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Abstract  

EJaya enhances the global exploration capability of the Jaya algorithm but still suffers from drawbacks such as local stagnation 

and slow convergence due to its single learning strategy and weak population maintenance. To address these issues, this paper 

proposes an adaptive population-learning based improved variant, termed “PLEJaya.” In the PLEJaya algorithm, first an adaptive 

learning method improves the EJaya performance by refining the initial population and then a linear reduction method diminishes 

the worthless members from the population and thus improves the overall algorithm’s performance. The performance of PLEJaya 

has been examined on 53 benchmark functions, including 23 standard and 30 CEC 2017 test suite’s benchmark functions, and 

compared with eight established meta-heuristic algorithms such as TLBO, EJAYA, JAYA, PSO, GA, AOA, GWO, and WOA.  

Additionally, the practicality of PLEJaya has also been confirmed on 4 constrained engineering design applications. The 

experimental results confirm that the proposed PLEJaya solution significantly outperforms its competitors in terms of accuracy as 

well as convergence rate and thus provides a viable alternative to current optimization techniques. 

 

Keywords- Optimization, Meta-heuristics, Engineering optimization, Jaya, EJaya, Constrained. 

 

 

 

1. Introduction 
Optimization involves finding the optimal value of decision variables to address a specific problem, a 

concept widely applicable across diverse fields and numerous applications (Talbi, 2009). There are a lot of 

tough optimization problems in the real world where it is very hard to find the global optimal answer. 

Because of this, many algorithms have been created to deal with these kinds of problems. These algorithms 

can be broken down into two categories: exact and approximate approaches. 

 

Exact methods guarantee the best solution within a reasonable timeframe, except in cases classified as NP-

Hard problems where achieving a polynomial time solution is infeasible, resulting in significant 

computational demands. As a result, approximate methods have gotten more attention over the last 30 years, 

with the main goal of finding best solutions within acceptable timeframes. 

 

A novel class of approximate algorithms, referred to as metaheuristics (Glover, 1986), has achieved 

importance in recent periods due to their simplicity, ease of implementation, and capability to navigate 

away from local optima, making them particularly suited for derivative-free problems. The two most 
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defining features of metaheuristics are their ability to exploit and explore. An algorithm's exploration 

capability is its capacity to find new search regions. The process of discovering the optimal solution in 

promising regions of the solution space is called exploitation. An effective metaheuristic strikes a balance 

between exploring and exploiting optimal results.  

 

A vast variety of metaheuristics may be broken down into four main types, which are as follows: 

 

i) Swarm intelligence techniques: The algorithms used in Swarm Intelligence are based on principles found 

in nature, namely in the behaviour of social insects and animals. Swarm intelligence is a type of artificial 

intelligence whereby each individual member of a swarm uses their own distinct personality and set of 

skills yet; by working together, they can address more difficult problems. This notion gave rise to a number 

of algorithms, each of which was named after a different natural phenomenon that served as its source of 

inspiration. As an illustration, Particle Swarm Optimization (PSO) algorithm, which was initially presented 

by Kennedy and Eberhart (1995), is designed to simulate the behaviour of groups of birds and fish who are 

seeking for food. Kevin M. Passino invented Bacterial Foraging Optimization (BFO) (“Biomimicry of 

Bacterial Foraging for Distributed Optimization and Control”) (Passino, 2002), emulates the chemotactic 

behavior of bacteria like E. coli navigating their environment to optimize food search. Karaboga et al. (2014) 

developed the Artificial Bee Colony (ABC) algorithm in 2005, which simulates how honey bees use their 

food resources in a collaborative foraging approach. The Cuckoo Search (CS) method was developed by 

Yang and Deb (2009) and is based on the cuckoos' tendency to parasitise their brood. The Bat Algorithm 

(BA), developed by Yang (2010) is based on the echolocation behavior of bats when hunting for prey and 

commuting through a dark environment. The Whale Optimization Algorithm (WOA), is a newly developed 

optimization method inspired by the bubble-net hunting strategies of Humpback whales proposed by 

Mirjalili and Lewis (2016). Mirjalili et al. (2014) also developed the Grey Wolf Optimizer (GWO), inspired 

by the social hierarchy and leadership-based hunting strategy of grey wolves. Based on the opportunistic 

hunting behavior of red foxes, which is characterized by flexibility and resourcefulness, Połap and Woźniak 

(2021) introduced the Red Fox Optimization (RFO). Most recently, focussing on their coordination and 

communication in hunting prey, Chopra and Ansari (2022) Golden Jackal Optimization (GJO) algorithm, 

replicates the cooperative hunting strategies of golden jackals. These algorithms show how research on 

animal behaviour could inspire creative answers for challenging optimization challenges. 

 

ii) Evolutionary techniques: Techniques within the domain of evolution are techniques that derive their 

inspiration from biological processes. These techniques are referred to as evolutionary techniques. 

Crossover and mutation are used in evolutionary algorithms to generate new solutions and eliminate bad 

ones to improve fitness. Over the period of their development, these methods have been significantly 

influenced by the contributions of a wide range of scholars. Evolutionary Programming (“Artificial 

Intelligence through Simulated Evolution,” 2009), which replicates the evolution of behavioural strategies, 

was introduced by Fogel (1998). Evolutionary Programming is notably focused on finite-state machines. 

Genetics and natural selection served as inspiration for development of Genetic Algorithms (GA), which 

included mechanisms such as mutation, selection, and crossover. Differential Evolution (DE), was created 

by Storn and Price (1997). It focusses on differences between groups and mutations and crossovers. During 

the same year, Koza (1994) proposed Genetic Programming (GP), which focuses on the evolution of 

computer programs using genetic operators. More lately, Kiran (2015) introduced the Tree Seed Algorithm 

(TSA), a model that replicates the seed distribution and growth in trees. It emphasises diversity and 

exploration in evolution. 

 

iii) Physics-based techniques: The fundamental principles that govern natural events serve as the 

foundation for physics-based methods. The metallurgical annealing process was the inspiration for the 1996 



Deshwal & Mogha: Adaptive Population Learning EJaya Algorithm for Real-World Optimization … 
 

334 | Vol. 11, No. 1, 2026 

introduction of Simulated Annealing (SA) (Kirkpatrick et al., 1983). Rashedi et al. (2009) developed the 

Gravitational Search Algorithm (GSA) based on Newton's law of gravity. Hatamlou (2013) used the idea 

of black holes from astronomy to develop the Black Hole Algorithm (BHA). Hashim et al. (2021) developed 

the Archimedes Optimization Algorithm (AOA), based on Archimedes' principle. 

 

iv) Human-related techniques draw inspiration from human behaviour: Individuals engage in both 

physical activities affecting performance and non-physical activities like cognitive processes and 

behaviour. Teaching-Learning-Based Optimization (TLBO) was proposed by Rao et al. (2011) and is based 

on classroom interactions. Shi (2011) proposed Brain Storm Optimization (BSO), modeled after human 

brainstorming processes, focusing on idea generation and evolution. Inspired by the features that humans 

utilize both logical and illogical behaviors for decision-making, Ahmadi (2017) introduced Human 

Behavior-Based Optimization (HBBO) inspired from cognitive processes, particularly those used by human 

beings to solve problems and retrieve memory-based information and decision-making strategies, 

Mousavirad and Ebrahimpour-Komleh (2017) proposed Human Mental Search (HMS) framework in 2017. 

Teamwork Optimization (TO) was introduced by Dehghani and Trojovský (2021) to model the 

collaboration strategies used by humans during teamwork. In 2020, three researchers Askari et al. (2020) 

introduced the Political Optimizer (PO), they developed it based on political strategies and political 

behavior like forming alliances or competing. 

 

The No-Free-Lunch (NFL) theorem asserts that no singular method is capable of resolving all optimization 

issues. This theory prompts several scholars to dedicate their efforts to developing new metaheuristics 

algorithm and improving existing techniques through parametric tuning. Researcher are putting a lot of 

effort into improving the existing algorithms rather than developing entirely new ones. It is possible to 

achieve improved performance and efficiency through the implementation of enhancements such as 

adaptive mechanisms, the fine-tuning of parameters, and the incorporation of intelligent techniques. Better 

accuracy, speed, and scalability may be achieved by using existing algorithms in this way and fixing their 

individual weaknesses. 

