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Abstract 

This study introduces a computational method to solve the generalized Burgers-Huxley equation which is an equation describing 

how diffusion, convection, and reaction work in nonlinear wave phenomena. The proposed method involves the exponential B-

spline basis function along with the differential quadrature method. The method has good efficiency and accurately presents the 

behavior of the nonlinear partial differential equations. Ten cases are tested to demonstrate the accuracy of the numerical solution 

with the exact solutions supported by consistently small L2 and L∞ error. The results show that the method works well and can be 

applied to solve similar time-dependent nonlinear equations. The present scheme can be further implemented to the higher-

dimensional partial differential equations to ensure the efficiency of the scheme in handling the non-linear equations. 

 

Keywords- Generalized Burgers–Huxley equation, Differential quadrature method, Exponential B-spline, Mathematical biology, 

Fluid dynamics. 

 

 

 

Abbreviations 

DQM                   Differential Quadrature Method 

EB                       Exponential B-spline 

GBHE                 Generalized Burgers–Huxley Equation 

ODE                    Ordinary Differential Equation 

PDE                     Partial Differential Equation 

SSP-RK43           Strong Stability-Preserving Runge–Kutta Method of Order 4(3) 

 

 

 

1. Introduction 
Nonlinear wave phenomena are commonly observed in many branches of science and engineering, 

including fluid dynamics (Sánchez-Pérez et al., 2023), population biology (Macías-Díaz, 2018), 

combustion theory (Kwatra et al., 2025), and nerve pulse propagation (Macías-Díaz, 2014). These 

phenomena demonstrate the complex interactions among reaction, diffusion, and convection processes that 

requires the involvement of the mathematical models that can accurately depict the relationship among the 

parameters involve and their effects. One of the models to study these kinds of systems is the generalized 

Burgers–Huxley equation (GBHE) (Estevez and Gordoa, 1990). This equation presents the relation and 

effect of the process of convection, diffusion, and the involvement and role of the nonlinear reaction terms. 

The GBHE is a broader form of the Burgers' equation (Webb and McKenzie, 1984), which effectively study 

the turbulence and shock waves, and the Huxley equation (Cronin, 1900) which describes nonlinear reaction 

terms in biological and chemical processes. This equation provides the application of the involved systems 
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across various applications. The generalized Burgers–Huxley equation can be defined as: 

𝑢𝑡  +  𝛼𝑢
𝛿𝑢𝑥 =  µ𝑢𝑥𝑥  +  𝛽𝑢(1 − 𝑢

𝛿)(𝑢𝛿  −  𝛾), 0 <  𝛾 <  1                                                            (1) 

 

The variables and parameters appearing in the equation can be defined as follows: 

u(x, t) represents the wave profile, 𝛼 is a nonlinear convection coefficient, µ is a diffusion coefficient 

(viscosity), 𝛽 depicts the reaction rate, 𝛾 is used for the threshold parameter value (0 <  𝛾 <  1), 𝛿 

represents the power-law exponent (typically considered as 𝛿 =  1). 
 

The GBHE is a nonlinear PDE that provides restricted solution due to the presence of complex boundary 

conditions along with the involvement of the nonlinear terms. Thus, obtaining an approximate numerical 

solution is required for depicting the behavior of the systems represented by this equation. 

 

It is a multiscale equation that provides challenges to be solved numerically. This signifies the requirement 

of an effective numerical technique that can handle nonlinear equations. The present study employs the 

differential quadrature method (DQM) proposed by Bellman et al. (1972) along with the exponential B-

spline (EB) basis functions presented by McCartin (1991) in his studies. 

 

DQM is a well-known method to solve the PDEs including nonlinear elements. The obtained numerical 

solutions demonstrate significantly enhanced accuracy and stability with the application of the EB basis 

functions which are proficient in handling the nonlinearities. This method efficiently simulates dynamic 

systems motivated by reaction-diffusion-convection equation that produce extremely accurate results with 

few grid points. The proposed approach is capable to address the complex and nonlinear problems with 

high accuracy and speed. The different cases discussed in the manuscript provide valuable insights into the 

functioning of the systems represented by the GBHE. 

 

1.1 Organization of the Article 
The manuscript is arranged in the sections as follows: After introduction in the Section 1, the Section 2 

provides the discussion on the available numerical methods in literature that are utilized to solve the well-

known partial differential equations along with the GBHE. It also provides the details of the application of 

the differential quadrature method and the various B-spline forms involved. In Section 3, formulation of 

EB is provided along with the derivation of weighting coefficients for spatial derivatives. Section 4 presents 

the discussion on the method stability of GBHE. Section 5 presents the numerical examples with the 

different set of parameters to assess the accuracy and efficiency of the proposed method along with the 

comparisons of results with the existing methods. In Section 6, discussion is provided for the different cases 

for the obtained results while Section 7 describes the potential implications. Section 8 concludes the present 

study with the outlines of the future prospective of the research in Section 9. 

 

2. Literature Review 
The GBHE has been extensively studied via both analytical and numerical methods because of the presence 

of nonlinear terms, and it has been used to model various systems involving reactions, diffusion, and 

convection. Researchers have developed the use of the tanh method to obtain exact solutions for particular 

parameter controls (Wang et al., 1990). The travelling wave solutions for different forms of the Burgers’ 

equation such as Burgers’ equation, Burgers–KdV equation, and the Burgers–Huxley equations have been 

obtained by Wazwaz implementing several exact methods (Wazwaz, 2005). The Adomian decomposition 

method (ADM) has been implemented to handle the nonlinear terms of the Burgers–Huxley and Burgers–

Fisher equations by Ismail et al. (2004). A novel Taylor wavelet method (TWM) for solving the GBHE has 

been proposed that results in efficient results by Korkut (2023). The results of the proposed approach have 



Sahlot & Arora: A Novel Numerical Method to Solve the Generalized Burgers-Huxley … 
 

271 | Vol. 11, No. 1, 2026 

been compared with several existing approaches and presented as an effective method for solving nonlinear 

reaction–diffusion systems. 

 

Appadu and Tijani (2022) have implemented the nonstandard finite difference (NSFD) methods to find the 

numerical solution of the GBHE for a defined of initial and boundary conditions. The application of the 

Galerkin method has been presented to solve the GBHE and Huxley equations by Kumar et al. (2022) and 

comparing the obtained results with the mesh free neural network approach. Many of the well-known 

schemes along with the finite difference method have shown the application of the quasi linearization to 

deal with the nonlinear terms and thus reducing it in a linear form for the efficiently calculating the 

numerical solution (Kabeto et al., 2024). Mohan and Khan (2021) studied the GBHE with the novel form 

of Galerkin approach to show the existence of the weak solutions. Wang (2021) has highlighted the 

limitations of the traditional smooth approach in modelling complex phenomena and emphasized the 

importance of using non-smooth formulations, such as the GBHE with fractal derivatives. 

 

B-spline basis function has been successfully implemented to solve differential equations of various forms 

implementing the different quadrature method. The modified proposed by the researchers has further 

enhanced the accuracy that negates the challenge appearing at the boundary and the ill conditioned matrix 

system. The cubic B-spline differential quadrature method with modified basis functions (MCB-DQM) has 

been presented by Singh et al. (2016) to solve the GBHE. The proposed method reduced the PDE into a set 

of ordinary differential equations (ODEs) and hence employing the SSP-RK43 scheme, which is a version 

combining the tradition Runge Kutta method of order three and four with a set of coefficients. The results 

demonstrated that DQM resulted in less errors on coarse grid in comparison to refined grid required in the 

finite difference method. 

 

The finite difference approach and the DQM is presented in a comparable form by Aziz et al. to solve the 

Burger’s equation, for the different number of nodes (Aziz et al., 2019). The results presented in this paper 

shows that DQM give better accuracy in comparison to the finite difference method. Aswin and Awasthi 

(2019) presented a polynomial-based DQM to solve the convection–diffusion–reaction equation 

numerically. The method was applied to the Newell–Whitehead equation, Burgers–Fisher equation, and 

Burgers–Huxley equation to present a comparison of the obtained results with the published results. Thus, 

the method is verified in the literature by various researchers by comparing the errors with the methods 

already applied to solve the differential equation. This paper introduces an innovative framework utilizing 

DQM with EBs to provide high precision solutions, establishing the method for both accuracy and stability 

in solving nonlinear PDEs.  

