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Abstract

The operation of electric power system is a continuous process which demands coordination of various entities from power
generating plants to distributing substations to render uninterrupted service still sticking to quality power delivery. Electric demand
depends on external factors such as temperature, humidity, social activity pattern. Power grids are becoming complex due to
integration of renewable energy sources. Thus, there is a need of electric energy forecasting. Efficiency of traditional forecasting
approaches are less and existing many learning and ensembled models require high computational resources. To improve accuracy
of prediction, a fast and efficient processing model which is suitable for real-time applications, light weight ensemble model is
proposed in this paper. This research proposes a novel stacked light weight ensemble model that integrates the prowess of various
weak base learners. The final prediction of the model is further improved by using extreme gradient boosting as a meta learner,
which evolutionarily learns the predictions from individual learners and gives the final load forecast. Further the temporal nature
of the exogeneous variables is preserved by a unique feature fusion technique which estimates the exponentially weighted moving
average of the individual variable which are then aggregated. The efficacy of this model is validated by testing it on Panama
electricity load forecasting dataset and the results are explored using important regression-based metrics. The analysis shows that
the proposed method can vividly forecast the electricity load using the lightweight ensemble model in terms of Root Mean Square
Error (RMSE), Mean Bias Error (MBE), Mean Absolute Error (MAE) and R? values.

Keywords- Feature fusion, Exponentially weighted moving average, Short term load forecasting, Ensemble model, Meta learner.

1. Introduction

Any country’s development directly relies on its power sources, infrastructure, availability and distribution
of energy. The transformation of human lives to acclaim great deal of comfort and easiness can be attributed
to the improvement in energy generation, dissipation, distribution, and management (Zhang et al., 2018).
Hence, the global demand for electricity is ever growing and its prices have fluctuated in the recent past.
The huge gap between the global electricity demand and its generation has necessitated efficient planning
in distribution and conservation with modern technologies. To augment this, the generation, distribution
and transmission of electrical energy is highly complex and is not cost effective. This paved a motivation
for several studies and research in the area of electricity forecasting for estimating the electricity demand
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to facilitate the electricity generators, suppliers, and distributors to effectively devise plans much ahead and
also to create awareness about energy conservation among the electricity users. Figure 1 portrays the
accelerated growth in global electricity consumption from 1980 to 2023 expressed in terawatt-hours (TWh).
(Global Electricity Consumption 2023| Statista, n.d.). The graph reveals a continuous upward growth, with
consumption rising from 7000 TWh in 1980 to over 25000 TWh in recent years. This rapid growth is driven
by multiple factors such as industrial growth, urbanization, technological advancements, population growth
and the shift toward electrification.

The effective electric grid management protocols involve appropriate planning about the load demand
planning, maintenance schedule for generation, distribution lines and transmission along with effective
distribution of load along the supply lines (Shen et al., 2016). Proper planning of electric load involves
identification of forecasting intervals or lead time which forms a major criterion in classifying load
forecasting into four major categories namely very short-term forecasting, short-term forecasting, medium
or moderate term forecasting and long-term forecasting. The characteristic features of each of the
forecasting type is described in Table 1 (Verdejo et al., 2017).
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Figure 1. Growth in global electricity consumption.

Table 1. Characteristics of various load forecasting.

Type Applications Predicting period
Very short-term Real time control 1 hour
Short term Scheduling electricity for Daily life operations 1 hour-7 days (or even
months)
Medium term Purchase of fuel, maintenance scheduling and utility assessments 1 week-1 year
Long term Development and construction of new generations, strategic power planning, tapping for | 1-20 years
new alternate power resource, demand side management.

