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Abstract 

This article introduces a new numerical approach based on the Laplace Homotopy Perturbation Method (LHPM) to solve the 

one-dimensional Fuzzy Time-Fractional Advection-Diffusion Equation (FTFADE) in the Caputo sense, considering fuzzy initial 

conditions. The proposed method demonstrates how fuzzy numerical solutions gradually converge to precise ones, supported by 

clear illustrative examples. We also establish sufficient conditions that guarantee the uniqueness of the solution and analyze the 

convergence of the method. Moreover, we compare fuzzy solutions for different uncertainty levels and fractional orders to 

provide a deeper understanding of the model’s behavior. The results are presented graphically to highlight the accuracy, 

efficiency, and reliability of the proposed method. 

 

Keywords- Caputo fractional derivative, Fuzzy fractional partial differential equation, Perturbation, Homotopy, Advection 

diffusion equation. 

 

 

 

1. Introduction 

The investigation of Fuzzy Fractional Partial Differential Equation (FFPDE) has garnered significant 

interest from numerous researchers and emerged as a prominent focus within uncertain mathematical 

analysis. Fractional order models of fuzzy differential equations hold greater significance compared to 

their conventional integer-order models. The research on the theory of Fractional Partial Differential 

Equation (FPDE) of non-integer order is interesting due to these theories provides an effective approach 

for recitation uncertainty that manifests in several fields of dynamical systems affected by roughness and 

exhibiting non-standard dynamical behaviours with hereditary effects. Also, studies on the numerical 

solutions of fractional PDE have been increasing in number along with the development of fuzzy 

fractional calculus. PDEs play a vital role in numerous engineering applications, plasma physics, and 

various branches of science, as anticipated in forthcoming studies (Dumbser et al., 2023). The Advection 

Diffusion Equation (ADE)is extensively utilized across multiple domains of science and engineering, 

encompassing atmospheric science, environmental science application (Zhang et al., 2022). The ADE, 

Partial Differential Equation (PDE), arises in many physicaland engineering applications, such as porous 

media flow (Nikan et al., 2020), groundwater hydrology (Rahaman et al., 2022), and chemical 
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engineering, where the transport of solutes or contaminants is influenced by both advection and diffusion. 

ADE finds crucial applications in modelling the transportation of air pollutants and water pollutants 

within the atmosphere and water bodies, carrying significant implications for public health and the 

environment. This is important for understanding the fate of pollutants and assessing the potential impact 

on aquatic ecosystems and human health (Singh et al., 2019) Therefore fuzzy and fractional form of 

advection diffusion equation will be a potent tool for comprehending the movement of substances in 

various physical and biological systems. The Time-Fractional ADE (TFADE), which extends the 

conventional ADE by integrating fractional time derivatives, has grown in popularity in recent years 

(Zhang et al., 2022; Shah et al., 2023). 

 

Fractional calculus has proven to be a valuable tool for modeling anomalous diffusion phenomena, which 

classical diffusion models cannot sufficiently describe. Many FPDE are used in the study of numerical 

simulations and analytical approaches for magneto-acoustic waves in cold plasma. The wide application 

of fractional calculus results in plenty of books, and research articles. It is significantly playing a vital role 

in science, technology, engineering, and biological problems of the real-world (Podlubny, 1998; Petrá, 

2011). Over the last two decades, researchers have become increasingly interested in exploring analytical 

and approximate solutions for FPDEs in initial and boundary situations (Rezazadeh et al., 2019; Zafar et 

al., 2022). PDEs and FPDEs have been solved numerically using various methods, such asVariational 

Iteration Method (VIM), Homotopy Analysis Method (HAM), Adomian Decomposition Method(ADM), 

Transform, finite difference, neural networks method (Shah et al., 2025a, 2025b), wavelet technique 

(Jahan et al., 2025), new extended direct algebraic method (Rezazadeh, 2018) etc., depending on the 

specific problem and boundary conditions. Remarkably, these established techniques for non-linear and 

linear Fractional Differential Equation (FDE) and FPDE have demonstrated reliability and efficiency in 

providing analytical and numerical solutions for real-world problems. While many physical phenomena 

depend on both space and time, FPDE can take account of time and space aspects by incorporating vivid 

fractional derivative operators (Karniadakis et al., 2015; Bilal et al., 2024). In Eslami & Rezazadeh (2016) 

integral technique for analytic solution of nonlinear conformable time-fractional partial differential 

equations. Besides, the fractional differential operator offers a higher degree of flexibility in solving 

complex problems. The theories of Riemann-Liouville, Hadamard, Caputo, Caputo-Hadamard fractional 

integral or derivative operators, Cuputo Fabrizio have been used for a great deal in many manuscripts. 

Among various fractional differential operators Caputo, a useful operator, provides a greater degree of 

freedom. As a result, this area has received a lot of interest, and several research articles, monographs, 

books, etc. have been written about it from various angles on various fractional problems (Kumar et al., 

2017, Rubbab et al., 2021, Ahmad et al., 2025). 

 

One more concept, that is, concept of fuzzy (Zadeh, 1965) is often used in the context of complex 

systems, where traditional methods of modeling and analysis may not be sufficient to accurately represent 

the behaviour of the system. Over the recent years, several applications of theory of fuzzy set in research 

have witnessed a surge, encompassing the concepts of fixed-point, control systems, topology, fuzzy 

automata, and other areas. Chang & Zadeh (1996) expanded the theory of fuzzy sets by introducing fuzzy 

control and mapping. The idea of "fuzzy time" pertains to time being treated as a fuzzy variable, implying 

that it lacks precise definition and carries some degree of uncertainty. Fuzzy numbers, as compared with 

crisp numbers, have been employed to represent the parameters in situations where the information 

appears fuzzy and insufficient. Fuzzy differential, partial and integral equations have garnered significant 

attention from researchers in applied sciences (Babolian et al., 2004; Salahshour et al., 2012a; 

Chakraverty et al., 2016). Subsequently, the mathematical modeling of specific real-world systems, 

accounting for data uncertainty, has led to the emergence of FFADE. Over the past decade, a large 

number of researchers have shown interest in the model of fuzzy and fractional together (Salahshour et 
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al., 2012a; Tapaswini & Chakraverty, 2013). The upper and lower solution method, as well as the 

monotone iterative strategy, were described by the authors (Alikhani & Bahrami, 2013) as ways to find 

maximal and minimal solutions for the fuzzy fractional integrodifferential equations. In recent years, 

numerous scholars have delved into the FFPDE using various models, leading to significant contributions 

from researchers such as (Ahmadian et al., 2018; Allahviranloo & Ghanbari, 2020; Zureigat et al., 2021). 

Researchers Shah et al. (2020), Ahmad et al. (2021) and Pedro et al. (2023) have utilized effective 

mathematical technique numerical analytical methods to FFPDE. Notably, (Naeem et al., 2022) have 

conferred applications of derivative for solving fuzzy fractional order KdV equation. Furthermore, as 

demonstrated by Hoa et al. (2019), and Vu et al. (2022), authors have investigated new techniques for 

finding the solutions of CK fuzzy FDE. Keshavarz et al. (2022) solved a fuzzy fractional diffusion model 

of cancer tumours using fuzzy integral transforms. The FTFADE holds significant potential for 

application in the realm of environmental engineering, specifically in the study of groundwater 

contamination. The incorporation of fuzzy time aspect in the equation enables more realistic modeling of 

the unpredictable nature of groundwater flow and contaminant transport over time (Li et al., 2020). 