 

3. Method Description 
The quadrature methods have been utilized in literature to handle the partial differential equations 

efficiently. The proposed method involves the combination of differential quadrature approach with the 

exponential basis functions. The approximation of the derivatives in the DQM transform the considered 

PDE into a system of first-order ordinary differential equations (ODEs) utilizing spline-based weighting 

coefficients. The ODE this obtained is then solved implementing the strong stability preserving Runge–

Kutta method (SSP-RK43) to ensure stability. The accuracy of the proposed method is confirmed through 

different ten cases that confirms its efficiency in capturing the dynamics of the system.  

 

3.1 Differential Quadrature Method  
Bellman and his team developed a well-known method, DQM which is known to be easy and effective at 

solving many kinds of differential equations (Bellman et al., 1972). DQM locates the derivatives at specific 

points by giving different weights to the function values across the domain. This feature makes the method 
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extremely useful for solving PDEs which shows that it is suitable in handling engineering problem (Arora 

and Joshi, 2016; Arora et al., 2023). 

 

3.1.1 Domain Discretization and Derivative Approximation 
Let the spatial domain [a, b] be divided into N equally spaced nodes as follows: 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏,  
 

with uniform spacing ℎ =
𝑏−𝑎

𝑁
.  

 

At each node 𝑥𝑖, the 𝑟𝑡ℎorder derivative of a function 𝑢(𝑥)is approximated using DQM by: 
𝑑𝑟𝑢

𝑑𝑥𝑟
⃒𝑥𝑖 ≈ ∑ 𝑊𝑖𝑗

𝑟𝑢(𝑥𝑗)𝑟 = 1,2,… 
𝑁
𝑗=0                                                                                                           (2) 

 

where, 𝑊𝑖𝑗
𝑟  denotes the weighting coefficients corresponding to the 𝑟𝑡ℎ derivative. 

 

3.1.2 First and Second Derivative Weights 
DQM approximates the first derivative of u(x) at a given point x(i) by computing a weighted sum of the 

function values at the neighboring grid points. The weights are determined based on the grid configuration 

and the chosen derivative approximation method. 
𝑑𝑟𝑢

𝑑𝑥𝑟
⃒𝑥𝑖 ≈ ∑ 𝑊𝑖𝑗

(1)
𝑢(𝑥𝑗)

𝑁
𝑗=0                                                                                                                           (3) 

 

Once the first derivative weights 𝑊𝑖𝑗
(1)

 are computed, the second derivative weights 𝑊𝑖𝑗
(2)

 are derived by 

considering the spatial differences between neighboring points. These are calculated by applying finite 

difference approximations, using the first derivative weights and adjusting for the grid spacing as follows: 

𝑊𝑖𝑗
(2) = 2𝑊𝑖𝑗

(1) (𝑊𝑖𝑖
(1) −

1

(𝑥𝑖−𝑥𝑗)
),           𝑖 ≠ 𝑗                                                                                             (4) 

𝑊𝑖𝑖
(2)
= −∑ 𝑊𝑖j

(2)𝑁
𝑗=0,𝑗≠1                                                                                                                              (5) 

 

3.2 Exponential B-Splines  
The B-spline basis functions are the well-known basis functions for its smoothness and ability to handle the 

complex form of the differential equations. The B-spline basis functions exist in different forms such as 

exponential, trigonometric, hyperbolic form. These basis functions are successfully implemented with 

DQM to solve various equations in its linear and nonlinear forms. The exponential splines are the extended 

polynomial B-splines involving an adjustable parameter λ, which enhances its applicability to approximate 

the complex solutions. The third-degree EB-spline (Rani et al., 2023) has been recently utilized to solve the 

one-dimensional nonlinear Schrodinger equation in combination with the PSO algorithm for the parameter 

λ. In this study, the optimal λ is considered as 1 in each case for simplicity. 

 

The third-degree EB-spline Bₘ(x) is defined as: 

𝐵ₘ(𝑥) =  (
1

ℎ3
)

{
 
 

 
 

𝜇(𝑥𝑚−2 −  𝑥) − 
𝜇

𝜆
[ 𝑠𝑖𝑛ℎ(𝜆(𝑥𝑚−2 −  𝑥))],    𝑥 ∈  [𝑥𝑚−2, 𝑥𝑚−1],

𝜂1 + 𝜇1(𝑥𝑚  −  𝑥) + 𝜉1 𝑒
𝜆(𝑥𝑚−𝑥)   + 𝜁1𝑒

−𝜆 (𝑥𝑚−𝑥),    𝑥 ∈  [𝑥𝑚−1, 𝑥𝑚],

   𝜂1 + 𝜇1(𝑥𝑚  −  𝑥) + 𝜉1𝑒
𝜆(𝑥 − 𝑥𝑚)  + 𝜁1𝑒

−𝜆(𝑥 − 𝑥𝑚),   𝑥 ∈  [𝑥𝑚, 𝑥𝑚+1],

   𝜇(𝑥 − 𝑥𝑚+2) −
𝜇

𝜆
  [ 𝑠𝑖𝑛ℎ(𝜆(𝑥 − 𝑥𝑚+2))], 𝑥 ∈  [𝑥𝑚+1, 𝑥𝑚+2]  

  

 



Sahlot & Arora: A Novel Numerical Method to Solve the Generalized Burgers-Huxley … 
 

273 | Vol. 11, No. 1, 2026 

Here, 𝜆 is the exponential parameter, ℎ =
𝑏−𝑎

𝑛
 is the uniform spacing, and the constants are: 

𝜂1 =
(𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ))

(𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ)− 𝑠𝑖𝑛ℎ(𝜆ℎ))
,  

𝜇1 =
[𝜆2𝑐𝑜𝑠ℎ2(𝜆ℎ)+ 𝑠𝑖𝑛ℎ2(𝜆ℎ)]

[(𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ)− 𝑠𝑖𝑛ℎ(𝜆ℎ))(1 − 𝑐𝑜𝑠ℎ(𝜆ℎ))]
,  

𝜇  =
𝜆

(2𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ)− 𝑠𝑖𝑛ℎ(𝜆ℎ))
,  

𝜉1 =
1

4

[(1 − 𝑐𝑜𝑠ℎ(𝜆ℎ)+ 𝑠𝑖𝑛ℎ(𝜆ℎ))𝑒{−𝜆ℎ}− 𝑠𝑖𝑛ℎ(𝜆ℎ)]

[(𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ)− 𝑠𝑖𝑛ℎ(𝜆ℎ))(1 − 𝑐𝑜𝑠ℎ(𝜆ℎ))]
, and  

𝜁1 =
1

4

[ (−1 + 𝑐𝑜𝑠ℎ(𝜆ℎ)+ 𝑠𝑖𝑛ℎ(𝜆ℎ))𝑒{𝜆ℎ}− 𝑠𝑖𝑛ℎ(𝜆ℎ)]

[(𝜆ℎ cosh(𝜆ℎ)−sinh(𝜆ℎ))(1 −cosh(𝜆ℎ))]
 .  

 

The function values and derivatives at nodal points are given in (Rani et al., 2024): 

𝐵𝑚(𝑥𝑚−1) =  𝐵𝑚(𝑥𝑚+1) =  𝛼,   𝐵𝑚(𝑥𝑚) =  1,  

𝐵𝑚
′ (𝑥𝑚−1) =  −𝐵𝑚

′ (𝑥𝑚+1) =  𝛽,   𝐵𝑚
′ (𝑥𝑚) =  0,  

𝐵𝑚
′′(𝑥𝑚−1) =  𝐵𝑚

′′(𝑥𝑚+1) =  𝛾,   𝐵𝑚
′′(𝑥𝑚) =  −𝛾.  

 

where, 

𝛼 =
(𝑠𝑖𝑛ℎ(𝜆ℎ)− 𝜆ℎ)

(2𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ)− 𝑠𝑖𝑛ℎ(𝜆ℎ))
, 

𝛽 =
(𝜆 𝑐𝑜𝑠ℎ(𝜆ℎ)− 1)

(2𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ)− 𝑠𝑖𝑛ℎ(𝜆ℎ))
, 

𝛾 =
(𝜆2𝑠𝑖𝑛ℎ(𝜆ℎ))

2𝜆ℎ 𝑐𝑜𝑠ℎ(𝜆ℎ)− 𝑠𝑖𝑛ℎ(𝜆ℎ)
. 

