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Abstract 

This study investigates the reliability of a machine dual-repair system (MDRS) with limited capacity and multiple operational 

vacations (OV). Multiple operational vacation is a mechanism that involves the process of the two types of vacation, one as 

operational vacation (OV) and another one is non-operational vacation (NOV). In this machining system, there are M operating 

machines, to prevent redundant breakdowns of machines and S spare machines are used to ensure smooth functioning. The server 

can be in a busy state, an operational vacation state, or on Non-operational vacation state. State-transition equations are formulated 

based on the Chapman-Kolmogorov differential-difference equations, and with the help of these equations stationary probability 

distribution is obtained. The Runge-Kutta IV order numerical method is used to evaluate system performance measures. The cost 

has been optimized using Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) techniques by testing 

convergence as well as comparison of the outcomes of both PSO and GWO. The exploration of the essential performance measures 

and graphical representations has been conducted. 

 

Keywords- Reliability, Retrial queues, Multiple operational vacation, Non-operational vacation. 

 

 

 

1. Introduction 
The multiple operational vacation (MOV) and machine dual-repair system (MDRS) models are used in 

scenarios where the service station continues to operate at a lower rate rather than shutting down completely 

due to reduced demand. Multiple operational vacation is a mechanism that processes the two types of 

vacation, such as server operating, but at a lower speed is acknowledged as operational vacation service. 

For example, in a CNC machine shop, a machine may go on "operational vacation" when the primary job 

queue is empty. During this time, the operator might perform routine diagnostics or lubricate the machine. 

Secondary non-operational vacation is a period when the server is completely idle or unavailable, doing no 

productive work related to the system. For example, a robotic arm in an assembly line goes on non-

operational vacation when, power failure occurs, maintenance staff takes it offline for unexpected repairs. 

These models are widely applied in various fields such as cloud computing, production houses, hospitals, 

public transportation and maintenance, and telecommunications. Queueing theory enhances machine repair 

models by analysing and optimizing the flow of repair tasks, ensuring efficient resource allocation and 
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minimizing downtime. For instance, queueing theory can help establish the ideal quantity of spare parts to 

keep in stock or optimize the scheduling of maintenance personnel to minimize idle time and ensure timely 

repairs. This results in a balanced workload and prevents delays in machine repairs, ultimately improving 

overall productivity. Furthermore, queueing theory supports better decision-making by providing insights 

into the performance and reliability of the repair system under different conditions. It can simulate various 

scenarios, such as an increase in machine breakdowns or changes in repair times, enabling organizations to 

plan effectively for potential disruptions. Additionally, the literature on this topic explores aspects such as 

reliability, retrial queues, and multiple operational vacations. The reliability of any system plays an 

important role in the manufacturing industry. Yen et al. (2020), and Gao and Wang (2021) explore a 

reliability-based retrial model of the machine repair problem with working breakdowns under the F-policy. 

The author's study in this paper is about the reliability and sensitivity analysis of the retrial machine repair 

problem with F-policy, which is used to control the arrival process. Muthusamy et al. (2022) and Kumar et 

al. (2023) considered the reliability and optimization measures of retrial queues with different classes of 

customers under a working vacation. It is explained that if no failed units in the orbit, the server may take 

a working vacation. Ahuja and Jain (2023) investigated the fuzzy analysis of a queueing system with 

unreliable service using a direct search approach and geometric arrivals, incorporating a constant retrial 

policy and a delayed threshold policy. Li et al. (2024) investigate system reliability and optimization with 

preventive maintenance. Analysis of multi-objective optimization shows it is the best retrial system 

functioning with the help of warm standbys, even though due system has different types of failures. This 

research was done by Wu and Wang (2025).  

 

The multiple operational working vacation model is used in scenarios where the service station continues 

operating at a lower rate rather than shutting down completely. Working vacations play an important role 

in repairing systems by improving energy efficiency and operational effectiveness. Meena et al. (2019) 

analysed a machine repair model incorporating vacation policies and standby provisioning mechanisms. 

Chakravarthy et al. (2020) obtained a queueing system that incorporates breakdowns, vacations, and a 

backup server during repairs. Deora et al. (2021) and Thakur et al. (2021) conducted a cost analysis and 

optimized the cost of a machine repair system with a working vacation, feedback, and particle swarm 

optimization. Bouchentouf et al. (2022) studied a multi-station unreliable machine system with a working 

vacation policy and customer impatience behaviour. Gao et al. (2023) derived the steady-state distribution 

and reliability of a redundant series system, where each primary unit is supported by a standby, under the 

supervision of a single repairman who takes a delayed vacation when no failed units are present. Sapna and 

Jain (2024) investigated the reliability of a machine-repair system characterized by multiple breakdowns 

and controllable phase-type repair mechanisms. Agrawal et al. (2023) analysed the reliability of a repairable 

system with multiple spare units under an “N-Policy” framework under the supervision of a single 

repairman. Bouchentouf et al. (2024) proposed a finite capacity redundant multi-server machine repairable 

system by using the matrix analytic method. The steady-state probabilities were computed to evaluate key 

performance measures. The cost function was optimized by combining the direct search method with 

particle swarm optimization. Kumar and Sharma (2025) analyze a queueing model of a manufacturing plant 

system with a server working vacation in association with an optimal policy. Anitha et al. (2025), and Zhu 

and Wang (2025) considered the vacation policy in a Markovian model and showed the results with different 

parameters.  

 

The PSO optimization technique is stimulated by the social behavior done by the flock of birds and the 

school of fish while they travel to their perfect location. Jain and Raychaudhuri (2022) studied the 

Markovian model in which the cost is optimized by a Genetic Algorithm with the working vacation and 

multiple breakdowns. Chahal et al. (2024) explain the grey wolf optimization for a cloud computing 

repairable system with a threshold policy, along with discouragement and two-level Bernoulli feedback. 
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Sharma et al. (2025), Thakur and Jain (2025) analyze the cost effects for a machine repair system under the 

triadic policy with discouragement and multiple working vacations using metaheuristic optimization. Table 

1 presents a comparison between the proposed work and relevant studies. 
 

