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Abstract

EJaya enhances the global exploration capability of the Jaya algorithm but still suffers from drawbacks such as local stagnation
and slow convergence due to its single learning strategy and weak population maintenance. To address these issues, this paper
proposes an adaptive population-learning based improved variant, termed “PLEJaya.” In the PLEJaya algorithm, first an adaptive
learning method improves the EJaya performance by refining the initial population and then a linear reduction method diminishes
the worthless members from the population and thus improves the overall algorithm’s performance. The performance of PLEJaya
has been examined on 53 benchmark functions, including 23 standard and 30 CEC 2017 test suite’s benchmark functions, and
compared with eight established meta-heuristic algorithms such as TLBO, EJAYA, JAYA, PSO, GA, AOA, GWO, and WOA.
Additionally, the practicality of PLEJaya has also been confirmed on 4 constrained engineering design applications. The
experimental results confirm that the proposed PLEJaya solution significantly outperforms its competitors in terms of accuracy as
well as convergence rate and thus provides a viable alternative to current optimization techniques.

Keywords- Optimization, Meta-heuristics, Engineering optimization, Jaya, EJaya, Constrained.

1. Introduction

Optimization involves finding the optimal value of decision variables to address a specific problem, a
concept widely applicable across diverse fields and numerous applications (Talbi, 2009). There are a lot of
tough optimization problems in the real world where it is very hard to find the global optimal answer.
Because of this, many algorithms have been created to deal with these kinds of problems. These algorithms
can be broken down into two categories: exact and approximate approaches.

Exact methods guarantee the best solution within a reasonable timeframe, except in cases classified as NP-
Hard problems where achieving a polynomial time solution is infeasible, resulting in significant
computational demands. As a result, approximate methods have gotten more attention over the last 30 years,
with the main goal of finding best solutions within acceptable timeframes.

A novel class of approximate algorithms, referred to as metaheuristics (Glover, 1986), has achieved

importance in recent periods due to their simplicity, ease of implementation, and capability to navigate
away from local optima, making them particularly suited for derivative-free problems. The two most
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defining features of metaheuristics are their ability to exploit and explore. An algorithm's exploration
capability is its capacity to find new search regions. The process of discovering the optimal solution in
promising regions of the solution space is called exploitation. An effective metaheuristic strikes a balance
between exploring and exploiting optimal results.

A vast variety of metaheuristics may be broken down into four main types, which are as follows:

i) Swarm intelligence techniques: The algorithms used in Swarm Intelligence are based on principles found

in nature, namely in the behaviour of social insects and animals. Swarm intelligence is a type of artificial

intelligence whereby each individual member of a swarm uses their own distinct personality and set of
skills yet; by working together, they can address more difficult problems. This notion gave rise to a number

of algorithms, each of which was named after a different natural phenomenon that served as its source of
inspiration. As an illustration, Particle Swarm Optimization (PSO) algorithm, which was initially presented

by Kennedy and Eberhart (1995), is designed to simulate the behaviour of groups of birds and fish who are

seeking for food. Kevin M. Passino invented Bacterial Foraging Optimization (BFO) (“Biomimicry of
Bacterial Foraging for Distributed Optimization and Control”) (Passino, 2002), emulates the chemotactic

behavior of bacteria like E. coli navigating their environment to optimize food search. Karaboga et al. (2014)
developed the Artificial Bee Colony (ABC) algorithm in 2005, which simulates how honey bees use their

food resources in a collaborative foraging approach. The Cuckoo Search (CS) method was developed by

Yang and Deb (2009) and is based on the cuckoos' tendency to parasitise their brood. The Bat Algorithm

(BA), developed by Yang (2010) is based on the echolocation behavior of bats when hunting for prey and

commuting through a dark environment. The Whale Optimization Algorithm (WOA), is a newly developed

optimization method inspired by the bubble-net hunting strategies of Humpback whales proposed by

Mirjalili and Lewis (2016). Mirjalili et al. (2014) also developed the Grey Wolf Optimizer (GWO), inspired

by the social hierarchy and leadership-based hunting strategy of grey wolves. Based on the opportunistic

hunting behavior of red foxes, which is characterized by flexibility and resourcefulness, Potap and Wozniak

(2021) introduced the Red Fox Optimization (RFO). Most recently, focussing on their coordination and

communication in hunting prey, Chopra and Ansari (2022) Golden Jackal Optimization (GJO) algorithm,

replicates the cooperative hunting strategies of golden jackals. These algorithms show how research on

animal behaviour could inspire creative answers for challenging optimization challenges.

ii) Evolutionary techniques: Techniques within the domain of evolution are techniques that derive their
inspiration from biological processes. These techniques are referred to as evolutionary techniques.
Crossover and mutation are used in evolutionary algorithms to generate new solutions and eliminate bad
ones to improve fitness. Over the period of their development, these methods have been significantly
influenced by the contributions of a wide range of scholars. Evolutionary Programming (“Artificial
Intelligence through Simulated Evolution,” 2009), which replicates the evolution of behavioural strategies,
was introduced by Fogel (1998). Evolutionary Programming is notably focused on finite-state machines.
Genetics and natural selection served as inspiration for development of Genetic Algorithms (GA), which
included mechanisms such as mutation, selection, and crossover. Differential Evolution (DE), was created
by Storn and Price (1997). It focusses on differences between groups and mutations and crossovers. During
the same year, Koza (1994) proposed Genetic Programming (GP), which focuses on the evolution of
computer programs using genetic operators. More lately, Kiran (2015) introduced the Tree Seed Algorithm
(TSA), a model that replicates the seed distribution and growth in trees. It emphasises diversity and
exploration in evolution.

iii) Physics-based techniques: The fundamental principles that govern natural events serve as the
foundation for physics-based methods. The metallurgical annealing process was the inspiration for the 1996
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introduction of Simulated Annealing (SA) (Kirkpatrick et al., 1983). Rashedi et al. (2009) developed the
Gravitational Search Algorithm (GSA) based on Newton's law of gravity. Hatamlou (2013) used the idea
of black holes from astronomy to develop the Black Hole Algorithm (BHA). Hashim et al. (2021) developed
the Archimedes Optimization Algorithm (AOA), based on Archimedes' principle.

iv) Human-related techniques draw inspiration from human behaviour: Individuals engage in both
physical activities affecting performance and non-physical activities like cognitive processes and
behaviour. Teaching-Learning-Based Optimization (TLBO) was proposed by Rao et al. (2011) and is based
on classroom interactions. Shi (2011) proposed Brain Storm Optimization (BSO), modeled after human
brainstorming processes, focusing on idea generation and evolution. Inspired by the features that humans
utilize both logical and illogical behaviors for decision-making, Ahmadi (2017) introduced Human
Behavior-Based Optimization (HBBO) inspired from cognitive processes, particularly those used by human
beings to solve problems and retrieve memory-based information and decision-making strategies,
Mousavirad and Ebrahimpour-Komleh (2017) proposed Human Mental Search (HMS) framework in 2017.
Teamwork Optimization (TO) was introduced by Dehghani and Trojovsky (2021) to model the
collaboration strategies used by humans during teamwork. In 2020, three researchers Askari et al. (2020)
introduced the Political Optimizer (PO), they developed it based on political strategies and political
behavior like forming alliances or competing.

The No-Free-Lunch (NFL) theorem asserts that no singular method is capable of resolving all optimization
issues. This theory prompts several scholars to dedicate their efforts to developing new metaheuristics
algorithm and improving existing techniques through parametric tuning. Researcher are putting a lot of
effort into improving the existing algorithms rather than developing entirely new ones. It is possible to
achieve improved performance and efficiency through the implementation of enhancements such as
adaptive mechanisms, the fine-tuning of parameters, and the incorporation of intelligent techniques. Better
accuracy, speed, and scalability may be achieved by using existing algorithms in this way and fixing their
individual weaknesses.