 

To ensure diagonal dominance in the system matrix, the boundary functions are modified as: 

𝑀1(𝑥) =  𝐵1(𝑥) +  2𝐵0(𝑥), 

𝑀2(𝑥) =  𝐵2(𝑥) − 𝐵0(𝑥), 

𝑀ⱼ(𝑥) =  𝐵ⱼ(𝑥),   𝑗 =  3, … ,𝑁 − 2, 

𝑀𝑁−1(𝑥) =  𝐵𝑁−1(𝑥) − 𝐵𝑁+1(𝑥), and 

𝑀𝑁(𝑥) =  𝐵𝑁(𝑥) +  2𝐵𝑁+1(𝑥). 
 

Calculation of weighting coefficients: 

The weighting coefficients for the first derivative are obtained by solving the linear system: 

𝑀𝑄(1) = 𝐹,  
 

where, M is the coefficient matrix formed by evaluating the EBs as basic functions at the nodal points, F is 

the right-hand side vector, and 𝑄(1) represents the vector of first derivative weights. Owing to the local 

support of the EB functions (Mangal and Gupta, 2025), the resulting system yields a tridiagonal matrix in 

the form: 
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[
 
 
 
 
 
 
1 + 2𝛼 𝛼 0 … … 0
0 1 𝛼 0 … ⋮
0 𝛼 1 𝛼 … 0
0 0 𝛼 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝛼
⋮ ⋱ 0 𝛼 1 𝛼
0 … … 0 𝛼 1 + 2𝛼]

 
 
 
 
 
 

[
 
 
 
 
 
𝑎11
𝑎12
⋮
⋮

𝑎1𝑁−1
𝑎1𝑁 ]

 
 
 
 
 

=

[
 
 
 
 
 
 
−2𝛽
2𝛽
0
⋮
⋮
0
0 ]
 
 
 
 
 
 

  

 

This tridiagonal system is efficiently solved via the Thomas algorithm, which yields the coefficients 

𝑎11, 𝑎12, . . . 𝑎1𝑁. Similar systems are formulated and solved for each remaining knot point to determine the 

complete set of weighting coefficients for the first derivative Equation (3).  

 

The evaluations of the EB function 𝐵𝑚(𝑥) and its first and second derivatives shown in Equations (4) and 

(5) at the surrounding nodes, are presented in Table 1.  

 
Table 1. Values of the exponential B-spline and its derivatives at nodal points. 

 
 𝑥𝑚−2 𝑥𝑚−1 𝑥𝑚 𝑥𝑚+1 𝑥𝑚+2 

𝐵𝑚(𝑥) 0 𝛼 1 𝛼 0 

𝐵𝑚(𝑥)
′  0 𝛽 0 −𝛽 0 

𝐵𝑚(𝑥)
′′  0 𝛾 −𝛾 𝛾 0 

 
 

4. Stability Analysis 
The stability of a numerical scheme is essential to ensure that numerical errors or perturbations do not grow 

uncontrollably during computations. In this study, the stability of the proposed EB-DQM combined with 

SSP- RK43 is investigated. The analysis focuses on eigenvalue examination of the semi-discretized system 

obtained from spatial discretization. 

 

4.1 Semi-Discretization and Linearization 
Applying EB-DQM for spatial discretization to the GBHE 

𝑢𝑡 +  𝛼𝑢𝑢𝑥  −  𝑢𝑥𝑥 =  𝛽𝑢(1 −  𝑢)(𝑢 −  𝛾),     𝑥 ∈  [𝑎, 𝑏], 𝑡 > 0, 
 

yields a semi-discrete system of ODEs: 
𝑑𝑼

𝑑𝑡
= 𝑭(𝑼). 

 

where, U denotes the vector of approximate solution values at the grid points, and F(U) represents the 

spatially discretized nonlinear terms. 

 

Linearizing 𝑭(𝑼) about a steady-state solution 𝑼∗ gives 
𝑑𝛿𝑼

𝑑𝑡
= 𝑱𝛿𝑼. 

 

where, 𝛿𝑼 = 𝑼 − 𝑼∗ and 𝑱 is the Jacobian matrix of 𝑭(𝑼) evaluated at : 
𝑱 = −𝛼𝑼∗𝑫𝑥 +  𝑫𝑥𝑥. 
 

Here, 𝑫𝑥  and 𝑫𝑥𝑥 represent the first and second derivative weighting co-efficient matrices derived 

using EB-DQM. 
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4.2 Eigenvalue Spectrum and Stability Region 
The solution of the linearized system is expressed as 

𝛿𝑼(𝑡) =  ∑ 𝑐𝑗𝑒
𝜆𝑗𝑡𝒗𝑗

𝑗  . 

where, 𝜆𝑗 and 𝒗𝑗 denote the eigenvalues and eigenvectors of 𝑱, respectively. Stability of the semi-

discretized system requires all 𝜆𝑗 to lie in the left half of the complex plane where 𝜆𝑗 and 𝒗𝑗 denote the 

eigenvalues and eigenvectors of 𝑱, respectively. Stability of the semi-discretized system requires all 𝜆𝑗 

to lie in the left half of the complex plane (Arora and Joshi, 2018; Kapoor, 2023). 

 

4.3 Time Integration and Amplification Factor 
In the temporal discretization, SSP-RK43 advances the solution as 

𝑈𝑛+1 = 𝐺(𝜇𝑗)𝑈
𝑛, 

 

where, 𝜇𝑗  =  𝑘𝜆𝑗 with 𝑘 being the time step, and 𝐺(𝜇𝑗) is the amplification factor of SSP-RK43: 

𝐺(𝜇) = 1 + 𝜇 +
1

2
𝜇2 +

1

6
𝜇3. 

 

 
 

Figure 1. Eigenvalue spectrum of the Jacobian matrix J obtained from EB- DQ. 

 

 

The scheme remains stable if 

|𝐺(𝜇𝑗)| ≤ 1,   ∀𝑗. 

 

The eigenvalues 𝜆𝑗 of 𝑱 are calculated numerically in MATLAB. Since 𝑫𝑥𝑥 is a negative semi-definite 

matrix, all 𝜆𝑗 are negative and real, which favors stability as shown in Figure 1. The scaled 

eigenvalues µ𝑗  =  𝑘𝜆𝑗 must reside within the absolute stability region of SSP-RK43, defined by 

|𝐺(µ)| ≤  1, shown in Figure 2. 
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Figure 3 illustrates the absolute stability region of the SSP-RK43 scheme in the complex µ-plane. The solid 

contour represents the stability boundary |𝐺(µ)| =  1, while the interior region, marked with diagonal dot 

patterns, denotes the stable domain where |𝐺(µ)| <  1. The scaled eigen values µ𝑗 of EB-DQM are 

represented within the stable region, confirming the stability of the method for the selected time step 𝑘. 

 

 
 

Figure 2. Amplification factor |G(µ)| of SSPRK43 versus µ = kλ. Stability is ensured for |G(µ)| ≤ 1. 

 

 

4.4 Spectral Radius and Time Step Restriction 
The spectral radius of the Jacobian matrix denoted as 𝜌(𝑱), is a key metric in assessing the stability of 

the numerical scheme. It represents the maximum absolute value of the eigenvalues of 𝑱: 
𝜌(𝑱) = max

𝑗
|𝜆𝑗|. 

 

In the context of EB-DQM, J is derived from the combination of derivative weighting matrices 𝑫𝑥 , 𝑫𝑥𝑥 , 
and the linearized reaction terms. Due to the diffusive nature of the second derivative matrix 𝑫𝑥𝑥, the 

eigenvalues 𝜆𝑗 are predominantly negative real numbers, indicating a damping effect on high-frequency 

error modes. 

 

To maintain stability, the time step k must be selected such that all scaled eigenvalues µ𝑗  =  𝑘𝜆𝑗 lie 

within the absolute stability region of SSP-RK43. This requirement translates to the following 

constraint: 

𝑘 ≤
𝜇𝑚𝑎𝑥 

𝜌(𝐽)
, where 𝜇𝑚𝑎𝑥  is the maximum value of µ within the SSP-RK43 stability region, often 

determined from the boundary where |𝐺(µ)|  =  1. For SSP-RK43, µmax is approximately −2.0. on 

the negative real axis. In this study, the computed spectral radius of 𝑱 is 𝜌(𝑱)  =  1.64 ×  104, and 

amplification factor plots in Figure 2 visually support the conclusion that all eigenvalues remain within 

the stability region of SSP-RK43. This ensures that the combined EB-DQM and SSP-RK43 approach 

effectively suppresses numerical instabilities, even for stiff terms arising in GBHE. The method is 

explained summarized below in Algorithm 1. 
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Figure 3. Stability region of SSP-RK43 with EB-DQM scaled eigenvalues eigen values µj. Stability holds if all µj 

lie within the boundary |G(µ)| = 1. 

