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Abstract

This study investigates the reliability of a machine dual-repair system (MDRS) with limited capacity and multiple operational
vacations (OV). Multiple operational vacation is a mechanism that involves the process of the two types of vacation, one as
operational vacation (OV) and another one is non-operational vacation (NOV). In this machining system, there are M operating
machines, to prevent redundant breakdowns of machines and S spare machines are used to ensure smooth functioning. The server
can be in a busy state, an operational vacation state, or on Non-operational vacation state. State-transition equations are formulated
based on the Chapman-Kolmogorov differential-difference equations, and with the help of these equations stationary probability
distribution is obtained. The Runge-Kutta IV order numerical method is used to evaluate system performance measures. The cost
has been optimized using Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) techniques by testing
convergence as well as comparison of the outcomes of both PSO and GWO. The exploration of the essential performance measures
and graphical representations has been conducted.

Keywords- Reliability, Retrial queues, Multiple operational vacation, Non-operational vacation.

1. Introduction

The multiple operational vacation (MOV) and machine dual-repair system (MDRS) models are used in
scenarios where the service station continues to operate at a lower rate rather than shutting down completely
due to reduced demand. Multiple operational vacation is a mechanism that processes the two types of
vacation, such as server operating, but at a lower speed is acknowledged as operational vacation service.
For example, in a CNC machine shop, a machine may go on "operational vacation" when the primary job
queue is empty. During this time, the operator might perform routine diagnostics or lubricate the machine.
Secondary non-operational vacation is a period when the server is completely idle or unavailable, doing no
productive work related to the system. For example, a robotic arm in an assembly line goes on non-
operational vacation when, power failure occurs, maintenance staff takes it offline for unexpected repairs.
These models are widely applied in various fields such as cloud computing, production houses, hospitals,
public transportation and maintenance, and telecommunications. Queueing theory enhances machine repair
models by analysing and optimizing the flow of repair tasks, ensuring efficient resource allocation and
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minimizing downtime. For instance, queueing theory can help establish the ideal quantity of spare parts to
keep in stock or optimize the scheduling of maintenance personnel to minimize idle time and ensure timely
repairs. This results in a balanced workload and prevents delays in machine repairs, ultimately improving
overall productivity. Furthermore, queueing theory supports better decision-making by providing insights
into the performance and reliability of the repair system under different conditions. It can simulate various
scenarios, such as an increase in machine breakdowns or changes in repair times, enabling organizations to
plan effectively for potential disruptions. Additionally, the literature on this topic explores aspects such as
reliability, retrial queues, and multiple operational vacations. The reliability of any system plays an
important role in the manufacturing industry. Yen et al. (2020), and Gao and Wang (2021) explore a
reliability-based retrial model of the machine repair problem with working breakdowns under the F-policy.
The author's study in this paper is about the reliability and sensitivity analysis of the retrial machine repair
problem with F-policy, which is used to control the arrival process. Muthusamy et al. (2022) and Kumar et
al. (2023) considered the reliability and optimization measures of retrial queues with different classes of
customers under a working vacation. It is explained that if no failed units in the orbit, the server may take
a working vacation. Ahuja and Jain (2023) investigated the fuzzy analysis of a queueing system with
unreliable service using a direct search approach and geometric arrivals, incorporating a constant retrial
policy and a delayed threshold policy. Li et al. (2024) investigate system reliability and optimization with
preventive maintenance. Analysis of multi-objective optimization shows it is the best retrial system
functioning with the help of warm standbys, even though due system has different types of failures. This
research was done by Wu and Wang (2025).

The multiple operational working vacation model is used in scenarios where the service station continues
operating at a lower rate rather than shutting down completely. Working vacations play an important role
in repairing systems by improving energy efficiency and operational effectiveness. Meena et al. (2019)
analysed a machine repair model incorporating vacation policies and standby provisioning mechanisms.
Chakravarthy et al. (2020) obtained a queueing system that incorporates breakdowns, vacations, and a
backup server during repairs. Deora et al. (2021) and Thakur et al. (2021) conducted a cost analysis and
optimized the cost of a machine repair system with a working vacation, feedback, and particle swarm
optimization. Bouchentouf et al. (2022) studied a multi-station unreliable machine system with a working
vacation policy and customer impatience behaviour. Gao et al. (2023) derived the steady-state distribution
and reliability of a redundant series system, where each primary unit is supported by a standby, under the
supervision of a single repairman who takes a delayed vacation when no failed units are present. Sapna and
Jain (2024) investigated the reliability of a machine-repair system characterized by multiple breakdowns
and controllable phase-type repair mechanisms. Agrawal et al. (2023) analysed the reliability of a repairable
system with multiple spare units under an “N-Policy” framework under the supervision of a single
repairman. Bouchentouf et al. (2024) proposed a finite capacity redundant multi-server machine repairable
system by using the matrix analytic method. The steady-state probabilities were computed to evaluate key
performance measures. The cost function was optimized by combining the direct search method with
particle swarm optimization. Kumar and Sharma (2025) analyze a queueing model of a manufacturing plant
system with a server working vacation in association with an optimal policy. Anitha et al. (2025), and Zhu
and Wang (2025) considered the vacation policy in a Markovian model and showed the results with different
parameters.

