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Abstract 

Ocular diseases significantly impact the health of the public globally. According to the World Health Organization (WHO) reports, 

at least 1 billion people suffer from near or distance vision impairment that could have been prevented or has yet to be addressed. 

These conditions cause difficulty in living a healthy lifestyle and impair individual quality of life. The article explores the 

application of federated learning in detecting two vision-threatening ocular diseases- diabetic retinopathy and diabetic macular 

edema. A federated learning framework enhances the technological capabilities of artificial intelligence that leverages decentralised 

data sources without creating data banks to maintain privacy. The methodology implements a federated learning environment with 

2, 3, and 4 clients, using MobileNetV2 as the backbone deep learning model. The model is trained on a composite of 2 datasets 

procured from the Kaggle repository, comprising coloured fundus images labelled for diabetic retinopathy, diabetic macular edema, 

and normal cases. The federated learning process involves training at the client end to build client models called local models. The 

clients in a federated learning system only share updates regarding their local models. The original data is never shared with a 

central server. The server integrates these local models into the central global models using aggregation strategies such as FedAvg, 

FedProx, etc. Performance metrics, including prediction accuracy, class-wise accuracy, precision, recall, and F1 score, are 

calculated across 30 communication rounds. The results demonstrate that the federated learning model achieves an average 

prediction accuracy of 96%, and a class-wise accuracy of 100% in detecting diabetic macular edema and diabetic retinopathy. The 

high performance of the federated learning system highlights the significance of federated learning as a viable solution for ocular 

disease detection while ensuring data privacy. 

 

Keywords- Machine learning, Preserving privacy, Federated deep learning, Ocular disease, MobileNetV2. 

 

 

 

1. Introduction 
Permanent loss of vision and impairment might occur from various causes, such as cataracts, macular 

edema, diabetic retinopathy, glaucoma, and other infectious diseases of the eye, etc. Although, both children 

and adults of all ages can be impacted, but most of these conditions affect individuals over the age of 50. 

Early occurrence of severe vision impairment in young children can lead to lower educational achievements 

and reduced career opportunities throughout life (Al-Fahdawi et al., 2024). Preventative strategies are 

crucial in reducing the impact of ocular diseases. Preventive strategies include modifying a sedentary 

lifestyle with increased outdoor activities, to reduce the risk of myopia in children. Another example could 

https://www.ijmems.in/


Gulati et al.: Privacy-Preserving and Collaborative Federated Learning Model for the … 
 

 

219 | Vol. 10, No. 1, 2025 

be, managing systemic diseases like diabetes and hypertension which further cause conditions such as 

diabetic retinopathy. Even though cost-effective solutions such as spectacles for vision correction and 

surgery for cataracts are available, there remains a significant gap in meeting the demand for eye-care 

services globally. For critical eye conditions, such as diabetic retinopathy and glaucoma, continuous 

monitoring and corrective treatment are necessary to control disease progression and prevent permanent 

vision loss (Tang et al., 2024). 

 

The challenges associated with such eye conditions are amplified by the shift in lifestyle habits with more 

indoor activity and deskbound work culture, leading to a new range of diseases. Thus, the situation demands 

a prompt adjustment of responses and strategies to counter these challenges effectively. Many efforts are 

required to reduce the occurrence and further progression of eye diseases by studying the disease patterns 

and their causes. Regular eye checkups, medical care and treatment, and effective public health policies are 

vital in accommodating the needs of the citizens. A holistic approach is imperative in addressing the threats 

posed by ocular diseases (Davidson et al., 2007). It should include preventive measures, timely prognosis, 

and effective treatment, as well as rehabilitation if the situation demands support for those with irreversible 

vision impairment. Such efforts will prove to be fruitful not just for improving the quality of life of millions 

of people worldwide but also for alleviating the broader public health. Thus, decreasing the negative 

economic impacts of vision impairment and blindness (Nguyen et al., 2022). 

 

Ocular diseases such as diabetic retinopathy and diabetic macular edema are a few of the leading causes of 

permanent vision globally. Early detection through screening is imperative for the prevention of irreversible 

vision loss. The development of ML in ocular disease detection has come a long way and holds a lot of 

potential for enhancement of diagnostic accuracy and efficiency for various conditions (Gulati et al., 2022a; 

Sanghavi and Kurhekar, 2024). Machine learning (ML), a branch of artificial intelligence, focuses on 

creating algorithms capable of learning from data to make predictions and decisions without explicit 

programming. This is particularly beneficial in ophthalmology, where diagnosing diseases relies heavily 

on interpreting complex imaging data. (Gulati et al., 2023b; Thotad et al., 2023) Traditional ML methods 

show great potential in detecting ocular disease. However, there is a challenge to data privacy and 

accessibility.  

 

One of the main applications of ML in this field is analysing retinal images. Many ML models have been 

developed to detect diabetic retinopathy that utilise large datasets of retinal images and build models which 

are capable of accurately identifying different levels of the disease severity. These systems comprise sub-

networks that are designed for special tasks such as image quality assessment, lesion detection, and disease 

grading (Gulati et al., 2023a, 2023c). Glaucoma detection is another area where ML has shown good 

performance. The models process retinal images to identify glaucoma indicators, such as variation in the 

optic disc and cup, using image segmentation techniques to focus on important diagnostic areas. These ML 

methods not only support early detection but also reduce dependence on manual feature extraction by 

clinicians, thereby streamlining the diagnostic process (Bajwa et al., 2019; Safi et al., 2018). 

 

The advantage of ML in ocular disease detection lies in its ability to efficiently process huge sets of data 

and recognize patterns not easily visible to humans. This proves fruitful in improving diagnostic accuracy 

and speed, leading to earlier medical interventions and better patient outcomes. Additionally, the models 

continuously improve as they are exposed to more data. Thus, revealing new insights into disease detection 

mechanisms and indicators (Alharbi, 2024; Gulati et al., 2022b; Sharma et al., 2023). However, deploying 

ML in clinical settings faces challenges, including the need for large, annotated datasets for model training 

and validation, and ensuring models perform well across different patient populations and imaging 

equipment. Despite these challenges, the ongoing advancement of ML in ophthalmic disease detection is 
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promising for more personalized, efficient, and accurate eye care (Aamir et al., 2020; Kaur et al., 2022). 