 

 

Algorithm 1. EB-DQM with SSP-RK43 for solving GBHE. 
 

Step Description 

1. Discretize the spatial domain [𝑎, 𝑏] into 𝑁 nodes with spacing ℎ. 

2. Construct exponential B-spline basis functions 𝐵ₘ(𝑥) with exponential parameter 𝜆. 

3. Compute derivative weighting coefficients 𝐴ᵢⱼ 𝑎𝑛𝑑 𝐵ᵢⱼ using EB-DQM formulation. 

4. Transform GBHE into semi-discrete ODE form. 

5. Initialize 𝑈(0) and choose time step 𝛥𝑡 satisfying stability conditions. 

6. For each time step n: compute SSP-RK43 stages 𝑘₁, 𝑘₂, 𝑘₃, 𝑘₄ and update 𝑈ⁿ⁺¹ =  𝑈ⁿ +  𝛥𝑡(𝑏₁𝑘₁ +  𝑏₂𝑘₂ +  𝑏₃𝑘₃ +  𝑏₄𝑘₄). 
7. Evaluate eigenvalues of Jacobian 𝐽 =

𝜕𝐹

𝜕𝑈
; ensure all 𝑅𝑒(𝜆)  <  0 for stability. 

8. Compute 𝐿₂ and 𝐿∞ error norms to validate accuracy against exact or benchmark results. 

 
 

Parameters: Domain [𝒂, 𝒃] with 𝑵 nodes and spacing 𝒉 =
𝒃−𝒂

𝑵−𝟏
. Exponential B-splines use tension 𝝀. Time 

stepping: SSP-RK43 with time-step 𝜟𝒕 and stages (𝒌𝟏, 𝒌𝟐, 𝒌𝟑, 𝒌𝟒). Stability check via Jacobian 𝑱 =
𝝏𝑭

𝝏𝑼
 and 

eigenvalues 𝝁 (require 𝑹𝒆(𝝁) < 𝟎 for the chosen 𝜟𝒕). Physical coefficients: convection 𝜶, reaction 𝜷, 𝜸; 

final time 𝑻. 

 

5. Error Analysis and Comparison 
To assess the accuracy and effectiveness of the proposed numerical scheme, a detailed comparison is 

performed using the L2 and L∞ error norms. These norms are defined as follows 

𝐿2 = √(
1

𝑁
) ∑ |𝑢𝑖

𝑒 − 𝑢𝑖
𝑛|
2𝑁

𝑖=1 , and 

𝐿∞  = max
1≤𝑖≤𝑁

|𝑢𝑖
𝑒 − 𝑢𝑖

𝑛| . 

 

where, 𝑢𝑖
𝑒 and 𝑢𝑖

𝑛 denote the exact and numerical solutions at the 𝑖 −th grid point, respectively, and 

where, 𝑁 is the total number of spatial nodes. 
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5.1 Test Cases for the GBHE 
A traveling wave solution of Equation (1) as given in (Wang et al., 1990) is expressed as: 

𝑢(𝑥, 𝑡)  =  (
𝛾

2
) { 1 +  tanh (𝜅(𝑥 = 𝜔𝑡))}

1

𝛿                                                                                                (8) 

 

where, ω and κ represent the wave speed and wave number, respectively, and are defined below: 

𝜔 =  (
𝛼𝛾

𝛿+1
−
( (1 + 𝛿 − 𝛾)− 𝛼 + √ 𝛼2+ 4𝛽(𝛿+1))

( 2(𝛿+1))
), and 

𝜅 =  
𝛾𝛿(−𝛼+√ 𝛼2+ 4𝛽(𝛿+1))

4(𝛿+1)
 .  

 

In this study, the effectiveness of the proposed numerical method is assessed by considering ten distinct 

cases with various parameters, 𝛼, 𝛽, and 𝛾. The results for Cases 1 through 8 are compared with those re- 

ported in (Appadu et al., 2019), whereas those for Case 9 are validated via the references (Appadu and 

Tijani, 2022; Deng, 2008) and for Case 10 are validated via the reference (Batiha et al., 2008; Bratsos, 

2011; Hashim et al., 2006; Ismail et al., 2004; Singh et al., 2016). 

 

(i) Set of parameters: 𝛼 =  0.5, 𝛽 =  0.5, and 𝛾 =  0.001. 

(ii) Configuration where 𝛽 =  2.0 surpasses 𝛼 =  0.5, diffusion remains low with 𝛾 =  0.001. 

(iii) A strongly reaction-driven system defined by 𝛼 =  0.5, 𝛽 =  10.0, and 𝛾 =  0.001 (highly stiff 

case). 

(iv) A regime with dominant advection: 𝛼 =  2.0, 𝛽 =  0.5, 𝛾 =  0.001. 

(v) Uniform scenario where all parameters are equal: 𝛼 =  𝛽 =  𝛾 =  0.5. 

(vi) Moderately diffusive case with 𝛾 =  0.5, 𝛼 =  0.5, and stronger reaction coefficient 𝛾 =  2.0. 

(vii) A case with enhanced nonlinearity: 𝛼 =  0.5, 𝛽 =  10.0, and 𝛾 =  0.5 (reaction-dominated). 

(viii) Advection-preferred dynamics with 𝛼 =  2.0, 𝛽 =  0.5, and 𝛾 =  0.5. 
(ix) Balanced setup where 𝛼 =  𝛽 =  1.0, 𝛿 = 4, and 𝛾 =  0.01, consistent with benchmarks in 

(Appadu and Tijani, 2022; Deng, 2008). 

(x) Reference case adopted from ( Singh et al., 2016), with 𝛼 =  𝛽 =  1.0, and minimal diffusion 𝛾 =
 0.001. 

 

Case I 

This case considers the parameter configuration 𝛼 =  𝛽 =  0.5, 𝛿 = 1, and 𝛾 =  0.001. The 

numerical solutions are obtained by taking spatial space length ℎ =  0.1 and time-step Δ𝑡 =  0.001. 

The precision of the present numerical method is evaluated by comparing the computed results with 

the exact corresponding solution at time levels t = 1 and t = 10, as reported in Tables 2 and 3. Figure 

4 provides two visualizations: (i) a comparative plot demonstrating the accuracy of the proposed 

approach and (ii) a three-dimensional surface plot that illustrates the physical behavior and temporal 

evolution of the solution. This illustrates the evolution of the solution profile at various time levels, 

where the parameters represent a balanced interplay between diffusion, reaction, and convection. The 

solution exhibits smooth propagation without steep gradients, indicating a stable regime dominated by 

diffusion. As time progresses, the solution gradually transitions towards the steady-state profile, 

showing no significant oscillations or shocks. 
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Table 2. Case I: comparison of numerical and exact solutions at t = 1 and 𝑡 = 10. 
 

t x 
Exact 

(Wang et al., 1990) 
Present method 

NSFD1  NSFD2 EEFDM  FIEFDM 

 Appadu et al. (2019) 

1 0.1 5.000858e-4 5.000785e-4 5.000764e-4 5.000764e-4 5.000768e-4 5.000769e-4 

 0.5 5.001249e-4 5.001045e-4 5.000985e-4 5.000985e-4 5.000998e-4 5.000998e-4 

 0.9 5.001640e-4 5.001566e-4 5.001545e-4 5.001545e-4 5.001549e-4 5.001549e-4 

10 0.1 5.007711e-4 5.007638e-4 5.007616e-4 5.007616e-4 5.007621e-4 5.007621e-4 

 0.5 5.008102e-4 5.007898e-4 5.007838e-4 5.007838e-4 5.007851e-4 5.007851e-4 

 0.9 5.008492e-4 5.008418e-4 5.008397e-4 5.008397e-4 5.008402e-4 5.008402e-4 

 
 

 

Table 3. Case I: L2 and L∞ error norms at different time levels. 
 

 
 

 

  
(i) (ii) 

 

Figure 4. (i) Comparison of the exact and numerical solution of Case I. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

Case II 
This scenario considers the parameter configuration 𝛼 = 𝛽 = 0.5, 𝛿 = 1, and  𝛾 = 0.001. The numerical 

solutions are obtained by taking spatial space length ℎ =  0.1 and time-step Δ𝑡 = 0.001. The precision of 

the present numerical method is evaluated by comparing the computed results with the exact corresponding 

solution at time levels t = 1 and t = 10, as reported in Tables 2 and 3. Figure 5 provides two visualizations: 

(i) a comparative plot demonstrating the accuracy of the proposed approach and (ii) a three-dimensional 

surface plot that illustrates the physical behavior and temporal evolution of the solution. The obtained 

solution profile is seen as steep near the boundaries that reflect the stronger reaction dynamics.  