The PSO optimization technique is stimulated by the social behavior done by the flock of birds and the
school of fish while they travel to their perfect location. Jain and Raychaudhuri (2022) studied the
Markovian model in which the cost is optimized by a Genetic Algorithm with the working vacation and
multiple breakdowns. Chahal et al. (2024) explain the grey wolf optimization for a cloud computing
repairable system with a threshold policy, along with discouragement and two-level Bernoulli feedback.
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Sharma et al. (2025), Thakur and Jain (2025) analyze the cost effects for a machine repair system under the
triadic policy with discouragement and multiple working vacations using metaheuristic optimization. Table
1 presents a comparison between the proposed work and relevant studies.

Table 1. Comparison of the proposed work with relevant articles.

Authors Keywords
Reliability Retrial MOV Dual repair | Limited capacity PSO GWO

Wu and Wang (2025) N N x | % X <
Chabhal et al. (2024) X x x N N N| N
Li et al. (2024) N x x x x x .
Kumar et al. (2023) N x B x x x »
Deora et al. (2021) x x N N N N x
Proposed model N N N N N N N

This paper examines retrial machining systems with hybrid vacations, emphasizing the integration of
maintainability strategies to enhance system reliability and availability. The structure of the paper is as
follows: Section 2 outlines key definitions and assumptions, while Section 3 explores the model's
application. Section 4 presents the governing equations, followed by Section 5, which deduces performance
measures of the model. Section 6 discussed the cost function and optimization techniques. Section 7
analyses the impact of various parameters on sensitivity analysis. Section 8 provides the study’s results, and
finally, Section 9 discusses the conclusions of the work.

2. Definitions and Key Assumptions

The present study considers a retrial machine dual-repair system (RMDRS) in which once a unit fails, it is
replaced by an available standby, and the failed unit is sent to a service facility for service. In this system,
after providing service in a busy state, the server enters operational vacation OV, during the idle period.
After completing the first operational vacation, if the system detects any failed units in the busy state, the
server resumes service; otherwise, it proceeds to the next operational vacation, OV;. This process continues
sequentially until OV, (where J=1, 2, 3, ..., K-1). After the (K-1)" operational vacation, if the server finds
a failed unit in the busy state, it serves; otherwise, it proceeds to the next operational vacation OVk. If, after
completing the K™ operational vacation, the server does not find any failed machines in the busy state, it
transits to a non-operational vacation (NOV). The failed machines will get the services according to the
first-come, first -served (FCFS) pattern. The other notations and abbreviations are defined in Table 2.

Table 2. Notation and abbreviations used in the model.

Notations Abbreviation

oV Operational vacation

NOV Non-Operational vacation

L M+S, M is the number of operational machines, S is are number of standbys
A Operating rate of operational units

T Operating rate of standby units

9 Retrial rate of failed units

Ay Rate of failed units in different states

Ug Service rate during the busy state

Wyi Service rate during OV; (i=1,2,3...... K)

n Switching rate from NOV to busy state

o The breakdown rate of busy state, OV}, OV, ...OV states
B The repair rate of busy, OV, OV,...OVk states

Xno The probability of ‘n’ failed units in the 1% repair state

Xn1 The probability of ‘n’ failed units in the 2™ repair state

Xn2 The probability of the retrial state

Xn3 The probability that the server during a busy state

X The probability of server during OV,, i =4, 5, ...., K+3 state
Xnk+a The probability that the server during the NOV state
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Arrival and retrial pattern: The arrival of failed units to the system follows a Poisson process. The failure
rate, denoted by A, defined as follows

MA+ (S —n)t in=0,12,..(S—1),S
An =9 (L —n)A in=S+1S+2..M+S
0 otherwise

The failed units in the orbit retry for the service follow the exponential distribution with retrial rate 9,

Services mechanism: Failed machines are serviced according to a first-come, first-served (FCFS)
discipline. During the server's busy state, the service time for failed units follows an exponential distribution
with rate pug. When the server enters an operational vacation, the service times remain exponentially
distributed but with reduced service rates. Specifically, during the i operational vacation state OV; (for
i=1, 2, ..., K), the service rate is i where [, W2, Ws,..., Ik correspond to the respective operational
vacation phases. Let L=M+S, where L represents the total number of machines in the system, M denotes
the number of machines currently in operation, and S refers to the number of available spare machines.
When any of the operating machines fail or go down, the system immediately checks for the availability of
a spare machine. If a spare is available, it is replaced in the failed machine. The replacement process is
assumed to be instantaneous, and the spare machine begins operating at the same performance rate as the
original machine, thereby maintaining the system’s operational capacity without delay.