Table 1. Comparison of the proposed work with relevant articles. 
 

Authors Keywords 

 Reliability Retrial MOV Dual repair Limited capacity PSO GWO 

Wu and Wang (2025) √ √ × √ × × × 

Chahal et al. (2024) × × × √ √ √ √ 

Li et al. (2024) √ × × × × × × 

Kumar et al. (2023) √ × √ × × × × 

Deora et al. (2021) × × √ √ √ √ × 

Proposed model  √ √ √ √ √ √ √ 

 

This paper examines retrial machining systems with hybrid vacations, emphasizing the integration of 

maintainability strategies to enhance system reliability and availability. The structure of the paper is as 

follows: Section 2 outlines key definitions and assumptions, while Section 3 explores the model's 

application. Section 4 presents the governing equations, followed by Section 5, which deduces performance 

measures of the model. Section 6 discussed the cost function and optimization techniques. Section 7 

analyses the impact of various parameters on sensitivity analysis. Section 8 provides the study’s results, and 

finally, Section 9 discusses the conclusions of the work. 
 

2. Definitions and Key Assumptions 
The present study considers a retrial machine dual-repair system (RMDRS) in which once a unit fails, it is 

replaced by an available standby, and the failed unit is sent to a service facility for service. In this system, 

after providing service in a busy state, the server enters operational vacation OV1 during the idle period. 

After completing the first operational vacation, if the system detects any failed units in the busy state, the 

server resumes service; otherwise, it proceeds to the next operational vacation, OV2. This process continues 

sequentially until OVJ (where J=1, 2, 3, ..., K-1). After the (K-1)th operational vacation, if the server finds 

a failed unit in the busy state, it serves; otherwise, it proceeds to the next operational vacation OVK. If, after 

completing the Kth operational vacation, the server does not find any failed machines in the busy state, it 

transits to a non-operational vacation (NOV). The failed machines will get the services according to the 

first-come, first -served (FCFS) pattern. The other notations and abbreviations are defined in Table 2. 
 

Table 2. Notation and abbreviations used in the model. 
 

Notations Abbreviation 

OV                  Operational vacation 

NOV                  Non-Operational vacation 

L M+S, M is the number of operational machines, S is are number of standbys 

λ        Operating rate of operational units 

𝜏 Operating rate of standby units 

ϑ0                     Retrial rate of failed units  

λn                    Rate of failed units in different states  

μB                    Service rate during the busy state  

μvi Service rate during OVi (i = 1, 2, 3……K) 

ɳ Switching rate from NOV to busy state  

α The breakdown rate of busy state, OV1, OV2 …OVK states 

β                       The repair rate of busy, OV1, OV2…OVK states 

Xn,0 The probability of ‘n’ failed units in the 1st repair state 

Xn,1 The probability of ‘n’ failed units in the 2nd repair state 

Xn,2 The probability of the retrial state  

Xn,3 The probability that the server during a busy state  

𝑋𝑛,𝑖 The probability of server during OVi, i = 4, 5, …., K+3 state 

𝑋𝑛,𝐾+4               The probability that the server during the NOV state 
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Arrival and retrial pattern: The arrival of failed units to the system follows a Poisson process. The failure 

rate, denoted by λn defined as follows 

𝜆𝑛 = {

                                                                             
Mλ + (S − n)τ               ; n = 0, 1,2,… (S − 1), S
(L − n)λ                     ; n = S + 1, S + 2,…M + S
0                                                        otherwise

 

 

The failed units in the orbit retry for the service follow the exponential distribution with retrial rate 𝜗0. 
 

Services mechanism: Failed machines are serviced according to a first-come, first-served (FCFS) 

discipline. During the server's busy state, the service time for failed units follows an exponential distribution 

with rate μB. When the server enters an operational vacation, the service times remain exponentially 

distributed but with reduced service rates. Specifically, during the ith operational vacation state OVi (for 

i=1, 2, …, K), the service rate is μvi, where μv1, μv2, μv3,…, μvK correspond to the respective operational 

vacation phases. Let L=M+S, where L represents the total number of machines in the system, M denotes 

the number of machines currently in operation, and S refers to the number of available spare machines. 

When any of the operating machines fail or go down, the system immediately checks for the availability of 

a spare machine. If a spare is available, it is replaced in the failed machine. The replacement process is 

assumed to be instantaneous, and the spare machine begins operating at the same performance rate as the 

original machine, thereby maintaining the system’s operational capacity without delay. 

 

Hybrid vacations pattern: If the server becomes idle after completing a service, it has two options. First, it 

can remain in the busy state with probability p, or switch to the first operational vacation state OV1 with 

probability p̅ = (1 − p). While in OV1, the server checks for failed units. If a failed unit is found, it begins 

servicing at a reduced rate μv1 with probability b. If no failed unit is found, the server may transition to the 

next operational vacation state OV2, servicing at rate μv2, with probability b̅ = (1 − b). This process 

continues through successive operational vacation states OVi, for 3 ≤ i ≤ K+3, with the same probability, 

each with its own service rate μvi. If no failed units are present during any of these operational vacation 

states and the server remains idle, it transitions to a non-operational vacation state, where it remains for an 

exponentially distributed time with rate η, as per the system policy explained in Figure 1. 

 

 
 

Figure 1. The flow chart of proposed model. 
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Breakdown pattern: Breakdown of the server is possible in a busy state or in the operational vacation state, 

and the server immediately sends to the repair facility for repair. The breakdown and the repair of the server 

follow the exponential distribution with rates α and β, respectively. There are two repair states in the model. 

After a breakdown, the server enters either the first repair state or the second repair state with probabilities 

(1-r) and r, respectively, depending on the condition of the server (minor or major breakdown). After repair, 

the server returns from the first or second repair state with probabilities r′ and (1-r ′), respectively. 