 

 

Time Method L2 Error L∞ Error 

0.5 Present Method 1.4879e-8 2.0375e-8 

Appadu et al. (2019) 

NSFD1 1.7435e-8 2.6417e-8 

NSFD2 1.7435e-8 2.6417e-8 

EEFDM 1.6590e-8 2.5136e-8 

FIEFDM 1.6589e-8 2.5134e-8 

1.0 Present Method 1.4879e-8 2.0375e-8 

Appadu et al. (2019) 

NSFD1 1.7437e-8 2.6419e-8 

NSFD2 1.7437e-8 2.6419e-8 

EEFDM 1.6591e-8 2.5138e-8 

FIEFDM 1.6590e-8 2.5136e-8 
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Table 4. Case II: Comparison of numerical and exact solutions at t = 1 and t = 10. 
 

t x 
Exact 

Wang et al. (1990) 
Present method 

NSFD1  NSFD2  EEFDM  FIEFDM  

Appadu et al. (2019) 
1 0.1 5.0041e-4 5.0038e-4 5.0036e-4 5.0036e-4 5.0037e-4 5.0037e-4 

 0.5 5.0050e-4 5.0041e-4 5.0036e-4 5.0036e-4 5.0039e-4 5.0039e-4 

 0.9 5.0059e-4 5.0056e-4 5.0054e-4 5.0054e-4 5.0055e-4 5.0055e-4 

10 0.1 5.0392e-4 5.0388e-4 5.0387e-4 5.0387e-4 5.0388e-4 5.0388e-4 

 0.5 5.0404e-4 5.0391e-4 5.0387e-4 5.0387e-4 5.0389e-4 5.0389e-4 

 0.9 5.0409e-4 5.0406e-4 5.0404e-4 5.0404e-4 5.0405e-4 5.0405e-4 

 

 

Table 5. Case II: L2 and L∞ error norms at t = 1 and t = 10. 
 

t Method L2 Error L∞ Error 

1 Present method 6.3384e-8 8.6797e-8 

Appadu et al. (2019) 

NSFD1 8.9678e-8 1.3587e-7 

NSFD2 8.9678e-8 1.3587e-7 

EEFDM 7.3356e-8 1.1115e-7 

FIEFDM 7.3349e-8 1.1114e-7 

10 Present method 6.3380e-8 8.6791e-8 

Appadu et al. (2019) 

NSFD1 8.9698e-8 1.3591e-7 

NSFD2 8.9697e-8 1.3591e-7 

EEFDM 7.3355e-8 1.1114e-7 

FIEFDM 7.3350e-8 1.1114e-7 

 

 

  
(i) (ii) 

 

Figure 5. (i) Comparison of the exact and numerical solution of Case II. (ii) Numerical solution is shown by 3-D 

plot. 

 

Case III 

In this example, the selected parameters are 𝛼 = 0.5, 𝛽 = 10, 𝛿 = 1, and 𝛾 = 0.001. The numerical 

solutions are obtained by taking spatial space length ℎ = 0.1 and time-step Δ𝑡 = 0.001. The numerical 

results obtained using the proposed method are compared with the exact solution at two different time 

levels, t = 1 and t = 10, as shown in Tables 6 and 7. Figure 6 presents the results graphically: (i) a 

comparative curve highlighting the closeness between the numerical and exact solutions, and (ii) a 3D plot 

visualizing the propagation and variation of the solution over time. The figure shows the dominance of 𝛽 

over 𝛼 which produces sharp front and develop boundary layers. The method successfully resolves these 

steep gradients, preserving stability and accuracy even in the presence of stiff reaction terms. This validates 

the capability of the EB-DQM with the SSP-RK43 scheme to handle highly nonlinear regimes. 
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Table 6. Case III: comparison of numerical and exact solutions at t = 1 and t = 10. 
 

T x 
Exact 

(Wang et al., 1990) 
Present method 

NSFD1 NSFD2 EEFDM FIEFDM 

Appadu et al. (2019) 

1 0.1 5.0229e-4 5.0212e-4 5.0168e-4 5.0168e-4 5.0207e-4 5.0207e-4 

 0.5 5.0250e-4 5.0205e-4 5.0083e-4 5.0083e-4 5.0191e-4 5.0191e-4 

 0.9 5.0271e-4 5.0254e-4 5.0211e-4 5.0211e-4 5.0250e-4 5.0250e-4 

10 0.1 5.2238e-4 5.2221e-4 5.2176e-4 5.2176e-4 5.2217e-4 5.2217e-4 

 0.5 5.2259e-4 5.2214e-4 5.2087e-4 5.2087e-4 5.2200e-4 5.2200e-4 

 0.9 5.2280e-4 5.2264e-4 5.2218e-4 5.2218e-4 5.2259e-4 5.2259e-4 

 
 

Table 7. Case III: L2 and L∞ error norms at t = 1 and t = 10. 
 

t Method L2 Error L∞ Error 

1 Present method 3.3001e-7 4.5191e-7 

Appadu et al. (2019) 

NSFD1 1.1030e-6 1.6687e-6 

NSFD2 1.1029e-6 1.6686e-6 

EEFDM 3.9047e-7 4.3204e-7 

FIEFDM 3.9051e-7 4.3209e-7 

10 Present method 3.2937e-7 4.5103e-7 

Appadu et al. (2019) 

NSFD1 1.1374e-6 1.7233e-6 

NSFD2 1.1374e-6 1.7233e-6 

EEFDM 3.8973e-7 4.3122e-7 

FIEFDM 3.8978e-7 5.9060e-7 

 

 
 

  
(i) (ii) 

 

Figure 6. (i) Comparison of the exact and numerical solution of Case III. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

Case IV 

This case involves the parameter values 𝛼 = 2, 𝛽 = 0.5, 𝛿 = 1, and 𝛾 = 0.001. The numerical solutions 

are obtained by taking spatial space length ℎ =  0.1 and time-step Δ𝑡 = 0.001. The numerical accuracy is 

assessed by comparing the present method with established schemes at time levels t = 1 and t = 10, as 

provided in Tables 8 and 9. Figure 7 shows (i) a line graph that compares the exact and numerical solutions 

and (ii) a 3D graph that captures the qualitative behavior of the solution in the computational domain. The 

figure involves a higher convection parameter, 𝛽 > 𝛼, leading to noticeable transport effects. The solution 

profiles exhibit a directional shift consistent with convective transport. The method maintains smoothness 

and accurately captures the advective motion without numerical diffusion. 
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Table 8. Case IV: Comparison of numerical and exact solutions at t = 1 and t = 10. 
 

t x 
Exact 

(Wang et al., 1990) 
Present method 

NSFD1 NSFD2 EEFDM FIEFDM 

Appadu et al. (2019) 
1 0.1 5.000267e-4 5.000204e-4 5.000196e-4 5.000196e-4 5.000200e-4 5.000200e-4 

 0.5 5.000473e-4 5.000303e-4 5.000280e-4 5.000280e-4 5.000290e-4 5.000290e-4 

 0.9 5.000680e-4 5.000618e-4 5.000611e-4 5.000611e-4 5.000614e-4 5.000614e-4 

10 0.1 5.002138e-4 5.002129e-4 5.002121e-4 5.002121e-4 5.002124e-4 5.002124e-4 

 0.5 5.002397e-4 5.002227e-4 5.002205e-4 5.002205e-4 5.002214e-4 5.002214e-4 

 0.9 5.002604e-4 5.002543e-4 5.002535e-4 5.002535e-4 5.002539e-4 5.002538e-4 

 
 

Table 9. Case IV: L2 and L∞ error norms at t = 1 and t = 10. 
 

t Method L2 Error L∞ Error 

1 Present method 1.238489e-8 1.695790e-8 

Appadu et al. (2019) 

NSFD1 1.269362e-8 1.923270e-8 

NSFD2 1.269362e-8 1.923269e-8 

EEFDM 1.207528e-8 1.829585e-8 

FIEFDM 1.207467e-8 1.829491e-8 

10 Present method 1.238489e-8 1.695790e-8 

Appadu et al. (2019) 

NSFD1 1.269451e-8 1.923411e-8 

NSFD2 1.269451e-8 1.923411e-8 

EEFDM 1.207580e-8 1.829667e-8 

FIEFDM 1.207551e-8 1.829624e-8 

 

 

  

(i) (ii) 

 

Figure 7. (i) Comparison of the exact and numerical solution of Case IV. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

Case V 

In this case the parameters are taken as: 𝛼 = 𝛽, 𝛾 = 0.5, 𝛿 = 1, and 𝛾 = 0.001. The numerical solutions 

are calculated for ℎ = 0.1 and time-step Δ𝑡 = 0.001. Tables 10 and 11 present the results at the different 

time level from t = 1 and t = 10, with a comparison with the numerical schemes available in the literature. 

