finding the best parameters by making it easier to explore different weight combinations. This leads to faster 

convergence and more accurate neural network topologies. 

 

Step 13. Evaluate the SOM clustering by calculating the quantization error using Equation (13). 

𝑄𝐸 =  
1

𝑁
∑ ‖𝑥𝑖 − 𝑤𝑗‖𝑗

𝑀𝑖𝑛𝑁
𝑖=1                                                                                                                       (13) 
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This error quantifies the extent to which the SOM has mapped the data, with lower values indicating better 

clustering performance. 

 

Step 14. Based on the training data, adjust the SOM weights using Equation (14). 

𝜃𝑗(𝑥) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑤𝑗(𝑡)‖

2

2𝜎2(𝑡)
)                                                                                                                     (14) 

 

This Equation adjusts the weights of neurons in the SOM based on their proximity to the input data point, 

with closer neurons having a larger influence. 

 

Step 15. Update particle position and velocity using Equation (15). 

𝑉𝑖(𝑡+1) =  𝑤 . 𝑉𝑖(𝑡)  +  𝑐1. 𝑟𝑎𝑛𝑑() . (𝑝𝐵𝑒𝑠𝑡(𝑖) − 𝑥𝑖(𝑡)) +  𝑐2 . 𝑟𝑎𝑛𝑑() . (𝑔𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡))                    (15) 

 

The values of w, c1, and c2 are constants controlling the influence of previous velocity and the attraction 

to the best-known positions. The update process ensures particles move toward promising regions in the 

solution space based on personal and collective experiences. 

 

Step 16. Update the position of the particle based on its new velocity using Equation (16). 

𝑥𝑖(𝑡+1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡+1)                                                                                                                         (16) 

 

The Equation moves particles through the solution space toward optimal solutions. 

 

Step 17. Determine the shortest distance between each output neuron and the input data by applying 

Equation (17). 

𝐷𝑖  =  ∑ (𝑤𝑖 𝑖 −  𝑥𝑖)2                                                                                                                                 (17) 

 

where, 𝐷𝑖 is the distance from the input data point  𝑥𝑖 to the weight vector 𝑤𝑖 . 

 

This Equation helps identify the best-matching neuron for each input point, a core process in SOM. 

 

Step 18. Update the neighbouring for each weight (𝑤𝑖𝑗 ) using Equation (18). 

𝑊𝑖𝑗(𝑡 + 1)  =  𝑊𝑖𝑗(𝑡)  +  𝛼(𝑡) . ℎ(𝑡) . (𝑋𝑖(𝑡) − 𝑤𝑖𝑗(𝑡))                                                                        (18) 

 

This Equation adjusts the weights of neurons in the BMU to help the SOM map the data more accurately. 

 

Step 19. Each cluster's centroid is the final weight of the neurons, as written in Equation (19). 

Centroidk = Weightjk                                                                                                                                  (19) 

 

where, Wjk is the weight vector of neuron j in cluster k. 

 

Step 20. Construct the dataset for the Random Forest using SOM clustering results. 

Each data point 𝑥𝑖  is labelled according to its corresponding cluster identified by SOM. Formulate the 

training set written using Equation (20): 

XRF={(xi,ClusterLabeli)}, i=1,2,…,N                                                                                                     (20) 

 

This dataset will be utilized as the training set for classification and prediction.  
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Step 21. Training data using Equation (21). 

𝑅𝐹𝑚𝑜𝑑𝑒𝑙 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡(𝑋𝑅𝐹 , 𝑌𝑅𝐹)                                                                                                     (21) 
 

where, XRF are data points, and YRF are the corresponding cluster labels. 

 

Step 22. Calculate the importance of the feature's impact on the clustering using Equation (22). 

𝐹𝐼𝑗 =  
1

𝑇
∑ (𝐼𝑗(𝑡))𝑇

𝑡=1                                                                                                                                  (22) 

 

where, 𝐹𝐼𝑗 is the importance of feature j, 𝑇 is the number of trees, and 𝐼𝑗(𝑡) is the importance of feature j 

in tree t. 
 

Step 23. Utilize the trained Random Forest for prediction and decision support using Equation (23). 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐿𝑎𝑏𝑒𝑙𝑛𝑒𝑤  =  𝑅𝐹𝑚𝑜𝑑𝑒𝑙(𝑋𝑛𝑒𝑤)                                                                                                     (23) 

 

The proposed framework employs a sequential approach to improve clustering accuracy and predictive 

performance. 

 

3.3 Data Collection 
The dataset included information from multiple dimensions that came from a number of reputable 

organizations. This study got economic, environmental, and regional indicators from the accessible data 

from the Organisation for Economic Co-operation and Development and the World Bank. The Indonesian 

Ministry of Environment and Forestry and the Central Bureau of Statistics of Indonesia gathered city-

specific data from Indonesia, which was then augmented by reports from local governments. This study got 

further information on the context and policies from peer-reviewed scholarly journals. This study chose 15 

cities, which included a mix of big cities, medium-sized cities, and up-and-coming cities. This made sure 

that this study covered a wide range of socio-economic and geographic circumstances. Cross-checking with 

other sources of information makes sure that the data is strong and that the multifunctional model keeps the 

dataset's trustworthiness. 

 

3.4 Data Preprocessing 
The collected city-level carbon trading dataset underwent several preprocessing steps to ensure consistency, 

completeness, and model compatibility: 

• Handling Missing Data 

Any missing entries in numerical criteria were imputed using the mean value of their respective features. 

For categorical or ordinal fields, the mode value was used for imputation. 

• Normalization 

Since the data included features with different scales, min-max normalization was applied to scale all 

values into the [0, 1] range, facilitating convergence in clustering and prediction models. 

• Data Consistency Verification 

Cross-validation against multiple sources was performed to confirm the integrity and consistency of 

each city’s indicators. 

