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Abstract 

The operation of electric power system is a continuous process which demands coordination of various entities from power 

generating plants to distributing substations to render uninterrupted service still sticking to quality power delivery. Electric demand 

depends on external factors such as temperature, humidity, social activity pattern. Power grids are becoming complex due to 

integration of renewable energy sources. Thus, there is a need of electric energy forecasting. Efficiency of traditional forecasting 

approaches are less and existing many learning and ensembled models require high computational resources. To improve accuracy 

of prediction, a fast and efficient processing model which is suitable for real-time applications, light weight ensemble model is 

proposed in this paper. This research proposes a novel stacked light weight ensemble model that integrates the prowess of various 

weak base learners. The final prediction of the model is further improved by using extreme gradient boosting as a meta learner, 

which evolutionarily learns the predictions from individual learners and gives the final load forecast. Further the temporal nature 

of the exogeneous variables is preserved by a unique feature fusion technique which estimates the exponentially weighted moving 

average of the individual variable which are then aggregated. The efficacy of this model is validated by testing it on Panama 

electricity load forecasting dataset and the results are explored using important regression-based metrics. The analysis shows that 

the proposed method can vividly forecast the electricity load using the lightweight ensemble model in terms of Root Mean Square 

Error (RMSE), Mean Bias Error (MBE), Mean Absolute Error (MAE) and R2 values.  

 

Keywords- Feature fusion, Exponentially weighted moving average, Short term load forecasting, Ensemble model, Meta learner. 

 

 

 

1. Introduction 
Any country’s development directly relies on its power sources, infrastructure, availability and distribution 

of energy. The transformation of human lives to acclaim great deal of comfort and easiness can be attributed 

to the improvement in energy generation, dissipation, distribution, and management (Zhang et al., 2018). 

Hence, the global demand for electricity is ever growing and its prices have fluctuated in the recent past. 

The huge gap between the global electricity demand and its generation has necessitated efficient planning 

in distribution and conservation with modern technologies. To augment this, the generation, distribution 

and transmission of electrical energy is highly complex and is not cost effective. This paved a motivation 

for several studies and research in the area of electricity forecasting for estimating the electricity demand 
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to facilitate the electricity generators, suppliers, and distributors to effectively devise plans much ahead and 

also to create awareness about energy conservation among the electricity users. Figure 1 portrays the 

accelerated growth in global electricity consumption from 1980 to 2023 expressed in terawatt-hours (TWh). 

(Global Electricity Consumption 2023| Statista, n.d.). The graph reveals a continuous upward growth, with 

consumption rising from 7000 TWh in 1980 to over 25000 TWh in recent years. This rapid growth is driven 

by multiple factors such as industrial growth, urbanization, technological advancements, population growth 

and the shift toward electrification. 

 

The effective electric grid management protocols involve appropriate planning about the load demand 

planning, maintenance schedule for generation, distribution lines and transmission along with effective 

distribution of load along the supply lines (Shen et al., 2016). Proper planning of electric load involves 

identification of forecasting intervals or lead time which forms a major criterion in classifying load 

forecasting into four major categories namely very short-term forecasting, short-term forecasting, medium 

or moderate term forecasting and long-term forecasting. The characteristic features of each of the 

forecasting type is described in Table 1 (Verdejo et al., 2017). 

 

 

 
 

Figure 1. Growth in global electricity consumption. 

 

 

Table 1. Characteristics of various load forecasting. 
 

Type Applications Predicting period 

Very short-term Real time control 1 hour 

Short term  Scheduling electricity for Daily life operations 1 hour-7 days (or even 
months) 

Medium term Purchase of fuel, maintenance scheduling and utility assessments 1 week-1 year 

Long term  Development and construction of new generations, strategic power planning, tapping for 

new alternate power resource, demand side management.  

1 -20 years 

 

 

Forecasting Electricity Energy Demand (EED) is a complicated tasks that involves assimilation of multiple 

heterogeneous factors as shown in Figure 2. Nevertheless, EED forecasting is very complex and cannot be 

solved using sinister mathematical expressions and formulas. The problem of EED is not confined only in 

industrial sectors but extends its wings to cater both commercial and domestic needs. This necessitates 

detailed investigation about the dynamic growth patterns for an envisioning an accurate power system. On 

the other hand, inaccurate predictions may lead to power shortage, and increased expenditure. Hence a 

proper balance has to be maintained to supporting the development of the electrical power systems. 
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It is evident that accurate load forecasting will aid the planning process which will eventually reduce the 

gap between the global electricity demand and energy production. The process of EED forecasting can be 

done using many proven scientific methods which may be either computation or statistics based (Kuster et 