 

In this paper, an adaptive population learning based improved variant of EJaya named “PLEJaya” has been 

proposed. EJaya is an enhanced version of Jaya algorithm proposed by Zhang et al. (2021) which improves 

global exploration of the Jaya algorithm. However, due to its single-learning approach and inadequate 

population maintenance, it also has several disadvantages, including slow convergence rates and stagnation 

at local minima. To enhance the exploration and exploitation capability of EJaya algorithm the Adaptive 

Enhancement technique is used. The given strategy is to let large changes in the initial stages to cover a 

large search area and progressively reduce the step size in following iterations to fine-tune the results. The 

Linear Population Reduction (LPR) approach is used to enhance convergence speed. This step seeks to 

decrease the population size, helping the algorithm to focus on the remaining optimal solutions as it 

converges. This population reduction approach uses greater computational power to locate better optimum 

solutions, and the search improves after population reduction. This combination allows us to enhance 

performance on difficult optimization problems, addressing challenges that EJaya algorithms may struggle 

with. 

 

The performance of the proposed method will be assessed on various benchmark functions and real-world 

optimization issues, and compared to existing algorithms such as TLBO, EJAYA, Jaya, PSO, GA, AOA, 

GWO, and WOA. It will be shown that this approach works well at solving difficult optimization problems, 

which means it could be used in many other areas as well. 
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The portions of the paper are written as follows: A review of EJAYA is presented in Section 2, followed 

by an explanation of the recommended methodologies in Section 3, numerical experiments and 

comparisons in Section 4, and the conclusion of the paper in Section 5. 

 

2. EJAYA Algorithm 

The JAYA algorithm (Rao, 2016) is enhanced by the incorporation of a more sophisticated exploitation and 

exploration mechanism. In addition to the current best and worst solutions, this improvement is 

accomplished by taking into account the population's average. The algorithm's goal is to establish a 

balanced search by incorporating these factors, which helps to prevent premature convergence and 

improves the ability to escape local optima. 

 

2.1 Key Features and Steps 
i) Initialization: Population Size (N), upper bound (u), lower bound (l), Number of Variables (D), Current 

Evaluations (gen), and Maximum Evaluations (max Gen) are initialized. The initial population (X) and 

historical population ( )oldX  are randomly generated within the variable limits using Equation (1). 

( )* ,  where 1,2,...,  &  1,2,...,ij j j jx l u l rand i N j D= + − = =                                                                     (1) 

 

ii) Population evaluation: The fitness of each individual in the population is calculated, and the current 

best solution XBest is identified. 

 

iii) Update current evaluations: gen is updated gen gen N= + . 

 

iv) Stopping condition: If gen exceeds max Gen , the algorithm terminates, returning XBest. Otherwise, the 

algorithm proceeds. 

 

v) Local exploitation and global exploration: The chosen probability Pselect is generated. If Pselect is greater 

than 0.5, the method uses local exploitation strategy otherwise, global exploration strategy is performed. 

 

a) Local exploitation:  

Calculate Mean Solution (M): 

1

1 N

j

j

M x
N =

=                                                                                                                                               (2) 

 

where, N is the population size. 

 

Calculate Upper and Lower Points: 

1 2(1 )u BestP x M =  + −                                                                                                                        (3) 

3 4(1 )l WorstP x M =  + −                                                                                                                       (4) 

 

Update Position: 

5 6( ) ( ),     1, 2,3,...,i i u i l iv x P x P x i N = +  − −  − =                                                                                (5) 
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b) Global exploration:  

A different mechanism can be used for exploration, typically involving historical populations or random 

distributions to explore new regions. The fundamental idea behind this global exploration approach is that 

the differential vectors between the historical population and the current population cover a bigger search 

area than those inside the same generation. To apply this concept, First, a random selection approach 

generates the historical population. After that, the historical population is randomly shuffled to 

reorganize the population.  

 

The following is a description of this strategy: 

 

Generate the historical population: The historical population, is created using the following rule: 

1 2{ , ,..., }old old old old

nX x x x=  

, 0.5

,

selectold

old

X if P
X

X otherwise


= 


                                                                                                                    (6) 

 

where, X is the current population, and Pselect is the selected probability (a random number uniformly 

distributed between 0 and 1). 

 

Shuffle the historical population: The historical population oldX  is then shuffled using the following 

operation: 

)(old oldpermut g XinX =                                                                                                                            (7) 

 

where, permuting is a random shuffling function that rearranges all the individuals in 
oldX  in random order. 

 

Global exploration strategy: The global exploration strategy in EJAYA can be formulated as: 

( ),     1, 2,3,...,old

i i i iv x rand x x i N= +  − =                                                                                          (8) 

 

where, rand  is a random number. 

 

vi) Selection: Accept 
iv  if it gives a better function value. 

 

vii) Go to step 3. 

 

3. Proposed Algorithm 
To enhance the performance of EJaya, we suggest a three-phase optimization technique. The initial phase 

of algorithm is Adaptive Population Enhancement Phase to enhance the exploration and exploitation 

capability. After the completion of first phase the algorithm moves onto the Ejaya phase focused on refining 

and improving the solutions established in the preceding phase. This phase focuses on exploiting the most 

promising portions of the solution space while iteratively improving the quality of candidate solutions. In 

third phase, after each generation of the above two phases, the population size is decreased by using the 

linear population reduction mechanism which enhance the convergence speed. 

 

The three phases of the method are described here: 
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Phase 1: Adaptive Population Enhancement Phase 

During the Adaptive Population Enhancement Phase, the optimization method refines candidate solutions 

based on their relative fitness using an adjustable scaling factor S𝐹 which decrease as number of generations 

increases. The strategy is to let large changes in the initial stages to cover a large search area and 

progressively reduce the step size in following iterations to fine-tune the results. 

Population update: In this phase, two individuals from the population, x(a) and x(b), are randomly chosen 

for comparison. The fitness values of these individuals, f(a) and f(b), dictate the update mechanism: 

 

If f(a) < f(b) the solution is modified in a manner that improves its quality, prioritizing the superior 

individual ( )x a : 

, , ,( )old i a i b iiv SFX X X= +  −                                                                                                                           (9) 

 

This upgrade improves convergence towards better solutions by using knowledge from the more proficient 

solution.  

 

If ( ) ( )f a f b  the update utilizes a different approach, amplifying the impact of x(b) while considering its 

relative location to x(a): 

, , ,( )old i b i a iiv SFX X X= +  −                                                                                                                           (10) 

 

where,  

The adaptive scaling factor F is delineated as follows: 

1 2

gen
SF  SF   

maxGen
SF


= − 


 
 

                                                                                                                            (11) 

 

This enables the step size to decrease during the iterations from 0.9 to 0.2. The adaptive factor SF was 

selected within the range 0.9 to 0.2 to gradually shift the algorithm from a predominantly exploratory phase 

to a more exploitative phase. Higher values of SF at the beginning increase the search radius and help in 

identifying diverse regions, while lower values toward the end allow finer exploitation around promising 

solutions. This behavior aligns with established adaptive strategies used in population-based algorithms. 

 

This method ensures that, even if the first chosen superior solution is suboptimal, the algorithm persists in 

exploring the dynamics of the search space. 

 

The Adaptive Enhancement Phase significantly improves the optimization process via a dynamic updating 

technique that facilitates convergence to optimum solutions while permitting varied exploratory motions 

throughout the solution space.  

 

Phase 2: Ejaya Phase 

Following the completion of Phase 1, the algorithm will then go on to Phase 2, where it will make use of 

EJAYA's techniques in order to further analyse and improve the solution space. A specific probability is 

generated to determine the choice between these strategies. The algorithm starts local exploitation when 

the probability surpasses 0.5. Equations (2), (3), (4), and (5) are used to refine solutions in this phase. Global 

exploration starts with probability 0.5 or below. Equations (6), (7), and (8) expand the solution space search 

in this method. This dual strategy improves the algorithm's capacity to identify optimal solutions by 

preserving population diversity while narrowing promising areas. 
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Phase 3: Linear Population Reduction 

After each generation of the above phases, the Linear Population Reduction (LPR) mechanism is applied. 