 

Federated learning is a decentralized approach to ML that offers a solution by training algorithms across 

different client devices that have their local subsets. These clients train on these local datasets without 

exchanging their data samples. Federated learning has emerged as a revolutionary learning approach that 

facilitates the creation of models on various distributed devices. Each of these devices has their dataset and 

these devices work independently of each other. There is no exchange of the source data between the clients 

and the server, only model updates are communicated between them. This approach is particularly suited 

to the healthcare sector for many reasons, as given below (Hartmann, 2018; Srivastav et al., 2023). 

 

Privacy preservation: Countries like the United States and Europe control the data generated by the 

healthcare industry with their strict laws like the Health Insurance Portability and Accountability Act and 

the General Data Protection Regulation, respectively. These laws help in the protection of sensitive patient 

data, at the same time making it a tough job to utilize the data for research. In particular, for the automation 

of disease diagnosis ML and DL models require lots of data. Although the data is available in many medical 

organizations but it cannot be shared due to privacy concerns (Sharma et al., 2021). A practical solution to 

this problem emerged in the form of a collaborative framework popularly known as federated learning (FL). 

FL enables the decentralization of the learning process by transporting the learning algorithm to the source 

site containing the data, instead of creating a pool of data at a central location. This implies that the sensitive 

patient information is not transported and remains in the originating location. In simpler words, the sharing 

of patient data does not occur, but the model updates are shared to form a collaboratively learned efficient 

model. The model updates are the weight gradients that are sent to the central location for the aggregation 

of the client models to upgrade the global model. The process reduces the potential risk involved in sharing 

the personal health information of the patients and aligns with the local privacy laws to ensure that the 

confidentiality of the patients is maintained (Peyvandi et al., 2022). 

 

Data silos: The data in the healthcare domain is generally fragmented into silos, and each of the institutions 

holds its dataset. The data silos hamper data sharing among institutions that can collaborate to gain a more 

comprehensive and cross-institutional data analysis. FL helps in breaking these barriers by facilitating a 

collaborative approach to learning. The participating organizations contribute to the learning process 

without needing to share any of their localized data directly with other institutions. The collaborative 

framework fuels the learning and leverages diverse datasets to amplify the quality and variability of the 

available data used in model training. FL, with its collaborative framework, has been fruitful in improving 

the scope of research and opening the door for more inclusive and comprehensive healthcare solutions. 

 

Improvement in model generalisation: The data available in various medical organisations is diverse due 

to variations in the statistics of the patients, disease presentations, and treatment outcomes. FL takes 

advantage of the variability of data for training efficient models which are robust and can generalise on 

different populations. This capability of generalising is significant in applications related to the healthcare 

industry since the effectiveness of diagnostic tools and treatments can significantly differ among different 

groups. Thus, the models trained with the FL approach are exposed to a broader spectrum of data 

characteristics, leading to improved accuracy and reliability in real-world applications. Thus, ensuring that 

the diagnostic and the predictive models are more inclusive and reflective of the global population. 

 

Reduction in the data transfer costs and latency: In a traditional learning approach all the data which is 

usually large, is integrated at a central location to form a data bank. This process is quite expensive in terms 

of communication costs and takes a long period to transfer. The size of medical data for disease 

identification is essentially growing with the advancements in technology (Sharma et al., 2022). FL 
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mitigates this issue by executing the learning process locally on the machines holding the data. The 

exchange is only of the model weights, parameters and gradients which is much smaller when compared 

with the huge amounts of data. The federated framework decreases the bandwidth requirements and 

significantly reduces the communication cost incurred by transferring raw data. Furthermore, by 

eliminating the need to transmit large datasets, FL reduces latency in training and updating. Thus, 

facilitating more efficient and scalable ML projects (Adnan et al., 2022).  

 

Real-time learning: The medical environment is continuously advancing, with new disease strains and 

treatment options emerging regularly. FL approach supports the real-time updating of models with new 

data as and when it becomes available. This means as and when new patient records are added they can 

start contributing to improving the prediction accuracy of models. This characteristic feature of FL is 

particularly beneficial while responding to fast-moving health crises, such as the COVID-19 pandemic. In 

such situations, timely data analysis and model adaptation are important in improving public health 

responses. FL is thus a dynamic and responsive approach to healthcare modeling. Thus, ensuring that 

medical professionals utilise the most recent and relevant tools for diagnosis and treatment planning (Kaur 

et al., 2023). 

 

The key difference between a traditional centralized ML approach and a collaborative federated learning 

framework is the location of the data samples used in the learning process. If the data samples are pooled 

at a central location, then the learning scenario is the traditional centralized scenario and if the data samples 

are not pooled and they reside on the originating site then it is the collaborative federated learning 

framework (Pfitzner et al., 2021; Saini et al., 2023). This difference is highlighted in Figures 1 and 2 given 

below with the diagrammatic representation of a centralized traditional ML scenario in Figure 1 and the 

pictorial representation of a collaborative decentralized federated learning framework in Figure 2. 

 

 
 

Figure 1. The diagrammatic representation of a traditional centralized machine learning scenario. 
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Figure 2. The pictorial representation of a collaborative decentralized federated learning framework. 

 

This article serves as a reference in understanding the privacy-preserving and collaborative machine 

learning framework called federated learning. Apart from this, the other noteworthy contributions of the 

article are as follows: 

• The article emphasizes the importance of federated learning in maintaining the privacy of healthcare data, 

particularly in relation to vision-threatening ocular diseases. 

• The article proposes a privacy-preserving collaborative federated learning model for detecting ocular 

diseases: diabetic macular edema and diabetic retinopathy using MobileNetV2-based architecture, 

FedAvg aggregation strategy.  

• The proposed federated learning model has been implemented for 2, 3, and 4 client architectures and the 

results exhibit that the proposed privacy-preserved collaborative federated learning model shows an 

average prediction accuracy of 96% and class-wise accuracy of 100% in detecting diabetic macular edema 

and diabetic retinopathy. 

 

The rest of the article structure includes the following sections: the second section discusses recent research 

on ocular disease detection using federated learning. Next, the third section describes the materials used in 

the proposed work, that is the dataset used in the study along with all the parameters, the methodology and 

the proposed methodology. The fourth section analyses the results obtained by implementing federated 

learning in detecting diabetic retinopathy and diabetic macular edema. 

 

2. Related Work 
This section details the recent research in ocular disease detection using a federated learning framework for 

protecting the privacy of sensitive user data and collaborative training for improved results. 
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The paper (Hossain et al., 2023) introduces a federated learning framework designed for predicting diabetic 

retinopathy without sharing the patient data among various healthcare organisations. It utilises differentially 

private federated learning with machine learning models like AlexNet, ResNet50, SqueezeNet1.1, and 

VGG16 applied at the back end. These are tested on a dataset comprising 35,120 retinal images classified 

into five categories. This approach incorporates a noise addition strategy to ensure privacy and checkpoint 

techniques to reduce communication overhead. ResNet50 emerged as the most effective model for the 

application, with an accuracy of 83.05% without noise application and 79.35% with a noise multiplier of 

8.0. 