Forecasting Electricity Energy Demand (EED) is a complicated tasks that involves assimilation of multiple
heterogeneous factors as shown in Figure 2. Nevertheless, EED forecasting is very complex and cannot be
solved using sinister mathematical expressions and formulas. The problem of EED is not confined only in
industrial sectors but extends its wings to cater both commercial and domestic needs. This necessitates
detailed investigation about the dynamic growth patterns for an envisioning an accurate power system. On
the other hand, inaccurate predictions may lead to power shortage, and increased expenditure. Hence a
proper balance has to be maintained to supporting the development of the electrical power systems.
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It is evident that accurate load forecasting will aid the planning process which will eventually reduce the
gap between the global electricity demand and energy production. The process of EED forecasting can be
done using many proven scientific methods which may be either computation or statistics based (Kuster et
al., 2017). The conventional forecasting techniques can be categorized into correlation, extrapolation, and
their hybrid (Almeshaiei & Soltan, 2011). The Extrapolation or trend analysis proceeds by fitting a curve
on historical electricity demand data which depict the growth trend. The future value of can be forecasted
by estimating the curve function at the desired point. Though this method is very realistic and simple, its
results are not very accurate. Alternatively, correlation techniques focused on investigating the system load
pertaining to various demographic and economic factors and capture the relation between the demand
pattern and the factors influencing the demand. But the bottlenecks in accurate forecasting of multifaceted
demographic and economic factors is very tedious and inconsistent.
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Figure 2. Major influential factors in electric load forecasting.

The recent developments in computing technologies, has introduced new paradigms to develop advanced
forecasting models using data-driven Artificial Intelligence (Al) based techniques. Among the various
flavors of Al, Machine Learning (ML) and Deep Learning (DL) paragon are gaining momentum because
of their ability to render automatic forecasting or prediction with continuous improvement at much reduced
human effort and time. These learning strategies tend to observe and learn the historic data and give future
predictions with being explicitly programmed. Figure 3 shows the functioning of ML algorithms.
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Figure 3. Overview of machine learning algorithm.
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ML algorithm learns the patterns and trends from the previous historical data and constructs the model paste
on the data. The new data applied to the logical model which gives the prediction results. The ML and DL
algorithms are categorized into four major types namely supervised, unsupervised, semi supervised and
reinforcement learning approaches. The algorithms like Support Vector Machines (SVM), Simple and
multinomial Linear regression, Long Short-Term memory, Decision trees, Random Forests etc. are
predominantly used in many applications because of their predictive power by learning intricate trends and
patterns from the data space.

From the perspective of EED and electricity load forecasting, a lot of research have been done in analyzing
the impact of Al based models in predicting the power loads (Pai & Hong, 2005). As the demand for
electricity is not always consistent and is subjected to dynamic changes, these models have been very
helpful in arriving at accurate and timely predictions. Reduced operational cost, stabilised power supply,
efficient load management, security and safety off the power systems are some of the potential benefits that
can be benefitted by deploying ML and DL models (Almeshaiei & Soltan, 2011). In the view of developing
an efficient electricity load forecasting method, this work divided into three phases as follows:

i) Phase 1: Construction of fused health index using exogenous variables for electric load forecasting
using exponentially weighted moving average. In this phase, the data from various sources are collected
which are influencing electricity consumption rate such as temperature, wind speed. Also, robust
dataset is prepared by handling missing values, outlier values and categorical data if any using
exponentially weighted moving average method.

ii) Phase 2: Prediction of electricity load demands from the fused health index using stacked light weight
heterogeneous ensemble base learners.

iii) Phase 3: Impact assessment of the proposed approach of electric load forecasting.

The organization of the work is as follows: Section 2 entails a brief literature review on prominent machine
learning and deep learning-based works in electricity load forecasting. The proposed methodology
described in Section 3 and Section 4 elaborates the experimental setup, hey results of the model and
discussions on the results. Section 5 highlights the future research extensions apart from providing the
concluding remarks.

2. Literature Survey

Electricity load forecasting long running issue in industrial, commercial and domestic sectors. Both long
range and short-range forecasting are queen essential for proper planning of electricity distribution as well
as for developing strategies and policies for tapping renewable alternate energy resources.

Solyal (2020) employed ANN, multiple linear regression, adaptive neuro-fuzzy inference system along with
SVM to forecast electricity demand in Cyprus. The input parameters that are considered in the study
includes temperature, solar, humidity, capita income, population and electricity consumption. The
experimental analysis indicates that SVM and ANN able to accurate long term as well as short term
predictions. The method of Bayesian Clustering by Dynamics (BCD) along with support vector regression
is used for a day ahead forecasting of the electricity (Fan et al., 2008). The BCD classifier create multiple
subsets off the time series data which is then handled by regression model to give accurate predictions.