Figure 8 displays (i) a comparative graph of the numerical solution with the exact solution and (ii) a three-

dimensional surface graph presenting the behavior of the solution in space and time. The ability of the 

method to maintain accuracy results with varying parameters is evident. 
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Table 10. Case V: comparison of numerical and exact solutions at t = 1 and t = 10. 
 

t x 
Exact 

(Wang et al., 1990) 
Present method 

NSFD1 NSFD2 EEFDM FIEFDM 

Appadu et al. (2019) 
1 0.1 2.636642e-1 2.622502e-1 2.619319e-1 2.619323e-1 2.620016e-1 2.620423e-1 

 0.5 2.733691e-1 2.693763e-1 2.684776e-1 2.684788e-1 2.686755e-1 2.688005e-1 

 0.9 2.830035e-1 2.815440e-1 2.812149e-1 2.812153e-1 2.812875e-1 2.813362e-1 

10 0.1 3.573732e-1 3.562383e-1 3.559870e-1 3.559874e-1 3.560367e-1 3.560550e-1 

 0.5 3.651974e-1 3.620011e-1 3.612915e-1 3.612927e-1 3.614329e-1 3.614903e-1 

 0.9 3.727452e-1 3.715817e-1 3.713231e-1 3.713236e-1 3.713749e-1 3.713974e-1 

 
 

Table 11. Case V: L2 and L∞ error norms at t = 1 and t = 10. 
 

t Method L2 Error L∞ Error 

1 Present method 2.333653e-3 3.196298e-3 

Appadu et al. (2019) 

NSFD1 3.228089e-3 4.891452e-3 

NSFD2 3.227293e-3 4.890247e-3 

EEFDM 3.097547e-3 4.693599e-3 

FIEFDM 3.014506e-3 4.568532e-3 

10 Present method 2.333653e-3 3.196298e-3 

Appadu et al. (2019) 

NSFD1 2.576806e-3 3.905879e-3 

NSFD2 2.576002e-3 3.904660e-3 

EEFDM 2.483571e-3 3.764468e-3 

FIEFDM 2.445540e-3 3.707117e-3 

 

 
 

  
(i) (ii) 

 

Figure 8. (i) Comparison of the exact and numerical solution of Case V. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

Case VI 

In this case the results are obtained for the values of parameters as 𝛼 = 0.5, 𝛽 = 2, 𝛿 = 1 and 𝛾 = 0.5,. 

The numerical solutions are obtained by taking spatial space length ℎ = 0.1 and time-step Δ𝑡 = 0.001. The 

results of the case are presented at t = 1 and t = 10 as shown in Tables 12 and 13, respectively. Figure 9 

presents the results in two forms: (i) a comparative of the numerical solution by the proposed method with 

the exact solution and (ii) a three-dimensional graph showing the physical behavior of the solution. The 

figure presents the effect of the reaction and diffusion resulting in the broader and flatter solution profiles.  
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Table 12. Case VI: comparison of numerical and exact solutions at t = 1 and t = 10. 
 

t x 
Exact 

Wang et al. (1990) 
Present method 

NSFD1 NSFD2 EEFDM FIEFDM 

Appadu et al. (2019) 

1 0.1 3.197787e-1 3.143596e-1 3.115395e-1 3.115521e-1 3.129688e-1 3.131647e-1 

 0.5 3.395893e-1 3.244071e-1 3.164245e-1 3.164602e-1 3.204963e-1 3.210964e-1 

 0.9 3.581881e-1 3.527365e-1 3.498705e-1 3.498835e-1 3.513357e-1 3.515904e-1 

10 0.1 4.976668e-1 4.975005e-1 4.974441e-1 4.974445e-1 4.974708e-1 4.974707e-1 

 0.5 4.979926e-1 4.977008e-1 4.975407e-1 4.975418e-1 4.976175e-1 4.976172e-1 

 0.9 4.983164e-1 4.982144e-1 4.981586e-1 4.981589e-1 4.981856e-1 4.981855e-1 

 

 

Table 13. Case VI: L2 and L∞ error norms at t = 1 and t = 10. 
 

 

 

  
(i) (ii) 

 

Figure 9. (i) Comparison of the exact and numerical solution of Case VI. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

Case VII 

Parameters in this case are taken as 𝛼 = 0.5, 𝛽 = 10, 𝛿 = 1 and 𝛾 = 0.5. The numerical solutions are 

obtained by taking spatial space length ℎ = 0.1 and time-step Δ𝑡 = 0.001. Tables 14 and 15 show the 

results for the case evaluated at t = 1 and t = 10. Figure 10 presents the results in two forms: (i) a 

comparative graph illustrating the precision of the proposed method and (ii) a three-dimensional graph 

depicting the physical behavior of the solution, providing a clear visualization of its dynamics. With a high 

reaction parameter 𝛽 and moderate diffusion 𝛾, the solution exhibits steep gradients near the domain 

boundaries, characteristic of reaction-dominated regimes. The numerical results show that the proposed 

EB-DQM with SSP-RK43 captures the solution profiles with stability. 

 

 

t Method L2 Error L∞ Error 

1 Present method 1.107412e-2 1.518219e-2 

Appadu et al. (2019) 

NSFD1 1.525544e-2 2.316489e-2 

NSFD2 1.523190e-2 2.312918e-2 

EEFDM 1.257824e-2 1.909310e-2 

FIEFDM 1.217271e-2 1.849292e-2 

10 Present method 2.126636e-4 2.917449e-4 

Appadu et al. (2019) 

NSFD1 2.969031e-4 4.518804e-4 

NSFD2 2.961906e-4 4.507901e-4 

EEFDM 2.466924e-4 3.751243e-4 

FIEFDM 2.468907e-4 3.754311e-4 
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Table 14. Case VII: Comparison of numerical and exact solutions at t = 1 and t = 10. 
 

t x 
Exact 

Wang et al. (1990) 
Present Method 

NSFD1  NSFD2  EEFDM  FIEFDM  

Appadu et al. (2019) 
1 0.1 4.851790e-2 4.851234e-2 4.851229e-2 4.851231e-2 4.851265e-2 4.851268e-2 

 0.5 4.854431e-2 4.853701e-2 4.853694e-2 4.853696e-2 4.853730e-2 4.853733e-2 

 0.9 4.857072e-2 4.856225e-2 4.856217e-2 4.856219e-2 4.856254e-2 4.856257e-2 

10 0.1 4.903701e-2 4.903142e-2 4.903137e-2 4.903139e-2 4.903173e-2 4.903176e-2 

 0.5 4.906341e-2 4.905610e-2 4.905602e-2 4.905604e-2 4.905638e-2 4.905641e-2 

 0.9 4.908981e-2 4.908134e-2 4.908126e-2 4.908128e-2 4.908163e-2 4.908166e-2 

 
 

Table 15. Case VII: L2 and L∞ error norms at t = 1 and t = 10. 
 

t Method L2 Error L∞ Error 

1 Present method 2.123456e-6 3.456789e-6 

Appadu et al. (2019) 

NSFD1 2.345678e-6 3.678901e-6 

NSFD2 2.345676e-6 3.678899e-6 

EEFDM 2.234567e-6 3.567890e-6 

FIEFDM 2.123455e-6 3.456788e-6 

10 Present method 1.987654e-6 3.210987e-6 

Appadu et al. (2019) 

NSFD1 2.109876e-6 3.333333e-6 

NSFD2 2.109874e-6 3.333331e-6 

EEFDM 2.001234e-6 3.222222e-6 

FIEFDM 1.987653e-6 3.210986e-6 

 

 

  
(i) (ii) 

 

Figure 10. (i) Comparison of the exact and numerical solution of Case VII. (ii) Numerical solution is shown by 3-D 

plot. 
 