 

Steady state: Failure time of both the operating and standby units is supposed to be exponentially distributed 

with the rate λ and τ (0 < τ < λ), respectively. If any operational unit failed, instantly replaced by the 

standbys if it is available. It is supposed that the switch of units is always perfect and the switchover time 

is always swift. When a standby unit becomes an operating unit, then its failure conditions will remain the 

same as the operational unit. For a machine repair system, α is the failure rate of the server, and β is the 

repair rate of the server. In the retrial state, 𝜗0 is the retrial rate accomplished with μB service rate and 

switching from retrial to busy state at rate λ. After repair of the failed unit, the server goes to the next state, 

opting for the first operational vacation. In between if the server finds any failed unit, it goes to the repair 

state. But if the server didn’t find any failed unit in the system, it goes for the second operational vacation 

and continuously for the OVK+3. Otherwise goes for the Non-operational vacation at state K+4. L=M+S, L 

is the total number of operating units.  

(n, j) =

{
 
 
 
 

 
 
 
 

0,                                                𝑡ℎ𝑒 𝑀𝑅𝑆 𝑢𝑛𝑑𝑒𝑟 1𝑠𝑡 𝑟𝑒𝑝𝑎𝑖𝑟 (R)

1,                                              𝑡ℎ𝑒 𝑀𝑅𝑆 𝑢𝑛𝑑𝑒𝑟 2𝑛𝑑 𝑟𝑒𝑝𝑎𝑖𝑟 (R)

2,                                         𝑡ℎ𝑒 𝑟𝑒𝑡𝑟𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑅𝑆(𝑅𝑇) 
3,                                              𝑖𝑠 𝑡ℎ𝑒 𝑏𝑢𝑠𝑦 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 
4,                                           𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 operational 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 

…
K + 3,             𝑎𝑠 𝑡ℎ𝑒 𝑀𝑅𝑆 𝑎𝑡 𝑖𝑡𝑠 (K + 3)𝑡ℎ operational 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛
K + 4,            𝑎𝑠 𝑡ℎ𝑒 𝑁𝑜𝑛 − operational 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑀𝑅𝑆

, 

 

where, n = 0, 1, 2...M+S, j= 0,1,2...K+4 . 

 

3. Application of the Model 
The investigated model enhances public transportation systems by optimizing vehicle maintenance and 

scheduling to minimize service disruptions. Buses, trains, and metros are the service providers; these 

vehicles are busy in operation or providing services during the peak hours. But if the pick-hours are covered, 

then these servers can proceed with the operational vacation (OV). These vehicles operate at lower 

efficiency during off-peak times but still serve customers at a reduced rate as an operating vacation. During 

the maintenance period, all transport vehicles like buses, trains, and metros remain completely closed, hence 

it can be considered as a non-operational vacation (NOV). All the transport vehicles need regular attention 

for routine maintenance, and when a vehicle enters the queue, it must wait if all repair stations are occupied. 

Limited maintenance facilities and customer impatience make it crucial to balance repairs with operational 

efficiency. In modern transportation systems, vehicles such as buses, trains, and metro units can be 

successfully modeled as servers in a queueing or machine repair system. These vehicles rotate between 

being in service as a busy state, undergoing maintenance as a repair facility, or operating in reduced capacity 

as an operational working vacation. Such types of models are not only to assist in analyzing system 

performance metrics like reliability, availability, and breakdown time, but also enable cost optimization 

planning. This methodology finds direct application in industrial transport systems, urban mobility, and 

intelligent arrangement systems for large-scale transit networks. 
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During low-demand periods, some maintenance activities proceed at a slower rate under a hybrid vacation 

policy, while repair stations may close entirely when all vehicles are operational. By leveraging queueing 

theory and hybrid vacation policies, our model efficiently allocates maintenance resources, reduces 

downtime, and improves service reliability, ensuring smoother transit experiences for commuters. Model-

based application shown in Figure 2. 

 

 
 

Figure 2. Model application. 

 

 

4. Governing Equations 
The steady state equations are formulated by using the transition rates diagram. The developed equations 

are formulated by the Chapman-Kolmogorov equation for inflow and outflow rates of different states. The 

inflow is indicated by the positive sign, and the outflow is denoted by a negative sign. 

Server is in 1st repair state 


+

=
+++−=

2K

3i
)t(

i,0
Xr)t(0,0X]0)2K[(

dt

)t(0,0dX
                                                                                   (1) 

1Ln1,)t(Xr)t(X)t(X])2K[(
dt

)t(dX 2K

3i

i,n0,1n1n0,nn

0,n
−++++−= 

+

=

−−
                                        (2) 


+

=

−− +++−=
2K

3i

i,L0,1L1L0.L

0,L
)t(Xr)t(X)t(X])2K[(

dt

)t(dX
                                                                     (3) 

 

Server is in 2nd repair state 


+

=

+++−=
2K

3i

i,n1,00

1,0
)t(Xr)t(X])2K[(

dt

)t(dX
                                                                                     (4) 
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1Ln1,)t(Xr)t(X)t(X])2K[(
dt

)t(dX 2K

3i

i,n1,1n1n1,nn

1,n
−++++−= 

+

=

−−
                                                            (5) 


+

=

−− +++−=
2K

3i

i,L1,1L1L1.L

1,L
)t(Xr)t(X)t(X])2K[(

dt

)t(dX
                                                                             (6) 

 

Server is in a retrial state 

)t(Xp)t(X
dt

)t(dX
3,0B2,0

2,0
+−=                                                                                                                     (7) 

Ln1),t(Xp)t(X][
dt

)t(dX
3,nB2,n0

2,n
++−=                                                                                          (8) 

 

The server is in a busy state 

)t(Xr)t(Xr)t(X)t(X]p[
dt

)t(dX
0,01,02,03,0B0

3,0
+++++−= )t(X)t(X 4K,02,10 +++                       (9) 

)t(Xr)t(X)t(X)t(X][
dt

)t(dX
1,n2,n3,1n1n3,nBn

3,n
+++++−= −−

1Ln1),t(X)t(X)t(Xr 4K,n2,1n00,n −+++ ++
                                                                                     (10) 

)t(Xr)t(X)t(X)t(X][
dt

)t(dX
1,L2,L3,1L1L3,LB

3,L
++++−= −−

)t(X)t(Xr 4K,L0,L +++                         (11) 