As the algorithm converges, this phase aims to reduce the population size so that it can concentrate on the 

remaining optimum solutions and increase convergence speed ensuring that the algorithm can find the best 

solution faster. This method for reducing the population helps the program use more computing power to 

find better optimal solutions, while the search gets better as the population size goes down. The decrease 

keeps going until a certain stopping condition is met, which lets the algorithm truly get to the best answers. 

 

Mathematical Formulation: 

For each generation gen, the population size pop(gen) decreases linearly: 

( ) initial final

initial

pop pop
pop gen pop gen

maxGen

− 
= −  

 
                                                                                     (12) 

 

where, initialpop is the initial population size, finalpop  is the final population size, gen is current generation, 

maxGen is the maximum number of generations.  

 

By making the population smaller over time, the LPR process helps the algorithm focus on fewer, better 

solutions, which makes it converge faster in the later stages. These three steps make sure that the algorithm 

does a good job of balancing exploration and exploitation, speeds up convergence, and keeps the population 

diverse during the optimization process.  

 

These three steps make sure that the algorithm does a good job of balancing exploration and exploitation, 

speeds up convergence, and keeps the population diverse during the optimization process. 

 

The pseudo-code of PLEJaya is given below: 

 

Pseudocode of the Proposed PLEJaya Algorithm 

Initialize Population (X) with size N, Variable Limits (u,l), Number of Variables (D), initialpop , 

finalpop , Set Maximum Evaluations (maxGen), and Current Evaluations (gen = 0). 

 

Compute the Initial Fitness of the Population using Equation (1). 
 

Identify Best ( )Bestx  and Worst ( )Worstx  Solutions 

 

while max )( Gengen   
 

Phase 1: Adaptive Enhancement Phase 
 

For 1:i N=  
 

Randomly select two distinct solutions, &j kX X , where j k . 

 

If ( ) ( )j kf fX X  

 

, ( )old ii j kv SFX X X= + −  
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Else 

, ( )old ii k jv SFX X X= + −  

 

End if  
 

End for  
 

If ( ) ( )i if v f X  

 

i iX v=  

 

Update Fitness of Population 
 

Update Best ) (Best  and () Worst  solutions. 

 

Phase 2: EJAYA Phase 
 

The selected probability 
selectP  is generated.  

 

If  
 

0.5selectP   

 

The local exploitation strategy is performed using Equations (2), (3), (4), & (5)  
 

Else 
 

Global exploration strategy is performed using Equations (6), (7), & (8).  
 

End if  
 

( ) ( )i iif f v f X  

 

i iX v=  

 

Update Fitness of Population 
 

Phase 3: Linear Population Reduction 
 

Sort the population  
 

After sorting Apply Linear Population Reduction (LPR) mechanism using Equation (13) 
 

Update ()Best and ()Worst solutions 

 

1gen gen= +  

 

Return Best solution ( )Bestx . 

 



Deshwal & Mogha: Adaptive Population Learning EJaya Algorithm for Real-World Optimization … 
 

340 | Vol. 11, No. 1, 2026 

4. Numerical Experiments and Comparisons 

4.1 Experimental Settings 
To evaluate the optimization efficiency and solution quality of the proposed PLEJaya algorithm, a 

comprehensive set of fifty-two benchmark functions is employed. Twenty-three standard objective 

functions—unimodal, high-dimensional multimodal, and fixed-dimensional multimodal—and thirty CEC 

2017 test suite functions are included. The performance of the PLEJaya algorithm is compared against eight 

well-known metaheuristic algorithms: TLBO, EJAYA, JAYA, GA, PSO, AOA, GWO, and WOA. On each 

algorithm, thirty different runs of one thousand iterations are carried out.  

 

The evaluation metrics used for comparison are five statistical indicators: mean, standard deviation (std), 

best, CPU time (CPT), and rank. Optimization algorithms are ranked by their mean rank across all objective 

functions. When the mean is same, the standard deviation is taken into account. The lowest standard 

deviation is prioritized first. When both the mean and standard deviation are identical, the method with the 

least CPU time is ranked first. Table 1 displays the parameter settings for various methods.  

 

Preliminary experiments were conducted with different SF bounds (e.g., 1.0-0.5, 0.8-0.1). The value 0.9 

and 0.7 consistently produced stable convergence and balanced exploration-exploitation behaviour across 

most benchmark functions. Therefore, these bounds were selected for the final implementation. 

 
Table 1. Parameter settings for various methods. 

 

Algorithm Parameters 

PSO 

Inertia weight(w) decreases linearly from 0.9 to 0.1 

C1 (Personal learning coefficient) = 2 
C2 (Global learning coefficient) = 2 

GA 

Mutation probability = 0.05 

Crossover probability = 0.8 

Selection = Roulette wheel (proportionate) 

GWO Convergence parameter (a) decreases linearly from 2 to 0  

WOA 
Convergence parameter (a) decreases linearly from 2 to 0 

a2 linearly decreases from −1 to −2 

AOA 
control parameter (u) = 0.5 
sensitive parameter (alpha) = 5 

TLBO Teaching factor (TF) = round [(1 + rand)] 

PLEJaya 

Population Size = 100 

1 0.9SF =  

2 0.7SF =  

initialpop =100 

finalpop =10 

maxGen = 1000 

 

 

The benchmark functions are chosen based on the following reasons: Unimodal functions F1 to F7, are 

ideal for assessing the exploitation capabilities of metaheuristic algorithms, as they allow for efficient 

convergence to the global optimum without the interference of local optima. The exploration capabilities 

of these algorithms may be effectively measured by multimodal functions, such as F8 to F23, because of 

their many local optima. Metaheuristic algorithms' ability to strike a balance between the search's 

exploration and exploitation stages is tested using the CEC2017 test suite's sophisticated benchmark 

functions.  
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4.2 Unimodal Benchmark Problems 
The testing of unimodal objective functions was done in order to evaluate the PLEJaya algorithm's capacity 

for exploitation. Unimodal functions were chosen because they contain only a single optimal solution and 

do not have local optima. The optimization results for the F1 to F7 functions using the PLEJaya and several 

competing algorithms are presented in Table 2. The outcomes indicate that the PLEJaya successfully 

reached the global optimum for all the objective functions. When compared to five other algorithms, 

PLEJaya demonstrated clear superiority and highly competitive performance. 

 
Table 2. Evaluation results on unimodal functions. 

 

 PLEJaya TLBO EJAYA JAYA PSO GA 

F1 

Best 5.00E-25 1.5992 9.9608E-16 2.95632 3.14E−05 33.35136 

Mean 5.54E-24 2.055918 3.82E-15 4.487295 0.181599 19.78438 

STD 5.656E-24 0.520663 9.5587E-15 1.056918 0.729657 8.395292 

CPT 5.439462 13.286505 4.400951 2.595141 419.606604 6.644676 

Rank 1 4 2 5 3 6 

F2 

Best 1.20E-12 1.7577 8.22E-10 1.500848 0.080876 1.869152 

Mean 1.99E-12 2.055918 3.85E-09 1.980803 1.419726 3.188112 

STD 6.2125E-13 0.520663 2.5946E-09 0.436198 3.034488 0.693334 

CPT 7.420475 13.022129 5.027499 13.428985 171.197969 5.918492 

Rank 1 5 2 4 3 6 

F3 

Best 2.5281E-07 0.016224 0.005337 28652.11 29.63701 1111.139 

Mean 1.2575E-06 2279.459 0.041555 32331.69 1094.128 2125.752 

STD 8.9275E-07 1697.011 0.038809 4174.634 1618.416 495.7954 

CPT 13.340652 25.033064 14.110897 2.155619 126.053377 20.103473 

Rank 1 5 2 6 3 4 

F4 

Best 7.51E-06 2.9651 0.008997 17.153 3.511675 2.113563 

Mean 3.68E-05 3.236455 0.039634 21.77216 6.507623 3.210794 

STD 2.952E-05 0.302485 0.025256 2.994494 1.970793 0.64983 

CPT 6.468397 12.929743 4.602314 2.267819 109.659035 9.183299 

Rank 1 3 2 6 5 4 

F5 

Best 0 30.7532 10.8336 484.448 30.07967 227.4906 

Mean 0 33.813 29.04889 806.2018 112.2916 420.6 

STD 0 2.226827 23.07953 308.0335 85.244 122.0165 

CPT 9.147682 20.660965 11.235353 6.168703 119.717372 11.067501 

Rank 1 3 2 6 4 5 

F6 

Best 2.21E-24 0.13432 7.01E-17 9.7929 9.98E−06 14.51884 

Mean 1.40E-23 0.193379 2.27E-15 12.66313 0.028587 34.0323 

STD 1.012E-23 0.064751 2.635E-15 2.974 0.0747 15.199 

CPT 9.272193 12.733069 5.047241 8.121155 112.115750 10.359740 

Rank 1 4 2 5 3 6 

F7 

Best 0.001095 0.010721 0.007093 0.002763 0.082498 0.006283 

Mean 0.005133 0.021664 0.009197 0.005465 0.166943 0.009847 

STD 0.002111 0.005344 0.003695 0.001644 0.052796 0.003084 

CPT 9.296877 20.265117 8.842797 2.169309 114.826136 13.788341 

Rank 1 5 4 2 6 3 

Sum Rank 7 29 16 34 27 34 

Mean Rank 1 4.14 2.29 4.86 3.86 4.86 

Total Rank 1 4 2 5 3 5 

 