 

3.5 Rationale for Machine Learning Method Selection 
The selection of the PSOM and Random Forest algorithms in the proposed framework is guided by their 

complementary strengths. PSOM enhances clustering precision by dynamically optimizing the weight 

initialization of the SOM, thereby improving the ability to reveal topological relationships and enhancing 

the quality of data grouping. As Bensaoud and Kalita (2025) stated, in the context of urban carbon trading 
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data, which is often high-dimensional and heterogeneous, requiring scalable and adaptive methods. 

 

The Random Forest approach, on the other hand, is used because it can classify data well and works better 

with complicated, non-linear datasets. It serves as a core analytical component for model benchmarking 

and classification, offering interpretability and reliability in predictive modelling tasks (Ziakopoulos et al., 

2023). Its proven effectiveness across similar domains makes it well-suited for analyzing city-level 

readiness and variability in carbon trading strategies (Herawati et al., 2024). By combining supervised and 

unsupervised learning approaches, the hybrid framework fixes the difficulties with standard single-

paradigm models. This synergy enhances detection accuracy, adaptability to data complexity, and resilience 

in predictive performance, thereby providing a comprehensive and context-sensitive decision-support tool 

for evaluating urban carbon policy. 

 

4. Result and Discussion 

4.1 Application of hybrid MOO-MCDM-PSOM 
MOO significantly enhances decision-making in engineering contexts, demonstrating its potential to 

address complex and conflicting decision scenarios with conflicting objectives in production environments 

(Faisal et al., 2024). This study engages experts to determine the priority index scale for each criterion, 

using the FDM with a fuzzy-scale evaluation system by a Triangular Fuzzy Number (TFN) to capture 

subjective judgments more effectively, as follows:  

• Totally Agree (T) = 5{1.0;0.8;0.6} 

• Agree (A)   = 4{0.8;0.6;0.4} 

• Simply Agree (S) = 3{0.6;0.4;0.2} 

• Less Agree (L)  = 2{0.4;0.2;0.0} 

• Disagree (D)   = 1{0.2;0.0;0.0} 

 

This fuzzy linguistic scale enables a more nuanced evaluation of qualitative data, supporting improved 

decision-making under uncertainty. The scoring results and calculations are displayed in Table 1. 

 

 
Table 1. Scoring data and consensus values. 

 
Expert PCE GDP IC IMR EE PD EI RS ICA IQ PTQ UP W2E LUP CRP GI 

1 T A T T T T T T A T A S A T A T 

2 S A T T T T T T A T A S A S A T 

3 T T A T T T A T A A A A A S T T 

4 T T T T T T A S A T A T S S T S 

5 T T T A A T A S A T A S T T T A 

6 A T T T A T T T A T S S T T T T 

7 T T T T T T T T A T T A A A T A 

8 T T T T A T T T A T S A A A A A 

9 A T A T T T T A A T A A T A A A 

10 T T T T T A T A A T A A A A A T 

11 T T T A T A T T A A A A T T A T 

12 T T T A T A T T A T A A A A T A 

13 T T T A A A A A A A T T A T T S 

14 T T A T T T T T S T A A A A T T 

15 T T A T A A A A A A T T S A A A 

16 A T T T A A A A A A S T A T A A 

Threshold 0.09 0.04 0.07 0.08 0.09 0.09 0.09 0.10 0.02 0.08 0.07 0.10 0.08 0.12 0.10 0.11 

F-Evaluation 11.8 12.4 12 12 11.6 11.6 11.6 11.6 9.4 11.8 9.6 9.6 10 10.2 11.2 10.8 

F-Number 0.74 0.78 0.75 0.75 0.72 0.72 0.72 0.72 0.58 0.75 0.6 0.6 0.62 0.63 0.70 0.67 

Construction 0.086 

Consensus 0.960 
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The optimization results for each criterion, as presented in Figure 2, demonstrate that the FDM method 

achieves more comprehensive and balanced optimization across a broader spectrum of criteria. In 

collocation, the NSGA-II algorithm demonstrates a more limited optimization efficacy, concentrating 

predominantly on a more specific range of criteria. Consequently, the decision indices for the evaluated 

criteria are established as EE, PCE, GDP, IC, EI, PD, ICA, RS, GI, IMR, LUP, CRP, W2E, UP, IQ, and 

PTQ. 

 

 
 

Figure 2. The MOO results for each criterion based on NSGA-II and FDM. 

 

 

 

The first step in implementing MCDM is to determine the weight of each criterion using the SWARA, 

where an index between 1 and 16 influences the weight value of each criterion, as shown in Table 2. 

 
Table 2. Criteria weight based on SWARA. 

 

Criteria Index Comparative value (Sj) Coefficient value (Kj) Relative weight (qi) Criteria Weights (Wj) 

EE 1 0 0 1 0.18753 

PCE 2 0.30 1.30 0.7692 0.14425 

GDP 3 0.25 1.25 0.6154 0.11540 

IC 4 0.20 1.20 0.5128 0.09617 

EI 5 0.15 1.15 0.4459 0.08362 

PD 6 0.10 1.10 0.4054 0.07602 

ICA 7 0.05 1.05 0.3861 0.07240 

RS 8 0.40 1.40 0.2758 0.05172 

GI 9 0.35 1.35 0.2043 0.03831 

IMR 10 0.30 1.30 0.1571 0.02947 

LUP 11 0.25 1.25 0.1257 0.02357 

CRP 12 0.20 1.20 0.1048 0.01964 

W2E 13 0.15 1.15 0.0911 0.01708 

UP 14 0.10 1.10 0.0828 0.01553 

IQ 15 0.05 1.05 0.0789 0.01479 

PTQ 16 0.02 1.02 0.0773 0.01450 
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Table 3. Subcriterion weights based on SWARA. 
 