 

The authors (Matta et al., 2023) explore Federated Learning (FL) for diabetic retinopathy detection within 

a multi-center fundus screening network. They have utilised the OPHDIAT fundus photograph dataset, 

which includes nearly 700,000 images. Two FL algorithms, cross-center and cross-grader, were developed 

and compared with centralized learning. Both the algorithms used EfficientNetB5 as the underlying DL 

model. Conclusively, the FL models demonstrated similar performance to traditional centralised learning, 

with Area Under the Curve (AUC) scores of 0.9317 for the first cross-center algorithm and 0.9522 for the 

cross-grade algorithm, versus 0.9482 for the centralised deep learning model. Thus, showcasing FL's 

potential in medical imaging to maintain data privacy while still achieving competitive accuracy. 

 

In another research work (Nasajpour et al., 2022) the authors have focused on federated transfer learning 

for diabetic retinopathy detection using CNN architectures. In particular, the backbone CNN-based model 

used in the work is AlexNet. The authors have assessed three models- the standard transfer deep learning 

model, the model with federated averaging (FedAvg) aggregation scheme, and the model with federated 

proximal (FedProx) aggregation technique. The models have been implemented across five publicly 

available diabetic retinopathy datasets. These models achieved accuracies of 92.19%, 90.07%, and 85.81%, 

respectively, showcasing the efficacy of federated transfer learning algorithms in diabetic retinopathy 

detection alongside the advantage of preserving data privacy. Thus, elaborating the need for federated 

learning in practical applications of medical data. 

 

An IoT-based Federated Learning model for classifying Hypertensive Retinopathy lesions through regional 

feature fusion was discussed by Soni et al. (2023). It employs two neural networks for classifying arterial 

and venous nicking (AVN) and hypertensive retinopathy, using pre-processed fundus images to enhance 

classification accuracy. Various DL models used foundationally in the FL system are IterNet, U-Net and 

SeqNet. The model was tested on an experimental dataset initially containing 48 IoT-FHR fundus images, 

expanded to 1276 images through data augmentation. They achieved an accuracy of 95.14%, a sensitivity 

of 74.98%, and a specificity of 97.54%. The authors have demonstrated the potential of combining local 

lesion characteristics with global classification models to improve diagnostic accuracy. 

 

A federated learning framework for retinal microvasculature segmentation and diabetic retinopathy 

classification using optical tomographic images was proposed in the article (Lo et al., 2021). The approach 

involves training models across multiple clients without sharing sensitive data. Also, comparing the 

performance of federated learning with centralised learning methods. The dataset comprised 153 OCTA 

images for segmentation and 700 eyes for diabetic retinopathy classification. The architecture utilised for 

microvasculature segmentation is the residual U-Net model. The key performance metrics included 

accuracy, dice similarity coefficient (DSC), and area under the receiver operating characteristic curve 

(AUROC). They have demonstrated that federated learning shows performance comparable to internal 

models. Thus, proving its value in medical image analysis while safeguarding data privacy which is at the 

epicentre of a federated learning framework. The article emphasises federated learning's potential, coupled 

with domain adaptation, for enhancing both privacy and accuracy in medical image analysis, particularly 
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in ocular disease recognition. 

 

The articles relating to ocular disease detection using federated learning have been summarised in tabular 

form in Table 1.  

 
Table 1. Summary of the articles related to the current work. 

 

Reference 
Methodology/Models/ 

Summary 
Dataset  Performance outcomes 

Future scope and research 

gaps 

Hossain et 

al. (2023) 

A differentially private 

federated learning system was 

introduced for grading 

Diabetic Retinopathy into 

various levels. Four DL 

models: ResNet50, AlexNet, 
SqueezeNet1.1 and VGG16 

were used and compared for 

performance. ResNet50 
exhibited superior 

performance. 

The dataset consists of 35126 

retinal images from the Kaggle 
repository.  

Best accuracy was achieved 

by ResNet50. The accuracy 

score was 83.05% with noise 
and 79.35% accuracy 

without noise. 

Additional deep learning 

models can be explored to 

further improve the prediction 

accuracy for diabetic 

retinopathy diagnosis. 

Even more advanced 
differential privacy techniques 

could be implemented to 

enhance the privacy-preserving 
capabilities of the federated 

learning framework. 

Matta et al. 
(2023) 

Two FL-based algorithms 

were developed and 
evaluated. The cross-center 

FL and cross-grader FL for 

distributing data among 
screening centres and graders 

respectively.  

EfficientNet-B5 is used as the 
backbone DL model for all 

experiments in the article. 

The dataset was collected from the 
OPHDIAT, a French multi-center 

screening network and there was a 

total of 697,275 fundus 
photographs.  

Performance indicators 

include the area under the 
ROC curve (AUC) with the 

outcomes revealing an AUC 

of 0.9482 for centralized 
learning (CL), 0.9317 for 

cross-center FL, and 0.9522 

for cross-grader FL, 
showcasing comparable 

performance. 

The impact of varying the 
hyperparameters is not given in 

the article. 

A discussion on the 
computational resources 

required for implementing FL 

on such a large-scale dataset has 
not been given. 

Nasajpour 
et al. 

(2022) 

The authors proposed an FL-

based algorithm for detecting 
DR from coloured fundus 

images. These 

implementations of 
centralised learning, FL with 

the FedAvg algorithm and FL 

with the FedProx Algorithm 
have been compared. A CNN-

based AlexNet architecture is 

used for implementing FL. 

The datasets used for Diabetic 

Retinopathy detection include 

EyePACS, Messidor, IDRID, 
APTOS, and the University of 

Auckland (UoA). A total of 2787 

images were used in the 
experiment. 

Accuracy, Sensitivity, 

Specificity, and Precision 
were used as performance 

indicators. The comparison 

based on accuracy reveals 
that the performance of FL-

based models is comparable 

to that of centralised transfer 
learning models. The scores 

are 92.19%, 90.07%, and 

85.81% respectively for 
centralised learning, FL with 

FedAvg and FL with 

FedProx. 

Augmentation techniques can 

be applied for further 
improvement of the model and 

to increase privacy differential 

privacy can also be explored. 

Soni et al. 

(2023) 

The focus is on classifying the 

hypertensive retinopathy 

lesions using DL models in 
the federated framework. 