A holistic review on application of DL algorithms in electricity forecasting is done by Yildiz et al. (2017).
This work explodes different applications of DL models load forecasting systems, apart from comparing
the performance of the DL models. Bouktif et al. (2018) used Long Short-Term Memory (LSTM) model
for aggregate load forecasting. The optimal features are chosen using embedded feature selection and
wrapper methods which are further fine-tuned by genetic algorithm. Ask the model chooses only the best
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optimal parameters it exhibited much lower prediction errors. A hybrid method that integrates entropy-
based feature selection with random forest, ANN and fuzzy inductive reasoning is proposed by Jurado et
al. (2015). The proposed method was much faster and more reliable than conventional regressive integrated
moving average model.

In addition to SVM, RF and LSTM, nonlinear auto regressive exogenous neural network yes used in
medium term electricity forecasting by Shirzadi et al. (2021). The performance of this model was assessed
by using load demand data from Ontario region in Canada. Model exhibited better efficacy in commercial
and domestic power forecasting. Jawad et al. (2020) proposed a least cost electricity load forecasting model
what reduced prediction errors. The model focused on learning from weather parameters from Pakistan for
making accurate predictions.

Andriopoulos et al. (2020) proposed a Convolution Neural Network (CNN) that explores the statistical
properties of the time series electrical load data. This method performs better than the LSTM open examined
with publicly available data sets. Seven different autoregression models were employed for electricity load
forecasting, whose results are validated using adaptive-network-based fuzzy inference system by Yousaf et
al. (2021). The feature selection was made using principal component analysis and the real time testing of
the model is done on the electricity load forecasting data obtained from Pakistan. A hybrid parallel LSTM-
CNN Network is created by Farsi et al. (2021) for predicting the hourly electricity load in Malaysia (Farsi
et al., 2021). The performance of this model is validated on data acquired from two countries namely
Germany Malaysia.

Development of ensemble models combines the predictive power off multiple base learners. This is
explored by Khwaja et al. (2020) to create ensemble-based ensemble models for electricity load forecasting.
This work integrates boosting and bagging methods to train the multiple ANN models to predict the final
forecasted load. The results of the proposed indicates remarkable decline in the bias and variance hey than
individual ANN model.

A novel hybrid methodology which integrates bidirectional LSTM and CNN electric load is proposed by
Sekhar & Dahiya (2023). This method deploys grey wolf optimization to select optimal set of parameters
for the hybrid model. The model was able to give better efficacy in hourly load prediction. A detailed review
on the data driven electric load forecasting methods is done by Manandhar et al. (2023). The review
proceeds by explaining different stages in electric load forecasting the techniques deployed for the
prediction process. This book highlights the salient features, advantages and limitations of each work which
forms a basis for future research. A Training Data Generator (TDG) along with Look-Back Optimiser (LBO)
were deployed by Wang et al. (2023) for enhancing the performance of base ML models (Wang et al., 2023).
The TDG select subsidy meaning data which is further optimised by LBO, which considers the accuracy of
previous forecast to adjust the framework for accurate future predictions. This this method was found to be
efficient in handling imbalanced classes and the comprehensive evaluation shows that the model was much
efficient than the other state of art techniques. Different machine learning and deep learning algorithms has
been used in papers, to get clarity, this reviewed literature has been systematically compiled and
summarized in Table 2 to provide a clear comparison of methodologies, performance metrics and key
findings and limitations of the papers.
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Table 2. Characteristics of various load forecasting.
Author(s) & Year Title Methodology Key findings Limitations
Andriopoulos et al. Short term electric load | Statistical ML + Data | Improved short-term load | Focused on short-term
(2020) forecasting based on data | Transformation forecast accuracy only
transformation and
statistical ML
Bouktif et al. (2018) Optimal LSTM using GA & | LSTM + Genetic | Outperforms traditional | Computationally
Feature Selection Algorithm ML for load forecasting expensive
Farsi et al. (2021) Parallel LSTM-CNN model | Deep Learning (LSTM- | Accurate short-term | Training complexity
CNN) forecasting
Jawad et al. (2020) Cost effective electricity | ML + Weather Features Low-cost, accurate | Dependent on weather
load  forecasting  using predictions data
meteorological parameters
Jurado et al. (2015) Hybrid methodologies for | Entropy-based  Feature | Improved accuracy with | Computational cost
electricity load forecasting Selection + Soft | hybrid models
Computing
Khwaja et al. (2020) Joint bagged-boosted ANN Ensemble ML (Bagging + | Improved accuracy with | Model interpretability
Boosting) ensemble ANN
Manandhar et al. Urban energy modeling | Review of ML in Urban | Highlights current | Generalized overview
(2023) review Energy challenges
Sekhar & Dahiya Robust framework based on | Hybrid Deep Learning Robust for building-level | Needs fine-tuning
(2023) hybrid  deep  learning load
approach for short term load
forecasting of  building
electricity demand
Shirzadi et al. (2021) Medium-term regional | ML + DL Models Effective for regional | Data demand