Authors (Kirtiwant et al., 2017; Li et al., 2019; Aghdam et al., 2021; Zureigat et al., 2021; Zhang et al., 

2022) have applied various methods, depending on the FTFAD problem with initial and boundary 

condition.  

 

It appears that only an insignificant amount of study physicalhas been using Homotopy Perturbation 

Method (HPM)coupled with Laplace transform (LHPM) on FFADE. LHPM is a powerful numerical 

technique that synergizes the Laplace transform and the HPM. In situations where, conventional 

analytical methods fall short in solving nonlinear differential equations, the LHPM proves to be a 

valuable tool. Its versatility makes it a valuable tool in diverse scientific and engineering domains that 

frequently encounter nonlinear problems. He (1999) was the first to propose the HPM. Since then, many 

authors have studied and applied this method on linear and nonlinear PDE in a variety of scientific as well 

technological disciplines. The HPM (He, 2005; Tapaswini & Chakraverty, 2013), ADM (Duan et al., 

2012), VIM (Ganji, 2012), LHPM (Kashyap et al., 2023; Kashyap et al., 2025) have all found 

applications in studying diverse physical problems. The motivation behind this work is to discuss 

comparative analysis of proposed method on FTFADE at different fractional orders and various 

uncertainty level 𝓇 . LHPM has been successfully employed in handling linear, nonlinear differential 

equations, PDEs, and fractional PDE resulting in more accurate outcomes as related to methods. 

Moreover, we conduct a comparative analysis among approximate solutions for FTFADE at various 

fractional orders ranging from 0 to 1 in the Caputo sense. The LHPM scheme is utilized, and its 

performance is compared with the exact solutions of test cases to assess its accuracy and effectiveness.  

 

The structure of paper is summarized as: in Section 2 we discuss a review of theorems and lemmas. 

Section 3 exhibits a discussion of FTFADE, while Section 4 discusses about uniqueness and convergence 

of LHPM solution on FTFADE. In the next Section 5 proposed method on FTFADE. Moving on to 

Section 6, the proposed method is validated through the utilization of two cases. Section 7 with 

subsection presents a thorough analysis of the outcomes of FTFADE, utilizing numerical approximations, 

graphs, and tables, numerical comparison and validation, sensitivity analysis of fuzzy parameters and 

comparative analysis with existing methods. Finally, Section 8 contains the conclusion of this paper and 

discusses the outlines potential future developments. 

 

2. Preliminaries 
This section provides some notations and definitions, which we have referenced later in this paper. It also 

presents the concept of fuzzy numbers, with various theorems defined in references (Dubois & Prade, 

1982; Salahshour et al., 2012a; El Mfadel et al., 2021). 
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Definition 2.1 Fuzzy number (Tapaswini & Chakraverty, 2013) 

A fuzzy number w is convex normalized fuzzy set w̃ of the real line R such that 
{μw̃(𝒳): R → [0,1], ∀ 𝒳 ∈ R}Where μw̃  is called the membership function of the fuzzy set and it is 

piecewise continuous.  

 

Definition 2.2 Triangular fuzzy number (TFN) (Tapaswini & Chakraverty, 2013) 

TFN represented by w̃ can be defined as convex and normalized fuzzy set Ũ on the real number line R. 

This definition encompasses the following key characteristics. 

i) 𝒳0 ∈ R  for which μw̃(𝒳0) = 1(𝒳0 is designated as mean value of w̃), where μw̃ is called the 

membership function of the fuzzy set. 

ii) μw̃(𝒳) is piecewise continuous. 

 

Definition 2.3 In parametric form (Shah et al., 2020), the fuzzy number can be represented as  

k̃(𝓇) = [k(𝓇), k̄(𝓇)] where 𝓇 ∈ [0, 1] satisfies the following conditions: 

i) k(𝓇) is left side continuous, bounded, and increasing function. 

ii) k̄(𝓇) is right side continuous, bounded and decreasing function. 

iii) k(𝓇) ≤ k̄(𝓇). 

where, 𝓇 is a crisp number “if k(𝓇) = k(𝓇) = 𝓇. 
 

Definition 2.4 A continuous fuzzy function w̃ on [0, b] ⊂ R (Shah et al., 2020), then fuzzy fractional 

integral in Riemann-Liouvilli sense corresponding to 𝑡 as 

Iθw̃(𝑡) = ∫
(𝑡−Ω)θ−1w̃(Ω)

Γ(Ω)

𝑡

0
 dΩ,   Ω ∈ (0, ∞). 

 

As w̃ ∈ CF[0, b] ∩ LF[0, b], where, CF[0, b] is the space of fuzzy continuous functions and LF[0, b] is the 

space of fuzzy Lebesgue integrable functions respectively, then fractional fuzzy integral is defined as: 

[Iθw̃(𝑡)]𝓇 = [Iθw𝓇(𝑡), Iθw̅𝓇(𝑡)] , 0 ≤ 𝓇 ≤ 1 such that 

Iθw𝓇(𝑡) = ∫
(𝑡−Ω)θ−1w(Ω)

Γ(Ω)

𝑡

0
 dΩ,  

θ , Ω ∈ (0, ∞).  

Iθw̅𝓇(𝑡) = ∫
(𝑡−Ω)θ−1w̅(Ω)

Γ(Ω)

𝑡

0
 dΩ,  

θ , Ω ∈ (0, ∞).  

 

Definition 2.5 A function w̃ ∈ CF[0, b] ∩ LF[0, b]  (Shah et al., 2020, Arfan et al., 2021), Caputo 

fractional derivative is defined as [Dθw̃(𝑡)] 𝓇 = [Dθw𝓇(𝑡), Dθw̅𝓇(𝑡)] , 0 ≤ 𝓇 ≤ 1, where 

Dθw𝓇(𝑡) = [∫
(𝑡−Ω)m−θ−1 dm

dΩmw(Ω)

Γ(m−ξ)

𝑡

0
 dξ  ]

𝑡=𝑡0

, 

Dθw𝓇̅̅ ̅̅ (𝑡) = [∫
(𝑡−Ω)m−θ−1 dm

dΩmw̅(Ω)

Γ(m−Ω)

𝑡

0
 dΩ  ]

𝑡=𝑡0

. 

 

such that the integration on right sides converges and m = [θ]. 
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Definition 2.6 Let w̃ ∈ CF[0, b] ∩ LF[0, b] such that [w̃(𝑡)]𝓇  = [w𝓇(𝑡), w̅𝓇(𝑡)] where, 0 ≤ 𝓇 ≤  1.The 

Laplace transform of fuzzy Caputo derivative of order 0 < 𝛼 ≤ 1 is defined as (Salahshour et al., 2012a): 

𝐿(𝐷𝑡
𝛼𝑤𝓇̃(𝑡)) = [ 𝐿 (𝐷𝑡

𝛼𝑤𝓇(𝑡)) , 𝐿(𝐷𝑡
𝛼𝑤𝓇̅̅ ̅̅ (𝑡))]. 