 

4.3 Multimodal Benchmark Problems 
To determine the exploring capability of the "PLEJaya algorithm" the assessment of high-dimensional 

multimodal objective functions was carried out. High-dimensional multimodal objective functions were 

chosen because they have various local and global optima. The optimization results for the F8 to F13 

functions using the PLEJaya and several competing algorithms are presented in Table 3. The "PLEJaya 

algorithm" is the top performer for optimizing all functions F8 to F13, according to the data, which indicates 

that it consistently converged to the global optimum for each of these functions. 
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Table 3. Evaluation results on multimodal functions. 
 

 PLEJaya TLBO E-JAYA JAYA PSO GA 

F8 

Best -9919.69 -6601.16 -7352.15 -7340.19 − 8047.43 − 9693.59 

Mean -8585.1 -5234.86 -6963.12 -8355.31 − 6891.6 − 8551.34 

STD 716.8452 499.5731 542.8759 688.8714 874.6514 761.0887 

CPT 4.595238 11.758071 2.348841 9.308895 117.963119 6.489410 

Rank 1 6 4 3 5 2 

F9 

Best 11.9395 192.9874 14.9244 18.9042 32.85466 32.80754 

Mean 16.1183 208.4517 22.88405 24.34615 69.57591 58.68141 

STD 3.3298 8.536852 7.706914 5.476159 20.94823 12.70118 

CPT 18.257091 19.390398 10.272244 7.760017 120.208005 9.984504 

Rank 1 6 2 3 5 4 

F10 

Best 2.42E-13 2.0201 9.95E-09 2.402 0.978948 3.045616 

Mean 2.74E-12 3.039636 2.09E-08 4.542082 2.869241 3.659085 

STD 2.31678E-12 0.876241 1.63E-08 5.133384 0.78912 0.411662 

CPT 14.797849 30.498326 11.305578 10.295386 120.919220 11.312803 

Rank 1 4 2 6 3 5 

F11 

Best 0 0.00675 1.89E-15 1.0245 0.012446 1.251305 

Mean 0 0.030281 0.005808 1.037572 0.308563 1.524898 

STD 0 0.032233 0.013367 0.016212 0.899622 0.143664 

CPT 12.171252 29.214839 8.060355 7.322093 517.012686 9.615891 

Rank 1 3 2 5 4 6 

F12 

Best 1.23E-26 0.18432 5.89E-17 4.5874 0.000558 0.042239 

Mean 8.62E-25 0.313035 1.03E-08 6.955473 1.391328 0.155349 

STD 1.8333E-24 0.101105 3.43008E-08 2.17984 1.03366 0.075924 

CPT 12.948925 31.106377 9.867746 10.992171 127.343985 10.394519 

Rank 1 4 2 6 5 3 

F13 

Best 5.07E-25 0.25983 2.39E-16 4.694 0.056865 0.993663 

Mean 1.25E-23 0.341814 2.00E-03 7.719255 3.08976 2.160287 

STD 1.2483E-23 0.075441 0.004444 2.618373 3.228647 0.701865 

CPT 12.267699 31.177067 9.111292 8.809444 123.644576 10.371147 

Rank 1 3 2 6 4 5 

Sum Rank 8 26 13 28 26 25 

Mean Rank 1.33 4.33 2.17 4.67 4.33 4.17 

Total Rank 1 4 2 5 4 3 

 

 

4.4 Fixed Multidimensional Benchmark Problems 
Fixed-dimensional multimodal functions were used to evaluate PLEJaya's capacity to strike a balance 

between exploration and exploitation since they had fewer local optima than F8 to F13. Table 4 presents 

the optimization outcomes for the F14 to F23 functions. Based on the results, the PLEJaya algorithm was 

shown to be the best optimizer for all functions from F14 to F23, constantly ranking top. 

 
Table 4. Evaluation results on fixed multidimensional functions. 

 

 PLEJaya TLBO E-JAYA JAYA PSO GA 

F14 

Best 0.39789 0.998 0.730 0.998 0.998 0.998 

Mean 0.39789 0.998 0.730 0.998 3.212 0.998 

STD 0 6.96E−06 1.16441E-16 0 2.885 0.0002 

CPT 14.065655 63.548074 15.236534 24.212400 158.608970 23.734359 

Rank 1 4 2 3 6 5 

F15 

Best 0.00030 0.00030 0.00030 0.00034 0.00030 0.00077 

Mean 0.00030 0.00337 0.00039 0.000458 0.00164 0.01273 

STD 0 0.00733 9.35E-05 4.909E-05 0.00444 0.01058 

CPT 10.429765 33.285465 11.278019 11.372214 21.900404 11.474497 

Rank 1 4 2 3 5 6 

F16 

Best -1.0316 − 1.0316 -1.0316 -1.0316 − 1.0316 − 1.0316 

Mean -1.0316 − 1.0316 -1.0316 -1.0316 − 1.0316 − 1.0316 

STD 0 2.49E−06 4.57E-7 1.223E-05 1.14E−16 4.37E−06 
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Table 4 continued… 
 

 
CPT 9.420166 21.359316 8.694221 8.210418 21.880538 10.382517 

Rank 1 4 3 5 2 6 

F17 

Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 

Mean 0.39789 0.39789 0.39789 0.39789 0.53901 0.52441 

STD 0 5.822E-17 5.822E-17 5.688E-17 0.539 0.534 

CPT 12.657265 37.556580 11.897511 10.668490 37.538695 12.439384 

Rank 1 2 2 3 5 4 

F18 

Best 3 3 3 3 3 3.000044 

Mean 3 3 3 3.001354 3 5.729191 

STD 0 0 0 1.694E-03 2.76E−15 8.39291 

CPT 12.657265 38.713201 12.188205 12.484914 13.816302 14.722119 

Rank 1 1 1 3 2 4 

F19 

Best -3.8628 -3.8628 -1.8997 -3.8628 − 3.86278 − 3.86278 

Mean -3.8628 -3.8628 -1.8997 -3.8628 − 3.86278 − 3.86278 

STD 0 0 4.658E-16 0 2.09E−15 0.001431 

CPT 11.188305 34.240394 11.369006 11.442573 19.398306 11.596128 

Rank 1 1 2 1 3 4 

F20 

Best -3.322 -3.322 -3.322 -3.2031 − 3.322 − 3.3214 

Mean -3.322 -3.322 -3.322 -3.26011 − 3.29822 − 3.19552 

STD 0 0 0 0.058921 0.048793 0.093531 

CPT 11.281090 33.154432 10.864058 11.349633 27.081922 11.364303 

Rank 1 1 1 3 2 4 

F21 

Best -10.1532 -10.1532 -10.1532 -9.8179 − 10.1532 − 9.0381 

Mean -10.1532 -10.1532 -10.1532 -6.66069 − 5.77879 − 5.89083 

STD 0 0 0 2.15082 3.703566 2.512564 

CPT 11.582073 34.604902 10.683051 10.638662 31.327449 12.635227 

Rank 1 1 1 2 4 3 

F22 

Best -10.4029 -10.4029 -10.4020 -10.4029 − 10.4029 − 10.1952 

Mean -10.4029 -10.4029 -10.4029 -8.98973 − 6.31807 − 7.21825 

STD 0 0 0 2.08157 3.837031 2.472441 

CPT 11.531746 33.852822 10.567918 10.070323 52.636237 11.807742 

Rank 1 1 1 2 4 3 

F23 

Best -10.5364 -10.5364 -10.5364 -10.5364 − 10.5364 − 10.417 

Mean -10.5364 -10.5364 -10.5364 -8.72248 − 5.62285 − 5.78525 

STD 0 0 0 2.016805 3.755817 2.966829 

CPT 11.997129 35.719880 11.310603 10.699930 27.165628 12.041502 

Rank 1 1 1 2 4 3 

Sum Rank 10 20 16 27 37 42 

Mean Rank 1 2 1.6 2.7 3.7 4.2 

Total Rank 1 3 2 4 5 6 

 