Hybrid vacations pattern: If the server becomes idle after completing a service, it has two options. First, it
can remain in the busy state with probability p, or switch to the first operational vacation state OV; with
probability p = (1 — p). While in OV, the server checks for failed units. If a failed unit is found, it begins
servicing at a reduced rate 1,1 with probability b. If no failed unit is found, the server may transition to the
next operational vacation state OV, servicing at rate i, with probability b = (1 —b). This process
continues through successive operational vacation states OVj, for 3 <i < K+3, with the same probability,
each with its own service rate .. If no failed units are present during any of these operational vacation
states and the server remains idle, it transitions to a non-operational vacation state, where it remains for an
exponentially distributed time with rate n, as per the system policy explained in Figure 1.

am— Repair system |
Queuve of failed units @ .—At
3 v

Repair system 2

Retrial

v

| Busy
Y A
< ovi
Go for Kth OV

v

Non-Operational
vacation

WY
.
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Figure 1. The flow chart of proposed model.

2251 Vol. 10, No. 6, 2025



Sapna et al.: Reliability Analysis of a Limited-Capacity Dual-Repair System with Hybrid ... gfmsﬁgg

Breakdown pattern: Breakdown of the server is possible in a busy state or in the operational vacation state,
and the server immediately sends to the repair facility for repair. The breakdown and the repair of the server
follow the exponential distribution with rates a and 3, respectively. There are two repair states in the model.
After a breakdown, the server enters either the first repair state or the second repair state with probabilities
(1-r) and 1, respectively, depending on the condition of the server (minor or major breakdown). After repair,
the server returns from the first or second repair state with probabilities 1’ and (1-r '), respectively.

Steady state: Failure time of both the operating and standby units is supposed to be exponentially distributed
with the rate A and t (0 < t < A), respectively. If any operational unit failed, instantly replaced by the
standbys if it is available. It is supposed that the switch of units is always perfect and the switchover time
is always swift. When a standby unit becomes an operating unit, then its failure conditions will remain the
same as the operational unit. For a machine repair system, a is the failure rate of the server, and B is the
repair rate of the server. In the retrial state, 9 is the retrial rate accomplished with pg service rate and
switching from retrial to busy state at rate A. After repair of the failed unit, the server goes to the next state,
opting for the first operational vacation. In between if the server finds any failed unit, it goes to the repair
state. But if the server didn’t find any failed unit in the system, it goes for the second operational vacation
and continuously for the OVk, 3. Otherwise goes for the Non-operational vacation at state K+4. L=M+S, L
is the total number of operating units.

0, the MRS under 1st repair (R)
1, the MRS under 2nd repair (R)
2, the retrial state of the MRS(RT)
n,j) = { 3, is the busy state of the server
4, is the first operational vacation
K+ 3, as the MRS at its (K + 3)th operational vacation
K+ 4, as the Non — operational vacation state of MRS

where,n=0, 1, 2..M+S§, j=0,1,2...K+4 .

3. Application of the Model

The investigated model enhances public transportation systems by optimizing vehicle maintenance and
scheduling to minimize service disruptions. Buses, trains, and metros are the service providers; these
vehicles are busy in operation or providing services during the peak hours. But if the pick-hours are covered,
then these servers can proceed with the operational vacation (OV). These vehicles operate at lower
efficiency during off-peak times but still serve customers at a reduced rate as an operating vacation. During
the maintenance period, all transport vehicles like buses, trains, and metros remain completely closed, hence
it can be considered as a non-operational vacation (NOV). All the transport vehicles need regular attention
for routine maintenance, and when a vehicle enters the queue, it must wait if all repair stations are occupied.
Limited maintenance facilities and customer impatience make it crucial to balance repairs with operational
efficiency. In modern transportation systems, vehicles such as buses, trains, and metro units can be
successfully modeled as servers in a queueing or machine repair system. These vehicles rotate between
being in service as a busy state, undergoing maintenance as a repair facility, or operating in reduced capacity
as an operational working vacation. Such types of models are not only to assist in analyzing system
performance metrics like reliability, availability, and breakdown time, but also enable cost optimization
planning. This methodology finds direct application in industrial transport systems, urban mobility, and
intelligent arrangement systems for large-scale transit networks.
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During low-demand periods, some maintenance activities proceed at a slower rate under a hybrid vacation
policy, while repair stations may close entirely when all vehicles are operational. By leveraging queueing
theory and hybrid vacation policies, our model efficiently allocates maintenance resources, reduces
downtime, and improves service reliability, ensuring smoother transit experiences for commuters. Model-
based application shown in Figure 2.

e
*

Vehicle enters in queue for

i,
e

< . Normal /,)

T
ﬁ/

Figure 2. Model application.
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4. Governing Equations

The steady state equations are formulated by using the transition rates diagram. The developed equations
are formulated by the Chapman-Kolmogorov equation for inflow and outflow rates of different states. The
inflow is indicated by the positive sign, and the outflow is denoted by a negative sign.