 

where, 

[ 𝐿 (𝐷𝑡
𝛼𝑤𝓇(𝑡))] = 𝑠𝛼𝐿 (𝑤𝓇(𝑡)) − 𝑠𝛼−1𝑤𝓇(0), and 

[ 𝐿(𝐷𝑡
𝛼𝑤𝓇̅̅ ̅̅ (𝑡))] = 𝑠𝛼𝐿(𝑤𝓇̅̅ ̅̅ (𝑡)) − 𝑠𝛼−1𝑤𝓇̅̅ ̅̅ (0). 

 

3. Fuzzy Time-Fractional Advection-Diffusion Equation (FTFADE) 
The focal point of this investigation is the time fractional one-dimensional ADE as introduced by Zureigat 

et al. (2021). FTFADE is an effective tool for comprehending and simulating transport phenomena in 

systems with uncertain, nonlocal, and memory-driven behaviours. In this equation, the Caputo fractional 

derivative is employed, giving rise to the one-dimensional FTFADE. To elaborate further, the 

representation of the FTFADE is provided below: 
 

𝐷𝑡
𝛼𝑢̃(𝒳, t) =   𝑎̃(𝒳) 𝐷𝒳𝑢̃(𝒳, 𝑡) + 𝑏̃(𝒳)𝐷𝒳𝒳𝑢̃(𝒳, 𝑡)  + 𝑞̃(𝒳, 𝑡),   0 < 𝛼 ≤ 1                                        (1) 

 

with fuzziness in the initial and boundary conditions 
 

𝑢̃(𝒳, 0) = 𝑔̃(𝒳), 0 < 𝒳 ≤ 𝑙                                                                                                                     (2) 

𝑢̃(0, 𝑡) = 𝑓0(𝒳), 𝑢̃(𝑙, 𝑡) = 𝑓1(𝑡), 𝑡 > 0                                                                                                     (3) 

 

Equation (1) defines the fuzzy concentration, denoted as 𝑢̃(𝒳, 𝑡) which represents a quantity, such as 

mass and energy, with respect to precise variables 𝒳  and 𝑡. It incorporates the fuzzy time fractional 

derivative 𝐷𝔱
𝛼 of order α. The parameters 𝑎̃(𝒳) ,  𝑏̃(𝒳)  and 𝑞̃(𝒳, 𝑡) = 𝑘̃(𝓇) 𝑞(𝒳, 𝑡) are the average 

velocity, diffusion coefficient, and fuzzy function of crisp variables, respectively. 

 

The fuzzy initial condition and boundary conditions are expressed as 𝑢̃ ( 𝒳 ,0), 𝑢̃ (0, 𝑡 ), and 𝑢̃ (l, 𝑡 ) 

respectively. Now, when Equation (1) is formulated in terms of the 𝓇 - level (uncertainty level), it results 

in the following representation. 
 

[𝐷𝑡
𝛼𝑢(𝒳, 𝑡: 𝓇), 𝐷𝑡

𝛼𝑢(𝒳, 𝑡: 𝓇)] =    [𝑎(𝒳: 𝓇), 𝑎(𝒳: 𝓇)][𝐷𝒳𝑢(𝒳, 𝑡: 𝓇), 𝐷𝒳𝑢(𝒳, 𝑡: 𝓇)] +  

[𝑏(𝒳: 𝓇), 𝑏(𝒳: 𝓇)][𝐷𝑥𝑥𝑢(𝒳, 𝑡: 𝓇), 𝐷𝒳𝒳𝑢(𝒳, 𝑡: 𝓇)] + [𝑞(𝒳, 𝑡: 𝓇), 𝑞(𝒳, 𝑡: 𝓇)]                                     (4) 

 

Given the uncertain initial condition, the equation can be expressed with the following notation: 

[𝑢(𝒳, 0: 𝓇), 𝑢(𝒳, 0: 𝓇)] = [𝑔(𝒳, 0: 𝓇), 𝑔(𝒳, 0: 𝓇)]                                                                                (5) 

 

and the accompanying boundary conditions are outlined below. 

[𝑢(0, 𝑡: 𝓇), 𝑢(0, 𝑡: 𝓇)] = [𝑓0(𝒳, 0: 𝓇), 𝑓0(𝒳, 0: 𝓇)]                                                                                  (6) 

[𝑢(𝑙, 𝑡: 𝓇), 𝑢(𝑙, 𝑡: 𝓇)]  = [𝑓1(𝑙, 𝑡: 𝓇), 𝑓1(𝑙, 𝑡: 𝓇)]                                                                                        (7) 
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4. Analysis of Uniqueness and Convergence in FTFADE Solution 
In this section, we discuss the uniqueness and convergence of the LHPM solution for the FTFADE: 

 

Theorem 1 (Uniqueness Theorem): The LHPM solution of FTFADE is unique, whenever 0 < 𝛽 < 1, 
where, 𝛽 = {ã(𝒳)δ +  b̃(𝒳)σ} T. 
 

Proof: The solution of FTFADE in Equation (1) is 𝑢̃(𝒳, 𝑡) = ∑ 𝑢n(𝒳, 𝑡)∞
n=0 . Assuming 𝑢̃ and 𝑢̃∗ be two 

different solutions of FTFADE (1) such that |𝑢̃| ≤ A and |𝑢̃∗| ≤ B. Now we have 

|𝑢̃ − 𝑢̃∗| = |𝐿−1 [
1

s𝛼  L[ã(𝒳)D𝒳(𝑢̃ − 𝑢̃∗) + b̃(𝒳)D𝒳𝒳(𝑢̃ − 𝑢̃∗)]]|, 

 

Applying the convolution theorem to the inverse Laplace Transform yields the following outcome: 

|𝐿−1 [
1

sα
 L[ã(𝒳)D𝒳(𝑢̃ − 𝑢̃∗) +  b̃(𝒳)D𝒳𝒳(𝑢̃ − 𝑢̃∗)]]|  

= |∫ {ã(𝒳)D𝒳(𝑢̃ − 𝑢̃∗) +  b̃(𝒳)D𝒳𝒳(𝑢̃ − 𝑢̃∗)}
(𝑡−ξ)𝛼

Γ(1+𝛼)
 d

𝑡

0
ξ|, 

≤ ∫ |{ã(𝒳)D𝒳(𝑢̃ − 𝑢̃∗) + b̃(𝒳)D𝒳𝒳(𝑢̃ − 𝑢̃∗)}
(𝑡−ξ)𝛼

Γ(1+𝛼)
  dξ| ,

𝔱

0
  

≤ ã(𝒳) ∫ D𝒳(|𝑢̃ − 𝑢̃∗|) +
𝔱

0
b̃(𝒳) ∫ D𝒳𝒳(|𝑢̃ − 𝑢̃∗|)

𝔱

0

(𝑡−ξ)𝛼

Γ(1+𝛼)
 dξ,  

≤ {ã(𝒳) ∫ δ(|𝑢̃ − 𝑢̃∗|)
𝔱

0
+  b̃(𝒳) ∫ σ(|𝑢̃ − 𝑢̃∗|)

𝔱

0
}

(𝑡−ξ)𝛼

Γ(1+𝛼)
 dξ.  