 

Server is in 1st operational vacation state OV1  

)t(Xb)t(Xp)t(Xr)t(Xr)t(X][
dt

)t(dX
4,11v3,1B0,01,04,00

4,0
+++++−=                                        (12) 

)t(Xp)t(Xr)t(Xr)t(X][
dt

)t(dX
3,1nB0,n1,n4,n1vn

4,n

++++++−=  

1Ln1),t(X)t(Xb 4,1n1n4,1n1v −++ −−+
                                                                                                   (13) 

)t(X)t(Xr)t(Xr)t(X][
dt

)t(dX
4,1L1L0,L1,L4,L1v

4,L

−−++++−=                                                           (14) 

 

Server is in 2nd operational vacation state OV2  

)t(Xb)t(Xb)t(Xr)t(Xr)t(X][
dt

)t(dX
5,12v4,11v0,01,05,00

5,0
+++++−=                                            (15) 

)t(Xb)t(Xr)t(Xr)t(X][
dt

)t(dX
4,1n1v0,n1,n5,n2vn

5,n

++++++−=  

1Ln1),t(X)t(Xb 5,1n1n5,1n2v −++ −−+
                                                                                                (16) 

)t(X)t(Xr)t(Xr)t(X][
dt

)t(dX
5,1L1L0,L1,L5,L2v

5,L

−−++++−=                                                           (17) 

 

Server is in ith operational vacation state OVi (i = 6, 7,….., K+3) 

)t(Xb)t(Xb)t(Xr)t(Xr)t(X][
dt

)t(dX
i,13vi1i,14vi0,01,0i,00

i,0

−−− +++++−=                            (18) 
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)t(Xb)t(Xr)t(Xr)t(X][
dt

)t(dX
1i,1n4vi0,n1,ni,n3vin

i,n

−+−− +++++−=  

1Ln1),t(X)t(Xb i,1n1ni,1n3vi −++ −−+−
                                                                                                      (19) 

)t(X)t(Xr)t(Xr)t(X][
dt

)t(dX
i,1L1L0,L1,Li,L3vi

i,L

−−− ++++−=                                             (20) 

 

Server is in a non-operational vacation state, NOV 

)t(Xb)t(X][
dt

)t(dX
3K,1vK4K,00

4K,0

++

+
++−=                                                                                       (21) 

1Ln1),t(X)t(Xb)t(X][
dt

)t(dX
4K,1n1n3K,1nvK4K,nn

4K,n
−+++−= +−−+++

+                                     (22) 

)t(X)t(X
dt

)t(dX
4K,1L1L4K,L

4K,L

+−−+

+
+−=                                                                                               (23) 

 

5. Performance Measures 
The system state probabilities are added to understand the distribution of failed units. 

❖ Probability of MRS when server is in 1st repair state: Xr1 = ∑ Xn,0
M+s
n=0 (t)                                               (24) 

❖ Probability of MRS when server is in 2nd repair state: Xr2 = ∑ Xn,1
M+s
n=0 (t)                                           (25) 

❖ Probability of MRS when it is in retrial state: Xrt = ∑ Xn,2
M+S
n=0 (t)                                                       (26) 

❖ Probability of MRS when server is in busy state: Xb = ∑ Xn,3
M+S
n=0 (t)                                                  (27) 

❖ Probability of MRS when server is in OV1 state: Xov1 = ∑ Xn,4
M+S
n=0 (t)                                                           (28) 

❖ Probability of MRS when server is in OV2 state: Xov2 = ∑ Xn,5
M+S
n=0 (t)                                                 (29) 

❖ Probability of MRS when server is in OVi state: Xovi = ∑ Xn,i
M+S
n=0 (t), i =  6, 7… . K + 3                       (30) 

❖ Probability of MRS when server is in NOV state: Xnov = ∑ Xn,K+4
M+S
n=0 (t)                                               (31) 

For evaluation of 𝑃0,0 we use the normalizing condition that is: ∑ ∑ Xn,i
K+4
i=0

M+S
n=0 = 1                                    (32) 

 

System of reliability analysis 

Let Y be the arbitrary variable that indicates the system's time to failure. Where ∑ ∑ Xn,i
K+4
i=0

M+S
n=0  is the 

probability function, is given by 

RY(t) = 1 − [∑ Xn,3
M+S
n=0 (t) + ∑ ∑ Xn,i

K+4
i=0

M+S
n=0  (t)]                                                                                      (33) 

❖ Then the transformed reliability function is: 

RY
∗ (s) =  ∫ e−stRY

∞

0
(t)dt                                                                                                                                (34) 

 

❖ The mean time to failure (𝑀𝑇𝑇𝐹) of the system is:  

MTTF = ∫ RY(t)dt =  lim
x→0

RY
∗ (s)

∞

0
                                                                                                                      (35) 

 

❖ The steady-state availability is calculated as: 

AV = 1 − ∑ Xn,3
M+S
n=0 (∞) − ∑ ∑ Xn,i

K+4
i=0

M+S
n=0 (∞)                                                                                                (36) 
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The average expected number of failed units in the system is- 

❖ The Average (expected) number of failed units in the 1st repair state: 

En(r) = ∑ nL
n=0 Xn,0                                                                                                                                            (37) 

 

❖ The Average (expected) number of failed units in the 2nd repair state: 

En(r) = ∑ nL
n=0 Xn,1                                                                                                                                               (38) 

 

❖ The Average (expected) number of failed units in the retrial state: 

En(rt) = ∑ nXn,2
L
n=0                                                                                                                                                      (39) 

 

❖ The Average (expected) number of failed units in busy state:  

En(b) = ∑ nXn,3
L
n=0                                                                                                                                                 (40) 

 

❖ The Average (expected) number of failed units in OVi state: 

En(ovi) = ∑ ∑ nXn,i
K+3
i=4

L
n=0                                                                                                                                  (41) 

 

❖ The Average (expected) number of failed units in NOV state:  

En(nov) = ∑ nXn,K+4
L
n=0                                                                                                                                      (42) 

 

❖ The average number of failed units waiting in the services area is Ls: 

LS = ∑ ∑ nXn,i
K+4
i=0

L
n=0                                                                                                                                            (43) 

 

❖ The average number of total failed units waiting in the queue Lq is: 

Lq = ∑ ∑ (n − 1)Xn,i
K+4
i=0

L
n=0                                                                                                                              (44) 

 

❖ The average number waiting time WS of failed units in the system is:  

WS =
LS

λeff
                                                                                                                                                              (45) 

where, the λeff = ∑ nλnXn
L
n=0                                                                                                                              (46) 

 

6. Cost Optimization 
Once the model is developed and after completing its computational and numerical simulation, the next 

step is to move towards the calculation of its cost factor. The cost function is used to calculate the optimal 

repair rate and the total optimum cost of the system. The notation for the total cost function is defined as: 

CHC: Cost hold for each failed unit present in the system. 