Subcriterion ([Benefit] ; [Cost]) Comparative value (Sj) Coefficient value (Kj) Relative weight (qi) Result 

[Extremely High] ; [Low] 0 1 1 0.3966 

[High] ; [Average] 0.3333 1.3333 0.75 0.2974 

Moderate 0.6666 1.6666 0.45 0.1784 

[Average] ; [High] 1 2 0.225 0.0892 

[Low] ; [Extremely High] 1.3333 2.3333 0.0964 0.0382 

 

 

Based on the data in Table 3, it is stated that each subcriterion consists of a benefit or cost category, where 

the value is determined based on the character of a criterion (Jufri, 2024), as shown in Table 4. 

 

 
Table 4. Potential scoring levels for each criterion. 

 

Criteria Low Average Moderate High Extremely High 

EE < 0.50 0.50 - 0.60 0.60 - 0.70 0.70 - 0.80 > 0.80 

PCE < 1 ton 1 - 4 ton 4 - 7 ton 7 - 10 ton > 10 ton 

GDP < $5000 $5000 - $10000 $10000 - $20000 $20000 - $30000 > $30000 

IC < 0.10 0.10 - 0.20 0.20 - 0.35 0.35 - 0.50 > 0.50 

EI < 0.30 0.30 - 0.50 0. 50 - 0.70 0.70 - 0.90 > 0.90 

PD < 2000 2000 - 4000 4000 - 7000 7000 - 10000 > 10000 

ICA < 0.10 0.10 - 0.30 0.30 - 0.50 0.50 – 0.70 > 0.70 

RS 0 - 0.10 0.10 - 0.30 0.30 - 0.50 0.50 - 0.70 > 0.70 

GI < 0.05 0.05 - 0.15 0.15 - 0.30 0.30 - 0.50 > 0.50 

IMR < 0.05 0.05 - 0.15 0.15 - 0.30 0.30 - 0.50 > 0.50 

LUP < 0.10 0.10 - 0.20 0.20 - 0.30 0.30 - 0.40 > 0.40 

CRP < 0.05 0.05 - 0.15 0.15 - 0.30 0.30 - 0.50 > 0.50 

W2E < 0.10 0.10 - 0.30 0.30 - 0.50 0.50 - 0.70 > 0.70 

UP < 0.05 0.05 - 0.15 0.15 - 0.30 0.30 - 0.50 > 0.50 

IQ < 0.10 0.10 - 0.30 0.30 - 0.50 0.50 - 0.70 > 0.70 

PTQ < 0.10 0.10 - 0.30 0.30 - 0.50 0.50 - 0.70 > 0.70 

 

 

After determining the weight and scale of the assessment based on the criteria and subcriteria, the test data 

of each city were calculated using the MABAC method. The score data for each city is shown in Table 5. 

 
Table 5. Criterion scores for each city based on the carbon trading policy. 

 
City EE PCE GDP IC EI PD ICA RS GI IMR LUP CRP W2E UP IQ PTQ 

Jakarta 0.75 6.0 40000 0.50 0.80 15000 0.70 0.85 0.80 0.25 0.70 0.85 0.30 0.80 0.80 0.07 

Surabaya 0.80 4.5 30000 0.40 0.75 12000 0.65 0.80 0.75 0.30 0.65 0.80 0.35 0.75 0.75 0.65 

Bandung 0.85 3.5 25000 0.30 0.85 14000 0.80 0.75 0.85 0.35 0.80 0.75 0.40 0.85 0.85 0.80 

Medan 0.70 4.0 20000 0.35 0.70 10000 0.60 0.70 0.70 0.20 0.60 0.70 0.25 0.70 0.70 0.60 

Semarang 0.90 3.0 15000 0.25 0.90 11000 0.75 0.90 0.90 0.40 0.75 0.90 0.45 0.90 0.90 0.75 

Makassar 0.82 3.2 16000 0.30 0.82 10500 0.68 0.78 0.82 0.32 0.68 0.78 0.32 0.82 0.82 0.68 

Palembang 0.84 3.7 18000 0.33 0.84 10800 0.72 0.82 0.84 0.34 0.72 0.82 0.37 0.84 0.84 0.72 

Denpasar 0.78 2.8 14000 0.28 0.78 9500 0.66 0.76 0.78 0.28 0.66 0.76 0.28 0.78 0.78 0.66 

Balikpapan 0.80 2.9 14500 0.29 0.80 9800 0.70 0.80 0.80 0.30 0.70 0.80 0.30 0.80 0.80 0.70 

Yogyakarta 0.75 2.6 13000 0.26 0.75 8600 0.65 0.75 0.75 0.25 0.65 0.75 0.25 0.75 0.75 0.65 

Malang 0.77 3.1 15500 0.31 0.77 10200 0.69 0.77 0.77 0.27 0.69 0.77 0.27 0.77 0.77 0.69 

Batam 0.80 3.3 16500 0.35 0.80 10700 0.70 0.80 0.80 0.30 0.70 0.80 0.30 0.80 0.80 0.70 

Pekanbaru 0.83 3.4 17000 0.32 0.83 10900 0.73 0.83 0.83 0.33 0.73 0.83 0.33 0.83 0.83 0.73 

Banjarmasin 0.79 3.0 15000 0.30 0.79 9000 0.67 0.79 0.79 0.29 0.67 0.79 0.29 0.79 0.79 0.67 

Pontianak 0.81 2.7 13500 0.27 0.81 9300 0.71 0.81 0.81 0.31 0.71 0.81 0.31 0.81 0.81 0.71 

 
 

Next, the decision matrix for each city is determined based on the criteria, as shown in Table 6. 
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Table 6. Decision matrix calculation results. 
 