In this paper, an adaptive population learning based improved variant of EJaya named “PLEJaya” has been
proposed. EJaya is an enhanced version of Jaya algorithm proposed by Zhang et al. (2021) which improves
global exploration of the Jaya algorithm. However, due to its single-learning approach and inadequate
population maintenance, it also has several disadvantages, including slow convergence rates and stagnation
at local minima. To enhance the exploration and exploitation capability of EJaya algorithm the Adaptive
Enhancement technique is used. The given strategy is to let large changes in the initial stages to cover a
large search area and progressively reduce the step size in following iterations to fine-tune the results. The
Linear Population Reduction (LPR) approach is used to enhance convergence speed. This step seeks to
decrease the population size, helping the algorithm to focus on the remaining optimal solutions as it
converges. This population reduction approach uses greater computational power to locate better optimum
solutions, and the search improves after population reduction. This combination allows us to enhance
performance on difficult optimization problems, addressing challenges that EJaya algorithms may struggle
with.

The performance of the proposed method will be assessed on various benchmark functions and real-world
optimization issues, and compared to existing algorithms such as TLBO, EJAYA, Jaya, PSO, GA, AOA,
GWO, and WOA. It will be shown that this approach works well at solving difficult optimization problems,
which means it could be used in many other areas as well.
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The portions of the paper are written as follows: A review of EJAYA is presented in Section 2, followed
by an explanation of the recommended methodologies in Section 3, numerical experiments and
comparisons in Section 4, and the conclusion of the paper in Section 5.

2. EJAYA Algorithm

The JAY A algorithm (Rao, 2016) is enhanced by the incorporation of a more sophisticated exploitation and
exploration mechanism. In addition to the current best and worst solutions, this improvement is
accomplished by taking into account the population's average. The algorithm's goal is to establish a
balanced search by incorporating these factors, which helps to prevent premature convergence and
improves the ability to escape local optima.

2.1 Key Features and Steps

i) Initialization: Population Size (), upper bound (u), lower bound (/), Number of Variables (D), Current
Evaluations (gen), and Maximum Evaluations (max Gen) are initialized. The initial population (X) and

historical population (X”“) are randomly generated within the variable limits using Equation (1).
x;=1,+(,~1,)*rand, wherei=1,2,..,.N & j=12,..,D (1)

ii) Population evaluation: The fitness of each individual in the population is calculated, and the current
best solution Xz, is identified.

iii) Update current evaluations: gen is updated gen = gen+ N .

iv) Stopping condition: If gen exceeds max Gen , the algorithm terminates, returning Xz.... Otherwise, the
algorithm proceeds.

v) Local exploitation and global exploration: The chosen probability P is generated. If Pyesecr 1S greater
than 0.5, the method uses local exploitation strategy otherwise, global exploration strategy is performed.

a) Local exploitation:
Calculate Mean Solution (M):

1 N
M:NZIXJ (2)
Jj=

where, N is the population size.

Calculate Upper and Lower Points:

P =4 xx, , +(1-4,)xM 3)
B = A X Xy, + (1= A)x M (4)
Update Position:

v, =X, + A x(P —x,)-Ax(P-x,), i=123,.,N &)
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b) Global exploration:

A different mechanism can be used for exploration, typically involving historical populations or random
distributions to explore new regions. The fundamental idea behind this global exploration approach is that
the differential vectors between the historical population and the current population cover a bigger search
area than those inside the same generation. To apply this concept, First, a random selection approach
generates the historical population. After that, the historical population is randomly shuffled to
reorganize the population.

The following is a description of this strategy:

Generate the historical population: The historical population, is created using the following rule:

old __ old old old
X7 ={x, X7 x,

Xold — {X’ U(‘ Pselect = 05 (6)

ld .
X, otherwise

where, X is the current population, and Psecr is the selected probability (a random number uniformly
distributed between 0 and 1).

Shuffle the historical population: The historical population X°“ is then shuffled using the following
operation:

X = permuting(X°) (7)

where, permuting is a random shuffling function that rearranges all the individuals in X in random order.

Global exploration strategy: The global exploration strategy in EJAYA can be formulated as:
old

v, =X, +rand x(x/" —x,), i=123,.,N (8)
where, rand is a random number.

vi) Selection: Accept v, if it gives a better function value.

vii) Go to step 3.

3. Proposed Algorithm

To enhance the performance of EJaya, we suggest a three-phase optimization technique. The initial phase
of algorithm is Adaptive Population Enhancement Phase to enhance the exploration and exploitation
capability. After the completion of first phase the algorithm moves onto the Ejaya phase focused on refining
and improving the solutions established in the preceding phase. This phase focuses on exploiting the most
promising portions of the solution space while iteratively improving the quality of candidate solutions. In
third phase, after each generation of the above two phases, the population size is decreased by using the
linear population reduction mechanism which enhance the convergence speed.

The three phases of the method are described here:
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Phase 1: Adaptive Population Enhancement Phase

During the Adaptive Population Enhancement Phase, the optimization method refines candidate solutions
based on their relative fitness using an adjustable scaling factor SF which decrease as number of generations
increases. The strategy is to let large changes in the initial stages to cover a large search area and
progressively reduce the step size in following iterations to fine-tune the results.

Population update: In this phase, two individuals from the population, x(«) and x(b), are randomly chosen
for comparison. The fitness values of these individuals, f{a) and f{(b), dictate the update mechanism:

If f(a) < f(b) the solution is modified in a manner that improves its quality, prioritizing the superior
individual x(a):
v, =X, +SFx(X,, —X,,) 9

i

This upgrade improves convergence towards better solutions by using knowledge from the more proficient
solution.

If f(a)> f(b) the update utilizes a different approach, amplifying the impact of x(b) while considering its
relative location to x(a):

V; :and,i+SFX(Xb,i_Xa,i) (10)

where,

The adaptive scaling factor F is delineated as follows:

SF = SFl—(SFZ x ﬂ} (11)
max Gen

This enables the step size to decrease during the iterations from 0.9 to 0.2. The adaptive factor SF was
selected within the range 0.9 to 0.2 to gradually shift the algorithm from a predominantly exploratory phase
to a more exploitative phase. Higher values of SF at the beginning increase the search radius and help in
identifying diverse regions, while lower values toward the end allow finer exploitation around promising
solutions. This behavior aligns with established adaptive strategies used in population-based algorithms.

This method ensures that, even if the first chosen superior solution is suboptimal, the algorithm persists in
exploring the dynamics of the search space.

The Adaptive Enhancement Phase significantly improves the optimization process via a dynamic updating
technique that facilitates convergence to optimum solutions while permitting varied exploratory motions
throughout the solution space.

Phase 2: Ejaya Phase

Following the completion of Phase 1, the algorithm will then go on to Phase 2, where it will make use of
EJAYA's techniques in order to further analyse and improve the solution space. A specific probability is
generated to determine the choice between these strategies. The algorithm starts local exploitation when
the probability surpasses 0.5. Equations (2), (3), (4), and (5) are used to refine solutions in this phase. Global
exploration starts with probability 0.5 or below. Equations (6), (7), and (8) expand the solution space search
in this method. This dual strategy improves the algorithm's capacity to identify optimal solutions by
preserving population diversity while narrowing promising areas.
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Phase 3: Linear Population Reduction

After each generation of the above phases, the Linear Population Reduction (LPR) mechanism is applied.
As the algorithm converges, this phase aims to reduce the population size so that it can concentrate on the
remaining optimum solutions and increase convergence speed ensuring that the algorithm can find the best
solution faster. This method for reducing the population helps the program use more computing power to
find better optimal solutions, while the search gets better as the population size goes down. The decrease
keeps going until a certain stopping condition is met, which lets the algorithm truly get to the best answers.

Mathematical Formulation:
For each generation gen, the population size pop(gen) decreases linearly:

op. .. . — DO,
pop (gen) _ pOpim.”.al . ( p pmttlal p pﬁna[ j x gen (12)

maxGen

where, pop,,.., 1 the initial population size, pop,,, is the final population size, gen is current generation,

maxGen is the maximum number of generations.