 

Utilizing the integral mean value theorem on the equation above, we obtain the following result: 

≤ {ã(𝒳)δ(|𝑢̃ − 𝑢̃∗|)  +  b̃(𝒳)σ(|𝑢̃ − 𝑢̃∗|)} T,  

≤ (|𝑢̃ − 𝑢̃∗|){ã(𝒳)δ +  b̃(𝒳)σ}, 

≤ 𝛽|𝑢̃ − 𝑢̃∗|, 

Further it gives|𝑢̃ − 𝑢̃∗| (1 − 𝛽) ≤ 0, as 0 < 𝛽 < 1. 

 

Hence |𝑢̃ − 𝑢̃∗| = 0 and so 𝑢̃ = 𝑢̃∗. Therefore, the LHPM solution is unique. 

 

Theorem 2 (Convergence Theorem) (Salahshour et al., 2012b; Kumar et al., 2018; Verma et al., 2023): 

Let E be a Banach space. Then there exists a nonlinear mapping defined from F: E → E , such that 
‖F(𝑢̃) − F(𝜇̃)‖ ≤ 𝛽‖𝑢̃ − 𝜇̃‖, ∀𝑢, 𝜇ϵ E. According to Banach’s fixed point theory, F has a fixed point, and 

if 𝑢̃0, 𝜇̃0 ϵ E then the sequence formed by the LHPM solution converges to the fixed-point F. 

‖𝑢̃𝑚 − 𝑢̃𝑛‖ ≤
𝛽𝑛

(1−𝛽)
‖𝑢̃1 − 𝑢0‖.  

 

Proof: Let Banach space (C[J], ‖. ‖ ) of all the continuous functions on J with the norm defined as 
‖𝑔(𝔱)‖ = max𝔱ϵJ|𝑔(𝑡)|. 

 

Consider ‖𝑢̃𝑚 − 𝑢̃𝑛‖ =  𝑚𝑎𝑥 𝑡𝜖𝐽|𝑢̃𝑚 − 𝑢̃𝑛|, 

=  𝑚𝑎𝑥 𝑡𝜖𝐽 |𝐿−1 [
1

𝑠𝛼  𝐿[𝑎̃(𝒳)𝐷𝒳(𝑢̃𝑚−1 − 𝑢̃𝑛−1) +  𝑏̃(𝒳)𝐷𝒳𝒳(𝑢̃𝑚−1 − 𝑢̃𝑛−1)]]|. 
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Applying the convolution theorem to the inverse Laplace Transform, the subsequent outcome is as 

follows:  

=   𝑚𝑎𝑥  𝑡𝜖𝐽 |∫ {𝑎̃(𝒳)𝐷𝒳(𝑢̃𝑚−1 − 𝑢̃𝑛−1) +  𝑏̃(𝒳)𝐷𝒳𝒳(𝑢̃𝑚−1 − 𝑢̃𝑛−1)}
(𝑡−𝜉)𝛼

𝛤(1+𝛼)
 𝑑

𝑡

0
𝜉|,  

≤ 𝑚𝑎𝑥𝔱𝜖𝐽 ∫ |{𝑎̃(𝒳)𝐷𝒳(𝑢̃𝑚−1 − 𝑢̃𝑛−1) +  𝑏̃(𝒳)𝐷𝒳𝒳(𝑢̃𝑚−1 − 𝑢̃𝑛−1)}
(𝑡−𝜉)𝛼

𝛤(1+𝛼)
  𝑑𝜉|

𝑡

0
,  

≤ 𝑚𝑎𝑥𝔱𝜖𝐽 {𝑎̃(𝒳) ∫ 𝐷𝒳(|𝑢̃𝑚−1 − 𝑢̃𝑛−1|)
𝑡

0
+  𝑏̃(𝒳) ∫ 𝐷𝒳𝒳(|𝑢̃𝑚−1 − 𝑢̃𝑛−1|)

𝑡

0
}

(𝑡−𝜉)𝛼

𝛤(1+𝛼)
 𝑑𝜉 ,  

≤ 𝑚𝑎𝑥𝑡𝜖𝐽 {𝑎̃(𝒳) ∫ 𝛿(|𝑢̃𝑚−1 − 𝑢̃𝑛−1|)
𝑡

0
+ 𝑏̃(𝒳) ∫ 𝜎(|𝑢̃𝑚−1 − 𝑢̃𝑛−1|)

𝑡

0
}

(𝑡−𝜉)𝛼

𝛤(1+𝛼)
 𝑑𝜉.  

 

By employing the Integral Mean Value Theorem on the preceding equation, the following outcome is 

derived. 

≤ 𝑚𝑎𝑥𝑡𝜖𝐽[{𝑎̃(𝒳) 𝛿(|𝑢̃𝑚−1 − 𝑢̃𝑛−1|)  +  𝑏̃(𝒳) 𝜎(|𝑢̃𝑚−1 − 𝑢̃𝑛−1|)} 𝑇], 

≤ 𝑚𝑎𝑥𝑡𝜖𝐽(|𝑢̃𝑚−1 − 𝑢̃𝑛−1|){𝑎̃(𝒳) 𝛿 +  𝑏̃(𝒳) 𝜎} 𝑇,  

≤  𝛽 ‖𝑢̃𝑚−1 − 𝑢̃𝑛−1‖, 

 

Taking m = n+1 then  

‖𝑢̃𝑛+1 − 𝑢̃𝑛‖ ≤  𝛽 ‖𝑢̃𝑛 − 𝑢̃𝑛−1‖ ≤ 𝛽2‖𝑢̃𝑛−1 − 𝑢̃𝑛−2‖ ≤ 𝛽3‖𝑢̃𝑛−2 − 𝑢̃𝑛−3‖  ≤ ⋯ … . ≤ 𝛽𝑛‖𝑢̃1 − 𝑢̃0‖.  
 

By triangle inequality, we have following results.  

‖𝑢̃𝑚 − 𝑢̃𝑛‖ ≤ ‖𝑢̃𝑛+1 − 𝑢̃𝑛‖ + ‖𝑢̃𝑛+2 − 𝑢̃𝑛+1‖ + ⋯ . +‖𝑢̃𝑚 − 𝑢̃𝑚−1‖ ≤ 𝛽𝑛‖𝑢̃1 − 𝑢̃0‖ + 𝛽𝑛+1‖𝑢̃1 − 𝑢̃0‖

+ ⋯ . +𝛽𝑚−1‖𝑢̃1 − 𝑢̃0‖ ≤ [𝛽𝑛 + 𝛽𝑛+1  + 𝛽𝑛+2 + ⋯ + 𝛽𝑚−2 + 𝛽𝑚−1]‖𝑢̃1 − 𝑢̃0‖, 

≤ 𝛽𝑛[1 + 𝛽 + 𝛽2 + ⋯ +. 𝛽𝑚−𝑛−2 + 𝛽𝑚−𝑛−1]‖𝑢̃1 − 𝑢̃0‖, 

≤ 𝛽𝑛 [
1 − 𝛽𝑚−𝑛−1

1 − 𝛽
] ‖𝑢̃1 − 𝑢̃0‖. 