City EE PCE GDP IC EI PD ICA RS GI IMR LUP CRP W2E UP IQ PTQ 

Jakarta 0.290 0.289 0.231 0.192 0.167 0.152 0.072 0.103 0.038 0.029 0.024 0.020 0.017 0.016 0.030 0.015 

Surabaya 0.290 0.289 0.178 0.192 0.167 0.152 0.072 0.103 0.038 0.029 0.024 0.020 0.034 0.016 0.030 0.025 

Bandung 0.375 0.144 0.178 0.096 0.167 0.152 0.145 0.103 0.038 0.059 0.024 0.020 0.034 0.016 0.030 0.029 

Medan 0.188 0.144 0.115 0.096 0.084 0.076 0.072 0.052 0.038 0.029 0.024 0.020 0.017 0.016 0.015 0.025 

Semarang 0.375 0.144 0.115 0.096 0.167 0.152 0.145 0.103 0.038 0.059 0.024 0.020 0.034 0.016 0.030 0.029 

Makassar 0.375 0.144 0.115 0.096 0.167 0.152 0.072 0.103 0.038 0.059 0.024 0.020 0.034 0.016 0.030 0.025 

Palembang 0.375 0.144 0.115 0.096 0.167 0.152 0.145 0.103 0.038 0.059 0.024 0.020 0.034 0.016 0.030 0.029 

Denpasar 0.290 0.144 0.115 0.096 0.167 0.076 0.072 0.103 0.038 0.029 0.024 0.020 0.017 0.016 0.030 0.025 

Balikpapan 0.290 0.144 0.115 0.096 0.167 0.076 0.072 0.103 0.038 0.029 0.024 0.020 0.017 0.016 0.030 0.025 

Yogyakarta 0.290 0.144 0.115 0.096 0.167 0.076 0.072 0.103 0.038 0.029 0.024 0.020 0.017 0.016 0.030 0.025 

Malang 0.290 0.144 0.115 0.096 0.167 0.152 0.072 0.103 0.038 0.029 0.024 0.020 0.017 0.016 0.030 0.025 

Batam 0.290 0.144 0.115 0.096 0.167 0.152 0.072 0.103 0.038 0.029 0.024 0.020 0.017 0.016 0.030 0.025 

Pekanbaru 0.375 0.144 0.115 0.096 0.167 0.152 0.145 0.103 0.038 0.059 0.024 0.020 0.034 0.016 0.030 0.029 

Banjarmasin 0.290 0.144 0.115 0.096 0.167 0.076 0.072 0.103 0.038 0.029 0.024 0.020 0.017 0.016 0.030 0.025 

Pontianak 0.375 0.144 0.115 0.096 0.167 0.076 0.145 0.103 0.038 0.059 0.024 0.020 0.034 0.016 0.030 0.029 

 

 

The next stage is to calculate estimated the border area matrix (G) against 16 criteria (1/16), where the 

results are as follows: 

 

G =  [{EE: 0.336};{PCE: 0.178};{GDP: 0.146}; 

 {IC: 0.121};{EI: 0.179};{PD: 0.132}; 

 {ICA: 0.106};{RS: 0.114};{GI: 0.047}; 

 {IMR: 0.048};{LUP: 0.030};{CRP:0.025}; 

 {W2E: 0.030};{UP: 0.020};{IQ: 0.035};{PTQ: 0.032}]. 

 

The border area matrix is used to determine the values of the alternative distance matrix elements of the 

approximate border area (Q) as shown in Figure 3. 

 

 
 

Figure 3. Visualization of the value of the approximate border area (Q). 
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The MABAC technique can put the cities into three rough border areas based on their economic, social, 

political, and environmental performance: 

• Positive Border Area. 

Jakarta, Surabaya, Bandung, and Semarang are all cities that are known for being good places for 

development and resources. These cities get a lot of investment and people moving there because they 

have good infrastructure and stable governments. 

 

• Intermediate Border Area. 

This comprises Yogyakarta, Makassar, and Palembang, which are located between areas with moderate 

growth and stability. These cities connect core and periphery areas and have the potential to flourish 

thanks to spillover effects and focused initiatives. 

 

• Negative Border Area. 

This includes Medan, Pontianak, Denpasar, and Banjarmasin, which have lower economic and social 

metrics, usually because they don't have enough resources or are cut off from other places. These cities 

have more problems with development and need help with infrastructure, governance, and economic 

prospects in specific areas. 

 

Next, the values generated by grouping cities based on indicators serve as the input for the clustering process 

of each city's carbon trade policy using PSOM. Carbon trading policies are categorized into distinct clusters, 

each representing a specific regulatory and incentive strategy: Policy-A (C1) promotes carbon trading 

through fiscal incentives for green industries; Policy-B (C2) enforces carbon trading with strict regulations 

and penalties for non-compliance; and Policy-C (C3) adopts a flexible cap-and-trade scheme to 

accommodate carbon trading dynamics. 

 

The distance matrix data in Tables 7 and 8 serve as inputs for the PSOM clustering process, which iterates 

until convergence. Upon completion, the global best position, which represents the lowest quantization 

error, determines the optimal SOM weights. These weights are reshaped into a 1x3 SOM grid, yielding the 

final configuration [0.592; 0.688; 0.781], [0.640; 0.270; 0.288], [0.428; 0.689; 0.641], which minimizes 

quantization errors and ensures optimal data. The final centroid cluster values are shown in Table 9. 
 

Table 7. Input data for the application of PSOM. 
 