 

4.5 Evaluation of the CEC 2017 Test Suite Benchmark Functions 
In this section, we test the ability of the proposed algorithm in resolving the complex optimization problems 

that are introduced in the CEC 2017 test functions. These functions are categorized as follows: three 

unimodal functions (C17-F1 to C17-F3), seven multimodal functions (C17-F4 to C17-F10), ten hybrid 

functions (C17-F11 to C17-F20), and ten composition functions (C17-F21 to C17-F30). 

 

Results from optimizing the CEC 2017 functions using the PLEJaya and alternative competing algorithms 

are displayed in Table 5. Based on the findings, it is evident that the PLEJaya algorithm obtains the highest 

level of performance when it comes to solving the functions C17-F1 to C17-F19, C17-F21, C17-F22, C17-

F24, C17-F25, and C17-F27 to C17-F30.  

 

Results of these findings reveals that the suggested strategy improves most CEC 2017 benchmark functions. 

Thus, PLEJaya solves optimization issues better than competitors. 
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Table 5. Evaluation results on CEC 2017 test functions. 
 

 PLEJaya TLBO EJAYA JAYA PSO GA AOA GWO WOA 

C17-

F1 

Best 1.08E+02 1.97E+07 1.14E+02 9.09E+03 7.27E+06 1.52E+07 2.57E+05 1.49E+03 5.34E+05 

Mean 1.55E+02 2.24E+07 1.88E+02 7.59E+02 1.05E+07 2.26E+07 1.28E+05 1.51E+03 4.86E+08 

STD 3.25E+01 3.70E+06 1.04E+02 1.18E+04 1.38E+07 1.05E+07 9.14E+04 2.51E+01 7.56E+07 

CPT 20.80 45.61 31.41 19.05 284.53 41.99 23.76 26.56 69.27 

Rank 1 8 2 3 6 7 5 4 9 

C17-

F2 

Best 2.00E+02 1.18E+30 2.66E+02 1.65E+03 1.56E+03 5.32E+20 3.98E+17 1.58E+20 1.65E+29 

Mean 2.18E+02 8.53E+29 7.87E+04 2.28E+03 1.88E+03 4.65E+22 4.67E+17 1.81E+20 2.26E+30 

STD 2.69E+01 1.62E+28 1.11E+05 8.93E+02 1.68E+02 6.50E+22 3.23E+18 4.21E+20 6.73E+29 

CPT 14.92 51.36 31.56 16.25 325.77 25.59 14.99 19.77 68.36 

Rank 1 7 4 3 2 6 5 8 9 

C17-

F3 

Best 3.00E+02 1.07E+05 5.74E+02 2.93E+04 8.43E+04 3.13E+04 8.14E+04 1.98E+04 4.56E+04 

Mean 3.00E+02 1.35E+05 1.14E+03 3.82E+04 5.69E+04 3.25E+04 9.18E+04 1.98E+04 3.26E+05 

STD 0 2.61E+04 7.14E+02 1.26E+04 1.69E+03 1.79E+03 1.21E+04 2.49E+02 6.73E+04 

CPT 22.30 46.93 28.29 14.46 423.13 26.70 18.48 20.10 45.77 

Rank 1 8 2 4 5 3 6 7 9 

C17-

F4 

Best 4.05E+02 4.94E+02 4.26E+02 4.72E+02 6.16E+02 5.32E+02 5.10E+02 5.29E+02 5.43E+02 

Mean 4.57E+02 4.96E+02 4.57E+02 4.96E+02 6.27E+02 5.43E+02 5.18E+02 7.30E+02 7.62E+02 

STD 1.49E+01 1.92E+01 4.32E+01 3.46E+01 6.15E+02 1.55E+01 1.56E+01 3.45E+02 1.74E+02 

CPT 15.56 46.46 30.01 19.02 432.03 26.18 15.28 21.04 62.46 

Rank 1 4 2 3 7 6 5 8 9 

C17-

F5 

Best 5.43E+02 7.11E+02 5.34E+02 6.16E+02 7.13E+02 7.21E+02 8.35E+02 5.90E+02 7.43E+02 

Mean 5.46E+02 7.23E+02 5.51E+02 6.32E+02 7.24E+02 7.22E+02 8.65E+02 5.91E+02 8.39E+02 

STD 4.22E+00 1.68E+01 2.39E+01 2.27E+01 1.51E+01 1.01E+00 2.59E+01 2.11E+00 5.25E+01 

CPT 20.75 53.39 33.33 14.93 434.45 29.45 36.32 25.05 45.83 

Rank 1 6 2 4 7 5 9 3 8 

C17-
F6 

Best 6.00E+02 6.13E+02 6.00E+02 6.13E+02 6.11E+02 1.25E+04 6.09E+02 6.03E+02 6.23E+02 

Mean 6.00E+02 6.12E+02 6.00E+02 6.12E+02 6.31E+02 1.28E+05 6.90E+02 6.14E+02 6.67E+02 

STD 8.86E-05 4.72E−01 5.34E-02 0.54E+01 1.17E+01 2.12E+05 1.94E+00 0.074E+00 1.51E+01 

CPT 17.77 163.35 135.09 18.59 331.33 40.85 19.85 26.01 45.46 

Rank 1 3 2 4 6 9 8 5 7 

C17-
F7 

Best 7.80E+02 9.14E+02 7.80E+02 9.33E+02 9.02E+02 1.35E+03 1.04E+03 8.07E+02 1.45E+03 

Mean 7.88E+02 9.64E+02 7.91E+02 9.37E+02 9.60E+02 1.35E+03 1.41E+03 8.69E+02 1.36E+03 

STD 1.01E+01 1.81E+01 1.54E+01 5.88E+00 8.20E+01 4.75E+00 3.15E+01 4.89E+01 6.97E+01 

CPT 20.53 56.90 36.74 15.25 327.48 29.96 28.35 25.72 43.61 

Rank 1 6 2 4 5 7 9 3 8 

C17-
F8 

Best 8.32E+02 1.00E+03 8.51E+02 8.79E+02 9.27E+02 8.96E+02 1.32E+03 8.89E+02 1.01E+03 

Mean 8.39E+02 1.02E+03 8.78E+02 9.01E+02 9.52E+02 9.27E+02 1.57E+03 9.05E+02 1.05E+03 

STD 9.85E+00 8.05E+00 3.66E+01 3.17E+01 3.49E+01 4.34E+01 1.86E+01 2.36E+01 5.29E+01 

CPT 19.52 53.42 35.17 19.38 304.67 28.54 12.29 14.75 37.86 

Rank 1 7 2 3 6 5 9 4 8 

C17-

F9 

Best 9.00E+02 2.16E+03 9.27E+02 2.02E+03 9.42E+02 5.79E+03 1.25E+03 1.08E+03 9.98E+03 

Mean 9.00E+02 2.29E+03 9.68E+02 2.77E+03 9.35E+03 7.47E+03 1.49E+03 2.59E+03 1.13E+04 

STD 0 1.80E+02 5.81E+01 1.05E+03 3.61E+02 2.37E+03 1.89E+02 1.32E+03 4.57E+03 

CPT 18.26 55.24 35.91 14.28 325.91 27.05 13.04 19.72 38.76 

Rank 1 4 2 6 8 7 3 5 9 

C17-

F10 

Best 4.19E+03 7.74E+03 4.36E+03 4.20E+03 5.03E+03 5.50E+03 8.42E+03 3.42E+03 6.83E+03 