Various DL models used 

foundationally in the FL 
system are IterNet, U-Net and 

SeqNet. These were used to 

propose a new method for 
classifying lesions of 

hypertensive retinopathy. 

The dataset is procured locally from 
a hospital and contains a set of 1276 

fundus images for classification 

purposes.  

 Performance indicators such 
as accuracy metrics were 

utilised to assess the model's 

effectiveness, showcasing 

improved classification 

accuracy and addressing 

overfitting concerns. The 
fusion of global and local 

components in the model 

resulted in an accuracy of 
95.14%, sensitivity of 

74.98%, and specificity of 

97.54%, showcasing the 
enhanced performance and 

classification capabilities of 

the proposed method.  

A small and noisy dataset was 

used in the study, and larger and 
more diverse datasets should be 

explored for model 

generalizability. 
The work used only ResNet50 

in the experiment. So, the other 

pre-trained models should also 
be used for the classification. 
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Table 1 continued… 
 

Lo et al. 
(2021) 

The study aimed to assess a 
federated learning framework for 

retinal microvasculature 

segmentation and Referable 
Diabetic Retinopathy (RDR) 

classification using OCT and 

OCTA imaging. The architecture 
utilized for microvasculature 

segmentation is the residual U-Net 

model. 

The dataset comprises 153 
OCTA (Optical Coherence 

Tomography Angiography) 

for microvasculature 
segmentation and 700 eyes 

with OCTA en-face images 

and structural OCT 
projections acquired from 2 

commercial OCT systems for 

Referable Diabetic 
Retinopathy (RDR) 

classification. So, a total of 

853 images were accumulated. 

Up-sampling and down-

sampling techniques were also 
applied for better 

generalisability.  

For microvasculature 
segmentation, the federated 

learning model achieved an 

average Dice similarity 
coefficient (DSC) of 0.793 

across all test sets, which is 

comparable to the centralized 
models that had an average 

DSC of 0.807. In the 

classification of Referable 
Diabetic Retinopathy (RDR), 

the federated learning 

approach achieved mean 

AUROCs (Area Under the 

Receiver Operating 
Characteristic Curve) of 0.954 

and 0.960, while the internal 

models reached mean 
AUROCs of 0.956 and 0.973, 

indicating similar 

performance.  

Further studies can investigate 
how data distribution and 

imbalanced datasets affect the 

performance of federated 
learning, especially in 

scenarios with a large number 

of images or diverse data 
sources. The dataset is quite 

small, which might lead to 

issues in the generalizability of 
the model. 

 
 

3. Materials and Methodology 
This section describes the federated learning framework used to detect diabetic retinopathy and diabetic 

macular edema from a set of images of normal, diabetic retinopathy or diabetic macular edema coloured 

fundus images. The section also includes the data selection methodology, preprocessing methods, the 

architecture of the neural network model, and training procedures. 

 

3.1 Dataset Description 
The dataset used for detecting diabetic retinopathy and diabetic macular edema has been procured and 

assembled from two datasets. These datasets are available publicly on the Kaggle repository for machine 

learning enthusiasts. The Kaggle repository contains many datasets on ocular diseases from which two have 

been taken. The first one is the Indian Diabetic Retinopathy dataset which contains coloured fundus images 

of patients’ left and right eyes. These images are labelled into three types: diabetic retinopathy, diabetic 

macular edema and normal. The second is the Aptos blindness detection 2019 dataset from which samples 

of diabetic retinopathy and normal images of ocular diseases have been taken and pooled. The dataset thus 

formed contains a total of 838 images, as shown in Table 2 below. 278 images are of the diabetic macular 

edema class and 280 images each of diabetic retinopathy and normal class. The images shown in Figure 3 

are coloured fundus images from the dataset. Referring to Figure 3 the first image shows diabetic macular 

edema and the second image is of an eye with diabetic retinopathy. The last image in Figure 3 is of a normal 

eye. 

 

    
 

Figure 3. The example images from the dataset used and the classes from which the image belongs are Diabetic 

Macular Edema, Diabetic Retinopathy and Normal respectively. 
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Table 2. The dataset used in the implementation of the federated learning model. 
 

Class number Class name Images 

Class 0 Diabetic Macular Edema 278 

Class 1 Diabetic Retinopathy 280 

Class 2 Normal 280 

 
 

 

3.2 Methodology 
The collaborative federated learning framework implemented is an iterative process for building a robust 

global model (central model). The collaboration is handled by the central server and the clients contribute 

to the central model by building local models. The participating clients hold the local data securely and do 

not share any of their data. The server sends the initial weights and parameters of the global model to the 

participating clients. The clients then with the global weights and parameters apply training on their data 

locally to update the weights at their location. The models thus formed at the client end are known as the 

local client models. After several epochs, the client models stabilise and after stabilising the client 

communicates the local model updates to the central server. At the server end when the client models in the 

form of gradients are received from clients, the local model weights are incorporated in the global model 

weights to improve the global model. The server aggregates the weights and gradients according to the 

aggregation strategy implemented, such as FedAvg, FedProx, MOON, etc. After the aggregation step, the 

updated global model weights are again sent to the clients to build new client models with updated weights. 

The process is iterated several times until the model converges or stops showing any improvements. These 

iterations are known as the communication rounds. The flowchart in Figure 4 depicts this iterative process 

of federated learning. 

 

 
 

Figure 4. Flowchart for the federated learning methodology. 

 

 

The complete process of a federated learning scenario involves basic 4 steps: 

 

a) Dataset preparation: After procuring the dataset from the open-source repositories the data needs to be 

processed before the actual learning takes place. In this step, various transformations are applied to the raw 

data. For detecting diabetic macular edema and diabetic retinopathy, the dataset is subjected to 

augmentation techniques to improve the learning process. The augmentation techniques applied are 
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cropping, flipping and rotation. The basic purpose is to enhance the data in terms of quantity and diversity 

of the data to improve model generalisation. After the dataset is augmented the data needs to be divided 

into training and testing subsets for each client, according to the number of clients (Ng et al., 2021). 

 

b) Server learning: The next step is to initialise the central model at the server and obtain weights. In the 

proposed work MobileNetV2 architecture is used as the backbone model of the FL system. The server uses 

pre-trained MobileNetV2 weights to initialise the global model and sends them to the clients for further 

steps. The server is responsible for the practical implementation of the distributed FL framework. The roles 

and responsibilities of the server include selecting the aggregation technique, the communication strategy, 

and ensuring communication privacy. 