By making the population smaller over time, the LPR process helps the algorithm focus on fewer, better
solutions, which makes it converge faster in the later stages. These three steps make sure that the algorithm
does a good job of balancing exploration and exploitation, speeds up convergence, and keeps the population
diverse during the optimization process.

These three steps make sure that the algorithm does a good job of balancing exploration and exploitation,
speeds up convergence, and keeps the population diverse during the optimization process.

The pseudo-code of PLEJaya is given below:

Pseudocode of the Proposed PLEJaya Algorithm
Initialize Population (X) with size N, Variable Limits (&,/), Number of Variables (D), pop,.: »

PP 1t » Set Maximum Evaluations (maxGen), and Current Evaluations (gen = 0).

Compute the Initial Fitness of the Population using Equation (1).

Identify Best (x,.) and Worst (x,,,,) Solutions

while (gen < max Gen)

Phase 1: Adaptive Enhancement Phase

For i=1:N

Randomly select two distinct solutions, X,&.X,, where j=k.
If f(x)<f(x)

v, =X, +SF(X, - X))
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Else
v, =X, +SF(X,- X))

End if

End for

If 7o) <rx)

X, =v,

Update Fitness of Population

Update Best Besr () and worst () solutions.
Phase 2: EJAYA Phase

The selected probability r

select

is generated.

If

P >0.5

The local exploitation strategy is performed using Equations (2), (3), (4), & (5)
Else

Global exploration strategy is performed using Equations (6), (7), & (8).

End if

if f)<f(X)

X, =v,

Update Fitness of Population

Phase 3: Linear Population Reduction

Sort the population

After sorting Apply Linear Population Reduction (LPR) mechanism using Equation (13)
Update Best() and Worst() solutions

gen=gen+1

Return Best solution (x,,,) .
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4. Numerical Experiments and Comparisons

4.1 Experimental Settings

To evaluate the optimization efficiency and solution quality of the proposed PLEJaya algorithm, a
comprehensive set of fifty-two benchmark functions is employed. Twenty-three standard objective
functions—unimodal, high-dimensional multimodal, and fixed-dimensional multimodal—and thirty CEC
2017 test suite functions are included. The performance of the PLEJaya algorithm is compared against eight
well-known metaheuristic algorithms: TLBO, EJAYA, JAYA, GA, PSO, AOA, GWO, and WOA. On each
algorithm, thirty different runs of one thousand iterations are carried out.

The evaluation metrics used for comparison are five statistical indicators: mean, standard deviation (std),
best, CPU time (CPT), and rank. Optimization algorithms are ranked by their mean rank across all objective
functions. When the mean is same, the standard deviation is taken into account. The lowest standard
deviation is prioritized first. When both the mean and standard deviation are identical, the method with the
least CPU time is ranked first. Table 1 displays the parameter settings for various methods.

Preliminary experiments were conducted with different SF bounds (e.g., 1.0-0.5, 0.8-0.1). The value 0.9
and 0.7 consistently produced stable convergence and balanced exploration-exploitation behaviour across

most benchmark functions. Therefore, these bounds were selected for the final implementation.

Table 1. Parameter settings for various methods.

Algorithm Parameters

Inertia weight(w) decreases linearly from 0.9 to 0.1

PSO C1 (Personal learning coefficient) = 2

C2 (Global learning coefficient) =2

Mutation probability = 0.05

GA Crossover probability = 0.8

Selection = Roulette wheel (proportionate)

GWO Convergence parameter (a) decreases linearly from 2 to 0
Convergence parameter (a) decreases linearly from 2 to 0

WOA .

a2 linearly decreases from —1 to —2
control parameter (1) = 0.5

AOA sensitive parameter (alpha) =5

TLBO Teaching factor (TF) = round [(1 + rand)]

Population Size = 100

SF,=0.9

SF,=0.7

PLEJaya POP i =100

POP iy =10
maxGen = 1000

The benchmark functions are chosen based on the following reasons: Unimodal functions F1 to F7, are
ideal for assessing the exploitation capabilities of metaheuristic algorithms, as they allow for efficient
convergence to the global optimum without the interference of local optima. The exploration capabilities
of these algorithms may be effectively measured by multimodal functions, such as F8 to F23, because of
their many local optima. Metaheuristic algorithms' ability to strike a balance between the search's

exploration and exploitation stages is tested using the CEC2017 test suite's sophisticated benchmark
functions.
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4.2 Unimodal Benchmark Problems

The testing of unimodal objective functions was done in order to evaluate the PLEJaya algorithm's capacity
for exploitation. Unimodal functions were chosen because they contain only a single optimal solution and
do not have local optima. The optimization results for the F1 to F7 functions using the PLEJaya and several
competing algorithms are presented in Table 2. The outcomes indicate that the PLEJaya successfully
reached the global optimum for all the objective functions. When compared to five other algorithms,
PLEJaya demonstrated clear superiority and highly competitive performance.

Table 2. Evaluation results on unimodal functions.

PLEJaya TLBO EJAYA JAYA PSO GA
Best 5.00E-25 1.5992 9.9608E-16 2.95632 3.14E-05 33.35136
Mean 5.54E-24 2.055918 3.82E-15 4.487295 0.181599 19.78438
F1 STD 5.656E-24 0.520663 9.5587E-15 1.056918 0.729657 8.395292
CPT 5.439462 13.286505 4.400951 2.595141 419.606604 6.644676
Rank 1 4 2 5 3 6
Best 1.20E-12 1.7577 8.22E-10 1.500848 0.080876 1.869152
Mean 1.99E-12 2.055918 3.85E-09 1.980803 1.419726 3.188112
F2 STD 6.2125E-13 0.520663 2.5946E-09 0.436198 3.034488 0.693334
CPT 7.420475 13.022129 5.027499 13.428985 171.197969 5.918492
Rank 1 5 2 4 3 6
Best 2.5281E-07 0.016224 0.005337 28652.11 29.63701 1111.139
Mean 1.2575E-06 2279.459 0.041555 32331.69 1094.128 2125.752
F3 STD 8.9275E-07 1697.011 0.038809 4174.634 1618.416 495.7954
CPT 13.340652 25.033064 14.110897 2.155619 126.053377 20.103473
Rank 1 5 2 6 3 4
Best 7.51E-06 2.9651 0.008997 17.153 3.511675 2.113563
Mean 3.68E-05 3.236455 0.039634 21.77216 6.507623 3.210794
F4 STD 2.952E-05 0.302485 0.025256 2.994494 1.970793 0.64983
CPT 6.468397 12.929743 4.602314 2.267819 109.659035 9.183299
Rank 1 3 2 6 5 4
Best 0 30.7532 10.8336 484.448 30.07967 227.4906
Mean 0 33.813 29.04889 806.2018 112.2916 420.6
F5 STD 0 2.226827 23.07953 308.0335 85.244 122.0165
CPT 9.147682 20.660965 11.235353 6.168703 119.717372 11.067501
Rank 1 3 2 6 4 5
Best 2.21E-24 0.13432 7.01E-17 9.7929 9.98E—06 14.51884
Mean 1.40E-23 0.193379 2.27E-15 12.66313 0.028587 34.0323
F6 STD 1.012E-23 0.064751 2.635E-15 2.974 0.0747 15.199
CPT 9.272193 12.733069 5.047241 8.121155 112.115750 10.359740
Rank 1 4 2 5 3 6
Best 0.001095 0.010721 0.007093 0.002763 0.082498 0.006283
Mean 0.005133 0.021664 0.009197 0.005465 0.166943 0.009847
F7 STD 0.002111 0.005344 0.003695 0.001644 0.052796 0.003084
CPT 9.296877 20.265117 8.842797 2.169309 114.826136 13.788341
Rank 1 5 4 2 6 3
Sum Rank 29 16 34 27 34
Mean Rank 1 4.14 2.29 4.86 3.86 4.86
Total Rank 1 4 2 5 3 5

4.3 Multimodal Benchmark Problems

To determine the exploring capability of the "PLEJaya algorithm" the assessment of high-dimensional
multimodal objective functions was carried out. High-dimensional multimodal objective functions were
chosen because they have various local and global optima. The optimization results for the F8 to F13
functions using the PLEJaya and several competing algorithms are presented in Table 3. The "PLEJaya
algorithm" is the top performer for optimizing all functions F8 to F13, according to the data, which indicates

that it consistently converged to the global optimum for each of these functions.
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Table 3. Evaluation results on multimodal functions.