Mean 4.37E+03 7.96E+03 5.83E+03 4.98E+03 5.41E+03 6.07E+03 8.78E+03 4.41E+03 7.12E+03 

STD 2.63E+02 3.08E+02 2.08E+03 1.13E+03 5.31E+02 8.01E+02 3.42E+02 8.69E+02 7.15E+02 

CPT 14.22 111.71 83.58 15.11 323.74 33.63 17.12 19.12 42.35 

Rank 1 7 5 3 4 6 9 2 8 

C17-

F11 

Best 1.12E+03 1.41E+03 1.15E+03 1.15E+03 1.17E+03 1.22E+03 1.26E+03 1.37E+03 6.75E+03 

Mean 1.13E+03 1.43E+03 1.15E+03 1.17E+03 1.24E+03 1.26E+03 1.33E+03 2.08E+03 6.99E+03 

STD 2.82E+00 2.84E+01 2.78E+00 5.32E+01 8.87E+01 5.77E+01 4.26E+01 6.50E+02 4.20E+03 

CPT 26.34 50.42 32.39 18.25 328.80 26.62 17.45 19.93 38.45 

Rank 1 7 2 3 4 5 6 8 9 

C17-

F12 

Best 3.92E+03 4.94E+07 1.80E+04 4.27E+04 3.82E+04 3.69E+07 1.16E+05 7.62E+06 9.98 

Mean 3.72E+03 5.03E+07 3.96E+04 4.70E+04 1.24E+06 3.75E+07 4.67E+05 9.45E+07 2.15E+08 

STD 2.75E+03 1.39E+06 3.05E+04 6.07E+03 1.92E+06 6.83E+05 3.67E+05 1.60E+08 3.50E+08 

CPT 25.13 75.54 55.99 15.71 322.58 26.34 11.69 19.06 47.76 
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Table 5 continued… 
 

 Rank 1 7 2 3 5 6 4 8 9 

C17-

F13 

Best 1.78E+03 6.67E+05 1.47E+04 1.82E+03 4.63E+03 1.00E+06 1.07E+04 2.57E+07 1.35E+06 

Mean 3.73E+03 6.78E+05 3.42E+04 4.66E+03 1.24E+04 1.16E+06 1.73E+04 4.32E+07 1.97E+06 

STD 2.75E+03 1.50E+04 2.39E+04 4.01E+03 6.58E+03 8.27E+04 8.03E+04 1.83E+08 1.77E+06 

CPT 28.87 54.04 36.52 19.08 362.91 40.08 20.21 19.27 42.54 

Rank 1 6 5 2 3 7 4 9 8 

C17-

F14 

Best 1.50E+03 3.58E+04 1.56E+03 5.34E+03 2.01E+03 3.57E+04 9.62E+04 4.22E+04 1.23E+06 

Mean 1.54E+03 3.77E+04 1.56E+03 1.28E+04 2.55E+03 5.99E+04 1.28E+04 4.56E+05 2.03E+06 

STD 6.16E+01 2.69E+03 3.56E+00 1.12E+04 3.95E+02 3.42E+04 3.22E+03 6.19E+05 1.39E+06 

CPT 25.282 78.933 56.244 17.740 237.015 40.692 11.392 29.15 39.97 

Rank 1 6 2 5 3 7 4 8 9 

C17-

F15 

Best 1.74E+03 1.04E+05 4.84E+03 6.55E+03 1.95E+03 2.88E+04 1.58E+03 3.45E+05 8.76E+05 

Mean 1.85E+03 1.12E+05 5.85E+03 2.44E+04 5.27E+03 5.86E+04 2.21E+03 8.90E+05 1.29E+06 

STD 1.55E+02 1.29E+04 1.42E+03 2.53E+04 2.67E+03 4.21E+04 6.14E+02 1.32E+06 3.31E+06 

CPT 25.42 54.12 34.50 15.47 320.78 34.86 27.18 29.82 38.34 

Rank 1 7 4 5 3 6 2 8 9 

C17-

F16 

Best 1.97E+03 3.30E+03 2.13E+03 2.68E+03 3.47E+03 3.37E+03 2.82E+03 2.39E+03 3.96E+03 

Mean 1.97E+03 3.33E+03 2.16E+03 2.85E+03 3.38E+03 3.40E+03 3.01E+03 2.75E+03 4.00E+03 

STD 1.89E+00 5.18E+01 9.30E+01 4.89E+02 1.13E+02 4.56E+01 1.76E+02 1.83E+02 6.14E+02 

CPT 40.19 76.43 51.53 60.15 327.13 27.37 47.73 48.82 54.75 

Rank 1 6 2 4 7 8 5 3 9 

C17-

F17 

Best 1.71E+03 2.18E+03 1.77E+03 1.94E+03 2.21E+03 2.32E+03 1.95E+03 1.98E+03 1.76E+03 

Mean 1.74E+03 2.33E+03 1.86E+03 2.05E+03 2.55E+03 2.34E+03 1.99E+03 2.70E+03 2.86E+03 

STD 5.30E+01 2.03E+02 1.16E+02 1.58E+02 4.84E+02 4.69E+01 3.48E+01 1.07E+02 3.22E+02 

CPT 25.608 87.707 63.764 16.240 324.704 29.031 16.706 28.372 69.45 

Rank 1 5 2 4 7 6 3 8 9 

C17-
F18 

Best 8.64E+03 1.11E+06 1.44E+04 3.25E+05 1.73E+05 8.72E+05 5.14E+05 1.02E+06 1.03E+07 

Mean 8.88E+03 1.15E+06 1.99E+04 4.11E+05 1.25E+07 8.90E+05 1.13E+06 1.42E+06 1.23E+07 

STD 3.43E+02 4.58E+04 7.90E+03 1.22E+05 1.75E+07 2.63E+04 7.89E+05 1.18E+06 1.28E+07 

CPT 23.77 60.34 40.17 14.42 322.88 32.11 27.14 27.84 38.18 

Rank 1 6 2 3 9 4 5 7 8 

C17-
F19 

Best 2.06E+03 6.49E+04 2.97E+03 2.73E+03 3.26E+04 3.25E+06 8.99E+03 6.46E+04 9.42E+06 

Mean 2.18E+03 1.02E+05 7.01E+03 1.11E+04 6.17E+04 4.05E+06 1.07E+04 9.85E+05 1.82E+07 

STD 1.76E+02 5.25E+04 7.13E+03 1.29E+04 1.07E+05 1.12E+05 6.74E+03 1.59E+06 1.75E+07 

CPT 18.24 253.83 203.07 19.28 317.88 37.78 24.01 19.56 80.45 

Rank 1 6 2 4 5 8 3 7 9 

C17-
F20 

Best 2.14E+03 2.62E+03 2.13E+03 2.24E+03 2.54E+03 2.66E+03 2.45E+03 2.26E+03 2.35E+03 

Mean 2.24E+03 2.74E+03 2.18E+03 2.36E+03 2.60E+03 2.69E+03 2.58E+03 2.59E+03 2.79E+03 

STD 1.44E+02 1.77E+02 6.35E+01 1.66E+02 8.89E+01 3.86E+01 1.05E+02 1.82E+02 2.24E+02 

CPT 17.10 105.43 82.21 15.15 336.04 30.43 19.244 19.995 38.85 

Rank 2 8 1 3 6 7 4 5 9 

C17-

F21 

Best 2.32E+03 2.54E+03 2.37E+03 2.42E+03 4.57E+03 2.56E+03 2.43E+03 2.36E+03 2.40E+03 

Mean 2.32E+03 2.54E+03 2.37E+03 2.45E+03 8.72E+03 2.58E+03 2.46E+03 2.51E+03 2.65E+03 

STD 1.23E+01 2.25E+00 4.95E+00 7.69E+01 2.76E+03 1.25E+01 8.63E+01 3.21E+01 5.09E+01 

CPT 18.361 232.820 184.971 18.371 325.474 34.064 15.4856 23.242 120.35 

Rank 1 6 2 3 9 7 4 5 8 

C17-
F22 

 