Cr1: Cost per unit time for the 1st repair state present in the system. 

Cr2: Cost per unit time for the 2nd repair state present in the system. 

Crt: Cost per unit time for failed units present retrial state in the system. 

Cb: Cost per unit time for failed units in the busy state present in the system. 

Covi: Cost per unit time for failed units present in OVi, i=1, 2,…, K, state of the system. 

Cnov: Cost per unit time for failed units present in the NOV state of the system 

CμB: Cost per unit time, while μB is the service rate. 

Cμvi: Cost per unit in operational vacation time while μvi is the service rate, i=1, 2,…, K. 

Cbb: Cost per unit time, while β is the repair rate of the busy state    

Covir: Cost per unit time while β is the repair rate of OVi, i=1, 2,…, K. 
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The expected total cost (TC) function of the Model based on these parameters is  

TC(F, μ, β)=CHCLS + CrXr + CrtXrt + CbXb + ∑ CoviXovi
K
i=1 + CμBμB + ∑ Cμviμvi

K
i=1 + β(Cbb +

∑ Covir
K
i=1 )                                                                                                                                                      (47) 

 

Min TC(F,μ, β); μ ≥ 0, β ≥ 0, minimize the total cost by classical optimized cost using the total cost 

formula with respect to μ is the service rate, and β is the repair rate. Obtained cost convergence curve 

through Grey Wolf Optimizations and Particle Swarm Optimization with respect to the two different sets 

of costs. 

 

The cost function was optimized by Particle swarm optimization (PSO) and Grey wolf optimization (GWO) 

techniques, and has been carried out in order to compare the cost of the proposed model. Both the 

optimizations have been depicted cost convergence curve. 

 

Particle swarm optimization 

The PSO optimization technique is stimulated by the social behavior done by the flock of birds and the 

school of fish as they travel to their perfect location. So this optimization is inspired by nature, and this 

shows the coordination of animals by their movement to find food and shelter. This process, based on the 

iteration, updates the position and its velocity done by each individual based on its own best position found 

by the swarm. So this algorithm follows the iterative process, particle improve their position with two best 

values, the first one is known as the pbest (personal best) value, and the second best one is called the gbest 

(global best value). The particles modify their position and velocity using the equations- 

xn+1 = xn + vn+1                                                                                                                                       (48) 

vn+1 = vn + c1r1 ∗ (pbest,n − xn+1) + c2r2(gbest,n − xn+1)                                                                     (49) 

 

where, 

vn = velocity at n
th iteration,  

xn = position at n
th iteration,  

r1,2 = position number chosen within (0, 1), and  

c1, c2 are the acceleration constants  
 

Grey wolf optimizations 

Grey wolf algorithm (GWO) is a nature-influenced optimization algorithm based on the social hierarchy 

and hunting behaviour of Grey wolves in the wild. GWO is a hunting strategy of Grey wolves, in which the 

wolves encircle the prey and the iteration of positions of these wolves during the hunt. There are alpha 

wolves, which are stronger in terms of strategy and position than all in the group. Wolves are followed by 

beta wolves, and tracked then similar by delta, then by omega wolves. The position of the prey is important 

in hunting, and the wolves update their positions based on the positions of the alpha, beta, and delta wolves. 

In the algorithm, encircling the prey and the hunting process is mathematically modelled to iteratively 

improve the solution to the optimization problem. Alpha is the optimal solution, and beta and delta are the 

second-best solutions. This is represented by adjusting the position of candidate solutions based on the 

positions of the 𝛼, 𝛽, 𝛿, 𝑎𝑛𝑑 𝜔, wolves. The GWO algorithm balances inspection and exploitation to find 

the optimal or near-optimal solution.  

D⃗⃗ = |Ç.⃗⃗⃗  Xp⃗⃗ ⃗⃗ − X(t)⃗⃗⃗⃗⃗⃗⃗⃗ |                                                                                                                                    (50) 
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Xt+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = |Xt⃗⃗  ⃗ − G.⃗⃗  ⃗ D⃗⃗ |, The D⃗⃗  is the distance vector which defines the distance between the prey and the grey 

wolf, and the Xp⃗⃗ ⃗⃗  is a vector which defines the position of the prey. X⃗⃗  defines the position of the grey wolves, 

and variable t represents the current situation of iteration. 

G⃗⃗ = Ç.⃗⃗⃗   ( 2r1⃗⃗  ⃗ − a⃗ )                                                                                                                                         (51) 

 

Ç⃗ = ( 2r2⃗⃗  ⃗), a⃗  is from 2 to 0 for each iteration, and locate the position between the two specific points; 

furthermore, the components r1⃗⃗  ⃗, r2⃗⃗  ⃗ are in the range of [0, 1]. The position of the wolves changes iteratively, 

and it is based on their hunting tactics, resulting in the aiming converging towards the optimal solution. A 

solution can be found with the help of different equations of solutions. 