City EE PCE GDP IC EI PD ICA RS 

Jakarta -0.046 0.111 0.085 0.071 -0.012 0.020 -0.034 -0.011 

Surabaya -0.046 0.111 0.033 0.071 -0.012 0.020 -0.034 -0.011 

Bandung 0.039 -0.033 0.033 -0.025 -0.012 0.020 0.039 -0.011 

Medan -0.148 -0.033 -0.030 -0.025 -0.095 -0.056 -0.034 -0.062 

Semarang 0.039 -0.033 -0.030 -0.025 -0.012 0.020 0.039 -0.011 

Makassar 0.039 -0.033 -0.030 -0.025 -0.012 0.020 -0.034 -0.011 

Palembang 0.039 -0.033 -0.030 -0.025 -0.012 0.020 0.039 -0.011 

Denpasar -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011 

Balikpapan -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011 

Yogyakarta -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011 

Malang -0.046 -0.033 -0.030 -0.025 -0.012 0.020 -0.034 -0.011 

Batam -0.046 -0.033 -0.030 -0.025 -0.012 0.020 -0.034 -0.011 

Pekanbaru 0.039 -0.033 -0.030 -0.025 -0.012 0.020 0.039 -0.011 

Banjarmasin -0.046 -0.033 -0.030 -0.025 -0.012 -0.056 -0.034 -0.011 

Pontianak 0.039 -0.033 -0.030 -0.025 -0.012 -0.056 0.039 -0.011 
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Table 8. Input data for the application of PSOM (Continued). 
 

City GI IMR LUP CRP W2E UP IQ PTQ 

Jakarta -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 -0.006 

Surabaya -0.009 -0.018 -0.006 -0.005 0.004 -0.005 0.009 0.005 

Bandung -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009 

Medan -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 -0.005 0.005 

Semarang -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009 

Makassar -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.005 

Palembang -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009 

Denpasar -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005 

Balikpapan -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005 

Yogyakarta -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005 

Malang -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005 

Batam -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005 

Pekanbaru -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009 

Banjarmasin -0.009 -0.018 -0.006 -0.005 -0.013 -0.005 0.009 0.005 

Pontianak -0.009 0.011 -0.006 -0.005 0.004 -0.005 0.009 0.009 
 

 

Table 9. Clustering results using PSOM. 
 

City C1 C2 C3 Cluster Policy 

Jakarta 2.5791 2.3419 0.7960 3 C 

Surabaya 1.0409 1.7120 2.6131 1 A 

Bandung 0.6810 1.3807 2.1166 1 A 

Medan 0.5233 1.1751 2.0222 1 A 

Semarang 1.1352 0.6548 1.8289 2 B 

Makassar 1.8333 1.8541 1.4470 3 C 

Palembang 1.9556 1.7045 1.0995 3 C 

Denpasar 1.0735 0.3752 1.7772 2 B 

Balikpapan 1.0996 0.1237 1.8631 2 B 

Yogyakarta 1.4825 0.7092 1.4648 2 B 

Malang 1.1821 0.1242 1.8760 2 B 

Batam 1.2125 0.1593 1.8829 2 B 

Pekanbaru 1.2075 0.4581 1.5841 2 B 

Banjarmasin 1.2125 0.1593 1.8829 2 B 

Pontianak 1.7270 0.8534 2.1285 2 B 

 

Based on the testing results in Table 9, the analysis aligns each city's characteristics with its cluster and 

corresponding policy, emphasizing a tailored approach to carbon trading strategies: 

• Policy-A, with Fiscal Incentives. This policy targets cities with high sustainability potential yet 

developing economic and infrastructure indicators by encouraging green industry growth through 

targeted incentives. 

• Policy-B, with Strict Regulations. This policy, applied to cities with balanced development, relies on 

penalties to uphold sustainable practices and prevent non-compliance. 

• Policy-C, with Flexible Cap-and-Trade. This policy supports economically strong cities with limited 

sustainability infrastructure in their gradual adaptation to carbon targets. 

 

4.2 Sensitivity Test 
In evaluating the effectiveness of carbon trade policies, sensitivity tests can help identify sensitive changes 

in the weight of criteria. Changes in the weight of the criteria based on 4 aspects are shown in Table 10. 

 

The sensitivity test is conducted by incrementally increasing each criterion’s weight by 0.5 within its 

respective aspect. Given an example:  

Input  = [EE;0.75], [PCE;6], [GDP;40000], [IC;0.5], [EI;0.8], [PD;15000], [ICA;0.7],[RS; 0.85], 

[GI;0.8], [IMR;0.25], [LUP;0.7], [CRP;0.85], [W2E;0.3], [UP;0.8], [IQ;0.8], [PTQ;0.07]. 



Faisal et al.: A Machine Learning-Driven Framework for Evaluating and Clustering City … 
 

 

2188 | Vol. 10, No. 6, 2025 

Decision Matrix (X): 

EE (0.5)  = ((0.297-0.3966) / (0.178-0.3966)), PCE (0) = ((0.389-0.3966) / (0.389-0.3966)) 

Weighted matrix Border (V): EE (1.063) = (1.063 * 0.68753) + 1.063. 

Element Border (Q): 

EE (-0.072)  = 1.063 – 1.135. 

Score (S)  = (-0.072) +(0.111) + (0.531) + (0.521) + (-0.012) + 0.020 + (-0.164) + (-0.011) + (-0.009) + 

(-0.018) + (-0.006) + (-0.005) + (-0.013) + (-0.005) + (1.009) + (-0.006)  

 = 1.8728 (Positive Area). 

 
Table 10. Aspect and criterion weights for sensitivity test. 

 

Aspect Criteria Initial Weight Type Sensitivity Weight 

Economics 

GDP 0.11540 Benefit 0.61540 

IC 0.09617 Cost 0.59617 

EE 0.18753 Benefit 0.68753 

ICA 0.07240 Benefit 0.57240 

IQ 0.01479 Benefit 0.51479 

Social 

PD 0.07602 Cost 0.57602 

EI 0.08362 Benefit 0.58362 

PTQ 0.01450 Benefit 0.51450 

UP 0.01553 Benefit 0.51553 

Environment 

PCE 0.14425 Cost 0.64425 

IMR 0.02947 Benefit 0.52947 

W2E 0.01708 Benefit 0.51708 

LUP 0.02357 Benefit 0.52357 

CRP 0.01964 Benefit 0.51964 

GI 0.03831 Benefit 0.53831 

Politics RS 0.05172 Benefit 0.55172 

 

 

 
 

(a) (b) 

  
(c) (d) 

 

Figure 4. The result of the sensitivity test for each aspect and criterion. 
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Table 11. MCDM accumulation results based on aspects. 
 