 

as 0 < 𝛽 < 1, so 1 − 𝛽𝑚−𝑛−1 < 1. Using this we finally obtained 

‖𝑢̃𝑚 − 𝑢̃𝑛‖ ≤
𝛽𝑛

1−𝛽
‖𝑢̃1 − 𝑢̃0‖. Since ‖𝑢̃1 − 𝑢̃0‖ < ∞ and so ‖𝑢̃𝑚 − 𝑢̃𝑛‖ < ∞ if 𝑚 → ∞. 

 

Hence the sequence {𝑢̃𝑛} is a Cauchy sequence in C[J]implying its convergence. 

 

5. Laplace Homotopy Perturbation Method on Fuzzy Time Fractional Advection-Diffusion 

Equations 
This show case the efficacy of our approach by employing the LHPM to construct fuzzy approximate 

solutions of FTFADE. To achieve this, we utilize the Caputo formula for time fractional derivatives in the 

application of the Laplace transform (Podlubny, 1998). Continuing with our approach, we employ the 

Laplace transform on Equation (1) as shown below: 

 𝐿[𝐷𝑡
𝛼𝑢̃(𝒳, 𝑡)] =   𝐿 [𝑎̃(𝒳)𝐷𝒳𝑢̃(𝒳, 𝑡) + 𝑏̃(𝒳)𝐷𝒳𝒳𝑢̃(𝒳, 𝑡) + 𝑞̃(𝒳, 𝑡)]                                                 (8) 

 

By utilizing Laplace transform properties in the context of the fractional Caputo derivative, the following 

results are achieved. 

𝑠𝛼𝑈̃(𝒳, 𝑠) − 𝑠𝛼−1𝑢̃(𝒳, 0) = 𝐿[𝑎̃(𝒳)𝐷𝑥𝑢̃(𝒳, 𝑡) +  𝑏̃(𝒳)𝐷𝒳𝒳𝑢̃(𝒳, 𝑡)  +   𝑞̃(𝒳, 𝑡)]                               (9) 
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where, 𝐿(𝑢̃(𝒳, 𝑡)) = 𝑈̃(𝒳, 𝑠) and 𝐿(𝑞̃(𝒳, 𝑡)) = 𝑄̃(𝒳, 𝑠). 

𝑈̃(𝒳, 𝑠) =  
𝑄̃(𝒳,𝑠)

𝑠𝛼 +
𝑔̃(𝒳)

𝑠
+

1

𝑠𝛼 𝐿 [𝑎̃(𝒳)𝐷𝒳𝑢̃(𝒳, 𝑡) +   𝑏̃(𝒳)𝐷𝒳𝒳𝑢̃(𝒳, 𝑡)]                                              (10) 

 

After applying the Inverse Laplace transform to the previously mentioned equation, we obtain the 

following result: 

𝑢̃(𝒳, 𝔱) =   𝐿−1  [
𝑄̃(𝒳,𝑠)

𝑠𝛼 +
𝑔̃(𝒳)

𝑠
] + 𝐿−1 [

1

𝑠𝛼 𝐿 [𝑎̃(𝒳)𝐷𝒳𝑢̃(𝒳, 𝑡) +  𝑏̃(𝒳)𝐷𝒳𝒳𝑢̃(𝒳, 𝑡)]]                          (11) 

 

The homotopy of Equation (11) is formulated as: 

𝐻(𝑣, 𝑝) = 𝑢̃(𝒳, 𝑡) − 𝐿−1 [
𝑄̃(𝒳,𝑠)

𝑠𝛼 +
𝑔̃(𝒳)

𝑠
] − 𝑝𝐿−1 [

1

𝑠𝛼 𝐿[𝑎̃(𝒳)𝐷𝒳 𝑢̃(𝒳, 𝑡) + 𝑏̃(𝒳)𝐷𝒳𝒳  𝑢̃(𝒳, 𝑡)]] = 0   (12) 

 

Considering the perturbation method, we adopt the following approach: 

𝑢̃(𝒳, 𝑡) = ∑ 𝑝𝑛𝑢̃𝑛(𝒳, 𝑡) = 𝑝0𝑢̃0(𝒳, 𝑡) + 𝑝1𝑢̃1(𝒳, 𝑡)∞
𝑛=0 + 𝑝2𝑢̃2(𝒳, 𝑡) + ⋯ + ⋯                                (13) 

 

After applying the perturbation method to Equation (12) and compiling coefficients of 

𝑝0, 𝑝1, 𝑝2, . . 𝑝𝑛,these coefficients and other terms are substituted into Equation (13). Subsequently, the 

embedded parameter p approaches 1. The resulting series form represents the approximate solution, also 

known as the LHPM solution or Fuzzy solution of the FTFADE. 

𝑢̃(𝒳, 𝑡) = 𝑢̃0(𝒳, 𝑡) + 𝑢̃1(𝒳, 𝑡) + 𝑢̃2(𝒳, 𝑡) + 𝑢̃3(𝒳, 𝑡)+. ..                                                                     (14) 

 

The series solution incorporating fuzziness and bounded by lower and upper limits is depicted as follows 

(Salahshour et al., 2012a; Hoa et al., 2019; Vu et al., 2022): 

𝑢(𝒳, 𝑡) = 𝑢0(𝒳, 𝑡) + 𝑢1(𝒳, 𝑡) + 𝑢2(𝒳, 𝑡)+. ….                                                                                     (15) 

𝑢(𝒳, 𝑡) = 𝑢0(𝒳, 𝑡) + 𝑢1(𝒳, 𝑡) + 𝑢2(𝒳, 𝑡))+. ….                                                                                    (16) 

 

6. Illustrative Examples 
In this section, we provide two examples of FTFADE. We utilize our proposed method to assess the fuzzy 

approximate results for these instances. 

 

Example 1: (İbiş & Bayram, 2014; and Zureigat et al., 2021): Let's consider linear FFADE with     

ã(𝒳)=-1, b̃(𝒳) = 0 and 𝑞̃(𝒳, 𝔱) = 𝑘̃(𝓇)(𝑠𝑖𝑛( 𝒳) + 𝑡 𝑐𝑜𝑠( 𝒳)) in Equation (1): 

𝐷𝑡
𝛼𝑢̃(𝒳, 𝑡) + 𝑢̃𝒳(𝒳, 𝑡) = 𝑘̃(𝓇) [

𝑡1−𝛼

𝛤(2−𝛼)
𝑠𝑖𝑛(𝒳) + 𝑡 𝑐𝑜𝑠( 𝒳)] , 𝑡 > 0, 𝒳  ∈ 𝑅, 0 < 𝛼 ≤ 1                    (17) 

 

with boundary conditions: 𝑢̃(0, 𝔱) = 𝑢̃(𝑙, 𝔱) = 0 and fuzzy initial conditions as 

𝑢̃(𝒳, 0) = 0̃[𝓇 − 1,1 − 𝓇] = 𝑘̃(𝓇) = 0                                                                                                  (18) 

 

From (Kirtiwant et al., 2017) 