Dα⃗⃗⃗⃗  ⃗ = |Ç1⃗⃗⃗⃗ . Xα⃗⃗ ⃗⃗  − X⃗⃗ |     , Dβ⃗⃗⃗⃗  ⃗ = |Ç2⃗⃗⃗⃗ . Xβ⃗⃗ ⃗⃗ − X⃗⃗ |, Dδ⃗⃗ ⃗⃗  = |Ç1⃗⃗⃗⃗ . Xδ⃗⃗ ⃗⃗ − X⃗⃗ |                                                                     (52) 

 

where, X1⃗⃗⃗⃗ , X2⃗⃗⃗⃗ , X3⃗⃗⃗⃗ , Ç1⃗⃗⃗⃗ , Ç2⃗⃗⃗⃗ , Ç3⃗⃗⃗⃗ , and , G1⃗⃗⃗⃗ , G2⃗⃗ ⃗⃗ , G3⃗⃗ ⃗⃗  are the coefficient vectors. 

X1⃗⃗⃗⃗ = |Xα⃗⃗ ⃗⃗  − Dα .⃗⃗ ⃗⃗ ⃗⃗  ⃗ G1⃗⃗⃗⃗ |,   X2⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |Xβ⃗⃗ ⃗⃗ − Dβ .⃗⃗⃗⃗⃗⃗  ⃗ G2⃗⃗ ⃗⃗ |, X3⃗⃗⃗⃗ = |Xδ⃗⃗ ⃗⃗ − Dδ .⃗⃗⃗⃗⃗⃗  ⃗ G3⃗⃗ ⃗⃗ |                                                                (53) 

 

The grey wolf changes their position during the hunting as the following iteration shows as- 

Xt+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
X1⃗⃗⃗⃗  ⃗+X1⃗⃗⃗⃗  ⃗+X1⃗⃗⃗⃗  ⃗

3
                                                                                                                                             (54) 

 
Table 3. Cost set with different cost variables. 

 

Cost parameters CHC Cr Crt Cb Cov1 Cov2 Cov3 Cnov 

Set I 5 6 7 8 5 3 2 1 

Set II 50 30 40 20 5 3 2 1 

Cost parameters C C C C Cbb Cov1r Cov2r Cov3r 

Set I 20 10 14 15 12 4 3 2 

Set II 8 3 5 4 10 2 4 6 

 

 

7. Sensitivity Analysis 
To perform the sensitivity analysis of the proposed Machine Repair System (MRS), where L = M+S (with 

L representing the total number of machines, M the number of operating machines, and S the number of 

standby machines), it is essential to fix certain parameters while varying others. Numerical results can then 

be obtained using MATLAB software. By fixing the parameters as follows: M = 6, S = 3, K = 5,  = 0.7, 

τ = 0.2, λ = 0.5, μB = 15, μvi = μB − i, 1 ≤  i ≤ K, p = 0.2, b=0.8, α = 0.5, β = 1, ϑ0 = 0.7, η =
0.2, others are in Table 3, this section investigates how the system responds to variations in key parameters. 

Specifically, the analysis explores the effects of the machine arrival rate (λ), the arrival rate of failed units 

(λn), the service rate (μi, i=1, 2, ….K), the probability of operational vacation (b), and the breakdown and 

repair rates ( and β), retrial rate of failed units (ϑ0), and switching rate from NOV to busy state (η). 

 

Table 4 presents the variation in state probabilities corresponding to variations in the service rate μB. It is 

observed that as the service rate increases, the probabilities also increase. With respect to time, as time 

progresses from t = 5 to t = 30, the probability of the retrial state increases significantly, indicating a rising 

tendency for units to enter the retrial phase. Meanwhile, the probabilities associated with the repair and 

busy states decrease gradually. In contrast, the probabilities of the operational vacation states and the 

Nonoperational vacationed state decline at a much slower rate. This suggests that while the system becomes 

more likely to enter retrial states over time, the influence of operational vacation phases remains relatively 

steady and slowly diminishing. These trends highlight the critical role of the service rates in shaping the 

dynamics of retrial and repair behavior, especially under a busy server condition.  
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Similarly, Table 5 presents the variation in state probabilities corresponding to different values of the 

parameter b. It is observed that increasing the value of b leads to a general decrease in the state probabilities, 

indicating a diminishing likelihood of the system occupying those states as b increases. As time advances, 

the probability of the retrial state rises sharply, reflecting an increasing propensity for units to re-enter the 

retrial phase. Meanwhile, the probabilities of the repair and busy states diminish gradually. By contrast, the 

operational vacation states and the Non-operational vacationed state exhibit only modest declines. Together, 

these patterns indicate that although the system increasingly favours retrial states over time, the impact of 

operational vacation phases remains relatively constant and recedes slowly. The results indicate a gradual 

change in the operational vacation states, whereas the repair and retrial state probabilities exhibit more rapid 

variation. 

 

Figures 3 to Figure 6 depict the queue length, represented by the expected number of failed units E[N], in 

relation to key system parameters. The sensitivity analysis considers variations in the arrival rate λ (from 1 

to 3), the operational vacation probability b (from 0.3 to 0.9), the breakdown rate α (from 0.5 to 1.5), and 

the repair rate β (from 0.3 to 0.7). The results indicate that the queue length increases sharply in the early 

time interval (from t = 0 to t = 1), followed by only marginal changes thereafter. 

 

The reliability results are obtained using MATLAB simulations. Figures 7 to Figure 12 illustrate the system 

reliability (RT) in relation to various parameters: failure rate λ ranging from 1 to 3, breakdown rate α from 

0.5 to 1.5, repair rate β from 0.3 to 0.7, failure rate λ0 from 0.05 to 0.25, service rate B and v from 5 to 

15. The results show that system reliability decreases as the time interval progresses, indicating reduced 

performance over time under varying parameter conditions. 

 

Figure 13 to Figure 16 illustrate the relationship between waiting time (WT) and various system 

parameters, including the arrival rate λ (ranging from 1 to 3), α (0.5 to 1.5), β (0.3 to 0.7), and λ0 (0.3 to 

0.7). These graphs demonstrate how the arrival rate λ influences the waiting time over time t. Lower values 

of λ tend to result in higher waiting times, likely due to increased server idle periods. Conversely, higher λ 

values reduce waiting times, although excessive arrival rates may lead to system overload. 