PLEJaya TLBO E-JAYA JAYA PSO GA
Best -9919.69 -6601.16 -7352.15 -7340.19 —8047.43 —9693.59
Mean -8585.1 -5234.86 -6963.12 -8355.31 —6891.6 —8551.34
F8 STD 716.8452 499.5731 542.8759 688.8714 874.6514 761.0887
CPT 4.595238 11.758071 2.348841 9.308895 117.963119 6.489410
Rank 1 6 4 3 5 2
Best 11.9395 192.9874 14.9244 18.9042 32.85466 32.80754
Mean 16.1183 208.4517 22.88405 24.34615 69.57591 58.68141
F9 STD 3.3298 8.536852 7.706914 5.476159 20.94823 12.70118
CPT 18.257091 19.390398 10.272244 7.760017 120.208005 9.984504
Rank 1 6 2 3 5 4
Best 2.42E-13 2.0201 9.95E-09 2.402 0.978948 3.045616
Mean 2.74E-12 3.039636 2.09E-08 4.542082 2.869241 3.659085
F10 STD 2.31678E-12 0.876241 1.63E-08 5.133384 0.78912 0.411662
CPT 14.797849 30.498326 11.305578 10.295386 120.919220 11.312803
Rank 1 4 2 6 3 5
Best 0 0.00675 1.89E-15 1.0245 0.012446 1.251305
Mean 0 0.030281 0.005808 1.037572 0.308563 1.524898
F11 STD 0 0.032233 0.013367 0.016212 0.899622 0.143664
CPT 12.171252 29.214839 8.060355 7.322093 517.012686 9.615891
Rank 1 3 2 5 4 6
Best 1.23E-26 0.18432 5.89E-17 4.5874 0.000558 0.042239
Mean 8.62E-25 0.313035 1.03E-08 6.955473 1.391328 0.155349
F12 STD 1.8333E-24 0.101105 3.43008E-08 2.17984 1.03366 0.075924
CPT 12.948925 31.106377 9.867746 10.992171 127.343985 10.394519
Rank 1 4 2 6 5 3
Best 5.07E-25 0.25983 2.39E-16 4.694 0.056865 0.993663
Mean 1.25E-23 0.341814 2.00E-03 7.719255 3.08976 2.160287
F13 STD 1.2483E-23 0.075441 0.004444 2.618373 3.228647 0.701865
CPT 12.267699 31.177067 9.111292 8.809444 123.644576 10.371147
Rank 1 3 2 6 4 5
Sum Rank 8 26 13 28 26 25
Mean Rank 1.33 4.33 2.17 4.67 4.33 4.17
Total Rank 1 4 2 5 4 3

4.4 Fixed Multidimensional Benchmark Problems

Fixed-dimensional multimodal functions were used to evaluate PLEJaya's capacity to strike a balance
between exploration and exploitation since they had fewer local optima than F8 to F13. Table 4 presents
the optimization outcomes for the F14 to F23 functions. Based on the results, the PLEJaya algorithm was
shown to be the best optimizer for all functions from F14 to F23, constantly ranking top.

Table 4. Evaluation results on fixed multidimensional functions.

PLEJaya TLBO E-JAYA JAYA PSO GA
Best 0.39789 0.998 0.730 0.998 0.998 0.998
Mean 0.39789 0.998 0.730 0.998 3.212 0.998
Fl14 STD 0 6.96E—06 1.16441E-16 0 2.885 0.0002
CPT 14.065655 63.548074 15.236534 24.212400 158.608970 23.734359
Rank 1 4 2 3 6 5
Best 0.00030 0.00030 0.00030 0.00034 0.00030 0.00077
Mean 0.00030 0.00337 0.00039 0.000458 0.00164 0.01273
F15 STD 0 0.00733 9.35E-05 4.909E-05 0.00444 0.01058
CPT 10.429765 33.285465 11.278019 11.372214 21.900404 11.474497
Rank 1 4 2 3 5 6
Best -1.0316 —1.0316 -1.0316 -1.0316 —1.0316 - 1.0316
Fl16 Mean -1.0316 —1.0316 -1.0316 -1.0316 —1.0316 —1.0316
STD 0 2.49E-06 4.57E-7 1.223E-05 1.14E-16 4.37E-06
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Table 4 continued...

CPT 9.420166 21.359316 8.694221 8.210418 21.880538 10.382517
Rank 1 4 3 5 2 6
Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Mean 0.39789 0.39789 0.39789 0.39789 0.53901 0.52441
F17 STD 0 5.822E-17 5.822E-17 5.688E-17 0.539 0.534
CPT 12.657265 37.556580 11.897511 10.668490 37.538695 12.439384
Rank 1 2 2 3 5 4
Best 3 3 3 3 3 3.000044
Mean 3 3 3 3.001354 3 5.729191
F18 STD 0 0 0 1.694E-03 2.76E—15 8.39291
CPT 12.657265 38.713201 12.188205 12.484914 13.816302 14.722119
Rank 1 1 1 3 2 4
Best -3.8628 -3.8628 -1.8997 -3.8628 —3.86278 —3.86278
Mean -3.8628 -3.8628 -1.8997 -3.8628 —3.86278 —3.86278
F19 STD 0 0 4.658E-16 0 2.09E-15 0.001431
CPT 11.188305 34.240394 11.369006 11.442573 19.398306 11.596128
Rank 1 1 2 1 3 4
Best -3.322 -3.322 -3.322 -3.2031 -3.322 -3.3214
Mean -3.322 -3.322 -3.322 -3.26011 —3.29822 —3.19552
F20 STD 0 0 0 0.058921 0.048793 0.093531
CPT 11.281090 33.154432 10.864058 11.349633 27.081922 11.364303
Rank 1 1 1 3 2 4
Best -10.1532 -10.1532 -10.1532 -9.8179 —10.1532 —9.0381
Mean -10.1532 -10.1532 -10.1532 -6.66069 —5.77879 —5.89083
F21 STD 0 0 0 2.15082 3.703566 2.512564
CPT 11.582073 34.604902 10.683051 10.638662 31.327449 12.635227
Rank 1 1 1 2 4 3
Best -10.4029 -10.4029 -10.4020 -10.4029 —10.4029 —10.1952
Mean -10.4029 -10.4029 -10.4029 -8.98973 —6.31807 —7.21825
F22 STD 0 0 0 2.08157 3.837031 2.472441
CPT 11.531746 33.852822 10.567918 10.070323 52.636237 11.807742
Rank 1 1 1 2 4 3
Best -10.5364 -10.5364 -10.5364 -10.5364 —10.5364 - 10417
Mean -10.5364 -10.5364 -10.5364 -8.72248 —5.62285 —5.78525
F23 STD 0 0 0 2.016805 3.755817 2.966829
CPT 11.997129 35.719880 11.310603 10.699930 27.165628 12.041502
Rank 1 1 1 2 4 3
Sum Rank 10 20 16 27 37 42
Mean Rank 1 2 1.6 2.7 3.7 4.2
Total Rank 1 3 2 4 5 6

4.5 Evaluation of the CEC 2017 Test Suite Benchmark Functions

In this section, we test the ability of the proposed algorithm in resolving the complex optimization problems
that are introduced in the CEC 2017 test functions. These functions are categorized as follows: three
unimodal functions (C17-F1 to C17-F3), seven multimodal functions (C17-F4 to C17-F10), ten hybrid
functions (C17-F11 to C17-F20), and ten composition functions (C17-F21 to C17-F30).