𝑘̃(𝓇) = 𝑘̃ = [𝑘(𝓇), 𝑘(𝓇)], 𝑘(𝓇) = 𝓇 − 1, 𝑘(𝓇) = 1 −  𝓇.                                                                   (19) 

 

The exact solution to Equation (18) is stated as: 

 𝑢(𝒳, 𝑡) = 𝑡 𝑠𝑖𝑛( 𝒳)                                                                                                                                 (20) 

 

Proof: To establish the solution, we consider the Laplace transform to apply on Equation (18). 
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𝐿(𝐷𝑡
𝛼𝑢̃(𝒳, 𝑡)) + 𝐿(𝑢̃𝒳(𝒳, 𝑡)) = [𝑘̃(𝓇) [

𝑡1−𝛼

𝛤(2−𝛼)
𝑠𝑖𝑛(𝒳) + 𝑡 𝑐𝑜𝑠𝒳]]                                                     (21) 

 

By substituting the initial condition and subsequently performing the inverse Laplace transform, we attain 

the following result: 

𝑢̃(𝒳, 𝑡) = 𝐿−1 [
1

𝑠𝛼 𝐿 [𝑘̃(𝓇) [
𝑡1−𝛼

𝛤(2−𝛼)
𝑠𝑖𝑛(𝒳) + 𝑐𝑜𝑠( 𝒳)]]] − 𝐿−1 [

1

𝑠𝛼 𝐿(𝐷𝑥(𝑢̃, 𝑡))]                                   (22) 

 

Applying the Homotopy and Perturbation Method,  0 ≤ 𝑝 ≤ 1,  to Equation (22), we arrive at the 

following result. 

∑ 𝑝𝑛∞
𝑛=0 𝑢̃𝑛(𝒳, 𝑡) = 𝐿−1 [

1

𝑠𝛼 𝐿 [𝑘̃(𝓇) [
𝑡1−𝛼

𝛤(2−𝛼)
𝑠𝑖𝑛(𝒳) + 𝑡 𝑐𝑜𝑠( 𝒳)]]] − 𝑝𝐿−1 [

1

𝑠𝛼 𝐿(𝐷𝑥(∑ 𝑝𝑛∞
𝑛=0 𝑢̃𝑛(𝒳, 𝑡)))]        (23) 

 

After comparing the coefficients of 𝑝𝑛, 𝑛 = 0,1,2,3,4,5, the results for the coefficient of 𝑝0is as follows:  

𝑢̃0(𝒳, 𝑡) = 𝑘̃(𝓇) [ 𝑡 𝑠𝑖𝑛(𝒳) +
𝑡𝛼+1

𝛤(𝛼+2)
𝑐𝑜𝑠( 𝒳)]                                                                                       (24) 

 

Since 𝑢̄0(𝒳, 𝑡: 𝓇) and 𝑢0(𝒳, 𝑡: 𝓇), upper and lower bounds of 𝑢̃0(𝒳, 𝑡) 

𝑢̄0(𝒳, 𝑡: 𝓇) = 𝑘̄(𝓇) [𝑡 𝑠𝑖𝑛( 𝒳) +
𝑡𝛼+1

𝛤(𝛼+2)
𝑐𝑜𝑠( 𝒳)],  

𝑢0(𝒳, 𝑡: 𝓇) = 𝑘(𝓇) [𝑡 𝑠𝑖𝑛( 𝒳) +
𝑡𝛼+1

𝛤(𝛼+2)
𝑐𝑜𝑠( 𝒳)]                                                                                  (25) 

 

Further we compare another coefficient of 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5so on. The approximate fuzzy solution upto 5 

steps are obtained as: The coefficient of 𝑝1 yields the upper and lower bounds of 𝑢̃1(𝒳, 𝑡) as follows: 

𝑢̄1(𝒳, 𝑡: 𝓇) = 𝑘̄(𝓇) [
𝑡2𝛼+1

𝛤(2𝛼+2)
𝑠𝑖𝑛( 𝒳) −

𝑡𝛼+1

𝛤(𝛼+2)
𝑐𝑜𝑠( 𝒳)] ,  

𝑢1(𝒳, 𝑡: 𝓇) = k(𝓇) [
𝑡2𝛼+1

Γ(2𝛼+2)
sin( 𝒳) −

𝑡𝛼+1

Γ(𝛼+2)
cos( 𝒳)]                                                                          (26) 

 

Coefficient of 𝑝2: upper and lower bounds of 𝑢̃2(𝒳, 𝑡) are 

𝑢̄2(𝒳, 𝑡: 𝓇) =  k̄(𝓇) [−
𝑡2α+1

Γ(2𝛼+2)
sin(𝒳) −

𝑡3α+1

Γ(3𝛼+2)
cos( 𝒳)],  

𝑢2(𝒳, 𝑡: 𝓇) = k(𝓇) [−
𝑡2α+1

Γ(2𝛼+2)
sin( 𝒳) −

𝑡3α+1

Γ(3𝛼+2)
cos( 𝒳)]                                                                    (27) 

 

Coefficient of 𝑝3: upper and lower bounds of 𝑢̃3(𝒳, 𝑡) are. 

𝑢̄3(𝒳, 𝑡: 𝓇) =  𝑘̄(𝓇) [−
𝑡4𝛼+1

𝛤(4𝛼+2)
𝑠𝑖𝑛( 𝒳) +

𝑡3𝛼+1

𝛤(3𝛼+2)
𝑐𝑜𝑠( 𝒳)],  

𝑢3(𝒳, 𝑡: 𝓇) = 𝑘(𝓇) [−
𝑡4𝛼+1

𝛤(4𝛼+2)
𝑠𝑖𝑛( 𝒳) +  

𝑡3𝛼+1

𝛤(3𝛼+2)
𝑐𝑜𝑠( 𝒳)]                                                                  (28) 

 

Coefficient of 𝑝4: upper and lower bounds of 𝑢̃4(𝒳, 𝑡) are. 

𝑢̄4(𝒳, 𝑡: 𝓇) = 𝑘̄(𝓇) [
𝑡4𝛼+1

𝛤(4𝛼+2)
𝑠𝑖𝑛( 𝒳) +

𝑡5𝛼+1

𝛤(5𝛼+2)
𝑐𝑜𝑠( 𝒳)],  
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𝑢4(𝒳, 𝑡: 𝓇) = 𝑘(𝓇) [
𝑡4𝛼+1

𝛤(4𝛼+2)
𝑠𝑖𝑛( 𝒳) +

𝑡5𝛼+1

𝛤(5𝛼+2)
𝑐𝑜𝑠( 𝒳)]                                                                       (29) 

 

Coefficient of 𝑝5: upper and lower bounds of 𝑢̃5(𝒳, 𝑡) are.  