Wang et al. (2023) Real-time load forecast + | ML + Anomaly Detection | Dual-function system Real-time processing
anomaly detection needs

Yildiz et al. (2017) Regression & ML models in | Regression + ML Review | Analyzes building energy | Commercial building
buildings models focus

Yousaf et al. (2021) Improved residential load | ML + Feature Selection + | Highly accurate | Model integration
forecasting Integration Strategy residential predictions complexity

Some of the research gaps from the intensive literature survey are as follows: 1) Most of the models are
tailored for specific applications- residential, commercial, regional or building level- and fail to generalize
well across different contexts. 2) Deep learning and hybrid models offer high accuracy but are often
computationally expensive and making real-time deployment impractical. 3) Only few models address real-
time forecasting needs. However, they lack scalability and have high latency. 4) Many feature selection
studies used manual or heuristic-based approach which are not automated or adaptive to changing
conditions. 5) Added significant design and implementation complexity in the case of multi-stage
framework models. Though the methods discussed in the survey are very effective in predicting the electric
load, because of computational complexity and memory constraints, there is still room for improvement.

Electric load forecasting presents a multifaceted challenge due to the inherent variability and nonlinearity
in consumption patterns, influenced by various temporal, behavioural and environmental factors.
Traditional statistical or single stage machine learning models, struggle to capture the full spectrum of
underlying patterns and also fail to generalise well across diverse scenarios. Though the deep learning
models are powerful, can be computationally intensive and lacks interpretability. To address these gaps and
limitations, this work proposes a stacking ensemble regression framework that strategically combines the
predictive capabilities of multiple diverse base learners, followed by a meta learner for final prediction.
This ensemble approach is motivated by the need to leverage unique strength of each algorithm to reduce
both bias and variance, enhance predictive accuracy and improve robustness against data noise and feature
interactions. The modular and scalable nature of stacking enables seamless integration of additional
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learners, making the model more adaptable to evolving forecasting needs and real-world deployment
scenarios.

3. Lightweight Ensemble Model for Electric Load Forecasting

The electric load consumption data is highly volatile as it depends on many factors, temperature, humidity,
season, time of consumption, type of consumers. Though, the traditional ensemble models achieve high
accuracy, the complexity and resource requirements are high and less suitable for real-time or resource
constrained environments. Thus, to balance accuracy, computational efficiency and practical applicability
light weight ensembled model is proposed in this paper. The model development proceeds in three phases
namely 1) Data preprocessing and influencing feature identification 2) Feature fusion into fused health
index and 3) Development of light weight ensemble model.

3.1 Data Preprocessing and Influencing Feature Identification

Accurate electric load forecasting critically depends on the quality of dataset and relevance of input features.
In this work, a set of exogenous variables are collected from Panama electricity load forecasting dataset
that reflect environmental and meteorological conditions known to influence electricity demand. Data
preprocessing is a step to improve the quality of data, by means of handling missing values and outlier
handling. Missing or corrupted values are handled using exponentially weighted moving average
interpolation as this ensures temporal consistency while smoothing short-term noise in the data. The
Exponentially Weighted Moving Average (EWMA) is widely used in applications where volatility is a
primary concern such as electric load. In this method the older observations are assigned lower priority or
lower weights which the recent ones hold high weights. The decay of weights happens exponentially, hence
the name exponentially weighted moving average. The hyperparameter (a) determined the significance of
the observation. This is a computationally efficient way to track time- series data such as electric load. The
estimation of EWMA is done according to Equation (1).