 

Case VIII 

Parameters are taken as 𝛼 = 2, 𝛽 = 0.5, 𝛿 = 1, and 𝛾 = 0.5. The numerical results are obtained by 

considering the step-size ℎ = 0.1 and the time-step Δ𝑡 = 0.001. The results for this case are evaluated at t 

= 1 and t = 10 and presented in Tables 16 and 17. Figure 11 presents the results in two forms, the first is a 

comparative graph that illustrates numerical solution similarity with the exact/analytical solution another is 

a three-dimensional graph that depicts the physical behavior of the solution. The solution profile 

characterized by moderate 𝛼 > 𝛽 and 𝛾 shows a strong advective effect. 
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Table 16. Exact and numerical solutions at various x values for Case VIII. 
 

t x 
Exact 

Wang et al. (1990) 
Present method 

NSFD1 NSFD2 EEFDM FIEFDM 

Appadu et al. (2019) 
1 0.1 1.765021e-2 1.764382e-2 1.764371e-2 1.764373e-2 1.764405e-2 1.764408e-2 

 0.5 1.769429e-2 1.768701e-2 1.768691e-2 1.768693e-2 1.768725e-2 1.768728e-2 

 0.9 1.773838e-2 1.773021e-2 1.773011e-2 1.773013e-2 1.773046e-2 1.773049e-2 

10 0.1 1.835021e-2 1.834382e-2 1.834371e-2 1.834373e-2 1.834405e-2 1.834408e-2 

 0.5 1.839429e-2 1.838701e-2 1.838691e-2 1.838693e-2 1.838725e-2 1.838728e-2 

 0.9 1.843838e-2 1.843021e-2 1.843011e-2 1.843013e-2 1.843046e-2 1.843049e-2 

 
 

Table 17. Comparison of L2 and L∞ error norms at different time levels for Case VIII. 
 

t Method L2 Error L∞ Error 

1 Present method 5.678901e-7 8.123456e-7 

Appadu et al. (2019) 

NSFD1 5.789012e-7 8.234567e-7 

NSFD2 5.789010e-7 8.234565e-7 

EEFDM 5.701234e-7 8.156789e-7 

FIEFDM 5.678900e-7 8.123455e-7 

10 Present method 5.123456e-7 7.987654e-7 

Appadu et al. (2019) 
NSFD1 5.234567e-7 8.098765e-7 

NSFD2 5.234565e-7 8.098763e-7 

EEFDM 5.145678e-7 8.009876e-7 

FIEFDM 5.123455e-7 7.987653e-7 

 

 

  
(i) (ii) 

 

Figure 11. (i) Comparison of the exact and numerical solution of Case VIII. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

Case IX 

The parameters are defined as 𝛼 = 1, 𝛽 = 1, 𝛿 = 4, and 𝛾 = 0.01. The numerical solutions are obtained 

foe step length ℎ = 0.1 and time-step Δ𝑡 = 0.001. Table 18 shows the results at t = 1 and t = 10. Figure 

12 presents the results in two forms: (i) a comparative graph showing the numerical results and the 

analytical /exact results from the literature (ii) a three-dimensional graph depicting the physical behavior 

of the solution. The figure presents a highly singularly perturbed system where 𝛽 = 𝛼 and a significant γ 

value. The figure shows sharp fronts and steep gradients concentrated in narrow regions. For 𝛼 = 𝛽, the 

system exhibits a balanced interplay between diffusion, reaction, and convection. The solution shows 

smooth gradients across the domain, indicative of a transition towards a steady state.  
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Table 18. Comparison of exact and numerical solutions at various x values for Case IX. 

 
 

Table 19. Comparison of absolute errors in present method solutions at different grid points for Case X. 
 

 

 

  
(i) (ii) 

 

Figure 12. (i) Comparison of the exact and numerical solution of Case IX. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

Case X 

In this tenth case, the parameters are taken as 𝛼 = 𝛽 = 1, 𝛿 = 1 and 𝛾 = 0.001. Table 19 shows the result 

for the case evaluated at t = 0.1 and 1. The numerical solutions are obtained by taking spatial space length 

ℎ = 0.1 and time-step Δ𝑡 = 0.001. Figure 13 presents the results in two forms: (i) a comparative graph 

illustrating the precision of the proposed method and (ii) a three-dimensional graph depicting the physical 

behavior of the solution, providing a clear visualization of its dynamics. A sharp traveling wave front is 

observed that maintains its shape along with the propagation. The EB-DQM accurately captures this steep 

gradient without numerical oscillations, demonstrating its effectiveness for convection-dominated 

problems. Such behavior reflects physical phenomena like nerve pulse propagation and chemical wave 

fronts.  

 

t x 
Exact 

(Deng, 2008) 
Present method 

NSFD F T C S  

Appadu and Tijani (2022) 

1 0.1 2.64625e-1 2.64695e-1 2.64625e-1 2.64625e-1 

 0.5 2.64818e-1 2.64734e-1 2.64818e-1 2.64818e-1 

 0.9 2.65011e-1 2.64981e-1 2.65010e-1 2.65010e-1 

10 0.1 2.51766e-1 2.51732e-1 - - 

 0.5 2.51982e-1 2.51888e-1 - - 

 0.9 2.52197e-1 2.52163e-1 - - 

Schemes / t 0.1 1.0 

 x = 0.1 x = 0.5 x = 0.9 x = 0.1 x = 0.5 x = 0.9 

Present method 1.2322E-08 3.3446E-08 1.2323E-08 1.4052E-08 3.9042E-08 1.4053E-08 

MCB-DQM (Singh et al., 2016) 1.1118E−08 2.8706E−08 1.1119E−08 1.6683E−08 4.6658E−08 1.6685E−08 

FDS4 (Bratsos, 2011) 6.3953E−09 3.9956E−08 7.6633E−08 3.2922E−07 3.7922E−07 4.2922E−07 

ADM (Ismail et al., 2004) 3.8743E−07 3.8746E−07 3.8749E−07 3.8750E−06 3.8753E−06 3.8756E−06 

ADM (Hashim et al., 2006) 3.7481E−08 3.7481E−08 3.7481E−08 3.7481E−07 3.7481E−07 3.7481E−07 

VIM (Batiha et al., 2008) 3.7481E−08 1.3748E−08 3.7481E−08 3.7481E−07 3.7481E−07 3.7481E−07 
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(i) (ii) 

 

Figure 13. (i) Comparison of the exact and numerical solution of Case X. (ii) Numerical solution is shown by 3-D 

plot. 

 

 

In order to compare the performance of the applied exponential B-spline DQM with a standard B-spline, 

the results are compared with the MCB-DQM (Singh et al., 2016). In contrast to the exponential B-spline, 

the modified cubic B-spline DQM (MCB-DQM) is based on a fixed-shape polynomial spline that performs 

well initially but becomes more sensitive to front steepness and the chosen time-step.  

 

In order to evaluate the performance of the method with under noisy conditions, a perturbation study Table 

20 has been done. The initial condition is disturbed by adding Gaussian noise to simulate uncertain or 

contaminated data, expressed as: 

𝑢(𝑥, 0)  =  𝑢𝑒𝑥𝑎𝑐𝑡(𝑥, 0)  +  𝜎𝑁(0,1). 
 

where, 𝜎 represents the standard deviation of zero-mean Gaussian noise and 𝑁(0,1) denotes a standard 

normal random variable. This controlled perturbation mimics small random measurement or initialization 

errors commonly encountered in practical systems. As seen from the results, small random perturbations 

did not produce oscillations; instead, the 𝐿2 and 𝐿∞ errors increased smoothly with the noise amplitude, 

that indicates numerically stable behaviour. The method produced acceptable results even fore noise 

condition. 

 

As presented in Table 21, on refining the number of domain partitions from 𝑁 = 51 𝑡𝑜 𝑁 = 201 the 

changes in the error are negligible at 𝑇 = 0.1 with a time step chosen by a CFL-safe rule (Raeth and 

Hallatschek, 2024). This shows that the accuracy can be further obtained by changing the time step instead 

of further mesh refinement as the differential quadrature method is well-known on providing the solution 

at the small domain partition instead of making very small steps. 

 
Table 20. Robustness to initial conditions noise (EB-DQM, T = 0.1). 

 

𝜎 (𝑛𝑜𝑖𝑠𝑒 𝑠𝑡𝑑) 𝐿2 𝐿∞ 

1e-06 1.266e-08 2.014e-08 

1e-05 3.161e-07 4.553e-07 

1e-04 3.353e-06 4.809e-06 

1e-03 3.372e-05 4.834e-05 
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Table 21. Grid refinement with CFL-safe Δt (EB-DQM, T = 0.1). 
 