𝑢̄5(𝒳, 𝑡: 𝓇) = 𝑘̄(𝓇) [
𝑡6𝛼+1

𝛤(6𝛼+2)
𝑠𝑖𝑛( 𝒳) −

𝑡5𝛼+1

𝛤(5𝛼+2)
𝑐𝑜𝑠( 𝒳)],  

𝑢5(𝒳, 𝑡: 𝓇) = 𝑘(𝓇) [
𝑡6𝛼+1

𝛤(6𝛼+2)
𝑠𝑖𝑛( 𝒳) −

𝑡5𝛼+1

𝛤(5𝛼+2)
𝑐𝑜𝑠( 𝒳)]                                                                       (30) 

 

By utilizing these coefficients in both Equations (15) and (16) we derive a fuzzy approximate solution for 

FTFADE. The resulting solution encompasses both the upper and lower bounds expressed as: 

𝑢(𝒳, 𝑡: 𝓇) = 𝑘(𝓇) [𝑡 𝑠𝑖𝑛( 𝒳) +
𝑡6𝛼+1

𝛤(6𝛼+2)
𝑠𝑖𝑛( 𝒳)+. . . ]                                                                           (31) 

𝑢(𝒳, 𝑡: 𝓇) = 𝑘(𝓇) [𝑡 𝑠𝑖𝑛( 𝒳) +
𝑡6𝛼+1

𝛤(6𝛼+2)
𝑠𝑖𝑛( 𝒳)+. . ]                                                                             (32) 

 

Subsequently, we will proceed to evaluate the numerical value of the approximate solution for FTFADE, 

limiting our consideration to the first five terms. This assessment is aimed at gaining a clear 

understanding of the effectiveness of LHPM in addressing FFPDE. To enhance comprehension, we 

provide graphical representations of 𝑢(𝒳, 𝑡; 𝓇) and  𝑢(𝒳, 𝑡; 𝓇) in Figures 1 and 2 while varying the 

values of α (0.6, 0.8, 0.9, 0.95, and 1) across different levels of uncertainty 𝓇. 
 

Example 2: Consider one dimensional linear fuzzy fractional ADE (İbiş & Bayram, 2014) and (Zureigat 

et al., 2021): 

𝐷𝑡
𝛼𝑢̃(𝒳, 𝑡) = −𝑢̃𝒳(𝒳, 𝑡) + 𝑢̃𝒳𝒳(𝒳, 𝑡) , 𝑡 > 0, 𝒳 ∈ 𝑅                                                                            (33) 

 

with 0 < 𝛼 ≤ 1 and fuzzy initial conditions: 

𝑢̃(𝒳, 0) = 𝑘̃(𝓇)𝑒−𝒳                                                                                                                                 (34) 
 

and 

𝑘̃(𝓇) = [𝑘(𝓇), 𝑘(𝓇)]                                                                                                                               (35) 

 

The exact solution of Equation (33) (Singh, 2022) is 

𝑢̃(𝒳, 𝑡) = 𝑒−𝒳𝑒2𝑡                                                                                                                                     (36) 
 

The computed upper and lower bounds of fuzzy approximate solution of this case are as: 

𝒖̄(𝓧, 𝒕: 𝓻) = 𝒌̄(𝓻)𝒆−𝓧 [
𝟏 +

𝟐𝒕𝜶

𝜞(𝜶+𝟏)
+

𝟒𝒕𝟐𝜶

𝜞(𝟐𝜶+𝟏)
+

𝟖𝒕𝟑𝜶

𝜞(𝟑𝜶+𝟏)

+
𝟏𝟔𝒕𝟒𝜶

𝜞(𝟒𝜶+𝟏)
+

𝟑𝟐𝒕𝟓𝜶

𝜞(𝟓𝜶+𝟏)
+. . . . . . . . .

]                                                                      (37) 

𝑢(𝒳, 𝑡: 𝓇) = 𝑘(𝓇)𝑒−𝒳 [
1 +

2𝑡𝛼

𝛤(𝛼+1)
+

4𝑡2𝛼

𝛤(2𝛼+1)
+

8𝑡3𝛼

𝛤(3𝛼+1)

+
16𝑡4𝛼

𝛤(4𝛼+1)
+

32𝑡5𝛼

𝛤(5𝛼+1)
+. . . . . . . . .

]                                                                      (38) 

 

The fuzzy approximate solution of FTFADE coincides exactly with the results obtained from Fractional 

ADE as discussed by (İbiş & Bayram, 2014).In the next section we provide graphical representations of 

𝑢(𝒳, 𝑡; 𝓇) and 𝑢(𝒳, 𝑡; 𝓇) varying at the values of α (0.6, 0.8, 0.9, 0.95, and 1) across different levels of 

uncertainty 𝓇 in Figures 3 and 4. 
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7. Result Analysis 
In this section, we conduct a numerical analysis for the LHPM solution to the FTFADE cases discussed in 

the previous section. The numerical values and surface graphs are obtained using MATHEMATICA 11.3 

and Microsoft Excel. To facilitate comparison, Table 3 presents the exact solutions for the two cases of 

FTFADE, while Tables 1 and 2 display lower, upper bounds of the fuzzy LHPM solutions. Furthermore, 

to validate our proposed analysis, 3D surface graphs of the approximate solution are generated at different 

fractional orders for both cases, considering different levels of uncertainty and time while holding 

𝒳constant. Figures 1-10 depict the numerical approximations to the solutions of the cases. Specifically, 

Figures 1-2 illustrate the LHPM solutions for example 1, while Figures 3-4 showcase the LHPM 

solutions for example 2. The variations in time (t) and 𝓇- level (uncertainty) range from 0 to 1, 

corresponding to various fractional orders considered in the analysis. Using these figures, we can visually 

comprehend the influence of uncertainty at various fractional orders. The upper surface and lower surface 

plots situated above and below the cusp value (𝓇 = 1), portray the solutions as 𝑢(𝒳, 𝑡; 𝓇) and 𝑢(𝒳, 𝑡; 𝓇) 

respectively. It is intriguing to note the striking similarities in the fuzzy solutions depicted in the surface 

graphs above and below the cusp at 𝓇 = 1, as shown in Figures 1-2 and 3-4 for both cases at different 

fractional orders. These surface graphs serve as compelling evidence of the accuracy and efficiency of the 

LHPM. 

 

 

 
 

Figure 1. Fuzzy LHPM solution, 𝑢̅(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇) of Example 1 at a) α = 0.6, b) α = 0.8, c) α = 0.9  

and d) α= 0.95 keeping 𝒳 = 0.7. 
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Figure 2. Fuzzy LHPM solution, 𝑢̅(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇) of Example 1, α = 1, with 𝒳 = 0.7. 

 

 

 

                
(a)                                                                                        (b) 

 

         
(b)                                                                                           (d) 

 

Figure 3. Fuzzy LHPM solution, 𝑢̅(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇)of Example 2 at (a) α = 0.6, (b) α = 0.8, (c) α = 0.9 

and (d) α = 0.95, keeping 𝒳 = 0.7. 
 

 

Numerical value of 𝑢̅(𝑥, 𝑡: 𝓇), representing the upper bound of the fuzzy solution in FTFADE, is used for 

comparison with the exact solution of ADE. 
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Figure 4. Fuzzy LHPM solution, 𝑢̅(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇) of Example 2, α = 1, with  𝒳 = 0.7. 

 

Notably, when 𝓇 = 0 and α = 1, Figure 5 exhibits a striking resemblance to Figure 6, which displays the 

exact solution of Example 1. This remarkable similarity is evident, even though we only computed the 

estimated solution up to the first five terms. 