al., 2017). The conventional forecasting techniques can be categorized into correlation, extrapolation, and 

their hybrid (Almeshaiei & Soltan, 2011). The Extrapolation or trend analysis proceeds by fitting a curve 

on historical electricity demand data which depict the growth trend. The future value of can be forecasted 

by estimating the curve function at the desired point. Though this method is very realistic and simple, its 

results are not very accurate. Alternatively, correlation techniques focused on investigating the system load 

pertaining to various demographic and economic factors and capture the relation between the demand 

pattern and the factors influencing the demand. But the bottlenecks in accurate forecasting of multifaceted 

demographic and economic factors is very tedious and inconsistent. 

 

 
 

Figure 2. Major influential factors in electric load forecasting. 

 

 

The recent developments in computing technologies, has introduced new paradigms to develop advanced 

forecasting models using data-driven Artificial Intelligence (AI) based techniques. Among the various 

flavors of AI, Machine Learning (ML) and Deep Learning (DL) paragon are gaining momentum because 

of their ability to render automatic forecasting or prediction with continuous improvement at much reduced 

human effort and time. These learning strategies tend to observe and learn the historic data and give future 

predictions with being explicitly programmed. Figure 3 shows the functioning of ML algorithms. 

 

 
 

Figure 3. Overview of machine learning algorithm. 
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ML algorithm learns the patterns and trends from the previous historical data and constructs the model paste 

on the data. The new data applied to the logical model which gives the prediction results. The ML and DL 

algorithms are categorized into four major types namely supervised, unsupervised, semi supervised and 

reinforcement learning approaches. The algorithms like Support Vector Machines (SVM), Simple and 

multinomial Linear regression, Long Short-Term memory, Decision trees, Random Forests etc. are 

predominantly used in many applications because of their predictive power by learning intricate trends and 

patterns from the data space.  

 

From the perspective of EED and electricity load forecasting, a lot of research have been done in analyzing 

the impact of AI based models in predicting the power loads (Pai & Hong, 2005). As the demand for 

electricity is not always consistent and is subjected to dynamic changes, these models have been very 

helpful in arriving at accurate and timely predictions. Reduced operational cost, stabilised power supply, 

efficient load management, security and safety off the power systems are some of the potential benefits that 

can be benefitted by deploying ML and DL models (Almeshaiei & Soltan, 2011). In the view of developing 

an efficient electricity load forecasting method, this work divided into three phases as follows: 

i) Phase 1: Construction of fused health index using exogenous variables for electric load forecasting 

using exponentially weighted moving average. In this phase, the data from various sources are collected 

which are influencing electricity consumption rate such as temperature, wind speed. Also, robust 

dataset is prepared by handling missing values, outlier values and categorical data if any using 

exponentially weighted moving average method. 

ii) Phase 2: Prediction of electricity load demands from the fused health index using stacked light weight 

heterogeneous ensemble base learners.  

iii) Phase 3: Impact assessment of the proposed approach of electric load forecasting.  

 

The organization of the work is as follows: Section 2 entails a brief literature review on prominent machine 

learning and deep learning-based works in electricity load forecasting. The proposed methodology 

described in Section 3 and Section 4 elaborates the experimental setup, hey results of the model and 

discussions on the results. Section 5 highlights the future research extensions apart from providing the 

concluding remarks. 

 

2. Literature Survey 
Electricity load forecasting long running issue in industrial, commercial and domestic sectors. Both long 

range and short-range forecasting are queen essential for proper planning of electricity distribution as well 

as for developing strategies and policies for tapping renewable alternate energy resources. 

 

Solyal (2020) employed ANN, multiple linear regression, adaptive neuro-fuzzy inference system along with 

SVM to forecast electricity demand in Cyprus. The input parameters that are considered in the study 

includes temperature, solar, humidity, capita income, population and electricity consumption. The 

experimental analysis indicates that SVM and ANN able to accurate long term as well as short term 

predictions. The method of Bayesian Clustering by Dynamics (BCD) along with support vector regression 

is used for a day ahead forecasting of the electricity (Fan et al., 2008). The BCD classifier create multiple 

subsets off the time series data which is then handled by regression model to give accurate predictions.  

 

A holistic review on application of DL algorithms in electricity forecasting is done by Yildiz et al. (2017). 