 

c) Client learning: The term client refers to the local sites which participate in the collaborative learning 

process. The devices at the client end store the actual local data on which the learning is applied. In practical 

scenarios, these are real-world datasets of different organisations where machine learning is applied to 

design automated systems which assist medical practitioners. The clients, after receiving the weights and 

parameters of the central model initialise their local models by using the same parameters and weights. The 

local models are then trained over the local dataset and update the gradients according to their datasets. 

This model updates or gradients are then transported to the server (Banabilah et al., 2022; ur Rehman and 

Gaber, 2021). 

 

d) Aggregation: Aggregation is the process of integrating the client models into the central model. The 

server is responsible for the selection of clients and the aggregation technique implemented. The server 

shall aggregate the weights received from the various clients based on the aggregation strategy chosen and 

over a series of communication rounds and the server aggregation central model converges. At the server 

end, it is also decided which clients will participate in the next communication round and which client 

model should be aggregated in the current round, again for obtaining the optimal central model. At the 

server policies for selecting the participating clients and the aggregations are framed and implemented for 

improving the efficacy of the central model (Qi et al., 2024). 

 

In this research work, a federated learning framework with 2, 3 and 4 clients, has been implemented for the 

detection of two ocular diseases diabetic macular edema and diabetic retinopathy. The root cause of both 

these diseases is diabetic mellitus commonly known as diabetes. These diseases affect about one-fourth of 

the people suffering from diabetes for a prolonged period. Both these diseases can cause complete vision 

loss but they have some key differentiating factors. Diabetic retinopathy is a complication caused in the 

retina of the eye and diabetic macular edema affects the macula of the eyes. The detection system presented 

here is based on a federated learning environment with horizontal federated learning.  

 

Federated learning is classified into three types of learning based on the feature space and the sample space. 

If the feature space is different and the sample space is the same, it is called horizontal federated learning. 

At times, horizontal federated learning is also referred to as homogeneous federated learning and sample-

based federated learning. In horizontal federated learning, the dataset and the models are distributed on 

different nodes while keeping the privacy of the data in mind. The steps involved in a federated learning 

framework are given in Figure 5 below (Li et al., 2020; Zhang et al., 2020). 

 

There are numerous benefits of using a horizontal federated learning framework. First and foremost is 

enhanced data privacy due to minimal exposure to sensitive information, which is a characteristic feature 

of any federated learning framework. Thus, reducing the risk of data breaches. In addition, it adheres to 

local privacy regulations of various participating organisations since the pooling of data is not required. 
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Next, is the improvement in model proficiency and model generalizability since the training is done on 

diverse datasets while preserving the privacy of the dataset. Apart from this, it saves bandwidth since data 

transfer is limited to the gradients and not the complete dataset. It also helps in greater scalability by 

supporting personalization on large datasets. FL framework lowers the communication cost and the 

computational overhead compared to traditional centralised learning. Lastly, it supports training on non-

identical and independently distributed datasets across multiple parties, applicable in real-life scenarios 

(Kairouz et al., 2021; Shanmugarasa et al., 2023). 

 

 
 

Figure 5. The steps involved in a horizontal federated learning framework. 

 

 

3.3 Proposed Methodology 
The work presented in this article is based on the implementation of horizontal federated learning with 

MobileNetV2 as the backbone deep learning model. The model uses Adam optimizer for the deep learning 

model at the foundation since it adapts the learning rate according to the learning parameters and is suitable 

for large datasets as well. The parameters used in the simulation of the framework are given in a tabular 

form in Table 3 below. Image augmentation techniques are applied on the dataset to enhance the dataset 

and improve model efficiency and generalizability. The augmentation is done using random rotations, 

horizontal flipping, and vertical flipping. 

 

The aggregation strategy used in the work is a simple averaging scheme called the FedAvg. The 

performance metrics used to assess the model are prediction accuracy, class-wise accuracy, precision, recall 

and F1-score. These metrics are calculated after every communication round till the completion of 30 

rounds. The test-train ratio of the data is taken as 80:20 for the implementation. The batch size is carefully 

selected to be 32 and the initial learning rate is kept at 0.001. 
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Table 3. Hyper-parameters used in the implementation of the federated learning model. 
 

Parameter Value 

Model architecture MobileNet V2 

Clients 2, 3, 4 

Learning rate 0.001 

Optimizer Adam 

Batch size 32 

Epochs 5 (per round) 

Communication rounds  30 

Aggregation strategy FedAvg 

Augmentation techniques Yes, Random rotation, Horizontal flipping, Vertical flipping and Normalisation 

Train test ratio 80:20 

Performance metrics Accuracy, Class wise - Accuracy, Precision, Recall and F1-score 

 

 

The diagram shown in Figure 6, illustrates the process of a federated learning system that trains deep 

learning models across multiple clients without sharing any data directly. The flowchart begins by working 

on the dataset used for detecting ocular diseases. The data which consists of coloured fundus images are 

first collected from different sources and then good-quality images in terms of colour contrast and 

brightness, are manually selected for the federated learning process. The next step is to preprocess the 

selected data, augmentation is done by applying random rotations, horizontal flipping, and vertical flipping. 

The image dataset thus formed is now ready for the federated deep learning process. Next, the data is split 

into training and testing subsets and then divided for various clients. The test is to train ratio chosen in the 

proposed work is 80:20. In the proposed work, the clients are varied with three different implementations 

of 2, 3 and 4 clients. The client data is assigned using the data loader function with 2, 3 and 4 clients 

respectively. Thereafter, the main process of federated deep learning starts. The server is initialised with 

the pre-trained model weights of MobileNet V2. MobileNetV2 is a lightweight deep neural network 

architecture. The pre-trained model weights are represented by 𝑊𝑔
0 and global model weights are 

represented by 𝑊𝑔
𝑡 as shown in Algorithm 1. The clients then train on the local dataset 𝐷𝑖, to obtain the 

updated weights 𝑊𝑙,𝑖
𝑡+1 and then clients send their optimised local model weights 𝑊𝑙,𝑖

𝑡+1 and the size of their 

dataset 𝑛𝑖 back to the central server. After receiving these updated client weights, the central server uses a 

FedAvg aggregator with a function 
1

𝑁
𝛴ⅈ=1

𝐾 𝑛𝑖𝑊𝑙,ⅈ
𝑡+1 to integrate the client weights. The total number of data 

points across all clients is N=𝛴ⅈ=1
𝐾 𝑛𝑖 where K is the number of clients participating in the training round. 