Server is in 1* repair state

dXO 0 (1) - K+2
—— = (K +2)B+11X () + Tox X X0 (1)
ano( ) K2 ,
i K +2)B+A,] n,o(t)+7un_1Xn_1,0(t)+rocZ;Xn’i (t), 1<n<L-1 (2)
L 0( ) k2
i (K +2)BIX o () + A, X, o (D +Ta) X, (D) 3)
i=3
Server is in 2" repair state
K+2
("11( ) K +2)B+4,1X, (1) +1a ) X, (1) (4)
i=3
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dX K+2
37:(0 = (K +2)B+2, 1%, (D +4, X, (O +1a0> X, (1), 1<n<L-I (%)
i=3
dX, (1) K+2
(Iitl =—{(K+2)BIX_,(t)+ XL—IXL—I,I (H+ raZXL,i (t) (6)
i=3
Server is in a retrial state
dx, ,(t
jltZ( ) =—AX 5 () +prg X5 (1) (7
dX . (t
2 49, (0 Py X, (011 <0 < L ®)
The server is in a busy state
dX, (1) , .,
2{5 =k +pug +alX o5 (1) +AX, (1) +1'BX,, (1) +TBX (1) + 96X, (1) + X 4 (1) )
dX, ;(t) .
T =\, +ug+ O‘]Xn,3 (t)+ }\‘n—IXn—l,S (t+ 7LXn,z (t)+r ﬁXn,l (1)
+ f’BXn,O () + 93X, () +NX, gl (1), ISn<L-1 (10)
dX (1) _ A by ! 'BX X (11)
dt =—{pp +a]X 3 (H)+ X s (O+AX (D) +r BXL,I (t) +TBXL (D) +MX | .4(D)
Server is in 1** operational vacation state OV1
dX,, (1) , . _
% =X, + OL]XM (D+r BX0,1 (H+r BXO,O (H+ PHEX 5 (H+ b“v1X1,4 (t) (12)
dX, 4(t) , . _
T = _[A‘n +o+ Hvl ]Xn,4 (t) +r BXn,l (t) +T BXn,O (t) + puBXrH-l,S (t)
+bp X () +A, X (D), 1Sn<L-1 (13)
dx, ,(1) , .,
(Lii =—a+p, X, (O)+BX () +TBX (D) +A, X, 4(0) (14)
Server is in 2™ operational vacation state OV2
dXO,S (t) ' = N (15)
T =—{A, + 0‘]Xo,s ()+r BX0,1 (t)+1 BXO,O (t+ b”v1X1,4 (t)+ bP-vle,s (1)
an,S (t) ’ = R
—a A, +a+p, X, (O +r'BX, (D) +TBX, (D +bu, X, .4 (D)
+b“v2Xn+l,5(t)+}\‘n—1Xn—l,5 (t),1<n<L-1 (16)
dX, . (t) , _,
% =—{a+p,, ]XL,S (+r BXL,I (t)+1 BXL,O (t)+ }\'L—IXL—],S (1) (17)
Server is in i operational vacation state OVi (i = 6, 7,....., K+3)
dXO,i (t) r =1 1 1
dt =—A, +alX; (D) +rBX,, () +T BXo,o () +bpuy, X, (t)+bu, X, (D) (18)
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dX,;(t) , - =
at =—A, +o+p, X (O+FBX (O +TBX, (D) +bpy X (0D
+bu, ;X n+11(t)+)\‘ nl,i(t)?lsnSL_l (19)
dX, (v , .,
# =+, ]XL,i () +r BXL,I () +r1 BXL,O () + }\‘L—IXL—I,i (v (20)
Server is in a non-operational vacation state, NOV

Q)
% —{A, +MlX,, K+4(t)+buv1< 1ies (D) 21)
dX t _
n’d;;“() - _[7\'" + 1ﬂl])(n,](-i—4 (t) + bHvKXn+],K+3 (t) + 7\’nfl>(n7],K-¢—4 (t)’ l<n<L-I (22)
dX, . (D)
% = _nXL,K+4 ®+ }\‘L—IXL—I,K+4 () (23)
5. Performance Measures
The system state probabilities are added to understand the distribution of failed units.
% Probability of MRS when server is in 1° repair state: X,; = Y NA$ Xno (V) (24)
< Probability of MRS when server is in 2™ repair state: X, = Yncts X, 1 (0) (25)
% Probability of MRS when it is in retrial state: X, = Y045 Xn2 (D (26)
% Probability of MRS when server is in busy state: X, = YNM5 Xn3 (D 27
% Probability of MRS when server is in OV; state: Xoy; = Yot Xna (D) (28)
% Probability of MRS when server is in OV, state: Xoyp = Yoty X5 (D) (29)
% Probability of MRS when server is in OV; state: Xoy; = Yoo Xni(D,i=6,7.. (30)
% Probability of MRS when server is in NOV state: X,y = Yoy Xnk+a (O 3D
For evaluation of Py o we use the normalizing condition that is: yMES ZK+4 Xpi=1 (32)