 

Figures 17 and 18 show how the service rate (μB) and repair rate () varying with time (t) affect the total 

cost. It was observed that when the service rate increases, the total cost first goes down but then starts to 

rise again. This shows that there is an optimal service rate; if the service is too slow, machines stay idle 

longer, and if it's too fast, it becomes too expensive. As time goes on, the total cost usually goes down and 

then levels off. This suggests that the system becomes more efficient over time, possibly because of 

learning, fewer early problems, or better maintenance. 

 

In Figure 19 and 20 depict the results compared getting by the PSO convergence curve and GWO 

convergence curve, and observed that both algorithms reached similar final costs quickly, with no further 

improvement after 10 iterations for 1st cost set with different cost variables. Figures 21 and 22 with cost 

set II show the comparison. After the illustration, it was found that PSO outperformed GWO by achieving 

a lower final cost, although both algorithms exhibited fast convergence behavior. 

 

Overall, we conclude that Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) have 

gained lots of attention in recent years for solving complex reliability and cost optimization problems in 

queueing theory and machine repair systems. Rani et al. (2023) applied PSO to optimize the cost-reliability 

trade-off in a series-parallel repairable system, achieving under the admission-controlled policy. A study 

by Agarwal et al. (2024) demonstrated the effectiveness of GWO in observation of optimal working 

vacation and preventive maintenance to minimize total downtime and cost. GWO has shown better 
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performance in balancing and exploration, making it well-suited for nonlinear, multimodal reliability 

optimization problems. Researchers have used GWO and PSO in optimizing reliability in systems with 

multiple failure modes and vacation types for learning in a wireless area network, Bedi et al. (2022). Using 

both PSO and GWO in either a comparative or hybrid manner brings diversity in cost optimization. While 

PSO offers faster convergence in smooth search spaces, it may get trapped in local optima. GWO, with its 

leader-based structure, improves global search capability and diversity in solutions. Thus, the combination 

of these two enhances the strength and improves the quality of results, specifically in complex machine 

repair models involving multiple conflicting objectives like cost, breakdown, and reliability. PSO typically 

exhibits rapid initial convergence due to its strong adsorption behavior; particles quickly cluster around 

promising regions. Convergence curves often display a steep initial decline in fitness, followed by a plateau. 

In GWO the convergence is more gradual than PSO, with slow initial progress but better refinement in later 

iterations. This algorithm is less prone to premature convergence, especially for nonlinear or bounded 

problems. 
Table 4. State probabilities for different values of service rate. 

 

𝛍𝐁 = 𝟐𝟎 

t 𝐗𝐫𝐭 𝐗𝐫 𝐗𝐛 𝐗𝐨𝐯𝟏 𝐗𝐨𝐯𝟐 𝐗𝐨𝐯𝟑 𝐗𝐨𝐯𝟒 𝐗𝐧𝐨𝐯 
5 0.525037 0.242938 0.004491 0.053716 0.053891 0.053845 0.053832 0.011985 

10 0.761858 0.120749 0.002969 0.026804 0.026711 0.026647 0.026632 0.007205 

15 0.876341 0.062345 0.002208 0.013801 0.013712 0.013674 0.013664 0.003744 

20 0.931639 0.034189 0.001838 0.007517 0.007443 0.007422 0.007416 0.001979 

25 0.958359 0.020585 0.001659 0.004480 0.004413 0.004401 0.004398 0.001118 

30 0.971270 0.014010 0.001573 0.003012 0.002949 0.002941 0.002939 0.000701 

𝛍𝐁 = 𝟐𝟓 

t 𝐗𝐫𝐭 𝐗𝐫 𝐗𝐛 𝐗𝐨𝐯𝟏 𝐗𝐨𝐯𝟐 𝐗𝐨𝐯𝟑 𝐗𝐨𝐯𝟒 𝐗𝐧𝐨𝐯 
5 0.531474 0.239857 0.003611 0.053148 0.053309 0.053260 0.053247 0.011882 

10 0.768566 0.117492 0.002375 0.026150 0.026054 0.025989 0.025975 0.007062 

15 0.882196 0.059505 0.001762 0.013215 0.013131 0.013092 0.013083 0.003612 

20 0.936610 0.031791 0.001467 0.007018 0.006951 0.006930 0.006925 0.001869 

25 0.962677 0.018518 0.001325 0.004049 0.003990 0.003979 0.003976 0.001026 

30 0.975166 0.012157 0.001257 0.002626 0.002572 0.002565 0.002563 0.000621 

𝛍𝐁 = 𝟑𝟎 

t 𝐗𝐫𝐭 𝐗𝐫 𝐗𝐛 𝐗𝐨𝐯𝟏 𝐗𝐨𝐯𝟐 𝐗𝐨𝐯𝟑 𝐗𝐨𝐯𝟒 𝐗𝐧𝐨𝐯 
5 0.535840 0.237766 0.003019 0.052761 0.052913 0.052862 0.052850 0.011813 

10 0.773085 0.115297 0.001977 0.025708 0.025611 0.025546 0.025531 0.006966 

15 0.886120 0.057601 0.001466 0.012821 0.012740 0.012702 0.012693 0.003524 

20 0.939930 0.030189 0.001220 0.006684 0.006622 0.006602 0.006597 0.001796 

25 0.965557 0.017138 0.001103 0.003760 0.003708 0.003697 0.003695 0.000965 

30 0.977763 0.010921 0.001047 0.002368 0.002320 0.002314 0.002312 0.000568 

 
 

Table 5. State probabilities for different values of probability service rate. 
 