The updated global weights after the communication round are denoted as 𝑊𝑔
𝑡+1. These updated global 

model weights are then communicated to the clients for local training. The clients again train on local data 

𝐷𝑖 form local models which are again sent to the server for aggregation. The process is repeated for many 

communication rounds until the global model stabilises.  

 

The architectural diagram of the federated learning framework with 2, 3 and 4 clients has been depicted in 

Figure 7. The diagram shows that the clients have their own datasets and computing resources. They 

perform all computations locally and train models independently of each other without sharing any data or 

weights. The server acts as a central coordinator, aggregates the updates received from the clients and 

computes a new global model in each communication round. The server also shoulders the responsibility 

for initiating the training process by distributing the global model. The aggregator component of the server 

is responsible for applying the aggregation strategy, in the proposed work FedAvg algorithm has been 

chosen to average the model updates received from the clients. The server sends the initial global model 

parameters 𝑊𝑔
𝑡 to all clients which is shown with black lines in the diagram. Each client receives the same 

model parameters at the beginning of training and modifies these weights by training on their local dataset 

𝐷𝑖 to update the weights 𝑊𝑙,𝑖
𝑡+1. These updated weights are sent by the clients to the server as shown with 
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red lines. The aggregator module at the server with the FedAvg algorithm then averages these weights to 

form an updated global model with weights 𝑊𝑙,𝑖
𝑡+1. These updated weights are again sent to clients, depicted 

by blue lines. These steps keep on iterating until the exit condition becomes true. 

 

 
 

Figure 6. Work flow of horizontal federated learning framework used in the proposed work for detecting ocular 

diseases. 
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Figure 7. The architectural design of proposed horizontal federated learning framework for ocular disease detection. 

 

 

The process of horizontal federated learning involves various steps which are iterative and these are shown 

in algorithm 1. The number of communication rounds is set to 30 for the current implementation. 

 

Algorithm 1: Federated Learning Process for ocular disease-detection 

(a) Initialization: The central server initialises the Global Model with pre-trained weights 𝑊𝑔
0.  

𝑊𝑔
0 ← Initialize 

(b) Distribution Phase: The central server distributes the Global Model's weights 𝑊𝑔
𝑡 to selected client 

devices. Distribute (𝑊𝑔
𝑡) → Clients 

(c) Local Training Phase: For each client device i in parallel, do:  
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(i) Receive the Global Model's weights 𝑊𝑔
𝑡.  

(ii)Perform local training using the client's local dataset 𝐷𝑖 with the received weights to obtain the 

updated weights 𝑊𝑙,𝑖
𝑡+1. 𝑊𝑙,𝑖

𝑡+11 ← Local Train (𝐷𝑖,𝑊𝑔
𝑡) 

(d) Aggregation Phase (FedAvg): 

(i) Each client sends their optimised local model weights 𝑊𝑙,𝑖
𝑡+1 and the size of their dataset 𝑛𝑖 back to 

the central server.  Send (𝑊𝑙,𝑖
𝑡+1, 𝑛𝑖) → Server 

(ii)The central server aggregates these updates using the Federated Averaging algorithm, where the 

updates are weighted by the number of data points from each client. 

𝑊𝑔
𝑡+1← 

1

𝑁
𝛴ⅈ=1

𝐾 𝑛𝑖𝑊𝑙,ⅈ
𝑡+1 

where, N=𝛴ⅈ=1
𝐾 𝑛𝑖 is the total number of data points across all clients, and K is the number of clients 

participating in the training round. 

i.  Update global model: The central server updates the Global Model with the aggregated weights. 𝑊𝑔
𝑡+1is 

already updated using the FedAvg aggregation formula. 

ii. Iteration: Repeat steps 2 to 5 iteratively until the Global Model achieves the desired levels of prediction 

accuracy and precision, and shows no further improvement.  

iii.  Conclusion: Finalize the Global Model 𝑊𝑔
fⅈnal as the output of the federated learning process.  

iv.  Exit. 

 

4. Results and Discussion 
This section analyses the results obtained by following the above-mentioned methodology for 

implementing a federated learning framework. The results have been arranged into 2 subsections: clientwise 

results and comparative results. In the clientwise results, the graphs of metrics have been organised first for 

2 clients then for 3 clients and at the end for 4 clients. In comparative results, the graphs have been shown 

to compare the metrics for all three scenarios of 2, 3 and 4 clients. 

 

 
 

Figure 8. Accuracy score for 2 clients in 30 communication rounds. 
 
 

The Figure 8 shows the accuracy score achieved in 30 communication rounds for a 2-client scenario of the 

federated learning framework implemented in the work. The accuracy scores of the federated learning 

model show that the model performs well, the lowest accuracy is in the 9th communication round with 80% 

accuracy and the highest accuracy of 96% is achieved in the 25th communication round. In several 

communication rounds peaks with 95% accuracy which is the second-highest, are seen, 8, 17 and 21st. 

These are suggestive of the optimal performance of the model. The graph plotted in Figure 9 is quite like 
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the accuracy graph. The lowest performance in terms of the precision score of the model is at the 9th 

communication round with a 0.84 precision score. The best score of 0.96 is in the 8th, 10th and 25th 

communication rounds, followed by a precision score of .95 in the 6th, 17th and 21st rounds. Referring to 

Figure 10 the values plotted in the graph are of the recall score obtained in the 30 communication rounds. 

The performance in case of recall score is lowest at 0.80 in the 9th communication round and the best recall 

score is at the 25th communication round with 0.96 magnitude. The second-highest recall score of 0.95 is 

in 8th, 10th and 21st communication round. The peaks at these rounds are indicative of a consistently good 

performance of the model.  

 

 
 

Figure 9. Precision score for 2 clients in 30 communication rounds. 
 
 

 

 

 
 

Figure 10. Recall score for 2 clients in 30 communication rounds. 
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Figure 11. F1-Score for 2 clients in 30 communication rounds. 

 

 

 

 
 

Figure 12. Class-wise accuracy for 2 clients in 30 communication rounds. 

 

 

The F1-score metric depicted in Figure 11 for the 2-client privacy-preserving framework; follows the same 

trend as in the case of the accuracy and recall score. The model performance in terms of F1-score is the 

lowest in the 9th communication round with a magnitude of 0.79 and the highest is at the 25th communication 

round with a 0.96 value. The second highest values of 0.95 for the f1-score are obtained in the 8th, 10th, 17th 

and 21st communication rounds. The graph for class-wise accuracy plotted in Figure 12 shows that the 
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model performs well for both the DME and DR classes. The best performance in the case of DME is in the 

11th round with 98% accuracy followed by 97% in the 19th round and the lowest performance is in the 18th 

round with an accuracy of 75%. While the model performs excellently for the DR class with 100% accuracy 

in the 2, 4, 6, 7, 8, 9, 10, 12, 14, 23, 25, 30 communication rounds, the worst performance of 73% is shown 

in the 18th communication round. 