System of reliability analysis

Let Y be the arbitrary variable that indicates the system's time to failure. Where Yot ZK+4 Xp,iis the

probability function, is given by
Ry() =1-— [ZM+S Xn3 ®+ ZM+S ZK+4 an (t)]

¢ Then the transformed reliability function is:
RY(s) = f0°° e StRy (t)dt

+ The mean time to failure (MTTF) of the system is:
MTTF = [°Ry(t)dt = lim Ry (s)
X—

¢ The steady-state availability is calculated as:
AV =1 = Y3U¢ Xn 3 () — ZREs BiS" Xn,i ()
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The average expected number of failed units in the system is-
% The Average (expected) number of failed units in the 1% repair state:
Ep (I‘) = 21171:0 n Xn,O (37)
% The Average (expected) number of failed units in the 2" repair state:
En(r) = Zh:oanJ (38)
+» The Average (expected) number of failed units in the retrial state:
En(rt) = Z%:O an,Z (39)
+» The Average (expected) number of failed units in busy state:
En(b) = Z5=o nXn3 (40)
+ The Average (expected) number of failed units in OVi state:
En(ovi) = Xiico ZiZ7 nXp, (41)
+» The Average (expected) number of failed units in NOV state:
En(nov) = Y- nXp k44 (42)
++ The average number of failed units waiting in the services area is Lg:
Ls = Y=o ZiZo' nXn, (43)
% The average number of total failed units waiting in the queue L is:
Lq = Zi=o Xico (0 — DX, (44)
+» The average number waiting time Wg of failed units in the system is:
Ws = 3= (43)

Aeff
where, the Agge = Yk_onApX, (46)

6. Cost Optimization

Once the model is developed and after completing its computational and numerical simulation, the next
step is to move towards the calculation of its cost factor. The cost function is used to calculate the optimal
repair rate and the total optimum cost of the system. The notation for the total cost function is defined as:

Chc: Cost hold for each failed unit present in the system.

Cr1: Cost per unit time for the 1% repair state present in the system.

Cy,: Cost per unit time for the 2™ repair state present in the system.

C,t: Cost per unit time for failed units present retrial state in the system.

Cp: Cost per unit time for failed units in the busy state present in the system.

Covi: Cost per unit time for failed units present in OVi, i=1, 2,..., K, state of the system.
Chov: Cost per unit time for failed units present in the NOV state of the system

C,g: Cost per unit time, while pg is the service rate.

Cyvi: Cost per unit in operational vacation time while p; is the service rate, i=1, 2,..., K.

Cpp: Cost per unit time, while f3 is the repair rate of the busy state
Covir: Cost per unit time while [ is the repair rate of OVi, i=1, 2,..., K.
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The expected total cost (TC) function of the Model based on these parameters is
TC(F: H, B):CHCLS + CrXr + CrtXrt + CbXb + ZE(:l CoviXovi + CuB HUB + ZF:l Cuvi Hvi + B(Cbb +
Zg(:l Covir) (47)

Min TC(F,u, B); 1 = 0,8 = 0, minimize the total cost by classical optimized cost using the total cost
formula with respect to p is the service rate, and 3 is the repair rate. Obtained cost convergence curve
through Grey Wolf Optimizations and Particle Swarm Optimization with respect to the two different sets
of costs.

The cost function was optimized by Particle swarm optimization (PSO) and Grey wolf optimization (GWO)
techniques, and has been carried out in order to compare the cost of the proposed model. Both the
optimizations have been depicted cost convergence curve.

Particle swarm optimization

The PSO optimization technique is stimulated by the social behavior done by the flock of birds and the
school of fish as they travel to their perfect location. So this optimization is inspired by nature, and this
shows the coordination of animals by their movement to find food and shelter. This process, based on the
iteration, updates the position and its velocity done by each individual based on its own best position found
by the swarm. So this algorithm follows the iterative process, particle improve their position with two best
values, the first one is known as the pbest (personal best) value, and the second best one is called the gbest
(global best value). The particles modify their position and velocity using the equations-

Xn+1 = Xn T Vn4q (48)
Vp41 = Vp +CqIp * (pbest,n - Xn+1) + Czrz(gbest,n - Xn+1) (49)
where,

v, = velocity at n™ iteration,

X, = position at nth iteration,

r; , = position number chosen within (0, 1), and
¢4, C, are the acceleration constants

Grey wolf optimizations

Grey wolf algorithm (GWO) is a nature-influenced optimization algorithm based on the social hierarchy
and hunting behaviour of Grey wolves in the wild. GWO is a hunting strategy of Grey wolves, in which the
wolves encircle the prey and the iteration of positions of these wolves during the hunt. There are alpha
wolves, which are stronger in terms of strategy and position than all in the group. Wolves are followed by
beta wolves, and tracked then similar by delta, then by omega wolves. The position of the prey is important
in hunting, and the wolves update their positions based on the positions of the alpha, beta, and delta wolves.
In the algorithm, encircling the prey and the hunting process is mathematically modelled to iteratively
improve the solution to the optimization problem. Alpha is the optimal solution, and beta and delta are the
second-best solutions. This is represented by adjusting the position of candidate solutions based on the
positions of the a, 8, §, and w, wolves. The GWO algorithm balances inspection and exploitation to find
the optimal or near-optimal solution.