This work explodes different applications of DL models load forecasting systems, apart from comparing 

the performance of the DL models. Bouktif et al. (2018) used Long Short-Term Memory (LSTM) model 

for aggregate load forecasting. The optimal features are chosen using embedded feature selection and 

wrapper methods which are further fine-tuned by genetic algorithm. Ask the model chooses only the best 
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optimal parameters it exhibited much lower prediction errors. A hybrid method that integrates entropy-

based feature selection with random forest, ANN and fuzzy inductive reasoning is proposed by Jurado et 

al. (2015). The proposed method was much faster and more reliable than conventional regressive integrated 

moving average model.  

 

In addition to SVM, RF and LSTM, nonlinear auto regressive exogenous neural network yes used in 

medium term electricity forecasting by Shirzadi et al. (2021). The performance of this model was assessed 

by using load demand data from Ontario region in Canada. Model exhibited better efficacy in commercial 

and domestic power forecasting. Jawad et al. (2020) proposed a least cost electricity load forecasting model 

what reduced prediction errors. The model focused on learning from weather parameters from Pakistan for 

making accurate predictions. 

 

Andriopoulos et al. (2020) proposed a Convolution Neural Network (CNN) that explores the statistical 

properties of the time series electrical load data. This method performs better than the LSTM open examined 

with publicly available data sets. Seven different autoregression models were employed for electricity load 

forecasting, whose results are validated using adaptive-network-based fuzzy inference system by Yousaf et 

al. (2021). The feature selection was made using principal component analysis and the real time testing of 

the model is done on the electricity load forecasting data obtained from Pakistan. A hybrid parallel LSTM-

CNN Network is created by Farsi et al. (2021) for predicting the hourly electricity load in Malaysia (Farsi 

et al., 2021). The performance of this model is validated on data acquired from two countries namely 

Germany Malaysia.  

 

Development of ensemble models combines the predictive power off multiple base learners. This is 

explored by Khwaja et al. (2020) to create ensemble-based ensemble models for electricity load forecasting. 

This work integrates boosting and bagging methods to train the multiple ANN models to predict the final 

forecasted load. The results of the proposed indicates remarkable decline in the bias and variance hey than 

individual ANN model.  

 

A novel hybrid methodology which integrates bidirectional LSTM and CNN electric load is proposed by 

Sekhar & Dahiya (2023). This method deploys grey wolf optimization to select optimal set of parameters 

for the hybrid model. The model was able to give better efficacy in hourly load prediction. A detailed review 

on the data driven electric load forecasting methods is done by Manandhar et al. (2023). The review 

proceeds by explaining different stages in electric load forecasting the techniques deployed for the 

prediction process. This book highlights the salient features, advantages and limitations of each work which 

forms a basis for future research. A Training Data Generator (TDG) along with Look-Back Optimiser (LBO) 

were deployed by Wang et al. (2023) for enhancing the performance of base ML models (Wang et al., 2023). 

The TDG select subsidy meaning data which is further optimised by LBO, which considers the accuracy of 

previous forecast to adjust the framework for accurate future predictions. This this method was found to be 

efficient in handling imbalanced classes and the comprehensive evaluation shows that the model was much 

efficient than the other state of art techniques. Different machine learning and deep learning algorithms has 

been used in papers, to get clarity, this reviewed literature has been systematically compiled and 

summarized in Table 2 to provide a clear comparison of methodologies, performance metrics and key 

findings and limitations of the papers. 
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Table 2. Characteristics of various load forecasting. 
 

Author(s) & Year Title Methodology Key findings Limitations 

Andriopoulos et al. 

(2020) 

Short term electric load 

forecasting based on data 
transformation and 

statistical ML 

Statistical ML + Data 

Transformation 

Improved short-term load 

forecast accuracy 

Focused on short-term 

only 

Bouktif et al. (2018) Optimal LSTM using GA & 

Feature Selection 

LSTM + Genetic 

Algorithm 

Outperforms traditional 

ML for load forecasting 

Computationally 

expensive 

Farsi et al. (2021) Parallel LSTM-CNN model Deep Learning (LSTM-

CNN) 

Accurate short-term 

forecasting 

Training complexity 

Jawad et al. (2020) Cost effective electricity 

load forecasting using 
meteorological parameters 

ML + Weather Features Low-cost, accurate 

predictions 

Dependent on weather 

data 

Jurado et al. (2015) Hybrid methodologies for 

electricity load forecasting 

Entropy-based Feature 

Selection + Soft 
Computing 

Improved accuracy with 

hybrid models 

Computational cost 

Khwaja et al. (2020) Joint bagged-boosted ANN Ensemble ML (Bagging + 

Boosting) 

Improved accuracy with 

ensemble ANN 

Model interpretability 

Manandhar et al. 
(2023) 

Urban energy modeling 
review 

Review of ML in Urban 
Energy 

Highlights current 
challenges 

Generalized overview 

Sekhar & Dahiya 

(2023) 