City Normal Economics Social Environment Politics 

Jakarta 0.1332 1.8728 -0.0949 0.1776 0.1971 

Surabaya 0.1083 1.6207 0.2419 0.6527 0.1722 

Bandung 0.0590 1.7986 0.3309 0.6034 0.1229 

Medan -0.5406 -0.5737 -1.4070 -0.9961 -0.9766 

Semarang -0.0040 1.4630 0.2679 0.5405 0.0600 

Makassar -0.0804 0.8865 0.0532 0.4641 -0.0164 

Palembang -0.0040 1.4630 0.2679 0.5405 0.0600 

Denpasar -0.2882 0.4515 -0.6546 -0.7437 -0.2242 

Balikpapan -0.2882 0.4515 -0.6546 -0.7437 -0.2242 

Yogyakarta -0.2882 0.4515 -0.6546 -0.7437 -0.2242 

Malang -0.2122 0.5275 -0.0786 -0.6677 -0.1482 

Batam -0.2122 0.5275 -0.0786 -0.6677 -0.1482 

Pekanbaru -0.0040 1.4630 0.2679 0.5405 0.0600 

Banjarmasin -0.2882 0.4515 -0.6546 -0.7437 -0.2242 

Pontianak -0.0800 1.3869 -0.3081 0.4645 -0.0160 

 

 

As shown in Table 10, weight adjustments were analyzed across several cities, indicating that an enhanced 

hybrid approach with SWARA's adaptive weighting mechanism can effectively respond to different 

priorities. This outcome affirms the robustness of the proposed methodology in capturing the diverse 

characteristics of urban environments within the evaluation framework. 

 

Based on the calculation results, it is evident that economic criteria influence the carbon trade policy in the 

city of Medan. Furthermore, the social aspect affects carbon trade policies in Jakarta, Medan, Denpasar, 

Balikpapan, Yogyakarta, Malang, Batam, Banjarmasin, and Pontianak. The results of the calculation of 

each aspect and criterion are illustrated in Figure 4. 

 

The cities that were not affected by changes in criterion weights are Surabaya and Bandung. The 

accumulation result is shown in Table 11. 
 

Overall, the data in Table 11 indicate that economic performance is strong; however, social, environmental, 

and political issues require attention to achieve balanced development. 

 

4.3 Identification of Patterns in Policy Effectiveness Using PSOM 
Changes in the results of carbon trade policy mapping are influenced by the input value of the criterion that 

describes the city's condition from the perspective of implementing carbon trade policy. The PSOM 

methodology encompasses data preparation and normalization, weight optimization using the PSO 

algorithm, training data, identifying centroids, and analyzing cities in clusters with SOM, as outlined in 

Figure 5 and Table 12. 

 

Based on the results of calculating the centroid of PSOM for cities across various aspects, it is evident that 

cities have diverse economic, social, environmental, and political profiles. 

 

Analysis of fifteen cities shows significant variations in readiness based on economic, social, environmental, 

and political dimensions. The results provide an idea that the implementation of carbon trading needs to be 

tailored to the characteristics and readiness of each city. A gradual, local strength-based approach is key to 

the success of effective and sustainable carbon trading policies at the city level. 
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Figure 5. Results of mapping carbon trade policies in each city based on specific aspects. 
 
 

 

 

Table 12. Determination of carbon trading policy in each city based on multiple aspects. 
 

City Normal Economics Social Environment Politics 

Jakarta 0.7960 1.5100 0.2442 1.2000 2.4000 

Surabaya 1.4090 0.6824 1.9000 1.2000 1.6900 

Bandung 0.6810 0.5176 0.6479 0.8781 0.6105 

Medan 0.5233 1.7000 1.6000 0.1233 0.0663 

Semarang 0.6548 0.4382 0.3777 0.7237 0.3020 

Makassar 1.4470 0.8460 0.7389 0.8418 1.0200 

Palembang 1.0995 0.3502 0.3777 0.7237 0.3020 

Denpasar 0.3752 0.3013 0.2912 1.3000 0.5154 

Balikpapan 0.1237 0.3002 0.2912 1.4000 0.5154 

Yogyakarta 0.7092 0.3286 0.2912 1.4000 0.5154 

Malang 0.1242 0.7651 0.8118 1.1000 0.8657 

Batam 0.1593 0.7663 0.8118 1.1000 0.8657 

Pekanbaru 0.4581 0.4288 0.3777 0.7237 0.3020 

Banjarmasin 0.1593 0.3074 0.2912 1.4000 0.5154 

Pontianak 0.8534 1.1600 0.8710 0.7237 0.7065 

 

 

4.4 Comparative Analysis 

This study compared the suggested method to three different clustering algorithms that are extensively used: 

Self-Organizing Maps (SOM), K-Medoids, and K-Means. This was done to see how well it worked. The 

stage calculation process in each method utilizes the data in Tables 7 to 8 as input, as shown in Table 13. 

 
 

 



Faisal et al.: A Machine Learning-Driven Framework for Evaluating and Clustering City … 
 

 

2191 | Vol. 10, No. 6, 2025 

Table 13. Comparison results of SOM, PSOM, K-means, and K-medoid methods. 
 