D = |CXp - X(© (50)
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m = |X_)t - EﬁL The D is the distance vector which defines the distance between the prey and the grey
wolf, and the g is a vector which defines the position of the prey. X defines the position of the grey wolves,
and variable t represents the current situation of iteration.

G=C (21 -3 (51)

E = (2r3), a is from 2 to 0 for each iteration, and locate the position between the two specific points;
furthermore, the components Ty, T, are in the range of [0, 1]. The position of the wolves changes iteratively,
and it is based on their hunting tactics, resulting in the aiming converging towards the optimal solution. A
solution can be found with the help of different equations of solutions.

Dy = |C1.Xq —X| , Dg = [C2.Xpg — X|, Ds = [C1. X5 — X| (52)
where, X_l), X_Z), X_3), a), E), Q, and ,G_l), G_z), G_3) are the coefficient vectors.

Xy = |Xq = Dg . Gy|, Xp = |Xg —Dg.Gz|, X3 = [Xs — Ds . Gs| (33)
The grey wolf changes their position during the hunting as the following iteration shows as-

T _ XX +Xy

Xep1 == (54)

3

Table 3. Cost set with different cost variables.

Cost parameters Crc C, Cr Cp Cov Cow2 Cov Chov
Set I 5 6 7 8 5 3 2 1
Set IT 50 30 40 20 5 3 2 1
Cost parameters Cun Cuot Cum2 Cuas Chp Covir Covar Covar
Set I 20 10 14 15 12 4 3 2
Set 1T 8 3 5 4 10 2 4 6

7. Sensitivity Analysis

To perform the sensitivity analysis of the proposed Machine Repair System (MRS), where L = M+S (with
L representing the total number of machines, M the number of operating machines, and S the number of
standby machines), it is essential to fix certain parameters while varying others. Numerical results can then
be obtained using MATLAB software. By fixing the parameters as follows: M =6, S =3, K=5,n1=0.7,
t=02A=05pyg =15, =pug—4,1<i<K, p = 02, b=08, a=05pB=19,=0.7n=
0.2, others are in Table 3, this section investigates how the system responds to variations in key parameters.
Specifically, the analysis explores the effects of the machine arrival rate (A), the arrival rate of failed units
(M), the service rate (i i=1, 2, ....K), the probability of operational vacation (b), and the breakdown and
repair rates (o and P), retrial rate of failed units (9,), and switching rate from NOV to busy state (1).

Table 4 presents the variation in state probabilities corresponding to variations in the service rate pg. It is
observed that as the service rate increases, the probabilities also increase. With respect to time, as time
progresses from t =5 to t = 30, the probability of the retrial state increases significantly, indicating a rising
tendency for units to enter the retrial phase. Meanwhile, the probabilities associated with the repair and
busy states decrease gradually. In contrast, the probabilities of the operational vacation states and the
Nonoperational vacationed state decline at a much slower rate. This suggests that while the system becomes
more likely to enter retrial states over time, the influence of operational vacation phases remains relatively
steady and slowly diminishing. These trends highlight the critical role of the service rates in shaping the
dynamics of retrial and repair behavior, especially under a busy server condition.
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Similarly, Table 5 presents the variation in state probabilities corresponding to different values of the
parameter b. It is observed that increasing the value of b leads to a general decrease in the state probabilities,
indicating a diminishing likelihood of the system occupying those states as b increases. As time advances,
the probability of the retrial state rises sharply, reflecting an increasing propensity for units to re-enter the
retrial phase. Meanwhile, the probabilities of the repair and busy states diminish gradually. By contrast, the
operational vacation states and the Non-operational vacationed state exhibit only modest declines. Together,
these patterns indicate that although the system increasingly favours retrial states over time, the impact of
operational vacation phases remains relatively constant and recedes slowly. The results indicate a gradual
change in the operational vacation states, whereas the repair and retrial state probabilities exhibit more rapid
variation.

Figures 3 to Figure 6 depict the queue length, represented by the expected number of failed units E[N], in
relation to key system parameters. The sensitivity analysis considers variations in the arrival rate A (from 1
to 3), the operational vacation probability b (from 0.3 to 0.9), the breakdown rate a (from 0.5 to 1.5), and
the repair rate  (from 0.3 to 0.7). The results indicate that the queue length increases sharply in the early
time interval (from t = 0 to t = 1), followed by only marginal changes thereafter.