EWMA; = a.x; + (1 —a). EWMA,;_, (1)

The input data at current timestamp is indicated as x.. It is evident that EWMA is a recursive function,
where current value relies on the value from previous timestamp. The value of o should lie within [0,1]
and the observation is more significant for larger value of a. After estimating the EWMA of each
observation at every timestamp, the data preprocessing is done by trimmed mean fusion, which is a flavour
of measures of central tendency. This works by curbing the lowest and highest values and then estimating
the mean of remining values. This data preprocessing technique handles the outliers in the data.

To access the influence of each exogenous variables on electric demand univariate Pearson correlation
coefficients and feature importance scores are calculated. Calculated Univariate Pearson coefficients
between each feature and electricity load demand and feature importance scores from an initial run of tree
based extreme gradient boosting model. The features that consistently showed low influence in both
methods are removed.

3.2 Feature Fusion into Fused health index (FHI)

Fused health index (FHI) is a composite statistical metric used in condition monitoring and predictive
maintenance. It integrates multiple individual condition indicators into a single value that reflects the overall
health of the system or component. In this work, FHI is constructed from multiple dependant variables such
as temperature, humidity, wind speed and precipitation. Initially calculate EWMA«(f) for all individual
exogenous variable x(¢) using Equation (1). Later, calculate fused health index at time ¢ as the trimmed
mean of smoothed exogenous variables using Equation (2).

FHI(¢) = TrimmedMean(&(t), p) 2)
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where, &(7) is a vector of EWMA of all exogenous variable, {EWMA:(t), EWMAx(?),...... EWMAN(t)} and
p is the percentage values trimmed from both ends.

3.3 Development of Proposed Model

The key idea behind the development of lightweight ensemble model which combines the promise of
multiple base ML models is to achieve better computational efficiency reduced cost. The method of
ensemble hey comprises of amalgamating diverse models for getting a single prediction value. The there
are two types of ensembles namely homogeneous and heterogeneous. The former method proceeds by
constructing ensemble of same ML model while the later one explores the usage of various models. The
models that are used for creating the ensembles are commonly known as base models or weak learners. By
employing independent and different type of base learners increases the chance of reducing the
generalisation error. It is evident that the ensemble models use multiple ML algorithms each of them with
their own advantages and disadvantages. However, the ensemble model will give one single final outcome.
These models can we used for both regression as well as classification tasks (Garai & Paul, 2023). The
classification ensemble models give their results by applying a majority voting rule. On the other hand,
regression ensemble models use various aggregation techniques to give the final result. Alternatively, a
meta learner can be used as an aggregator of the results of base learners in both classification as well as
regression type of ensemble models. This meta learner is yet another ML model, whose choice has a great
influence on the final prediction (Hospedales et al., 2022).

The proposed work focuses on constructing a light weight ensemble model with five different base learners.
(1) Linear Regression (LR) — captures linear relationship between independent and dependent variable, fast
and interpretable. (2) Classification and Decision Trees (CART) which captures non-linear interactions and
variable splits, also interpretable and roust to outliers. (3) Support Vector Machines with Radial Basis
Function kernel (SVM-RBF): effective for high dimensional spaces and handles non-linear separability
using kernel trick. (4) Light Gradient Boosting Machine (LGBM) which is fast, leaf-wise tree growth model
that performs well on structured tabular data with high dimensionality. (5) Extreme Gradient Boosting
(XGB) regressor which predict based on regularized boosting technique. The predictions of these base
learner models are subjected to high accuracy, built in regularization machine learning model XGB
regressor, which has ability to model complex residual patterns, acts as meta learner in this work. The
proposed work uses stacking paradigm to converge the predictions of multiple individual base learners. The
XGB meta learner aggregates the individual predictions of the base learners to yield the final forecast of
the electricity demand. Figure 4 shows the architecture diagram of the proposed electricity load forecasting
model. Feature fusion identifies most influencing parameters from the raw dataset and ignores the least
significant attributes. Each base learner model learns from fused dataset and captures different aspects of
relationship between features and target variable. Different base models contribute diverse predictions and
best combinations of these outputs acts as input to the meta learner model. From the diversified output from
base model as input, meta learner model captures relationship between depending variable and target
variable and using relation makes final prediction.