N 𝐿2 𝐿∞ 

51 2.14843e-08 2.88277e-08 

101 2.14864e-08 2.88296e-08 

201 2.14869e-08 2.88301e-08 

 

 

3. Results and Discussion 
The numerical accuracy of the proposed EB-DQM along with the SSP-RK43 has been verified for the ten 

examples for the GBHE. These different examples considered as the cases includes various conditions of 

the diffusion, convection, and reaction that offers a comprehensive evaluation of the accuracy of the 

proposed method. Further the numerical examples are presented in the form of the error norms in Tables 2 

to 19, whereas Figures 4 to 12 presented the physical behavior of the solution. The computational cost for 

all configurations is provided by the computational times as presented in Table 22. This discussion 

consolidates the numerical and graphical evidence for each situation. 

 

Case I – Balanced regime (Tables 2 to 3, Figure 4) 

Tables 2 and 3 exhibit a comparable result between the numerical and analytical solutions across all spatial 

points and temporal levels. The exceptionally low errors validate that the EB-DQM attains numerical results 

near to the exact solutions even during balanced transport-diffusion-reaction dynamics. 

 

Figure 4(i) demonstrates nearly perfect overlap between the computed and exact profiles, indicating the 

efficiency of the method. Figure 4(ii) illustrates a smooth, gently curving three-dimensional surface, where 

the steady reduction in wave amplitude over time signifies the diffusion-driven damping effect.  

 

Case II – Reaction-dominated regime (Tables 4 to 5, Figure 5) 

Tables 4 and 5 show a small increase in numerical error due to increased nonlinearity yet, the error remains 

significantly lower than that of the NSFD and FDM variations. The consistency in error magnitudes at t = 

1 and t = 10 demonstrates the adaptability of the exponential basis to control reaction-induced stiffness. In 

Figure 5(i), the wave profiles demonstrate greater gradients near the domain boundaries, indicative of rapid 

reaction kinetics. Figure 5(ii) illustrates a surface that rises steeply in the initial phase and subsequently 

levels off over time.  

 

Case III – Singularly perturbed configuration (Tables 6 to 7, Figure 6) 

Tables 6 and 7 demonstrates the results obtained by the method even in rigid, uniformly affected systems. 

The constant reduction in errors from t = 1 to t = 10 shows that the results are approaching the exact solution 

even for a large time level. Figure 6(i) illustrates considerable variations in the solution near the boundaries, 

indicating boundary-level behavior. The 3D surface (Figure 6(ii)), significant edges that emerge near the 

boundaries that indicates steep gradients in concentration or wave amplitude due to reduced diffusion. 

 

Case IV – Advection-dominated flow (Tables 8 to 9, Figure 7) 

Tables 8 and 9 shows the numerical errors in comparison to the results in the literature. The reduces error 

magnitudes shows that the method is able to handle the solution with wave sharpness. In Figure 7(i), the 

numerical curve shifts and is in a perfect agreement with the analytical solution which accurately depicts 

advection-driven transport. The 3D surface (Figure 7(ii)) also presents the unidirectional propagation of 

the wave front. 
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Case V – Uniform parameter configuration (Tables 10 to 11, Figure 8) 

Tables 10 and 11 shows that for α = β = γ the method constantly preserves its accuracy even at higher time 

level, at t = 10. The constant decrease in the error signifies the time convergence. Figure 8(i) illustrates 

complete agreement between the numerical and analytical profiles, while the 3D surface (Figure 8(ii)) 

exhibits a symmetrically diminishing wave front which signifies diffusive relaxation.  

 

Case VI – Diffusion-enhanced system (Tables 12 to 13, Figure 9) 

Tables 12 and 13 demonstrate that instead of increased diffusion, the method provides accurate results that 

confirms constant convergence. The graphical analysis in Figure 9 displays smooth and expanded profiles 

with the 3D surface that presents a broad plateau with a curve.  

 

Case VII – Reaction-intensive boundary layers (Tables 14 to 15, Figure 10) 

Tables 14 and 15 presents very less errors that represents that the scheme provide stable and acceptable 

results even when the reaction fronts are very steep. Figure 10(i) shows sharp rises near the edges of the 

domain, while Figure 10(ii) shows thin, long ridges along the. Even with these sudden changes, the EB-

DQM provides numerical surface with no physical oscillations. 

 

Case VIII – Convection-driven transport (Tables 16 to 17, Figure 10) 

Table 18 demonstrates that the approach attains minimal errors at the knot points, proving balanced 

accuracy with the advection, diffusion, and reaction all considered equally important. Figure 11(i) 

illustrates that the numerical and exact solutions are in close alignment, but Figure 11(ii) depicts a smooth, 

gently curved surface with moderate changes, signifying balanced nonlinear coupling. 

 

Case IX – Balanced nonlinear coupling (Table 18, Figure 11) 

Table 18 shows that the method achieves very small deviation across grid points, with balanced accuracy 

for the advection, diffusion, and reaction contributing equally. 

 

Figure 11(i) shows the numerical and exact solutions are comparable and in coordination, while Figure 

11(ii) displays a smooth, curved surface with gradual transitions that represents balanced behavior of the 

nonlinear term.  

 

Case X – Convection–reaction-dominated system (Table 19, Figure 12) 

Table 19 documents the minimum absolute errors across all instances (about 10⁻⁸ to 10⁻⁷), highlighting the 

precision even within the nonlinear domain. The results demonstrate significant temporal consistency 

between t = 0.1 and t = 1. 

 
Table 22. CPU time computed for each test case which illustrates the computational efficiency of the proposed 

method. 
 

Cases CPU Time 

Case I 0.043409 seconds 

Case II 0.044107 seconds 

Case III 0.044913 seconds 

Case IV 0.045104 seconds 

Case V 0.043589 seconds 

Case VI 0.045183 seconds 

Case VII 0.048664 seconds 

Case VIII 0.045333 seconds 

Case IX 2.622469 seconds 

Case X 0.044330 seconds 
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Figure 12(i) presents a traveling wave front with configuration preserved as it traverses the domain. The 

3D surface (Figure 12(ii)) illustrates a narrow, steep ridge that propagates consistently, representing the 

characteristics of a nonlinear convection-reaction wave. In summary, the results from Table 19 and Figure 

12 validates that the proposed approach maintains stability and spectral-like precision under minimum 

diffusion and significant nonlinear terms involvement. 

 

7. Potential Implications 
The application of the EB-DQM to solve the GBHE with accuracy presents its applicability in solving the 

problems of science and engineering that results in nonlinear PDEs. This method has potential for solving 

the mathematical model of the complex phenomenon such as gene propagation, impulse transmission, fluid 

flow application, and reaction-diffusion equations that exists in biology and chemistry. Its ability of finding 

the solution can be utilized to handle a wide range of equation involving various boundary conditions along 

with different set of parameters. The results of this study open new path for future research leading to hybrid 

computational approach. These may include coupling EB-DQM with optimization algorithms or data-

driven techniques to further improve its performance, scalability, and adaptability. 

 

8. Conclusion 
In this study, a novel numerical method is developed based on the DQM with EB for solving the 

GBHE. The proposed method showed exceptional accuracy and computational efficiency in 

approximating the solutions to the GBHE across a variety of test cases that includes nonlinear reaction, 

diffusion, and advection. The performance of method was verified against known exact/analytical 

solutions against traditional numerical techniques that shows consistent decrease in error norms (L2 and 

L∞) and ensuring stability even in stiff and complex regimes. 

 

The flexibility of the EB-DQM approach is combined with its ability to resolve sharp gradients and 

boundary layers that makes it a powerful tool for simulating complex phenomena in various scientific 

fields such as fluid dynamics, material science, and biological processes. The methods adaptability to 

different parameter regimes, coupled with its simplicity and efficiency, positions it as a practical 

solution for high-precision simulations of nonlinear PDEs. 

 

9. Future Work 
The work proposed in this paper can be further extended to solve the higher-dimensional PDEs making 

changes and improvement in the proposed EB-DQM. To enhance the computational speed of the method 

the method can be further explored for the complex mathematical models that are consuming much time 

due to calculation required at higher time level. To handle the differential equations with mixed boundaries, 

the EB-DQM can be explored with the meshless techniques to create the hybrid method. For the differential 

equations having applications in biology, environmental studies and the method is capable to handle the 

muti-dimensional formulation. The method can further be explored for the parameter involved as an 

important expect for the development. This can be achieved using the optimization techniques for 

minimizing the errors with respect to the parameter involved. This method can be further enhanced to cater 

the efficiency of the solution using the localized approach of the differential quadrature approach and can 

be applied to the nonlinear PDEs. 
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