Results from optimizing the CEC 2017 functions using the PLEJaya and alternative competing algorithms
are displayed in Table 5. Based on the findings, it is evident that the PLEJaya algorithm obtains the highest
level of performance when it comes to solving the functions C17-F1 to C17-F19, C17-F21, C17-F22, C17-

F24, C17-F25, and C17-F27 to C17-F30.

Results of these findings reveals that the suggested strategy improves most CEC 2017 benchmark functions.

Thus, PLEJaya solves optimization issues better than competitors.
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Table 5. Evaluation results on CEC 2017 test functions.

PLEJaya TLBO EJAYA JAYA PSO GA AOA GWO WOA
Best 1.08E+02 | 1.97E+07 | 1.14E+02 9.09E+03 7.27E+06 | 1.52E+07 | 2.57E+05 1.49E+03 5.34E+05
1 Mean 1.55E+02 | 2.24E+07 | 1.88E+02 7.59E+02 1.05E+07 | 2.26E+07 | 1.28E+05 1.51E+03 4.86E+08
F17- STD 3.25E+01 | 3.70E+06 | 1.04E+02 1.18E+04 1.38E+07 | 1.05E+07 | 9.14E+04 2.51E+01 7.56E+07
CPT 20.80 45.61 3141 19.05 284.53 41.99 23.76 26.56 69.27
Rank 1 8 2 3 6 7 5 4 9
Best 2.00E+02 | 1.18E+30 | 2.66E+02 1.65E+03 1.56E+03 | 5.32E+20 | 3.98E+17 1.58E+20 1.65E+29
C17- Mean | 2.18E+02 | 8.53E+29 | 7.87E+04 2.28E+03 1.88E+03 | 4.65E+22 | 4.67E+17 1.81E+20 | 2.26E+30
" STD 2.69E+01 | 1.62E+28 | 1.11E+05 8.93E+02 1.68E+02 | 6.50E+22 | 3.23E+18 4.21E+20 6.73E+29
CPT 14.92 51.36 31.56 16.25 325.77 25.59 14.99 19.77 68.36
Rank 1 7 4 3 2 6 5 8 9
Best 3.00E+02 | 1.07E+05 | 5.74E+02 2.93E+04 8.43E+04 | 3.13E+04 | 8.14E+04 1.98E+04 | 4.56E+04
cl Mean 3.00E+02 1.35E+05 1.14E+03 3.82E+04 5.69E+04 3.25E+04 9.18E+04 1.98E+04 3.26E+05
F37- STD 0 2.61E+04 | 7.14E+02 1.26E+04 1.69E+03 1.79E+03 1.21E+04 2.49E+02 6.73E+04
CPT 22.30 46.93 28.29 14.46 423.13 26.70 18.48 20.10 45.71
Rank 1 8 2 4 5 3 6 7 9
Best 4.05E+02 | 4.94E+02 | 4.26E+02 4.72E+02 6.16E+02 | 5.32E+02 | 5.10E+02 5.29E+02 5.43E+02
cl7 Mean 4.57E+02 | 4.96E+02 | 4.57E+02 4.96E+02 6.27E+02 5.43E+02 5.18E+02 7.30E+02 7.62E+02
F4 . STD 1.49E+01 | 1.92E+01 | 4.32E+01 3.46E+01 6.15E+02 | 1.55E+01 | 1.56E+01 3.45E+02 1.74E+02
CPT 15.56 46.46 30.01 19.02 432.03 26.18 15.28 21.04 62.46
Rank 1 4 2 3 7 6 5 8 9
Best 543E+02 | 7.11E+02 | 5.34E+02 6.16E+02 7.13E+02 | 7.21E+02 | 8.35E+02 5.90E+02 7.43E+02
cl7 Mean 5.46E+02 7.23E+02 5.51E+02 6.32E+02 7.24E+02 7.22E+02 8.65E+02 5.91E+02 8.39E+02
Fs . STD 4.22E+00 | 1.68E+01 | 2.39E+01 2.27E+01 1.51E+01 | 1.01E+00 | 2.59E+01 2.11E+00 5.25E+01
CPT 20.75 53.39 33.33 14.93 434.45 29.45 36.32 25.05 45.83
Rank 1 6 2 4 7 5 9 3 8
Best 6.00E+02 | 6.13E+02 | 6.00E+02 6.13E+02 6.11E+02 | 1.25E+04 | 6.09E+02 6.03E+02 6.23E+02
cl7 Mean 6.00E+02 6.12E+02 6.00E+02 6.12E+02 6.31E+02 1.28E+05 6.90E+02 6.14E+02 6.67E+02
6 B STD 8.86E-05 | 4.72E-01 | 5.34E-02 0.54E+01 1.17E+01 | 2.12E+05 | 1.94E+00 | 0.074E+00 | 1.51E+01
CPT 17.77 163.35 135.09 18.59 331.33 40.85 19.85 26.01 45.46
Rank 1 3 2 4 6 9 8 5 7
Best 7.80E+02 | 9.14E+02 | 7.80E+02 9.33E+02 9.02E+02 | 1.35E+03 | 1.04E+03 8.07E+02 1.45E+03
cl7 Mean 7.88E+02 9.64E+02 7.91E+02 9.37E+02 9.60E+02 1.35E+03 1.41E+03 8.69E+02 1.36E+03
7 B STD 1.01E+01 | 1.81E+01 | 1.54E+01 5.88E+00 8.20E+01 | 4.75E+00 | 3.15E+01 4.89E+01 6.97E+01
CPT 20.53 56.90 36.74 15.25 327.48 29.96 28.35 25.72 43.61
Rank 1 6 2 4 5 7 9 3 8
Best 8.32E+02 | 1.00E+03 | 8.51E+02 8.79E+02 9.27E+02 | 8.96E+02 | 1.32E+03 8.89E+02 1.01E+03
cl7 Mean 8.39E+02 1.02E+03 8.78E+02 9.01E+02 9.52E+02 9.27E+02 1.57E+03 9.05E+02 1.05E+03
F8 B STD 9.85E+00 | 8.05E+00 | 3.66E+01 3.17E+01 3.49E+01 | 4.34E+01 | 1.86E+01 2.36E+01 5.29E+01
CPT 19.52 53.42 35.17 19.38 304.67 28.54 12.29 14.75 37.86
Rank 1 7 2 3 6 5 9 4 8
Best 9.00E+02 | 2.16E+03 9.27E+02 2.02E+03 9.42E+02 5.79E+03 1.25E+03 1.08E+03 9.98E+03
C17 Mean 9.00E+02 | 2.29E+03 | 9.68E+02 2.77E+03 9.35E+03 | 7.47E+03 | 1.49E+03 2.59E+03 1.13E+04
F9 B STD 0 1.80E+02 | 5.81E+01 1.05E+03 3.61E+02 | 2.37E+03 | 1.89E+02 1.32E+03 4.57E+03
CPT 18.26 55.24 3591 14.28 325.91 27.05 13.04 19.72 38.76
Rank 1 4 2 6 8 7 3 5 9
Best 4.19E+03 7.74E+03 4.36E+03 4.20E+03 5.03E+03 5.50E+03 8.42E+03 3.42E+03 6.83E+03
C17- Mean | 4.37E+03 | 7.96E+03 | 5.83E+03 4.98E+03 5.41E+03 | 6.07E+03 | 8.78E+03 4 41E+03 7.12E+03
Fl0 STD 2.63E+02 | 3.08E+02 | 2.08E+03 1.13E+03 5.31E+02 | 8.01E+02 | 3.42E+02 8.69E+02 7.15E+02
CPT 14.22 111.71 83.58 15.11 323.74 33.63 17.12 19.12 42.35
Rank 1 7 5 3 4 6 9 2 8
Best 1.12E+03 1.41E+03 1.15E+03 1.15E+03 1.17E+03 1.22E+03 1.26E+03 1.37E+03 6.75E+03
C17- Mean 1.13E+03 | 1.43E+03 | 1.15E+03 1.17E+03 1.24E+03 | 1.26E+03 | 1.33E+03 2.08E+03 6.99E+03
F11 STD 2.82E+00 | 2.84E+01 2.78E+00 5.32E+01 8.87E+01 5.77E+01 4.26E+01 6.50E+02 4.20E+03
CPT 26.34 50.42 32.39 18.25 328.80 26.62 17.45 19.93 38.45
Rank 1 7 2 3 4 5 6 8 9
Best 3.92E+03 4.94E+07 1.80E+04 4.27E+04 3.82E+04 3.69E+07 1.16E+05 7.62E+06 9.98
Cl17- Mean 3.72E+03 | 5.03E+07 | 3.96E+04 4.70E+04 1.24E+06 | 3.75E+07 | 4.67E+05 9.45E+07 | 2.15E+08
F12 STD 2.75E+03 1.39E+06 3.05E+04 6.07E+03 1.92E+06 6.83E+05 3.67E+05 1.60E+08 3.50E+08
CPT 25.13 75.54 55.99 15.71 322.58 26.34 11.69 19.06 47.76
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Table 5 continued...