As the work focuses on learning the load patterns and trends by analysing various exogeneous variables,
deploying a single ML model would be inefficient in forecasting the electric load. Hence, the proposed
work builds an ensemble model whose individual base learners probe the data in a unique and distinct way
to uncover new patterns and hidden trends in the data space. Each of the base learner has strong learning
capability and are computationally less expensive than devising a powerful layered model.
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Figure 4. Proposed Leight weight ensemble model with meta learner.

3.3.1 Multivariate Linear Regression

Linear regression (LR) predicts results by investigating the independent variables and creates a regression
model for dependent variable. The proposed architecture uses multivariate LR, which works on multiple
independent variables to give the prediction. The mathematical expression for the multivariate LR is given
as Equation (3).

Prediction = Sy + B1X1 + B2X5 + -+ LnXn 3)

The terms bias (f,) and weights (X, X3, ..., X,) are learnt by the ML model by analysing the dependent
and independent exogeneous variables in electric load forecasting.

3.3.2 Support Vector Machines

The objective of SVM regressor is to constitute an imaginary hyperplane to partition the dimensional space
of the data. The knowledge acquired by the algorithm is harnessed to choose the optimal support vectors
that best fit the data. SVM supports many types of kernels each with its own pros and cons. The proposed
methodology uses RBF kernel where only the nearest support vectors are used for further processing, which
makes it light weight. Equation (2) signifies the drawing of the hyper plane with x as input and was the
weight. The equation of the hyperplane of the Support Vector Regressor (SVR) is given by Equation (4),
which is similar to equation of a straight line (Y). The weights are given as w and input is mentioned as x.

Y=wx+b 4)
The hyper plane is drawn according to Equations (5) and (6). Here d indicates the distance.

wx+b=+d %)
wx+b=-d (6)

The hyperplane will be drawn based on the following criteria: —d <Y — (wx + b) < +d.
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3.3.3 Classification and Regression Trees

CART forecast the electric load by bifurcating into decision trees where each node indicates the point of
decision. The outcome of the decision is indicated as branches. The growth of the tree is controlled by tree-
splitting criteria, which is a hyper parameter (Bittencourt & Clarke, 2003). The tree extends greedily by
selecting the best possible split. This work focuses on splitting the tree based on Sum of Squared Error
(SSE), which is estimated according to Equation (7).

SSE = Fies, i — 1) = Ties, Vi — ¥2)? (7

The bifurcation of the dataset is done into two subsets namely s1 and s>. The choice of a record belonging
to a particular subset will be governed according to its least value of SSE. The term y¥; and 7y, are mean
of the samples in the set s; and s, respectively. This method follows greedy recursive partitioning to spawn
the tree to output the final prediction.

3.3.4 XGB Regressor

The power of XGB lies in its objective function which imbibes an inherent regularization term. The XGB
is a homogeneous ensemble weak decision tree. Equation (8) determine the predicted value of the XGB
regressor. The term a,, and R,,_, indicates regularization parameter and residual computed from the n” tree
respectively. The residual value of the input exogeneous variables (X) is denoted using the term /,. Equation
(9) portrays the differentiable loss function (f;) (Velthoen et al., 2023).

fn(X) = fn—l(X) + anhy (X, Rp_1) )
argmin(a) = Yi—; L(Y;, fi-1(Xp) + ahy(Xi, Ri—1)) ©)

3.3.5 Light Gradient Boosting Machines

LGB machines are special kind of ML which are specifically designed for faster convergence at low
resource consumption. Like XGB, this is also a Decision tree-based model, where the bifurcation of the
tree is done at the leaves, resulting in more deeper trees (Fan et al., 2019).

Thus, the proposed model aggregated individual base learners with a meta-leaner. This work creates five
distinct ensemble models with different base learners and meta learner to forecast the electricity load.