City 
SOM PSOM K-Means K-Medoid 

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 

Jakarta 2.3919 0.8807 2.8223 2.5791 2.3419 0.7960 0.2308 0.2159 0.0279 6.4981 7.8268 0.0000 

Surabaya 1.7616 2.5742 0.5397 1.0409 1.7120 2.6131 0.2112 0.1938 0.0279 5.3791 5.7606 3.9550 

Bandung 1.4402 2.0665 0.9104 0.6810 1.3807 2.1166 0.0553 0.1533 0.2102 4.9053 1.8555 7.2203 

Medan 1.2318 1.9759 0.7694 0.5233 1.1751 2.0222 0.2315 0.1234 0.2526 7.2022 8.8650 9.7004 

Semarang 0.6973 1.7835 1.3176 1.1352 0.6548 1.8289 0.0204 0.1397 0.2267 4.5407 4.2146 7.8268 

Makassar 1.8821 1.4217 1.9202 1.8333 1.8541 1.4470 0.0631 0.1191 0.2145 3.8589 2.3931 6.9846 

Palembang 1.7276 1.0121 2.2628 1.9556 1.7045 1.0995 0.0204 0.1397 0.2267 4.5407 4.2146 7.8268 

Denpasar 0.4525 1.7330 1.2620 1.0735 0.3752 1.7772 0.1272 0.0296 0.2091 0.0000 4.5407 6.4981 

Balikpapan 0.2157 1.8113 1.2971 1.0996 0.1237 1.8631 0.1272 0.0296 0.2091 0.0000 4.5407 6.4981 

Yogyakarta 0.7200 1.4155 1.7496 1.4825 0.7092 1.4648 0.1272 0.0296 0.2091 0.0000 4.5407 6.4981 

Malang 0.1033 1.8238 1.3784 1.1821 0.1242 1.8760 0.1110 0.0579 0.1948 2.0412 4.0561 6.1692 

Banjarmasin 0.0930 1.8307 1.4079 1.2125 0.1593 1.8829 0.1272 0.0296 0.2091 0.0000 4.5407 6.4981 

Pontianak 0.4426 1.5233 1.4640 1.7270 0.8534 2.1285 0.0653 0.1306 0.2391 4.0561 2.0412 8.0886 

 

 

The clustering comparison result indicates that a substantial proportion of cities (84.9%) are categorized 

within Cluster C3. This predominance suggests that the implementation of a Flexible Cap-and-Trade policy 

may constitute the most context-appropriate regulatory mechanism for these municipalities. The clustering 

analysis is illustrated in Figure 6. 

 

The results of the visualization reveal that PSOM makes a considerably superior three-dimensional data 

surface that is coherent and continuous than K-Means, K-Medoids, and SOM. The surface made by PSOM 

is smoother and holds its shape better. This cuts down on noise and makes it easier to analyze complex data 

distributions. The clustering results using K-Means, K-Medoids, and SOM, on the other hand, display more 

uneven surfaces, which could mask patterns in the data. These findings confirm the robustness of PSOM in 

handling non-linear data structures and its effectiveness in improving the visualization and interpretability 

of clustering outcomes (Faisal and Rahman, 2023b).  

 

Based on the enhanced clustering outputs, the created system uses machine learning to forecast the effects 

of low-carbon policies based on the improved clustering results, using both past data and new trends. 

Specifically, the Random Forest method is used for prediction, utilizing the clustering outputs (Table 5) as 

input data and the policy categories (Table 9) as labels. This predictive model is validated using test data 

from other cities, as shown in Table 14, to support the formulation of effective and responsive low-carbon 

policies that adapt to environmental and economic dynamics. 

 

The integration of the Random Forest algorithm within the MOO-MCDM framework enables a more 

nuanced assessment of policy alternatives by classifying and prioritizing criteria according to their relative 

importance, thereby enhancing the rigour of the decision-making process. Within the domain of carbon 

trading, Random Forest supports the prediction of policy impacts at the city level, informing optimal 

strategic pathways facilitated through the PSOM method. As noted by Sipper and Moore (2021), Random 

Forest constructs an ensemble of decision trees derived from random samples and feature subsets, 

aggregating their predictions through majority voting to enhance classification accuracy and mitigate the 

risks of overfitting. 
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 (a) SOM (b) PSOM 

 

 
 (c) K-Medoids  (d) K-Means 
 

Figure 6. Visualization of clustering using SOM, PSOM, K-medoid, and K-means. 
 

 
 

Table 14. Testing data for predicting and mapping carbon trade policy. 
 

City EE PCE GDP IC EI PD ICA RS GI IMR LUP CRP W2E UP IQ PTQ 

Bogor 0.63 1.8 12000 0.45 0.52 14000 0.50 0.52 0.53 0.12 0.58 0.54 0.18 0.53 0.49 0.56 

Manado 0.67 2.1 11500 0.43 0.55 10500 0.52 0.56 0.51 0.13 0.59 0.51 0.22 0.58 0.55 0.60 

Samarinda 0.71 2.3 13500 0.39 0.60 12000 0.60 0.61 0.65 0.22 0.65 0.61 0.30 0.63 0.62 0.66 

Jambi 0.62 1.7 12500 0.35 0.48 11000 0.49 0.54 0.50 0.10 0.57 0.49 0.16 0.52 0.50 0.51 

Padang 0.69 2.5 16000 0.47 0.63 15000 0.58 0.63 0.61 0.21 0.69 0.60 0.27 0.68 0.64 0.62 

Kupang 0.55 1.9 11000 0.33 0.47 9800 0.44 0.5 0.42 0.09 0.50 0.47 0.14 0.49 0.44 0.49 

Mataram 0.68 2.4 14500 0.48 0.64 16000 0.59 0.64 0.67 0.24 0.70 0.65 0.28 0.71 0.69 0.72 

T.Pinang 0.66 2.1 13000 0.38 0.54 12500 0.53 0.58 0.54 0.12 0.63 0.54 0.20 0.57 0.56 0.60 

Kendari 0.72 2.0 14000 0.44 0.61 9000 0.62 0.66 0.68 0.20 0.66 0.64 0.25 0.66 0.62 0.64 

Palu 0.74 2.6 16000 0.46 0.66 11000 0.65 0.67 0.70 0.23 0.72 0.68 0.30 0.70 0.71 0.68 

Ambon 0.59 1.5 3000 0.37 0.51 10500 0.49 0.53 0.47 0.11 0.55 0.51 0.17 0.54 0.51 0.55 

Bengkulu 0.65 2.3 14500 0.42 0.57 9500 0.56 0.61 0.61 0.18 0.63 0.59 0.26 0.61 0.60 0.61 

 

 

The result of the calculation process is shown in Figure 7, where machine learning predicts and maps each 

city's carbon trade policy. 
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Figure 7. Prediction and mapping carbon trade policy using random forest. 