Rank 1 7 2 3 5 6 4 8 9
Best 1.78E+03 | 6.67E+05 | 1.47E+04 1.82E+03 4.63E+03 | 1.00E+06 | 1.07E+04 | 2.57E+07 1.35E+06
c17 Mean 3.73E+03 | 6.78E+05 | 3.42E+04 | 4.66E+03 1.24E+04 | 1.16E+06 | 1.73E+04 | 4.32E+07 1.97E+06
F13- STD 2.75E+03 | 1.50E+04 | 2.39E+04 | 4.01E+03 6.58E+03 | 8.27E+04 | 8.03E+04 1.83E+08 1.77E+06
CPT 28.87 54.04 36.52 19.08 362.91 40.08 20.21 19.27 42.54
Rank 1 6 5 2 3 7 4 9 8
Best 1.50E+03 | 3.58E+04 | 1.56E+03 5.34E+03 2.01E+03 | 3.57E+04 | 9.62E+04 | 4.22E+04 1.23E+06
C17- Mean 1.54E+03 | 3.77E+04 | 1.56E+03 1.28E+04 2.55E+03 | 5.99E+04 | 1.28E+04 | 4.56E+05 2.03E+06
Fla STD 6.16E+01 | 2.69E+03 | 3.56E+00 1.12E+04 3.95E+02 | 3.42E+04 | 3.22E+03 6.19E+05 1.39E+06
CPT 25.282 78.933 56.244 17.740 237.015 40.692 11.392 29.15 39.97
Rank 1 6 2 5 3 7 4 8 9
Best 1.74E+03 | 1.04E+05 | 4.84E+03 6.55E+03 1.95E+03 | 2.88E+04 | 1.58E+03 3.45E+05 8.76E+05
cl Mean 1.85E+03 1.12E+05 5.85E+03 2.44E+04 5.27E+03 5.86E+04 | 2.21E+03 8.90E+05 1.29E+06
F 175- STD 1.55E+02 1.29E+04 1.42E+03 2.53E+04 2.67E+03 421E+04 | 6.14E+02 1.32E+06 3.31E+06
CPT 2542 54.12 34.50 15.47 320.78 34.86 27.18 29.82 38.34
Rank 1 7 4 5 3 6 2 8 9
Best 1.97E+03 | 3.30E+03 | 2.13E+03 2.68E+03 3.47E+03 | 3.37E+03 | 2.82E+03 2.39E+03 3.96E+03
cl7- Mean 1.97E+03 3.33E+03 2.16E+03 2.85E+03 3.38E+03 3.40E+03 3.01E+03 2.75E+03 4.00E+03
Fl6 STD 1.89E+00 | 5.18E+01 | 9.30E+01 4.89E+02 1.13E+02 | 4.56E+01 | 1.76E+02 1.83E+02 6.14E+02
CPT 40.19 76.43 51.53 60.15 327.13 27.37 47.73 48.82 54.75
Rank 1 6 2 4 7 8 5 3 9
Best 1.71E+03 | 2.18E+03 | 1.77E+03 1.94E+03 2.21E+03 | 2.32E+03 | 1.95E+03 1.98E+03 1.76E+03
C17- Mean 1.74E+03 | 2.33E+03 | 1.86E+03 2.05E+03 2.55E+03 | 2.34E+03 | 1.99E+03 2.70E+03 2.86E+03
F17 STD 5.30E+01 | 2.03E+02 | 1.16E+02 1.58E+02 4.84E+02 | 4.69E+01 | 3.48E+01 1.07E+02 3.22E+02
CPT 25.608 87.707 63.764 16.240 324.704 29.031 16.706 28.372 69.45
Rank 1 5 2 4 7 6 3 8 9
Best 8.64E+03 | 1.11E+06 | 1.44E+04 3.25E+05 1.73E+05 | 8.72E+05 | 5.14E+05 1.02E+06 1.03E+07
cl7 Mean 8.88E+03 1.15E+06 1.99E+04 4.11E+05 1.25E+07 8.90E+05 1.13E+06 1.42E+06 1.23E+07
Fl 8_ STD 3.43E+02 | 4.58E+04 | 7.90E+03 1.22E+05 1.75E+07 | 2.63E+04 | 7.89E+05 1.18E+06 1.28E+07
CPT 23.77 60.34 40.17 14.42 322.88 32.11 27.14 27.84 38.18
Rank 1 6 2 3 9 4 5 7 8
Best 2.06E+03 | 6.49E+04 | 2.97E+03 2.73E+03 3.26E+04 | 3.25E+06 | 8.99E+03 6.46E+04 9.42E+06
c1 Mean 2.18E+03 1.02E+05 7.01E+03 1.11E+04 6.17E+04 | 4.05E+06 1.07E+04 9.85E+05 1.82E+07
F 179- STD 1.76E+02 | 5.25E+04 | 7.13E+03 1.29E+04 1.07E+05 | 1.12E+05 | 6.74E+03 1.59E+06 1.75E+07
CPT 18.24 253.83 203.07 19.28 317.88 37.78 24.01 19.56 80.45
Rank 1 6 2 4 5 8 3 7 9
Best 2.14E+03 | 2.62E+03 | 2.13E+03 2.24E+03 2.54E+03 | 2.66E+03 | 2.45E+03 2.26E+03 2.35E+03
C17 Mean 2.24E+03 | 2.74E+03 | 2.18E+03 2.36E+03 2.60E+03 | 2.69E+03 | 2.58E+03 2.59E+03 2.79E+03
on- STD 1.44E+02 | 1.77E+02 | 6.35E+01 1.66E+02 8.89E+01 | 3.86E+01 | 1.05E+02 1.82E+02 2.24E+02
CPT 17.10 105.43 82.21 15.15 336.04 3043 19.244 19.995 38.85
Rank 2 8 1 3 6 7 4 5 9
Best 2.32E+03 | 2.54E+03 | 2.37E+03 2.42E+03 4.57E+03 | 2.56E+03 | 2.43E+03 2.36E+03 2.40E+03
c1 Mean 2.32E+03 2.54E+03 2.37E+03 2.45E+03 8.72E+03 2.58E+03 2.46E+03 2.51E+03 2.65E+03
F271- STD 1.23E+01 | 2.25E+00 | 4.95E+00 7.69E+01 2.76E+03 | 1.25E+01 | 8.63E+01 3.21E+01 5.09E+01
CPT 18.361 232.820 184.971 18.371 325474 34.064 15.4856 23.242 120.35
Rank 1 6 2 3 9 7 4 5 8
Best 2.30E+03 | 2.38E+03 | 2.30E+03 2.30E+03 2.31E+03 | 6.39E+03 | 2.31E+03 5.31E+03 7.41E+03
Cl17- Mean 2.30E+03 | 2.38E+03 | 2.30E+03 2 43E+03 2.96E+03 | 6.64E+03 | 2.32E+03 5.61E+03 7.89E+03
F22 STD 2.79E-09 | 4.48E+00 | 2.26E-08 1.85E+02 6.56E+01 | 3.55E+02 | 1.09E+01 2.05E+03 1.51E+03
CPT 18.887 352216 216.318 22.501 327.538 23.774 15.709 23.65 54.76
Rank 1 4 2 5 6 8 3 7 9
Best 2.69E+03 2.79E+03 2.71E+03 2.30E+03 3.54E+03 3.35E+03 2.79E+03 2.81E+03 3.01E+03
C17- Mean 2.70E+03 | 2.86E+03 | 2.72E+03 2.30E+03 3.67E+03 | 3.36E+03 | 2.79E+03 2.89E+03 3.12E+03
F23 STD 1.61E+01 4.66E+00 | 9.25E+00 8.55E-07 3.90E+01 2.32E+01 8.98E+00 4.94E+01 6.67E+01
CPT 27.876 322.157 260.549 19.266 398.648 30.487 16.465 34.72 76.54
Rank 2 4 3 1 9 8 5 6 7
Best 2.86E+03 | 3.03E+03 | 2.89E+03 2.88E+03 3.13E+03 | 3.53E+03 | 2.93E+03 2.95E+03 3.05E+03
Cl17- Mean | 2.86E+03 | 3.03E+03 | 2.90E+03 2.96E+03 3.19E+03 | 3.55E+03 | 2.97E+03 3.20E+03 3.29E+03
F24 STD 5.42E-01 3.86E+00 | 2.78E+01 4.595E+01 8.49E+01 3.32E+01 1.37E+01 7.18E+01 8.21E+01
CPT 17.467 314314 243.009 20.893 330.424 29.934 17.474 21.22 45.76
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Table 5 continued...