3.3.6 Training and Testing Phase of the Model
The proposed ensemble model exhibits two different behaviours during the training and testing phase which
is depicted in Figure 5.

The operation of the model during training phase proceeds by learning the fused features and testing of the
model’s accuracy is done. If the prediction accuracy is not satisfactory then the model adjusts or modifies
its assumptions about various hyper parameters. This is an iterative process which converges when the
model outputs satisfiable results with great accuracy. This trained model is then tested with real time data,
which yields the electric load as output.
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Figure 5. Testing and training behavior of the model.

4. Experimental Set Up and Data Analysis

This section explains the dataset and provides detailed analysis about the data to understand the efficacy of
the proposed model in predicting electric load. The work validates the model’s performance using the
Panama national electricity load data (Huang et al., 2023) and is publicly accessible through electric load
forecasting research repositories. This data is obtained at one-hour intervals with a vast data comprising of
17,520 records. The data is measured from 0:00 on January 1st, 2018, till 23:00 on December 31st, 2019
among three areas namely Tocumen, Santiago and David belonging to the Panama City. The dataset
includes both target variables and exogenous variables: temperature, relative humidity, wind speed and
liquid precipitation from each of the three areas. Table 3 enumerates the list of features considered for
electricity load prediction.

Table 3. Features and their units in the dataset.

Feature with description Unit Feature with description Unit
nat_demand -Electricity load MWh TQL_san- Liquid precipitation in Santiago of Panama City | 1/m2
T2M_toc -Temperature at a distance of 2 m in Tocumen of | °C W2M _san - Speed of wind at a distance of 2 m in Santiago | m/s
Panama City of Panama City

QV2M toc -relative humidity at a distance of 2 m in | % T2M_dav Temperature at a distance of 2 m in David of | °C
Tocumen of Panama City Panama City

TQL_toc -Liquid precipitation in Tocumen of Panama | liters'm2 | QV2M_dav - relative humidity at a distance of 2 m in David | %
City of Panama City

W2M _ toc- Speed of wind at a distance of 2 m in Tocumen | m/s TQL_dav Liquid precipitation in David of Panama City I/m2
of Panama City

T2M_san- Temperature at a distance of 2 m in Santiago of | °C Speed of wind at a distance of 2 m in David of Panama City | m/s
Panama City

QV2M san - relative humidity at a distance of 2 m in | %

Santiago of Panama City

The Exploratory Data Analysis (EDA) of the above dataset is shown in Figure 6. The X axis of the fig
indicates the feature values and Y axis is the count of values. This helps us to understand the distribution of
data.
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Figure 6. EDA of the dataset using histograms.
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The data roughly follows normal distribution except the feature TQL _toc. As there is good variation in the
data, the base learners of the data can explore the data space in more robust manner. Also, the various hyper
parameters of the base learners are listed in Table 4.

Table 4. Hyperparameter setting for the model.

Model Hyperparameter Value
LGM machine No. of leaves 6
Learning rate 0.01
No. of estimators 100
Maximum bin size 10
Bagging fraction 0.8
Bagging frequency 4
Seed 8
Feature fraction 0.2
XGB regressor Maximum depth 8
Number of estimators 500
Minimum child weight 1000
SVM Kernel RBF

5. Results and Discussion

Feature fusion by trimmed mean of the EWMA of the raw electricity load prediction data is performed and
the fused value is used for predicting the national load demand. 80% of the data is used for training the
model while the remining 20% is used for testing performance of the model. The location of the data
collection does not hold any significance in this study. The prediction efficacy of the model for a sample of
test data is presented in Figure 7 and Figure 8.

Predicted
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Figure 7. Predicted and actual national electricity load demand of all test data points.
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Figure 8. Predicted and actual national electricity load demand of sample data points.
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At most of the time the actual and predicted data is in alignment with each other. Also, a very feeble
deviation can be sensed in some of the data points in the model. The Figure 7 shows much of randomness
in the data points while the data points in Figure 8 are more periodic. However, their periodicity and non-
periodicity does not hold any relevance to the performance of the proposed model. The data sampling is
done to have a closer look on the deviation between the predicted and actual values. However, quantifying
the efficacy of the model is very important to draw scientific inferences from the study. Hence, the
performance of the proposed model is validated on few of the prediction performance metrics as described
below:

5.1 Mean Bias Error (MBE)

This is a measure of the average difference between the testing and training data. Ideally, the best model
will achieve an MBE value of zero. Both the positive and negative MBE are said to attain under estimation
and overestimation of the values respectively. This metric is best described by the Equation (10).