 

 

Based on the predictions generated by the integrated model, a system of adaptive, data-informed policy 

recommendations was established. The results show that Policy-A, which supports tax breaks for green 

industry growth, works best in cities like Bogor and Ambon that don't do as well economically. Policy-B, 

on the other hand, is better for places like Samarinda and Kendari that are seeking to fix the environment 

because it contains rigorous guidelines. Policy-C is the greatest choice for cities like Padang and Kupang 

that have a variety of diverse development needs because it lets them make progress in both cutting 

emissions and making the economy more sustainable. 

 

This customized policy framework lets each community work toward its particular social, economic, and 

environmental goals in the way that works best for them. This is excellent for the bigger purpose of fighting 

climate change, as well as good for the greater goal of combatting climate change. The multidimensional 

evaluation of selected cities across economic, social, environmental, and political dimensions demonstrates 

the effectiveness of the proposed machine learning-driven framework in mapping urban carbon profiles, 

informing targeted policy interventions, and highlighting the strong predictive potential to guide carbon 

trading strategies and support IoT-based smart decision-making. 

 

4.5 Baseline Method Comparison for Evaluation 
A comparative analysis was conducted against baseline clustering and predictive methods further to validate 

the effectiveness of the proposed hybrid framework. The result is shown in Tables 15 and 16. 

 
Table 15. Clustering accuracy comparison. 

 

Methods Adjusted rand index Quantization error 

SOM 0.92 0.24 

K-Medoids 0.91 0.27 

K-Means 0.90 0.30 

PSOM 0.96 0.18 
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Based on the evaluation results, it is evident that PSOM demonstrated the best overall performance, with 

the highest Adjusted Rand Index value (0.96) and the lowest value (0.18). This signifies that PSOM is the 

most accurate in mimicking the original label structure and the most precise in data representation. 

 
Table 16. Predictive accuracy comparison. 

 

Predictive model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Decision Trees 90.36 % 90.50 91.00 90.75 

Support Vector Machine 92.10 % 91.80 92.00 91.90 

PSOM + Random Forest 95.57 % 95.40 95.50 95.45 

 

 

Based on the confusion matrix evaluation results, it is evident that the combined PSOM and Random Forest 

algorithm achieved higher prediction accuracy (95.57%) than simpler baselines, thereby reinforcing the 

superiority of the proposed hybrid framework. 

 

4.6 Computational Efficiency 
All computational testing was conducted using Google Colab, a cloud-based development platform with a 

runtime environment on Intel Xeon CPU 2.20GHz, 12GB RAM, and Python 3.10. This environment allows 

for scalable and reproducible analysis across urban datasets. Although the PSOM framework incurs a 

slightly longer runtime, its superior clustering precision, topological preservation, and predictive power 

justify the trade-off, making it well-suited for complex city-level carbon policy evaluation tasks. 

 

5. Conclusions 

5.1 Summary of Contributions 
This study introduced a novel hybrid analytical framework that integrates MOO, MCDM, PSOM, and 

Random Forest methods to support the evaluation and clustering of city-level carbon trading strategies. The 

framework demonstrates strong potential in capturing the spatial heterogeneity of urban emissions, thereby 

enhancing the interpretability of carbon readiness classifications and supporting predictive policy 

modelling. Empirical results confirm that the PSOM-based clustering improves initialization and stability 

over conventional methods, while Random Forest enables accurate classification of cities. Collectively, 

these components form a scalable and context-aware decision support system for policymakers. 

 

5.2 Key Results 
The critical results of this study include: 

• Dynamic Multidimensional Evaluation 

The integration of MOO and MCDM enables simultaneous consideration of multiple, often conflicting, 

policy criteria, offering a holistic assessment of urban carbon trading strategies. 

• Improved Clustering by PSOM 

Using PSOM makes city clustering far more accurate and stable than older methods like SOM, K-Means, 

and K-Medoids. 

• Predictive Modelling with Random Forest 

Leveraging the Random Forest trained on PSOM-derived clusters extends the model from static 

evaluation to dynamic prediction, facilitating anticipatory carbon policy planning based on evolving 

urban datasets. 

• Tailored Policy Recommendations 

The framework does a good job of putting cities into groups based on how ready they are for carbon 

trading, which helps with targeted and stage-appropriate policy changes. 
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5.3 Practical Implications 
The proposed framework contributes theoretically by advancing the integration of MCDM and machine 

learning into a cohesive model for multidimensional policy evaluation. Practically, it offers policymakers 

a scalable and context-aware decision-support tool for assessing the performance of carbon trading 

initiatives, identifying priority areas, and tailoring interventions to specific urban conditions. 

 

5.4 Limitations and Future Work 

The study has several interesting ideas, however it is limited because it only analyzes cross-sectional and 

historical data. This could make it less able to adapt to changes in policy. It also did not include variables 

linked to behaviour, institutions, and governance, which could have left out critical things that determine 

how well carbon trading works in a given area.  

 

Adding Internet of Things (IoT) data, spatial-temporal analytics, and agent-based modeling to the 

framework will make it more helpful in real time. This is what future research should focus on. It will also 

be important to look into policy simulations, stakeholder dynamics, and behavioral incentives to make the 

model better at predicting and adapting to different urban settings. 
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