Robust framework based on 

hybrid deep learning 

approach for short term load 
forecasting of building 

electricity demand 

Hybrid Deep Learning Robust for building-level 

load 

Needs fine-tuning 

Shirzadi et al. (2021) Medium-term regional 
forecasting 

ML + DL Models Effective for regional 
planning 

Data demand 

Wang et al. (2023) Real-time load forecast + 

anomaly detection 

ML + Anomaly Detection Dual-function system Real-time processing 

needs 

Yildiz et al. (2017) Regression & ML models in 
buildings 

Regression + ML Review Analyzes building energy 
models 

Commercial building 
focus 

Yousaf et al. (2021) Improved residential load 

forecasting 

ML + Feature Selection + 

Integration Strategy 

Highly accurate 

residential predictions 

Model integration 

complexity 

 

 

Some of the research gaps from the intensive literature survey are as follows: 1) Most of the models are 

tailored for specific applications- residential, commercial, regional or building level- and fail to generalize 

well across different contexts. 2) Deep learning and hybrid models offer high accuracy but are often 

computationally expensive and making real-time deployment impractical. 3) Only few models address real-

time forecasting needs. However, they lack scalability and have high latency. 4) Many feature selection 

studies used manual or heuristic-based approach which are not automated or adaptive to changing 

conditions. 5) Added significant design and implementation complexity in the case of multi-stage 

framework models. Though the methods discussed in the survey are very effective in predicting the electric 

load, because of computational complexity and memory constraints, there is still room for improvement. 

 

Electric load forecasting presents a multifaceted challenge due to the inherent variability and nonlinearity 

in consumption patterns, influenced by various temporal, behavioural and environmental factors. 

Traditional statistical or single stage machine learning models, struggle to capture the full spectrum of 

underlying patterns and also fail to generalise well across diverse scenarios. Though the deep learning 

models are powerful, can be computationally intensive and lacks interpretability. To address these gaps and 

limitations, this work proposes a stacking ensemble regression framework that strategically combines the 

predictive capabilities of multiple diverse base learners, followed by a meta learner for final prediction. 

This ensemble approach is motivated by the need to leverage unique strength of each algorithm to reduce 

both bias and variance, enhance predictive accuracy and improve robustness against data noise and feature 

interactions. The modular and scalable nature of stacking enables seamless integration of additional 
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learners, making the model more adaptable to evolving forecasting needs and real-world deployment 

scenarios. 

 

3. Lightweight Ensemble Model for Electric Load Forecasting  
The electric load consumption data is highly volatile as it depends on many factors, temperature, humidity, 

season, time of consumption, type of consumers. Though, the traditional ensemble models achieve high 

accuracy, the complexity and resource requirements are high and less suitable for real-time or resource 

constrained environments. Thus, to balance accuracy, computational efficiency and practical applicability 

light weight ensembled model is proposed in this paper. The model development proceeds in three phases 

namely 1) Data preprocessing and influencing feature identification 2) Feature fusion into fused health 

index and 3) Development of light weight ensemble model.   

 

3.1 Data Preprocessing and Influencing Feature Identification 
Accurate electric load forecasting critically depends on the quality of dataset and relevance of input features. 

In this work, a set of exogenous variables are collected from Panama electricity load forecasting dataset 

that reflect environmental and meteorological conditions known to influence electricity demand. Data 

preprocessing is a step to improve the quality of data, by means of handling missing values and outlier 

handling. Missing or corrupted values are handled using exponentially weighted moving average 

interpolation as this ensures temporal consistency while smoothing short-term noise in the data. The 

Exponentially Weighted Moving Average (EWMA) is widely used in applications where volatility is a 

primary concern such as electric load. In this method the older observations are assigned lower priority or 

lower weights which the recent ones hold high weights. The decay of weights happens exponentially, hence 

the name exponentially weighted moving average. The hyperparameter (α) determined the significance of 

the observation. This is a computationally efficient way to track time- series data such as electric load. The 

estimation of EWMA is done according to Equation (1). 

𝐸𝑊𝑀𝐴𝑡 = 𝛼. 𝑥𝑡 + (1 − 𝛼). 𝐸𝑊𝑀𝐴𝑡−1                                                                                                        (1) 

 

The input data at current timestamp is indicated as xt. It is evident that EWMA is a recursive function, 

where current value relies on the value from previous timestamp. The value of α should lie within [0,1] 

and the observation is more significant for larger value of α. After estimating the EWMA of each 

observation at every timestamp, the data preprocessing is done by trimmed mean fusion, which is a flavour 

of measures of central tendency. This works by curbing the lowest and highest values and then estimating 

the mean of remining values. This data preprocessing technique handles the outliers in the data. 