 

 
 

Figure 13. Accuracy score for 3 clients in 30 communication rounds. 

 

 

 

 
 

Figure 14. Precision score for 3 clients in 30 communication rounds. 
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The performance metrics of the federated framework with three clients are shown in the subsequent graphs. 

The graph for accuracy in Figure 13 shows that the overall efficiency of the model is quite good with an 

accuracy score of 96% achieved in the 23rd communication round, which is followed by 94% in the 6th 

communication round. After the 23rd round, the accuracy starts to decrease. The lowest efficacy of the 

model is at the 16th round with an accuracy of 84%. The graph for the precision score is given in Figure 

14, the results are much like the accuracy score. The precision score is at the highest peak in the 23rd 

communication round with a magnitude of 0.96. The second highest is 0.95 in the 6th and 15th rounds. The 

lowest score of 0.88 is attained in the 14th, 19th and 21st rounds. Considering, the precision score range is 

between 0.88 to 0.96 which is a good range. In the next graph recall score obtained over the 30 

communication rounds is given as shown in Figure 15. The recall score value of 0.96 is highest in the 23rd 

communication round, which is preceded by 0.94 value in the 6th, 15th and 30th round. The recall score value 

is the lowest in the 16th communication round with a magnitude of 0.84.  

 

 

 
 

Figure 15. Recall score for 3 clients in 30 communication rounds. 

 

 

 

Moving to the next performance metric for the 3-client federated learning framework, referring to the graph 

of the f1-score given in Figure 16, the highest score is obtained again at the 23rd round with 0.96 

magnitudes and the second highest value of 0.94 is in the 2, 6, 9, 15, 30 communication rounds. The lowest 

magnitude is obtained in the 16th communication round. The f1-score shows not much deviation and 

obtains almost similar throughout. The last metric used for the analysis of the model performance is the 

class-wise accuracy, depicted in Figure 17. There is some variation in the accuracy scored for the DME 

class with the lowest score of 78% in the 27th and 28th communication round and the highest of 98% in 

the 2nd and 9th communication round. The second highest accuracy of 96% is scored in the 11th and 24th 

communication rounds. 
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Figure 16. F1-Score for 3 clients in 30 communication rounds. 

 

 

 

 
 

Figure 17. Class-wise accuracy for 3 clients in 30 communication rounds. 
 

 

Analysing the graphs for the key performance indicators for 4 clients in the privacy-preserving collaborative 

framework the first indicator is the average accuracy. The average accuracy shown in Figure 18, reveals 

that the model efficacy is the highest in communication rounds 18, 25 and 29 with 93%; the second highest 

is 92% in communication rounds 3, 4 and 10. The lowest value is in the communication round number 21 

with a magnitude of approximately 80%. The precision score values plotted in the shown in Figure 19 

depict similar values obtained. The highest value was 0.94 in the 18th and 25th communication rounds and 

the second highest value of 0.93 in the 4th and the 10th communication rounds. The lowest value is 0.85 in 

the 21st and the 30th communication round.  
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Figure 18. Accuracy score for 4 clients in 30 communication rounds. 
 

 
 

 
 

Figure 19. Precision score for 4 clients in 30 communication rounds. 

 

 

The graph in Figure 20 (shown below) is for the recall score performance indicator for 4-clients in a 

collaborative federated learning scenario. It reveals that again the lowest score which is 0.80 is in the 21st 

communication round and the highest score of 0.93 is in communication rounds 18, 25, 29. The second 

highest performance of 0.92 for recall score is in the communication rounds 3, 4, 10. 

 



Gulati et al.: Privacy-Preserving and Collaborative Federated Learning Model for the … 
 

 

239 | Vol. 10, No. 1, 2025 

 
 

Figure 20. Recall score for 4 clients in 30 communication rounds. 
 

 
 

 
 

Figure 21. F1-Score for 4 clients in 30 communication rounds. 
 
 

The F1-score metric values for 4 clients in the collaborative federated framework, over the 30 

communication rounds are shown in Figure 21. Similarly, in the other metrics for the 4-client scenario the 

lowest performance for the F1-score is in the 21st communication round and the highest value of 0.94 for 

the f1-score is in the communication round number 18. However, the second highest f1-score value of 0.93 

is in rounds number 25 and 29 which were in the highest-performing rounds earlier. The last metric is class-

wise accuracy which is shown in Figure 22. The graph infers that the efficacy of identifying the DME class 

images is better in comparison to the DR class. The best performance of 100% is shown in the 27th and 29th 

communication rounds, followed by 97.9% (98% approx.) shown in the 9, 4 and 23 communication rounds. 

The lowest performance is 81% for the DME class and is shown in 8 and 12 communication rounds. On 
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the contrary, the lowest performance of 57% for the DR class is shown in communication round 28 and the 

highest performance of 97% is shown in the 5th and 14th communication round. The second-highest accuracy 

score of 95% for the DR class is shown in the 7, 9, 25, and 26 rounds. 

 

 

 
 

Figure 22. Class-wise accuracy for 2 clients in 30 communication rounds. 

 

 

The second part of the result analysis is the clientwise comparison of the performance metrics average 

accuracy, precision, recall, f1-score, and class-wise accuracy. The first graph in Figure 23 compares the 

average accuracy scores for the federated learning scenario with 2, 3 and 4 clients. The best scores of 

prediction accuracies are present in the 2 and 3 client scenarios in comparison to the scenario with 4 clients. 

Even though the score is lower for 4 clients yet if we see the curve there is more stability in the range of 

accuracies, this is indicative of better training that the model is quite stable. On the contrary, there is a lot 

of variation in the curves for 2 clients. In the 3-client implementation, the values lie in between that of 2-

client and 4-client implementations. 

 

The precision score graphs shown in Figure 24 depict a comparison between three federated learning 

scenarios where the number of clients is 2, 3 and 4. The values are shown across 30 communication rounds. 

It is quite evident from the graphs that the scores of 2 clients show better peaks but also reach the minimum 

scores in all three scenarios, which is indicative of the variability and less stability of the model in terms of 

precision score. The 4-client training is better in terms of stability since the scores do not vary as much in 

comparison to the 2-client scenario. However, if see individual scores then the scores improve in 3 client 

scenarios and the convergence is faster with higher scores reaching in early communication rounds. Also 

considering the variability factor, the scores don’t vary as much in 3 clients as in 2 clients. 
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Figure 23. Accuracy comparison for 2,3,4 clients in 30 communication rounds. 