Rank 1 5 2 3 6 9 4 7 8
Best | 2.73E+03 | 2.90E+03 | 2.89E+03 | 2.89E+03 | 3.00E+03 | 2.94E+03 | 2.89E+03 | 3.03E+03 | 3.10E+03
o1 Mean | 2.73E+03 | 2.93E+03 | 2.89E+03 | 2.89E+03 | 3.02E+03 | 2.95E+03 | 2.98E+03 | 3.05E+03 | 3.12E+03
F275' STD | 2.96E-02 | 2.38E+01 | 0.77E+00 | 0.0E+00 | 3.55E+01 | 1.09E+01 | 8.81E+01 | 6.13E+01 | 7.69E+01
CPT 22.68 309.89 247.26 21.69 131.78 29.92 20.69 33.01 53.91
Rank 1 4 3 2 7 5 6 8 9
Best | 3.79E+03 | 4.01E+03 | 2.90E+03 | 5.07E+03 | 5.8E+03 | 8.82E+03 | 4.64E+03 | 4.86E+03 | 7.89E+03
c17. | Mean [ 4.06E+03 | 4.98E+03 | 3.68E+03 | 527E+03 | 6.06E+03 | 9.02E+03 | 5.02E+03 [ 4.99E+03 | 82SE+03
26 STD | 3.87E+02 | 1.39E+03 | L.I0E+03 | 2.82E+02 | 9.42E+02 | 4.03E+02 | 2.61E+02 | 4.35E+02 | 9.85E+02
CPT 17.41 403.67 313.15 18.01 443.84 30.05 17.93 33.45 63.84
Rank 2 3 1 6 7 8 5 4 9
Best | 3.19E+03 | 3.23E+03 | 3.21E+03 | 3.22E+03 | 3.19E+03 | 4.25E+03 | 3.23E+03 | 3.25E+03 | 3.26E+03
c17. | Mean [ 3.20E+03 | 3.23E+03 | 3.22E+03 [ 33E+03 | 3.42E+03 | 4.34E+03 | 3.24E+03 [ 3.32E+03 | 3.54E+03
7 STD | 1.70E+01 | 5.03E-01 | 651E+00 | 1.59E+01 | 7.71E+01 | 1.37E+02 | 6.58E+00 | 2.14E+01 | 1.03E+02
CPT 25.849 469.89 379.91 20.92 432.89 3111 20.36 32.76 73.54
Rank 1 3 2 4 7 9 5 6 8
Best | 3.10E+03 | 3.25E+03 | 3.22E+03 | 3.10E+03 | 3.12E+03 | 3.30E+03 | 3.23E+03 | 3.8E+03 | 3.48E+03
c17. | Mean [ 3.18E+03 | 3.06E+03 | 3.24E+03 [ 3.18E+03 | 3.37E+03 | 3.30E+03 | 349E+03 [ 3.54E+03 | 3.67E+03
58 STD | 9.56E+01 | 1.31E+02 | 3.37E+01 | L.O6E+02 | 1.59E+02 | 1.49E+01 | 2.26E+01 | 1.75E+02 | 1.47E+02
CPT 18.49 389.51 309.39 21.72 431.56 27.38 20.58 28.94 69.76
Rank 1 4 3 2 6 5 7 8 9
Best | 3.36E+03 | 4.18E+03 | 3.37E+03 | 3.82E+03 | 3.30E+03 | 5.14E+03 | 3.91E+03 | 3.45E+03 | 4.59E+03
c17. | Mean [ 3.40E+03 | 4.19E+03 | 3.67E+03 | 3.84E+03 | 4.48E+03 | 535E+03 | 3.96E+03 [ 3.95E+03 | 5.18E+03
% STD | 5.36E+01 | 9.86E+00 | 41.5E+02 | 2.94E+01 | 3.35E+02 | 2.92E+02 | 8.86E+01 | 2.25E+02 | 5.69E+02
CPT 25.10 343.59 213.73 19.64 459.62 33.43 28.02 31.35 62.67
Rank 1 6 2 3 7 9 5 4 8
Best | 6.18E+03 | 3.85E+05 | 6.63E+03 | 6.53E+03 | 9.89E+04 | 1.40E+05 | 8.59E+03 | 7.46E+06 | 9.78E+06
c17. | Mean | 637E+03 | 5.14E+05 | 9.44E+03 | 6.72E+03 | 5.32E+05 | 1.I3E+06 | 1.56E+04 | 1.06E+07 | 6.51E+07
30 | STD | 232E+02 | 1.83E+05 [ 3.97E+03 | 2.68E+02 | 5.90E+05 | I.IIE+06 | 523E+03 [ 14SE+07 | 4.96E+07
CPT 17.07 533.03 364.78 20.49 431.99 27.42 18.85 20.76 74.98
Rank 1 5 3 2 6 7 4 8 9
Sum
33 168 70 104 178 200 152 183 256
Rank
Mean 1.1 5.6 23 347 593 6.67 5.07 6.1 8.53
Rank
Total
Ronk 1 4 2 3 6 8 5 7 9

4.6 Evaluation Results on Real-World Problems

This section tests the PLEJaya algorithm's ability to resolve real-life optimization problems. Testing was
done on four different engineering optimization problems using PLEJaya and other competing algorithms.
These challenges include Welded Beam Design (WBD), Speed Reducer Design (SRD), Pressure Vessel
Design (PVD), and Tension/Compression Spring Design (TCSD).

In Table 6 the optimization results of four engineering problems are summarized. The simulation results
demonstrate that PLEJaya consistently outperforms competitor algorithms in optimizing all four studied
engineering challenges. The results clearly show that PLEJaya exhibits superior performance and
robustness when dealing with real-world optimization problems.

PLEJaya provided the best results for the Welded Beam Design (WBD) issue, tied with E-JAY A and JAYA.
Additionally, it maintained a reduced standard deviation (STD), which indicates that it is reliable. Similarly,
in the PVD (Pressure Vessel Design) and Speed Reducer Design (SRD) problems, PLEJaya performed
equally well with E-JAYA and JAYA but ranked higher due to its more consistent results. proposed
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algorithm also placed first with the lowest standard deviation in the TCSD problem, proving its
effectiveness across all challenges.