 

To access the influence of each exogenous variables on electric demand univariate Pearson correlation 

coefficients and feature importance scores are calculated. Calculated Univariate Pearson coefficients 

between each feature and electricity load demand and feature importance scores from an initial run of tree 

based extreme gradient boosting model. The features that consistently showed low influence in both 

methods are removed. 

 

3.2 Feature Fusion into Fused health index (FHI) 
Fused health index (FHI) is a composite statistical metric used in condition monitoring and predictive 

maintenance. It integrates multiple individual condition indicators into a single value that reflects the overall 

health of the system or component. In this work, FHI is constructed from multiple dependant variables such 

as temperature, humidity, wind speed and precipitation. Initially calculate EWMAi(t) for all individual 

exogenous variable xi(t) using Equation (1). Later, calculate fused health index at time t as the trimmed 

mean of smoothed exogenous variables using Equation (2). 

FHI(t) = TrimmedMean(ε(t), p)                                                                                                                      (2) 
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where, ε(t) is a vector of EWMA of all exogenous variable, {EWMA1(t), EWMA2(t),…… EWMAN(t)} and 

p is the percentage values trimmed from both ends. 

 

3.3 Development of Proposed Model 
The key idea behind the development of lightweight ensemble model which combines the promise of 

multiple base ML models is to achieve better computational efficiency reduced cost. The method of 

ensemble hey comprises of amalgamating diverse models for getting a single prediction value. The there 

are two types of ensembles namely homogeneous and heterogeneous. The former method proceeds by 

constructing ensemble of same ML model while the later one explores the usage of various models. The 

models that are used for creating the ensembles are commonly known as base models or weak learners. By 

employing independent and different type of base learners increases the chance of reducing the 

generalisation error. It is evident that the ensemble models use multiple ML algorithms each of them with 

their own advantages and disadvantages. However, the ensemble model will give one single final outcome. 

These models can we used for both regression as well as classification tasks (Garai & Paul, 2023). The 

classification ensemble models give their results by applying a majority voting rule. On the other hand, 

regression ensemble models use various aggregation techniques to give the final result. Alternatively, a 

meta learner can be used as an aggregator of the results of base learners in both classification as well as 

regression type of ensemble models. This meta learner is yet another ML model, whose choice has a great 

influence on the final prediction (Hospedales et al., 2022).  

 

The proposed work focuses on constructing a light weight ensemble model with five different base learners. 

(1) Linear Regression (LR) – captures linear relationship between independent and dependent variable, fast 

and interpretable. (2) Classification and Decision Trees (CART) which captures non-linear interactions and 

variable splits, also interpretable and roust to outliers. (3) Support Vector Machines with Radial Basis 

Function kernel (SVM-RBF): effective for high dimensional spaces and handles non-linear separability 

using kernel trick. (4) Light Gradient Boosting Machine (LGBM) which is fast, leaf-wise tree growth model 

that performs well on structured tabular data with high dimensionality. (5) Extreme Gradient Boosting 

(XGB) regressor which predict based on regularized boosting technique. The predictions of these base 

learner models are subjected to high accuracy, built in regularization machine learning model XGB 

regressor, which has ability to model complex residual patterns, acts as meta learner in this work. The 

proposed work uses stacking paradigm to converge the predictions of multiple individual base learners. The 

XGB meta learner aggregates the individual predictions of the base learners to yield the final forecast of 

the electricity demand. Figure 4 shows the architecture diagram of the proposed electricity load forecasting 

model. Feature fusion identifies most influencing parameters from the raw dataset and ignores the least 

significant attributes. Each base learner model learns from fused dataset and captures different aspects of 

relationship between features and target variable. Different base models contribute diverse predictions and 

best combinations of these outputs acts as input to the meta learner model. From the diversified output from 

base model as input, meta learner model captures relationship between depending variable and target 

variable and using relation makes final prediction. 

 
As the work focuses on learning the load patterns and trends by analysing various exogeneous variables, 

deploying a single ML model would be inefficient in forecasting the electric load. Hence, the proposed 

work builds an ensemble model whose individual base learners probe the data in a unique and distinct way 

to uncover new patterns and hidden trends in the data space. Each of the base learner has strong learning 

capability and are computationally less expensive than devising a powerful layered model. 
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Figure 4. Proposed Leight weight ensemble model with meta learner. 

 

3.3.1 Multivariate Linear Regression  
Linear regression (LR) predicts results by investigating the independent variables and creates a regression 

model for dependent variable. The proposed architecture uses multivariate LR, which works on multiple 

independent variables to give the prediction. The mathematical expression for the multivariate LR is given 

as Equation (3). 