The reliability results are obtained using MATLAB simulations. Figures 7 to Figure 12 illustrate the system
reliability (RT) in relation to various parameters: failure rate A ranging from 1 to 3, breakdown rate a from
0.5 to 1.5, repair rate B from 0.3 to 0.7, failure rate Ao from 0.05 to 0.25, service rate pg and p, from 5 to
15. The results show that system reliability decreases as the time interval progresses, indicating reduced
performance over time under varying parameter conditions.

Figure 13 to Figure 16 illustrate the relationship between waiting time (WT) and various system
parameters, including the arrival rate A (ranging from 1 to 3), a (0.5 to 1.5), f (0.3 to 0.7), and Ao (0.3 to
0.7). These graphs demonstrate how the arrival rate A influences the waiting time over time t. Lower values
of A tend to result in higher waiting times, likely due to increased server idle periods. Conversely, higher A
values reduce waiting times, although excessive arrival rates may lead to system overload.

Figures 17 and 18 show how the service rate (ug) and repair rate (§) varying with time (t) affect the total
cost. It was observed that when the service rate increases, the total cost first goes down but then starts to
rise again. This shows that there is an optimal service rate; if the service is too slow, machines stay idle
longer, and if it's too fast, it becomes too expensive. As time goes on, the total cost usually goes down and
then levels off. This suggests that the system becomes more efficient over time, possibly because of
learning, fewer early problems, or better maintenance.

In Figure 19 and 20 depict the results compared getting by the PSO convergence curve and GWO
convergence curve, and observed that both algorithms reached similar final costs quickly, with no further
improvement after 10 iterations for 1* cost set with different cost variables. Figures 21 and 22 with cost
set II show the comparison. After the illustration, it was found that PSO outperformed GWO by achieving
a lower final cost, although both algorithms exhibited fast convergence behavior.

Overall, we conclude that Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) have
gained lots of attention in recent years for solving complex reliability and cost optimization problems in
queueing theory and machine repair systems. Rani et al. (2023) applied PSO to optimize the cost-reliability
trade-off in a series-parallel repairable system, achieving under the admission-controlled policy. A study
by Agarwal et al. (2024) demonstrated the effectiveness of GWO in observation of optimal working
vacation and preventive maintenance to minimize total downtime and cost. GWO has shown better
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performance in balancing and exploration, making it well-suited for nonlinear, multimodal reliability
optimization problems. Researchers have used GWO and PSO in optimizing reliability in systems with
multiple failure modes and vacation types for learning in a wireless area network, Bedi et al. (2022). Using
both PSO and GWO in either a comparative or hybrid manner brings diversity in cost optimization. While
PSO offers faster convergence in smooth search spaces, it may get trapped in local optima. GWO, with its
leader-based structure, improves global search capability and diversity in solutions. Thus, the combination
of these two enhances the strength and improves the quality of results, specifically in complex machine
repair models involving multiple conflicting objectives like cost, breakdown, and reliability. PSO typically
exhibits rapid initial convergence due to its strong adsorption behavior; particles quickly cluster around
promising regions. Convergence curves often display a steep initial decline in fitness, followed by a plateau.
In GWO the convergence is more gradual than PSO, with slow initial progress but better refinement in later
iterations. This algorithm is less prone to premature convergence, especially for nonlinear or bounded
problems.
Table 4. State probabilities for different values of service rate.

Xrt Xr Xb X0v1 Xovz Xov3 Xov4 Xnov
5 0.525037 0.242938 0.004491 0.053716 0.053891 0.053845 0.053832 0.011985
10 0.761858 0.120749 0.002969 0.026804 0.026711 0.026647 0.026632 0.007205
pug =20 15 0.876341 0.062345 0.002208 0.013801 0.013712 0.013674 0.013664 0.003744
20 0.931639 0.034189 0.001838 0.007517 0.007443 0.007422 0.007416 0.001979
25 0.958359 0.020585 0.001659 0.004430 0.004413 0.004401 0.004398 0.001118
30 0.971270 0.014010 0.001573 0.003012 0.002949 0.002941 0.002939 0.000701

t Xrt Xr Xb X0v1 Xovz Xov3 Xov4 Xnov
5 0.531474 0.239857 0.003611 0.053148 0.053309 0.053260 0.053247 0.011882
10 0.768566 0.117492 0.002375 0.026150 0.026054 0.025989 0.025975 0.007062
pg =25 15 0.882196 0.059505 0.001762 0.013215 0.013131 0.013092 0.013083 0.003612
20 0.936610 0.031791 0.001467 0.007018 0.006951 0.006930 0.006925 0.001869
25 0.962677 0.018518 0.001325 0.004049 0.003990 0.003979 0.003976 0.001026
30 0.975166 0.012157 0.001257 0.002626 0.002572 0.002565 0.002563 0.000621

t xrt Xr Xh Xovl XovZ Xov3 Xov4 Xnov
5 0.535840 0.237766 0.003019 0.052761 0.052913 0.052862 0.052850 0.011813
10 0.773085 0.115297 0.001977 0.025708 0.025611 0.025546 0.025531 0.006966
pug =30 15 0.886120 0.057601 0.001466 0.012821 0.012740 0.012702 0.012693 0.003524
20 0.939930 0.030189 0.001220 0.006684 0.006622 0.006602 0.006597 0.001796
25 0.965557 0.017138 0.001103 0.003760 0.003708 0.003697 0.003695 0.000965
30 0.977763 0.010921 0.001047 0.002368 0.002320 0.002314 0.002312 0.000568