𝐛 = 𝟎.𝟏 

t 𝐗𝐫𝐭 𝐗𝐫 𝐗𝐛 𝐗𝐨𝐯𝟏 𝐗𝐨𝐯𝟐 𝐗𝐨𝐯𝟑 𝐗𝐨𝐯𝟒 𝐗𝐧𝐨𝐯 
5 0.532790 0.234600 0.004607 0.049586 0.052171 0.052356 0.052352 0.021261 

10 0.771856 0.112971 0.003002 0.024043 0.025080 0.025092 0.025064 0.012443 

15 0.884219 0.056956 0.002207 0.012089 0.012567 0.012565 0.012547 0.006311 

20 0.936968 0.030755 0.001829 0.006480 0.006707 0.006706 0.006696 0.003272 

25 0.961752 0.018452 0.001651 0.003844 0.003955 0.003954 0.003949 0.001826 

30 0.973398 0.012669 0.001568 0.002605 0.002661 0.002661 0.002658 0.001144 

𝐛 = 0. 𝟒 

t 𝐗𝐫𝐭 𝐗𝐫 𝐗𝐛 𝐗𝐨𝐯𝟏 𝐗𝐨𝐯𝟐 𝐗𝐨𝐯𝟑 𝐗𝐨𝐯𝟒 𝐗𝐧𝐨𝐯 
5 0.525037 0.242938 0.004491 0.053716 0.053891 0.053845 0.053832 0.011985 

10 0.761858 0.120749 0.002969 0.026804 0.026711 0.026647 0.026632 0.007205 

15 0.876341 0.062345 0.002208 0.013801 0.013712 0.013674 0.013664 0.003744 

20 0.931639 0.034189 0.001838 0.007517 0.007443 0.007422 0.007416 0.001979 

25 0.958359 0.020585 0.001659 0.004480 0.004413 0.004401 0.004398 0.001118 

30 0.971270 0.014010 0.001573 0.003012 0.002949 0.002941 0.002939 0.000701 

𝒃 = 0. 𝟔 

t 𝐗𝐫𝐭 𝐗𝐫 𝐗𝐛 𝐗𝐨𝐯𝟏 𝐗𝐨𝐯𝟐 𝐗𝐨𝐯𝟑 𝐗𝐨𝐯𝟒 𝐗𝐧𝐨𝐯 
5 0.517166 0.251448 0.004370 0.058275 0.055386 0.055336 0.055334 0.002432 

10 0.751381 0.128988 0.002930 0.029891 0.028322 0.028292 0.028291 0.001503 

15 0.867823 0.068245 0.002207 0.015764 0.014904 0.014888 0.014888 0.000801 

20 0.925710 0.038057 0.001847 0.008737 0.008237 0.008228 0.008227 0.000433 

25 0.954487 0.023048 0.001667 0.005243 0.004922 0.004916 0.004916 0.000248 

30 0.968791 0.015585 0.001578 0.003506 0.003273 0.003270 0.003270 0.000156 
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Figure 3. Expected Length with varying t vs. 

Parameter-  

 

Figure 4. Expected Length with varying t vs. 

Parameter- b. 

 

 
 

 
 

Figure 5. Expected length with varying t vs. 

parameter-  

 

Figure 6. Expected length with varying t vs. 

parameter-  

 

 
 

 
 

Figure 7. Reliability with varying t vs parameter -  Figure 8. Reliability with varying t vs parameter - 0. 
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Figure 9. Reliability with varying t vs parameter -  

 
Figure 10. Reliability with varying t vs parameter -  

 

 
 

 
 

Figure 11. Reliability with varying t vs parameter -  

 
Figure 12. Reliability with varying t vs parameter - v. 

 

 
 

 
 

Figure 13. Waiting time with varying t vs parameters - 

 

Figure 14. Waiting time with varying t vs parameters - 

 
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Figure 15. Waiting time with varying t vs parameters - 

 

 

Figure 16. Waiting time with varying t vs parameters - 

 

 

 
 

 
 

Figure 17. Total cost (TC) w. r. t. B cost set I. Figure 18. Total cost (TC) w. r. t.  cost set I. 

  

 
 

 
 

Figure 19. PSO cost convergence curve w. r. t. cost set 

I. 

Figure 20. GWO cost convergence curve w. r. t. cost 

set I. 
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Figure 21. PSO cost convergence curve w. r. t. cost set 

II. 

Figure 22. PSO cost convergence curve w. r. t. cost set 

II. 
 
 

8. Results Discussion  
To ensure the practical relevance of the proposed model, we have shown analytical and optimization results 

against both simulation and reference data. When the vacation parameter is disabled, the system returns to 

the standard M/M/1 model without any breakdowns, reproducing the published reliability measurements, 

thereby confirming the validity of the proposed framework. 

 

In this study, we compare both PSO and GWO to discourse reliability cost optimization in a machine repair 

model with operational vacations and non-operational vacations, and demonstrate their comparative 

effectiveness through simulation and performance metrics. In order to derive the optimal parameter and the 

corresponding optimum cost for the system, MATLAB code is created for both PSO and GWO. The 

convergence analysis shows that PSO achieves faster convergence within 10 iterations but settles at a 

slightly higher cost (~610.9), whereas GWO starts from a worse initial solution but eventually outperforms 

PSO, achieving a lower final cost (~610). While the cost set II is observed as the PSO archives the 

convergence within 5 iterations at a lower cost (~365.5), whereas GWO eventually performs high at a cost 

of (~464). This demonstrates GWO's superior global search capability, while PSO offers faster local 

convergence, and GWO is simpler to apply in comparison with PSO because it needs some input 

parameters. Therefore, combining both can balance exploration and exploitation in reliability-based cost 

optimization. 

 

9. Conclusion 
This study analyzed the reliability of a machine repair system (MRS) with limited capacity, multiple 

operational vacations, and Non-operational vacations. By incorporating spare machines, the model ensures 

continuous operation and minimizes system downtime. The state-transition equations provide a 

comprehensive framework for understanding system dynamics. The numerical techniques were 

successfully applied to evaluate key performance measures, and numerical results were validated through 

MATLAB simulations. The findings highlight the effectiveness of hybrid vacation policies in optimizing 

repair system performance, reducing congestion, and improving reliability. Future research can extend this 

model by incorporating additional real-world constraints, such as variable repair rates and priority-based 

servicing, to enhance its applicability. The optimized cost presents the most economical arrangements of 

the system, balancing maintenance schedules, service availability, and good operational attempts. This 
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provides an understanding of how to reduce service failures and costs simultaneously, making the system 

more efficient, reliable, and available in industrial or transportation settings.  
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