Prediction = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛                                                                                              (3) 

 

The terms bias (𝛽0) and weights (X1, X2, …, Xn) are learnt by the ML model by analysing the dependent 

and independent exogeneous variables in electric load forecasting.  

 

3.3.2 Support Vector Machines 
The objective of SVM regressor is to constitute an imaginary hyperplane to partition the dimensional space 

of the data. The knowledge acquired by the algorithm is harnessed to choose the optimal support vectors 

that best fit the data. SVM supports many types of kernels each with its own pros and cons. The proposed 

methodology uses RBF kernel where only the nearest support vectors are used for further processing, which 

makes it light weight. Equation (2) signifies the drawing of the hyper plane with x as input and was the 

weight. The equation of the hyperplane of the Support Vector Regressor (SVR) is given by Equation (4), 

which is similar to equation of a straight line (Y). The weights are given as 𝜔 and input is mentioned as x.  

𝑌 = 𝜔𝑥 + 𝑏                                                                                                                                                            (4) 

 

The hyper plane is drawn according to Equations (5) and (6). Here d indicates the distance.  

𝜔𝑥 + 𝑏 =  +𝑑                                                                                                                                                      (5) 

𝜔𝑥 + 𝑏 = −𝑑                                                                                                                                                  (6) 

 

The hyperplane will be drawn based on the following criteria: −𝑑 < 𝑌 − (𝜔𝑥 + 𝑏) <  +𝑑.  
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3.3.3 Classification and Regression Trees  
CART forecast the electric load by bifurcating into decision trees where each node indicates the point of 

decision. The outcome of the decision is indicated as branches. The growth of the tree is controlled by tree-

splitting criteria, which is a hyper parameter (Bittencourt & Clarke, 2003). The tree extends greedily by 

selecting the best possible split. This work focuses on splitting the tree based on Sum of Squared Error 

(SSE), which is estimated according to Equation (7). 

𝑆𝑆𝐸 = ∑ (𝑦𝑖 −  𝑦1 )̂
2 − ∑ (𝑦𝑖 − 𝑦2 )̂

2
𝑖∈𝑠2𝑖∈𝑠1

                                                                                             (7) 

 

The bifurcation of the dataset is done into two subsets namely s1 and s2. The choice of a record belonging 

to a particular subset will be governed according to its least value of SSE. The term 𝑦1̂  and  𝑦2̂ are mean 

of the samples in the set s1 and s2 respectively. This method follows greedy recursive partitioning to spawn 

the tree to output the final prediction.  

 

3.3.4 XGB Regressor 
The power of XGB lies in its objective function which imbibes an inherent regularization term.  The XGB 

is a homogeneous ensemble weak decision tree. Equation (8) determine the predicted value of the XGB 

regressor. The term 𝛼𝑛 and 𝑅𝑛−1 indicates regularization parameter and residual computed from the nth tree 

respectively. The residual value of the input exogeneous variables (X) is denoted using the term hn. Equation 

(9) portrays the differentiable loss function (fi) (Velthoen et al., 2023).  

𝑓𝑛(𝑋) = 𝑓𝑛−1(𝑋) + 𝛼𝑛ℎ𝑛(𝑋, 𝑅𝑛−1)                                                                                                              (8) 

𝑎𝑟𝑔𝑚𝑖𝑛(𝛼) = ∑ 𝐿(𝑌𝑖, 𝑓𝑖−1(𝑋𝑖
𝑛
𝑖=1 ) + 𝛼ℎ𝑖(𝑋𝑖 , 𝑅𝑖−1))                                                                                     (9) 

 

3.3.5 Light Gradient Boosting Machines 
LGB machines are special kind of ML which are specifically designed for faster convergence at low 

resource consumption. Like XGB, this is also a Decision tree-based model, where the bifurcation of the 

tree is done at the leaves, resulting in more deeper trees (Fan et al., 2019). 
 

Thus, the proposed model aggregated individual base learners with a meta-leaner. This work creates five 

distinct ensemble models with different base learners and meta learner to forecast the electricity load. 

 

3.3.6 Training and Testing Phase of the Model  
The proposed ensemble model exhibits two different behaviours during the training and testing phase which 

is depicted in Figure 5.  

 

The operation of the model during training phase proceeds by learning the fused features and testing of the 

model’s accuracy is done. If the prediction accuracy is not satisfactory then the model adjusts or modifies 

its assumptions about various hyper parameters. This is an iterative process which converges when the 

model outputs satisfiable results with great accuracy. This trained model is then tested with real time data, 

which yields the electric load as output. 
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Figure 5. Testing and training behavior of the model. 