The proposed algorithm is the top-ranked algorithm in the context of these real-world engineering problems,
surpassing other algorithms such as TLBO, E-JAYA, JAYA, PSO, and GA, as determined by the sum and

mean of ranks.

Table 6. Evaluation results on real-world problems.

PLEJaya TLBO E-JAYA JAYA PSO GA
Best 1.724852 2.17541 1.724852 1.724852 1.876176 1.83841
WBD Mean 1.724852 2.54876 1.724852 1.724852 2.123005 1.96595
STD 6.98647E-16 0.25631 9.98647E-15 4.65765E-14 0.034882 0.139733
Rank 1 5 2 3 4 3
Best 2994471 3033.594 2994471 2994471 3054.173 3070.629
SRD Mean 2994471 3069.904 2994471 2994471 3174.457 3190.666
STD 4.76943E-13 18.0977 4.76943E-13 4.76943E-13 92.69298 17.14086
Rank 1 2 1 1 3 4
Best 5885.333 6166.438 5885.333 5885.333 5918.224 6581.043
PVD Mean 5885.333 6328.261 5885.333 5885.333 6265.49 6645.562
STD 9.53886E-13 126.639 9.53886E-13 9.53886E-13 496.2457 657.679
Rank 1 3 1 1 2 4
Best 0.012665 0.012822 0.012665 0.012721 0.013151 0.013192
TCSD Mean 0.012665 0.01296 0.012665 0.012721 0.014166 0.01289
STD 0 0.007831 54272E-11 1.81939E-18 0.002092 0.000378
Rank 5 2 3 6 4
Sum Rank 4 15 6 8 15 15
Mean Rank 1 3.75 1.5 2 3.75 3.75
Total Rank 1 4 2 3 4 4

4.7 Statistical Analysis

The performance of the PLEJaya was compared against five well-known algorithms TLBO, EJAY A, JAYA,
PSO, and GA using statistical analysis methods. The Wilcoxon Rank-Sum test and the Friedman test were
employed to assess the significance of PLEJaya’s performance over classical functions and CEC17
functions are presented in Tables 7, 8, 9, and 10.

Table 7. Wilcoxon-rank sum test results for classical functions.

Algorithms Win/loss/ties IR* 2R z-value p-value Sig at a = 0.05
TLBO 15/0/8 120 0 3.408 <0.001 +
EJAYA 15/1/7 122 14 2.792 <0.001 +
PLEJaya vs JAYA 19/1/3 197 13 3.435 <0.001 +
PSO 21/0/2 231 0 4.015 <0.001 +
GA 22/0/1 253 0 4.107 <0.001 +
The symbols "+" and "=" stand for better and equal respectively.
Table 8. Rankings according to Friedman for classical functions.
PLEJaya TLBO EJAYA JAYA PSO GA
Rank 1.54 3.63 2.37 4.30 4.46 4.70
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Table 9. Wilcoxon-rank sum test results for CEC17 functions.

Algorithms 2R 2R z value p-value Sig at a=0.01

TLBO 465 0 4.782 <0.001 +

Ejaya 348.5 29.5 3.834 <0.001 +

Jaya 420 15 4.379 <0.001 +

PLEjaya vs PSO 465 0 4.782 <0.001 +
GA 465 0 4.782 <0.001 +

AOA 465 0 4.782 <0.001 +

GWO 465 0 4.782 <0.001 +

WOA 465 0 4.782 <0.001 +

The symbols "+" and "=" stand for better and equal respectively.

Table 10. Friedman ranks and Bonferroni-Dunn’s CD values for CEC17 functions.

Algorithm Rank
PLEjaya 1.17
TLBO 5.68
Ejaya 2.33
Jaya 347
PSO 5.97
GA 6.80
AOA 5.22
GWO 5.90
WOA 8.47
CD (Level=10%) 1.7664
CD (Level=5%) 1.9262

4.7.1 Wilcoxon-Rank Sum Test

Using a non-parametric statistical technique called the Wilcoxon Rank-Sum test, the given method was
compared to different optimization algorithms on various test functions. This test evaluates the ranks of
two data sets to determine if there is a significant difference between them. The outcomes are summed up
as follows: wins, losses, and ties denote the frequency at which the PLEJaya outperformed, underperformed,
or performed equally compared to each method. For instance, the proposed algorithm proved to be superior
than TLBO when it obtained 15 wins, 0 loses, and 8 ties. Furthermore, the PLEJaya's wins versus TLBO
had a sum of ranks (XR+) of 120, while its losses (£R-) had a sum of ranks of 0, indicating no loss. The z-
value, a standardized test statistic, which measures how far the observed rank difference is from the null
hypothesis (no difference between the algorithms). A higher absolute value indicates a more significant
difference. Which is 3.408 against TLBO, which reflects a significant difference in performance.
Furthermore, the p-value, which indicates the likelihood that the results occurred by chance, was less than
0.001 for all comparisons. This consistently low p-value suggests strong evidence that the PLEJaya
significantly outperforms the others. The +' symbol in the table confirms that the PLEJaya is significantly
better than all comparison algorithms at a significance level of a=0.05.

4.7.2 Friedman Rank Test

For the purpose of determining how well the algorithms performed over a wide variety of functions, the
Friedman test was utilised in order to carry out an evaluation of the algorithms. This non-parametric test is
performed with the intention of determining whether or not there are differences between groups that are
comparable to one another. Based on the findings, it was determined that the PLEJaya had the lowest
average rank (1.54), which indicates that it performed the best overall. TLBO received a value of 3.63,
while EJAYA attained a level of 2.37. On the other hand, GA had the poorest performance, attaining a
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rating of 4.70. The results indicate that the proposed algorithm consistently outperformed the other methods
throughout the test functions.

4.8 Convergence Graph

Here we show the convergence graphs that were used to compare PLEJaya algorithm's performance to other
algorithms on different benchmark functions. By graphically representing the optimization issue and
showing how each method approaches the ideal solution over iterations, the convergence graphs
demonstrate the algorithms' usefulness.

The graphs of the four standard test functions- F1, F6, F11, and F16 and for functions from CEC17: CEC17-
F1, CEC17-F10, CEC17-F18, and CEC17-F30 —show convergence patterns in Figures 1, 2, 3,4, 5, 6, 7,
and 8. The convergence patterns for each function illustrate PLEJaya's performance compared to TLBO,
E-JAYA,JAYA, PSO, and GA. Also, the Bar chart presentation of “Friedman Ranks and Bonferroni-Dunn
test” for CEC17 functions shows in Figure 9.

Results show that the proposed algorithm converges quicker and more consistently to the optimum solution.
The convergence graphs show that the proposed technique outperforms.
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Figure 1. Convergence graph for F1. Figure 2. Convergence graph for F6.
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Figure 3. Convergence graph for F11. Figure 4. Convergence graph for F16.
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Figure 9. Bar chart presentation of Friedman ranks and Bonferroni-Dunn test for CEC17 functions.
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5. Conclusion

The EJaya algorithm is an enhanced version of Jaya algorithm which improves global exploration of the
algorithm. However, it also faces some drawbacks such as stagnation in local minima and slow convergence
rate due to the single learning strategy and poor population maintenance. This article introduced an
enhanced optimization algorithm that works in three phases: Adaptive enhancement, EJAYA, and linear
population reduction. Our tests using fifty-three benchmark functions, including 23 standard and 30 CEC
2017 test suite’s benchmark functions and compared with eight established meta-heuristic algorithms such
as TLBO, EJAYA, JAYA, PSO, GA, AOA, GWO and WOA. Results showed that this PLEJaya effectively
finds the best solutions and performs better than TLBO, EJAYA, JAYA, GA, PSO, AOA, GWO, and WOA.
When working with complex functions and several variables, it functioned admirably. In every respect, the
PLEJaya approach was a reliable and efficient optimization algorithm, leading to superior results and
offering hope as a superior answer to several optimization problems.
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