Best 2.30E+03 2.38E+03 2.30E+03 2.30E+03 2.31E+03 6.39E+03 2.31E+03 5.31E+03 7.41E+03 

Mean 2.30E+03 2.38E+03 2.30E+03 2.43E+03 2.96E+03 6.64E+03 2.32E+03 5.61E+03 7.89E+03 

STD 2.79E-09 4.48E+00 2.26E-08 1.85E+02 6.56E+01 3.55E+02 1.09E+01 2.05E+03 1.51E+03 

CPT 18.887 352.216 216.318 22.501 327.538 23.774 15.709 23.65 54.76 

Rank 1 4 2 5 6 8 3 7 9 

C17-

F23 

Best 2.69E+03 2.79E+03 2.71E+03 2.30E+03 3.54E+03 3.35E+03 2.79E+03 2.81E+03 3.01E+03 

Mean 2.70E+03 2.86E+03 2.72E+03 2.30E+03 3.67E+03 3.36E+03 2.79E+03 2.89E+03 3.12E+03 

STD 1.61E+01 4.66E+00 9.25E+00 8.55E-07 3.90E+01 2.32E+01 8.98E+00 4.94E+01 6.67E+01 

CPT 27.876 322.157 260.549 19.266 398.648 30.487 16.465 34.72 76.54 

Rank 2 4 3 1 9 8 5 6 7 

C17-

F24 

Best 2.86E+03 3.03E+03 2.89E+03 2.88E+03 3.13E+03 3.53E+03 2.93E+03 2.95E+03 3.05E+03 

Mean 2.86E+03 3.03E+03 2.90E+03 2.96E+03 3.19E+03 3.55E+03 2.97E+03 3.20E+03 3.29E+03 

STD 5.42E-01 3.86E+00 2.78E+01 4.595E+01 8.49E+01 3.32E+01 1.37E+01 7.18E+01 8.21E+01 

CPT 17.467 314.314 243.009 20.893 330.424 29.934 17.474 21.22 45.76 
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Table 5 continued… 
 

 
 

4.6 Evaluation Results on Real-World Problems 
This section tests the PLEJaya algorithm's ability to resolve real-life optimization problems. Testing was 

done on four different engineering optimization problems using PLEJaya and other competing algorithms. 

These challenges include Welded Beam Design (WBD), Speed Reducer Design (SRD), Pressure Vessel 

Design (PVD), and Tension/Compression Spring Design (TCSD).  

 

In Table 6 the optimization results of four engineering problems are summarized. The simulation results 

demonstrate that PLEJaya consistently outperforms competitor algorithms in optimizing all four studied 

engineering challenges. The results clearly show that PLEJaya exhibits superior performance and 

robustness when dealing with real-world optimization problems. 

 

PLEJaya provided the best results for the Welded Beam Design (WBD) issue, tied with E-JAYA and JAYA. 

Additionally, it maintained a reduced standard deviation (STD), which indicates that it is reliable. Similarly, 

in the PVD (Pressure Vessel Design) and Speed Reducer Design (SRD) problems, PLEJaya performed 

equally well with E-JAYA and JAYA but ranked higher due to its more consistent results. proposed 

 Rank 1 5 2 3 6 9 4 7 8 

C17-

F25 

Best 2.73E+03 2.90E+03 2.89E+03 2.89E+03 3.00E+03 2.94E+03 2.89E+03 3.03E+03 3.10E+03 

Mean 2.73E+03 2.93E+03 2.89E+03 2.89E+03 3.02E+03 2.95E+03 2.98E+03 3.05E+03 3.12E+03 

STD 2.96E-02 2.38E+01 0.77E+00 0.01E+00 3.55E+01 1.09E+01 8.81E+01 6.13E+01 7.69E+01 

CPT 22.68 309.89 247.26 21.69 131.78 29.92 20.69 33.01 53.91 

Rank 1 4 3 2 7 5 6 8 9 

C17-

F26 

Best 3.79E+03 4.01E+03 2.90E+03 5.07E+03 5.28E+03 8.82E+03 4.64E+03 4.86E+03 7.89E+03 

Mean 4.06E+03 4.98E+03 3.68E+03 5.27E+03 6.06E+03 9.02E+03 5.02E+03 4.99E+03 8.25E+03 

STD 3.87E+02 1.39E+03 1.10E+03 2.82E+02 9.42E+02 4.03E+02 2.61E+02 4.35E+02 9.85E+02 

CPT 17.41 403.67 313.15 18.01 443.84 30.05 17.93 33.45 63.84 

Rank 2 3 1 6 7 8 5 4 9 

C17-

F27 

Best 3.19E+03 3.23E+03 3.21E+03 3.22E+03 3.19E+03 4.25E+03 3.23E+03 3.25E+03 3.26E+03 

Mean 3.20E+03 3.23E+03 3.22E+03 3.23E+03 3.42E+03 4.34E+03 3.24E+03 3.32E+03 3.54E+03 

STD 1.70E+01 5.03E-01 6.51E+00 1.59E+01 7.71E+01 1.37E+02 6.58E+00 2.14E+01 1.03E+02 

CPT 25.849 469.89 379.91 20.92 432.89 31.11 20.36 32.76 73.54 

Rank 1 3 2 4 7 9 5 6 8 

C17-

28 

Best 3.10E+03 3.25E+03 3.22E+03 3.10E+03 3.12E+03 3.30E+03 3.23E+03 3.28E+03 3.48E+03 

Mean 3.18E+03 3.26E+03 3.24E+03 3.18E+03 3.37E+03 3.30E+03 3.49E+03 3.54E+03 3.67E+03 

STD 9.56E+01 1.31E+02 3.37E+01 1.06E+02 1.59E+02 1.49E+01 2.26E+01 1.75E+02 1.47E+02 

CPT 18.49 389.51 309.39 21.72 431.56 27.38 20.58 28.94 69.76 

Rank 1 4 3 2 6 5 7 8 9 

C17-

29 

Best 3.36E+03 4.18E+03 3.37E+03 3.82E+03 3.30E+03 5.14E+03 3.91E+03 3.45E+03 4.59E+03 

Mean 3.40E+03 4.19E+03 3.67E+03 3.84E+03 4.48E+03 5.35E+03 3.96E+03 3.95E+03 5.18E+03 

STD 5.36E+01 9.86E+00 41.5E+02 2.94E+01 3.35E+02 2.92E+02 8.86E+01 2.25E+02 5.69E+02 

CPT 25.10 343.59 213.73 19.64 459.62 33.43 28.02 31.35 62.67 

Rank 1 6 2 3 7 9 5 4 8 

C17-
30 

Best 6.18E+03 3.85E+05 6.63E+03 6.53E+03 9.89E+04 1.40E+05 8.59E+03 7.46E+06 9.78E+06 

Mean 6.37E+03 5.14E+05 9.44E+03 6.72E+03 5.32E+05 1.13E+06 1.56E+04 1.26E+07 6.51E+07 

STD 2.32E+02 1.83E+05 3.97E+03 2.68E+02 5.90E+05 1.11E+06 5.23E+03 1.45E+07 4.96E+07 

CPT 17.07 533.03 364.78 20.49 431.99 27.42 18.85 20.76 74.98 

Rank 1 5 3 2 6 7 4 8 9 

 
Sum 

Rank 
33 168 70 104 178 200 152 183 256 

 
Mean 

Rank 
1.1 5.6 2.3 3.47 5.93 6.67 5.07 6.1 8.53 

 
Total 

Rank 
1 4 2 3 6 8 5 7 9 
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algorithm also placed first with the lowest standard deviation in the TCSD problem, proving its 

effectiveness across all challenges. 

 

The proposed algorithm is the top-ranked algorithm in the context of these real-world engineering problems, 

surpassing other algorithms such as TLBO, E-JAYA, JAYA, PSO, and GA, as determined by the sum and 

mean of ranks. 

 
Table 6. Evaluation results on real-world problems. 

 

 
 

4.7 Statistical Analysis 
The performance of the PLEJaya was compared against five well-known algorithms TLBO, EJAYA, JAYA, 

PSO, and GA using statistical analysis methods. The Wilcoxon Rank-Sum test and the Friedman test were 

employed to assess the significance of PLEJaya’s performance over classical functions and CEC17 

functions are presented in Tables 7, 8, 9, and 10. 