 

4. Experimental Set Up and Data Analysis 
This section explains the dataset and provides detailed analysis about the data to understand the efficacy of 

the proposed model in predicting electric load. The work validates the model’s performance using the 

Panama national electricity load data (Huang et al., 2023) and is publicly accessible through electric load 

forecasting research repositories. This data is obtained at one-hour intervals with a vast data comprising of 

17,520 records. The data is measured from 0:00 on January 1st, 2018, till 23:00 on December 31st, 2019 

among three areas namely Tocumen, Santiago and David belonging to the Panama City. The dataset 

includes both target variables and exogenous variables: temperature, relative humidity, wind speed and 

liquid precipitation from each of the three areas. Table 3 enumerates the list of features considered for 

electricity load prediction.  

 
Table 3. Features and their units in the dataset. 

 

Feature with description Unit Feature with description Unit 

nat_demand -Electricity load  MWh TQL_san- Liquid precipitation in Santiago of Panama City l/m2  

T2M_toc -Temperature at a distance of 2 m in Tocumen of 

Panama City 

ºC W2M_san - Speed of wind at a distance of 2 m in Santiago 

of Panama City 

m/s  

QV2M_toc -relative humidity at a distance of 2 m in 

Tocumen of Panama City 

% T2M_dav Temperature at a distance of 2 m in David of 

Panama City 

ºC  

TQL_toc -Liquid precipitation in Tocumen of Panama 
City 

liters/m2 QV2M_dav - relative humidity at a distance of 2 m in David 
of Panama City 

%  

W2M_toc- Speed of wind at a distance of 2 m in Tocumen 

of Panama City  

m/s TQL_dav Liquid precipitation in David of Panama City l/m2  

T2M_san- Temperature at a distance of 2 m in Santiago of 
Panama City 

ºC  Speed of wind at a distance of 2 m in David of Panama City m/s 

QV2M_san - relative humidity at a distance of 2 m in 

Santiago of Panama City 

%    

 

The Exploratory Data Analysis (EDA) of the above dataset is shown in Figure 6. The X axis of the fig 

indicates the feature values and Y axis is the count of values. This helps us to understand the distribution of 

data.  
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Figure 6. EDA of the dataset using histograms. 



Kamath et al.: Light Weight Stacked Ensemble Model for Electric Load Forecasting using … 
 

 

2280 | Vol. 10, No. 6, 2025 

The data roughly follows normal distribution except the feature TQL_toc. As there is good variation in the 

data, the base learners of the data can explore the data space in more robust manner. Also, the various hyper 

parameters of the base learners are listed in Table 4.  

 
Table 4. Hyperparameter setting for the model. 

 

Model Hyperparameter Value 

LGM machine No. of leaves 6 

Learning rate 0.01 

No. of estimators 100 

Maximum bin size 10 

Bagging fraction 0.8 

Bagging frequency 4 

Seed 8 

Feature fraction 0.2 

XGB regressor Maximum depth 8 

Number of estimators 500 

Minimum child weight 1000 

SVM Kernel RBF 

 
 

5. Results and Discussion 
Feature fusion by trimmed mean of the EWMA of the raw electricity load prediction data is performed and 

the fused value is used for predicting the national load demand. 80% of the data is used for training the 

model while the remining 20% is used for testing performance of the model. The location of the data 

collection does not hold any significance in this study. The prediction efficacy of the model for a sample of 

test data is presented in Figure 7 and Figure 8. 

 

 
 

Figure 7. Predicted and actual national electricity load demand of all test data points. 
 

 

 
 

Figure 8. Predicted and actual national electricity load demand of sample data points. 
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At most of the time the actual and predicted data is in alignment with each other. Also, a very feeble 

deviation can be sensed in some of the data points in the model. The Figure 7 shows much of randomness 

in the data points while the data points in Figure 8 are more periodic. However, their periodicity and non-

periodicity does not hold any relevance to the performance of the proposed model. The data sampling is 

done to have a closer look on the deviation between the predicted and actual values. However, quantifying 

the efficacy of the model is very important to draw scientific inferences from the study. Hence, the 

performance of the proposed model is validated on few of the prediction performance metrics as described 

below: 

 

5.1 Mean Bias Error (MBE) 
This is a measure of the average difference between the testing and training data. Ideally, the best model 

will achieve an MBE value of zero. Both the positive and negative MBE are said to attain under estimation 

and overestimation of the values respectively. This metric is best described by the Equation (10). 