Table 5. State probabilities for different values of probability service rate.

t Xrt Xr Xh Xovl Xov2 Xov3 Xov4 Xnov
5 0.532790 0.234600 0.004607 0.049586 0.052171 0.052356 0.052352 0.021261
10 0.771856 0.112971 0.003002 0.024043 0.025080 0.025092 0.025064 0.012443
b=0.1 15 0.884219 0.056956 0.002207 0.012089 0.012567 0.012565 0.012547 0.006311
20 0.936968 0.030755 0.001829 0.006480 0.006707 0.006706 0.006696 0.003272
25 0.961752 0.018452 0.001651 0.003844 0.003955 0.003954 0.003949 0.001826
30 0.973398 0.012669 0.001568 0.002605 0.002661 0.002661 0.002658 0.001144

t Xrt Xr Xh xovl xov2 Xov3 Xov4 Xnov
5 0.525037 0.242938 0.004491 0.053716 0.053891 0.053845 0.053832 0.011985
10 0.761858 0.120749 0.002969 0.026804 0.026711 0.026647 0.026632 0.007205
b=0.4 15 0.876341 0.062345 0.002208 0.013801 0.013712 0.013674 0.013664 0.003744
20 0.931639 0.034189 0.001838 0.007517 0.007443 0.007422 0.007416 0.001979
25 0.958359 0.020585 0.001659 0.004480 0.004413 0.004401 0.004398 0.001118
30 0.971270 0.014010 0.001573 0.003012 0.002949 0.002941 0.002939 0.000701

t Xrt Xr Xb XDVI XDVZ Xov?: Xov4 Xnuv
5 0.517166 0.251448 0.004370 0.058275 0.055386 0.055336 0.055334 0.002432
10 0.751381 0.128988 0.002930 0.029891 0.028322 0.028292 0.028291 0.001503
b=0.6 15 0.867823 0.068245 0.002207 0.015764 0.014904 0.014888 0.014888 0.000801
20 0.925710 0.038057 0.001847 0.008737 0.008237 0.008228 0.008227 0.000433
25 0.954487 0.023048 0.001667 0.005243 0.004922 0.004916 0.004916 0.000248
30 0.968791 0.015585 0.001578 0.003506 0.003273 0.003270 0.003270 0.000156
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8. Results Discussion

To ensure the practical relevance of the proposed model, we have shown analytical and optimization results
against both simulation and reference data. When the vacation parameter is disabled, the system returns to
the standard M/M/1 model without any breakdowns, reproducing the published reliability measurements,
thereby confirming the validity of the proposed framework.

In this study, we compare both PSO and GWO to discourse reliability cost optimization in a machine repair
model with operational vacations and non-operational vacations, and demonstrate their comparative
effectiveness through simulation and performance metrics. In order to derive the optimal parameter and the
corresponding optimum cost for the system, MATLAB code is created for both PSO and GWO. The
convergence analysis shows that PSO achieves faster convergence within 10 iterations but settles at a
slightly higher cost (~610.9), whereas GWO starts from a worse initial solution but eventually outperforms
PSO, achieving a lower final cost (~610). While the cost set II is observed as the PSO archives the
convergence within 5 iterations at a lower cost (~365.5), whereas GWO eventually performs high at a cost
of (~464). This demonstrates GWO's superior global search capability, while PSO offers faster local
convergence, and GWO is simpler to apply in comparison with PSO because it needs some input
parameters. Therefore, combining both can balance exploration and exploitation in reliability-based cost
optimization.

9. Conclusion

This study analyzed the reliability of a machine repair system (MRS) with limited capacity, multiple
operational vacations, and Non-operational vacations. By incorporating spare machines, the model ensures
continuous operation and minimizes system downtime. The state-transition equations provide a
comprehensive framework for understanding system dynamics. The numerical techniques were
successfully applied to evaluate key performance measures, and numerical results were validated through
MATLAB simulations. The findings highlight the effectiveness of hybrid vacation policies in optimizing
repair system performance, reducing congestion, and improving reliability. Future research can extend this
model by incorporating additional real-world constraints, such as variable repair rates and priority-based
servicing, to enhance its applicability. The optimized cost presents the most economical arrangements of
the system, balancing maintenance schedules, service availability, and good operational attempts. This
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provides an understanding of how to reduce service failures and costs simultaneously, making the system
more efficient, reliable, and available in industrial or transportation settings.
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