 
Table 7. Wilcoxon-rank sum test results for classical functions. 

 

Algorithms Win/loss/ties ΣR+ ΣR- z-value p-value Sig at α = 0.05 

PLEJaya vs 

TLBO 15/0/8 120 0 3.408 <0.001 + 

EJAYA 15/1/7 122 14 2.792 <0.001 + 

JAYA 19/1/3 197 13 3.435 <0.001 + 

PSO 21/0/2 231 0 4.015 <0.001 + 

GA 22/0/1 253 0 4.107 <0.001 + 

 
 

The symbols "+" and "=" stand for better and equal respectively. 

 

 

Table 8. Rankings according to Friedman for classical functions. 
 

 
 

 

 

  PLEJaya TLBO E-JAYA JAYA PSO GA 

WBD 

Best 1.724852 2.17541 1.724852 1.724852 1.876176 1.83841 

Mean 1.724852 2.54876 1.724852 1.724852 2.123005 1.96595 

STD 6.98647E-16 0.25631 9.98647E-15 4.65765E-14 0.034882 0.139733 

Rank 1 5 2 3 4 3 

SRD 

Best 2994.471 3033.594 2994.471 2994.471 3054.173 3070.629 

Mean 2994.471 3069.904 2994.471 2994.471 3174.457 3190.666 

STD 4.76943E-13 18.0977 4.76943E-13 4.76943E-13 92.69298 17.14086 

Rank 1 2 1 1 3 4 

PVD 

Best 5885.333 6166.438 5885.333 5885.333 5918.224 6581.043 

Mean 5885.333 6328.261 5885.333 5885.333 6265.49 6645.562 

STD 9.53886E-13 126.639 9.53886E-13 9.53886E-13 496.2457 657.679 

Rank 1 3 1 1 2 4 

TCSD 

Best 0.012665 0.012822 0.012665 0.012721 0.013151 0.013192 

Mean 0.012665 0.01296 0.012665 0.012721 0.014166 0.01289 

STD 0 0.007831 5.4272E-11 1.81939E-18 0.002092 0.000378 

Rank 1 5 2 3 6 4 

Sum Rank  4 15 6 8 15 15 

Mean Rank  1 3.75 1.5 2 3.75 3.75 

Total Rank  1 4 2 3 4 4 

 PLEJaya TLBO EJAYA JAYA PSO GA 

Rank 1.54 3.63 2.37 4.30 4.46 4.70 
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Table 9. Wilcoxon-rank sum test results for CEC17 functions.  
 

Algorithms ΣR+ ΣR- z value p-value Sig at α=0.01 

PLEjaya vs 

TLBO 465 0 4.782 <0.001 + 

Ejaya 348.5 29.5 3.834 <0.001 + 

Jaya 420 15 4.379 <0.001 + 

PSO 465 0 4.782 <0.001 + 

GA 465 0 4.782 <0.001 + 

AOA 465 0 4.782 <0.001 + 

GWO 465 0 4.782 <0.001 + 

WOA 465 0 4.782 <0.001 + 

 

The symbols "+" and "=" stand for better and equal respectively. 

 
Table 10. Friedman ranks and Bonferroni-Dunn’s CD values for CEC17 functions. 

 

Algorithm Rank 

PLEjaya 1.17 

TLBO 5.68 

Ejaya 2.33 

Jaya 3.47 

PSO 5.97 

GA 6.80 

AOA 5.22 

GWO 5.90 

WOA 8.47 

CD (Level=10%) 1.7664 

CD (Level=5%) 1.9262 

 
 

4.7.1 Wilcoxon-Rank Sum Test 
Using a non-parametric statistical technique called the Wilcoxon Rank-Sum test, the given method was 

compared to different optimization algorithms on various test functions. This test evaluates the ranks of 

two data sets to determine if there is a significant difference between them. The outcomes are summed up 

as follows: wins, losses, and ties denote the frequency at which the PLEJaya outperformed, underperformed, 

or performed equally compared to each method. For instance, the proposed algorithm proved to be superior 

than TLBO when it obtained 15 wins, 0 loses, and 8 ties. Furthermore, the PLEJaya's wins versus TLBO 

had a sum of ranks (ΣR+) of 120, while its losses (ΣR-) had a sum of ranks of 0, indicating no loss. The z-

value, a standardized test statistic, which measures how far the observed rank difference is from the null 

hypothesis (no difference between the algorithms). A higher absolute value indicates a more significant 

difference. Which is 3.408 against TLBO, which reflects a significant difference in performance. 

Furthermore, the p-value, which indicates the likelihood that the results occurred by chance, was less than 

0.001 for all comparisons. This consistently low p-value suggests strong evidence that the PLEJaya 

significantly outperforms the others. The '+' symbol in the table confirms that the PLEJaya is significantly 

better than all comparison algorithms at a significance level of α=0.05. 

 

4.7.2 Friedman Rank Test 
For the purpose of determining how well the algorithms performed over a wide variety of functions, the 

Friedman test was utilised in order to carry out an evaluation of the algorithms. This non-parametric test is 

performed with the intention of determining whether or not there are differences between groups that are 

comparable to one another. Based on the findings, it was determined that the PLEJaya had the lowest 

average rank (1.54), which indicates that it performed the best overall. TLBO received a value of 3.63, 

while EJAYA attained a level of 2.37. On the other hand, GA had the poorest performance, attaining a 
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rating of 4.70. The results indicate that the proposed algorithm consistently outperformed the other methods 

throughout the test functions. 

 

4.8 Convergence Graph 
Here we show the convergence graphs that were used to compare PLEJaya algorithm's performance to other 

algorithms on different benchmark functions. By graphically representing the optimization issue and 

showing how each method approaches the ideal solution over iterations, the convergence graphs 

demonstrate the algorithms' usefulness. 

 

The graphs of the four standard test functions- F1, F6, F11, and F16 and for functions from CEC17: CEC17-

F1, CEC17-F10, CEC17-F18, and CEC17-F30 —show convergence patterns in Figures 1, 2, 3, 4, 5, 6, 7, 

and 8. The convergence patterns for each function illustrate PLEJaya's performance compared to TLBO, 

E-JAYA, JAYA, PSO, and GA. Also, the Bar chart presentation of “Friedman Ranks and Bonferroni-Dunn 

test” for CEC17 functions shows in Figure 9. 

 

Results show that the proposed algorithm converges quicker and more consistently to the optimum solution. 

The convergence graphs show that the proposed technique outperforms. 

 

 
 

  

Figure 1. Convergence graph for F1. 

 
 

Figure 2. Convergence graph for F6. 
 
 

  

Figure 3. Convergence graph for F11. 

 
Figure 4. Convergence graph for F16. 
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Figure 5. Convergence graph for CEC17-F1. 
 

 

Figure 6. Convergence graph for CEC17-F10. 
 
 

  

Figure 7. Convergence graph for CEC17-F18. 
 

 

Figure 8. Convergence graph for CEC17-F30. 
 

 

 
 

Figure 9. Bar chart presentation of Friedman ranks and Bonferroni-Dunn test for CEC17 functions. 



Deshwal & Mogha: Adaptive Population Learning EJaya Algorithm for Real-World Optimization … 
 

351 | Vol. 11, No. 1, 2026 

5. Conclusion 
The EJaya algorithm is an enhanced version of Jaya algorithm which improves global exploration of the 

algorithm. However, it also faces some drawbacks such as stagnation in local minima and slow convergence 

rate due to the single learning strategy and poor population maintenance. This article introduced an 

enhanced optimization algorithm that works in three phases: Adaptive enhancement, EJAYA, and linear 

population reduction. Our tests using fifty-three benchmark functions, including 23 standard and 30 CEC 

2017 test suite’s benchmark functions and compared with eight established meta-heuristic algorithms such 

as TLBO, EJAYA, JAYA, PSO, GA, AOA, GWO and WOA. Results showed that this PLEJaya effectively 

finds the best solutions and performs better than TLBO, EJAYA, JAYA, GA, PSO, AOA, GWO, and WOA. 

When working with complex functions and several variables, it functioned admirably. In every respect, the 

PLEJaya approach was a reliable and efficient optimization algorithm, leading to superior results and 

offering hope as a superior answer to several optimization problems. 
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