𝑀𝐵𝐸 = ∑ (log 𝐿𝑝
𝑘
𝑘=1 − 𝑙𝑜𝑔𝐿𝑎)                                                                                                                  (10) 

 

Here, the Lp signifies the predicted load while La indicates actual electricity load demand.  

 

5.2 Root Mean Squared Error (RMSE) 
RMSE is the most predominantly used metric in regression-based analysis. This is a direct indication of the 

normalised residuals for every data point. Equation (11) portrays the expression for computing the RMSE 

and k data points. 

𝑅𝑀𝑆𝐸 = √∑ ‖𝐿𝑝(𝑘)−𝐿𝑎(𝑘)‖
2𝐾

𝑘=1

𝐾
                                                                                                                      (11) 

 

5.3 R2 Value 
This metric is used in almost all regression-based problems to find the variance ratio of independent 

variables. This coefficient of determination estimates the square of the correlation. Zero value of R2 signifies 

that dependent variable is not predictable from independent variables considered in the study. Hence, 

increased values of R2 indicates a positive trend which indicates the right choice of independent variables 

for model building. The mathematical expression for computing the R2 values is given in Equation (12). 

𝑅2 = 1 −
∑ (𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒−𝐿𝑝)2𝐾

𝑘−1

∑ (𝐿−𝐿𝑎)2𝐾
𝑘−1

                                                                                                                          (12) 

 

5.4 Mean Absolute Error  
This is an important metric that defines the mean variance among the significant data point and the predicted 

values. It is an estimate of the mean of mispredictions irrespective of the direction. Equation (13) displays 

the mathematical expression: 

𝑀𝐴𝐸 =
∑ |𝐿𝑎−𝐿𝑝|𝐾

𝑘=1

𝐾
                                                                                                                                          (13) 

 

The proposed methodology is compared with three other states of the art techniques such as CEEMDAN-

TCN-ESN model (Huang et al., 2023), XGB model (Madrid & Antonio, 2021) and multi-channel CNN 

(Ibrahim et al., 2023). Table 5 summarises the results of the four models using four regression metrics. The 

graphical comparative analysis is given in Figure 9 to Figure 12. 

 

 

 



Kamath et al.: Light Weight Stacked Ensemble Model for Electric Load Forecasting using … 
 

 

2282 | Vol. 10, No. 6, 2025 

Table 5. Comparison of various performance metrics. 
 

Method MBE RMSE R2 MAE 

CEEMDAN-TCN-ESN  800 870.532 0.995 595.843 

XGB  875 906 0.901 653 

Multi-channel CNN  786 1271 0.92 678 

Proposed Work 765 846 0.998 576 

 

 

 
 

Figure 9. Performance comparison of state of art techniques with proposed work based on MBE. 

 

 

 
 

Figure 10. Performance comparison of state of art techniques with proposed work based on RMSE. 

 

 

 
 

Figure 11. Performance comparison of state of art techniques with proposed work on R2_score. 
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Figure 12. Performance comparison of state of art techniques with proposed work based on MAE. 

 

 

From Table 5 and Figure 9 to Figure 12, the proposed model demonstrates superior performance across 

all metrics. It records minimum MBE (765) and RMSE (846), indicating minimal prediction bias and 

reduced large error occurrences. The model also achieves the highest R2 value of 0.998 which suggest 99.8% 

of model predictions are close to actual data, thus reflecting excellent generalization capability. In addition, 

the MAE (576) is also lowest compared to other models, which further affirming the model’s precision in 

average prediction. Compared to CEEMDAN-TCN-ESN hybrid model, XGB and CNN- based 

architectures, the proposed model exhibits enhanced accuracy and robustness. These improvements can be 

attributed to the diversity of base learners and ability of meta learner to optimally combine their strengths 

leading to more reliable and consistent forecasts. 

 

6. Conclusions and Future Research  

The proposed work presents a novel model that predicts the electric load by exploring the exogeneous 

variables. Trimmed mean of EMWA is used as a feature fusion technique that act as an integral index for 

load prediction by the model. The model was developed by ensemble robust light weight base learners, 

whose predictions are acted upon by the meta leaner. XGB algorithm is used as meta learner in this work. 

The performance of the proposed methodology is validated using Panama electric load forecasting method 

which is a comprehensive dataset that comprises of electric load data from three regions. Several important 

research implications can be drawn from the results of the model. The model exhibited superior 

performance than the compared state of art models in terms of MBE, MAE, RMSE and R2 error. As future 

research extension, the deployment of Deep Learning models can be explored. Especially, Recurrent Neural 

Networks will act as excellent choice for time series forecasting.  
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