MBE = ¥¥_,(logL, — logL,) (10)

Here, the L, signifies the predicted load while L, indicates actual electricity load demand.

5.2 Root Mean Squared Error (RMSE)

RMSE is the most predominantly used metric in regression-based analysis. This is a direct indication of the
normalised residuals for every data point. Equation (11) portrays the expression for computing the RMSE
and & data points.

% — 2
RMSE — \/Zk=1”l‘p(]1{() La(k)” (11)

5.3 R? Value

This metric is used in almost all regression-based problems to find the variance ratio of independent
variables. This coefficient of determination estimates the square of the correlation. Zero value of R? signifies
that dependent variable is not predictable from independent variables considered in the study. Hence,
increased values of R? indicates a positive trend which indicates the right choice of independent variables
for model building. The mathematical expression for computing the R? values is given in Equation (12).

2 z:Ilf—1(Laverage_Lp)z
R B 1 Zlk{—l(L_La)z (12)

5.4 Mean Absolute Error
This is an important metric that defines the mean variance among the significant data point and the predicted
values. It is an estimate of the mean of mispredictions irrespective of the direction. Equation (13) displays

the mathematical expression:
Zlk<:1|La_Lp|
MAp = Himlahsl (13)

The proposed methodology is compared with three other states of the art techniques such as CEEMDAN-
TCN-ESN model (Huang et al., 2023), XGB model (Madrid & Antonio, 2021) and multi-channel CNN
(Ibrahim et al., 2023). Table 5 summarises the results of the four models using four regression metrics. The
graphical comparative analysis is given in Figure 9 to Figure 12.
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Table 5. Comparison of various performance metrics.
Method MBE RMSE R’ MAE
CEEMDAN-TCN-ESN 800 870.532 0.995 595.843
XGB 875 906 0.901 653
Multi-channel CNN 786 1271 0.92 678
Proposed Work 765 846 0.998 576
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Figure 9. Performance comparison of state of art techniques with proposed work based on MBE.
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Figure 10. Performance comparison of state of art techniques with proposed work based on RMSE.
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Figure 11. Performance comparison of state of art techniques with proposed work on R2_score.
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Figure 12. Performance comparison of state of art techniques with proposed work based on MAE.

From Table 5 and Figure 9 to Figure 12, the proposed model demonstrates superior performance across
all metrics. It records minimum MBE (765) and RMSE (846), indicating minimal prediction bias and
reduced large error occurrences. The model also achieves the highest R? value of 0.998 which suggest 99.8%
of model predictions are close to actual data, thus reflecting excellent generalization capability. In addition,
the MAE (576) is also lowest compared to other models, which further affirming the model’s precision in
average prediction. Compared to CEEMDAN-TCN-ESN hybrid model, XGB and CNN- based
architectures, the proposed model exhibits enhanced accuracy and robustness. These improvements can be
attributed to the diversity of base learners and ability of meta learner to optimally combine their strengths
leading to more reliable and consistent forecasts.

6. Conclusions and Future Research

The proposed work presents a novel model that predicts the electric load by exploring the exogeneous
variables. Trimmed mean of EMWA is used as a feature fusion technique that act as an integral index for
load prediction by the model. The model was developed by ensemble robust light weight base learners,
whose predictions are acted upon by the meta leaner. XGB algorithm is used as meta learner in this work.
The performance of the proposed methodology is validated using Panama electric load forecasting method
which is a comprehensive dataset that comprises of electric load data from three regions. Several important
research implications can be drawn from the results of the model. The model exhibited superior
performance than the compared state of art models in terms of MBE, MAE, RMSE and R? error. As future
research extension, the deployment of Deep Learning models can be explored. Especially, Recurrent Neural
Networks will act as excellent choice for time series forecasting.
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