 

 

 
 

Figure 24. Precision comparison for 2, 3, 4 clients in 30 communication rounds. 
 

 

The recall score comparison of 2, 3 and 4 clients for a privacy-preserving federated learning paradigm, is 

graphically drawn in Figure 25 below. In any model, if the recall score is high, it suggests that the model 

effectively captures all the relevant instances whereas a low recall score is suggestive of significant misses 

of the relevant instances. The graphical comparison provides insights into the recall value comparison, these 

are highest for the 2-client implementations and the lowest for the 4-client implementations. The values 

although are better for 2 and 3 clients but the 4 client implementations witness more peaks and lesser dips 

which is indicative of better learning and stability of the model. 
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Figure 25. Recall comparison for 2, 3, 4 clients in 30 communication rounds. 
 

 

The F1-score is one of the important decisive indicators of any machine learning model since it is the 

harmonic mean of the recall and precision scores. It shows the balance between the two metrics. The graph 

for F1-score score comparison across 30 communication rounds is given in Figure 26 below. The 

inferences which are evident from the graph are that the F1-score values for 2 clients are the highest and 

the stability with more peaks and fewer dips is seen in the second half of the communication rounds. The 

3-client implementation although shows more peaks in the second half of communication rounds but 

considering the stability factor the results are more stable in the first half of the communication rounds with 

very few dips. However, there is more balance in the first half of communication rounds in the 4-client 

scenario and overall, there is less variation in the scores in the 4-client scenario. 

 

 
 

Figure 26. F1-Score comparison for 2, 3, 4 clients in 30 communication rounds. 
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Figure 27. Accuracy comparison of DME class for 2, 3, 4 clients in 30 communication rounds. 

 

The next metric is the class-wise accuracy for the two classes DME and DR. For a comparative analysis of 

the class-wise accuracy of 2, 3 and 4 client implementation Figures 27 and 28 can be referred to. The class-

wise accuracy graph for DME class shows that the highest accuracy for DME class is obtained in 4-client 

implementation at 27th and 29th communication round and the second highest accuracy is in 3-client 

implementation at 2nd and 9th communication round in the 2-client implementation at the 11th 

communication round. The class-wise accuracy comparison for the DR class reveals that the accuracy is 

100% in many communication rounds in 2-client implementation and in 3-client 100% is achieved at the 

7th and 21st communication rounds. However, the 4-client implementation doesn’t attain 100% accuracy 

and goes up to 98% and the overall scores are much lesser. Therefore, for DR class 2-client implementation 

performs the best and for DME class 4-client implementation performs the best. 

 

 
 

Figure 28. Accuracy comparison of DME class for 2, 3, 4 clients in 30 communication rounds. 
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Table 4 presents the performance metrics of the federated learning model with varying numbers of clients. 

The model demonstrates high and consistent accuracy, precision, recall, and F1 scores across 2 and 3 clients, 

with a slight decrease observed with 4 client implementations. The results indicate the robustness of the 

model in detecting ocular diseases while preserving data privacy. 
 

Table 4. Summary of the results obtained from implementing the federated learning model. 
 

Model used Nature of data Clients Accuracy 

(in %) 

Precision 

(in %) 

Recall 

(in %) 

F1-score 

(in %) 

Federated Learning with MobileNetV2 IID 

2 96 96 96 96 

3 96 96 96 96 

4 93 94 93 94 

 

A comparison of the average accuracy obtained in the proposed work with existing work is depicted in 

Figure 29. The work proposed in the article shows superior performance than the other existing works. 

This is due to the different learning strategies, augmentation and optimisation techniques that helped in 

achieving a better accuracy score.  

 

 
 

Figure 29. Average accuracy comparison of proposed work with the existing related work. 

 

 

The proposed federated learning model with MobileNetV2 architecture performs better than other existing 

works. This confirms the robustness and efficacy of the model and highlights the potential of the approach 

to significantly enhance the predictive capabilities in ocular disease detection while ensuring data privacy 

and reducing computational overhead. The adoption of a collaborative federated framework can transform 

the way to approach data privacy in machine learning, particularly in sensitive healthcare data. 

 

5. Conclusion 
The article explains why privacy is important and how federated learning preserves the privacy of sensitive 

healthcare data. Federated learning allows collaboratively trained models to be built with multiple 

participating clients. The data of these clients is localised and never leaves the host location. Thus, ensuring 

privacy while enhancing the efficiency of training. Federated learning is especially useful in healthcare 
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scenarios where privacy regulations of organisations limit data sharing. This is due to the underlying 

framework of federated learning which allows collaborative training in a distributed manner without the 

need of creating data banks. This article evaluates the results of implementing a federated learning 

framework for detecting diabetic retinopathy and diabetic macular edema using a MobileNetV2 architecture 

as the base deep learning model with 2, 3 and 4 clients. For each of the three scenarios, metrics such as 

accuracy, precision, recall, F1-score, and class-wise accuracy were analysed over 30 communication 

rounds. For the 2-client scenario, the model performed exceptionally well with prediction accuracy reaching 

96% and occasionally dropping. Precision and recall scores followed similar trends, with optimal 

performance in multiple rounds. In the 3-client scenario, the model maintained high accuracy, peaking at 

96% and showing stability despite slight decreases after the 23rd round. Precision and recall scores also 

exhibited consistent performance with minor variations. In the 4-client scenario, the average accuracy 

stayed high but showed more fluctuations, with peaks at 93% and dips to around 80%. Precision and recall 

scores followed similar patterns, with some variability but overall stable performance. When different client 

setups are compared, higher accuracy was achieved at the 2-client scenario but it also shows more 

variability in prediction accuracy. The 3-client setup exhibited a balance between accuracy and stability, 

while the 4-client setup demonstrated stable but slightly lower performance. Additionally, class-wise 

accuracy varied, with the 2-client setup performing best for the DR class and the 4-client setup performing 

best for the DME class. Overall, while the 2-client setup showed higher individual metrics, the 3-client 

setup provided a good balance of performance and stability, making it a favourable option. 

 

In the future this research could involve expanding the federated learning framework to include more 

diverse and larger datasets, potentially incorporating non-IID data to further evaluate the robustness and 

scalability of the model. Further, differential privacy techniques can also be investigated to strengthen data 

security and compliance with privacy regulations. 
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