 

 
 

Figure 5. Fuzzy approximation upper bound of example 1. 

 

Furthermore, upon observing Figures 7 and 8, it becomes evident that the pattern in upper bound solution 

with 𝓇 = 0 and α = 1closely resembles the exact solution for example 2. These graphical findings serve as 

strong indicators that the LHPM is a highly reliable and robust approach for solving FTFADE. We 

observed that in both cases, the numerical results obtained from proposed method align perfectly with 

those derived from the ADE solution when 𝓇 = 0, further affirming the accuracy and effectiveness of the 

LHPM method in handling such scenarios. 
 

 
 

Figure 6. Fuzzy approximation exact outcome of example 1. 
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Figure 7. Fuzzy approximation upper bound of example 2. 

 

 

 
 

Figure 8. Exact outcome of example 2. 

 

 

In the illustrative cases, to perform numerical computations, the infinite power series in Equations (31) to 

(32) and Equations (37) to (38) were truncated up to finite terms. In case 1, Table 1 shows both bounds of 

fuzzy numerical results, while Table 2 provides the corresponding bounds for case 2. The computed 

fuzzy numerical results are shown for different 𝓇 -levels ranging from 0 to 1.In particular, the analysis 

focuses on the Fuzzy LHPM solutions for various fractional orders in Example 1, Table 1 contains the 

values for the upper and lower fuzzy LHPM solutions, denoted as 𝑢(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇) respectively, 

at different 𝓇 - levels while keeping𝒳  = 0.7 and 𝑡  = 0.5. Notably, the absolute numerical values of 

𝑢(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇)are precisely the same. For example, at fractional order α = 0.8 and 𝓇 = 0.4, the 

numerical value of 𝑢(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇) are 0.1948243 and -0.1948243, respectively, which are 

numerically equal. Additionally, Table 1 presents the approximate upper bound solution for 𝓇 = 0.6 at 

various fractional orders α (0.6, 0.8, 0.9, 0.95, and 1) as 0.13294, 0.1298829, 0.1293999, 0.1292549, and 

0.1291495, respectively. These approximate upper bounds decrease significantly as the fractional order 

increases. Furthermore, it is observed that the approximate lower bound solution for 𝓇 = 0.6 at various 

fractional orders also decreases substantially. 
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Table 1. The lower bound and upper bound of fuzzy numerical solution of example 1, keeping 𝒳 = 0.7 and t = 0.5. 
 

U(𝓧, 𝒕: 𝓻) 

α→ 0.6 0.8 0.9 0.95 1 

𝓻-level ↓ 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 

0 -0.33235 0.33235 -0.3247072 0.3247072 -0.3234999 0.3234999 -0.3231374 0.3231374 -0.3228738 0.3228738 

0.1 -0.299115 0.299115 -0.2922365 0.2922365 -0.2911499 0.2911499 -0.2908236 0.2908236 -0.2905864 0.2905864 

0.2 -0.26588 0.26588 -0.2597658 0.2597658 -0.2587999 0.2587999 -0.2585099 0.2585099 -0.2582991 0.2582991 

0.3 -0.232645 0.232645 -0.2272951 0.2272951 -0.2264499 0.2264499 -0.2261962 0.2261962 -0.2260117 0.2260117 

0.4 -0.19941 0.19941 -0.1948243 0.1948243 -0.1940999 0.1940999 -0.1938824 0.1938824 -0.1937243 0.1937243 

0.5 -0.166175 0.166175 -0.1623536 0.1623536 -0.1617499 0.1617499 -0.1615687 0.1615687 -0.1614369 0.1614369 

0.6 -0.13294 0.13294 -0.1298829 0.1298829 -0.1293999 0.1293999 -0.1292549 0.1292549 -0.1291495 0.1291495 

0.7 -0.099705 0.099705 -0.0974122 0.0974122 -0.09705 0.09705 -0.0969412 0.0969412 -0.0968621 0.0968621 

0.8 -0.06647 0.06647 -0.0649414 0.0649414 -0.0647 0.0647 -0.0646275 0.0646275 -0.0645748 0.0645748 

0.9 -0.033235 0.033235 -0.0324707 0.0324707 -0.03235 0.03235 -0.0323137 0.0323137 -0.0322874 0.0322874 

1 0 0 0 0 0 0 0 0 0 0 

 

 

Now in Table 2, the approximate upper bound solutions for 𝓇 = 0.4 at various fractional orders α(0.6, 

0.8, 0.9, 0.95, and 1) are 1.8226, 0.999256, 0.850856, 0.796264, and 0.74943, respectively. Interestingly, 

the approximate upper bounds decrease substantially as the fractional order increases. Likewise, the 

approximate lower bound solutions for 𝓇 = 0.4 at various fractional orders also decrease very rapidly. 

 
Table 2. The lower bound and upper bound of fuzzy numerical solution of Example 2, keeping 𝒳 = 0.7 and 𝑡 = 0.5. 

 

u(𝓧, 𝒕: 𝓻) 

α→ 0.6 0.8 0.9 0.95 1 

𝓻-

leve

l ↓ 

𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 𝒖(𝓧, 𝒕: 𝓻) 

0 -3.03766 3.03766 -1.66543 1.66543 -1.41809 1.41809 -1.32711 1.32711 -1.24905 1.24905 

0.1 -2.7339 2.7339 -1.49888 1.49888 -1.27628 1.27628 -1.1944 1.1944 -1.12414 1.12414 

0.2 -2.43013 2.43013 -1.33234 1.33234 -1.13447 1.13447 -1.06168 1.06168 -0.99924 0.99924 

0.3 -2.12636 2.12636 -1.1658 1.1658 -0.992665 0.992665 -0.928974 0.928974 -0.874335 0.874335 

0.4 -1.8226 1.8226 -0.999256 0.999256 -0.850856 0.850856 -0.796264 0.796264 -0.74943 0.74943 

0.5 -1.51883 1.51883 -0.832713 0.832713 -0.709046 0.709046 -0.663553 0.663553 -0.624525 0.624525 

0.6 -1.33657 1.33657 -0.732787 0.732787 -0.623961 0.623961 -0.583927 0.583927 -0.549582 0.549582 

0.7 -0.911299 0.911299 -0.499628 0.499628 -0.425428 0.425428 -0.398132 0.398132 -0.374715 0.374715 

0.8 -0.607533 0.607533 -0.333085 0.333085 -0.283619 0.283619 -0.265421 0.265421 -0.24981 0.24981 

0.9 -0.303766 0.303766 -0.166543 0.166543 -0.141809 0.141809 -0.132711 0.132711 -0.124905 0.124905 

1 0 0 0 0 0 0 0 0 0 0 

 

 

In both cases, the upper and lower numerical values of LHPM solutions of FTFADE decrease as the 

fractional order α approaches 1 at a specific 𝓇 -level. This observation leads us to conclude that the 

LHPM is a very fast converging method, with its solutions exhibiting remarkable convergence 

characteristics as the fractional order increases. 

 
Table 3. The precise solutions for the given examples at 𝒳 = 0.7. 

 

Time 
Exact solution 

Time 
Exact solution 

Example 1 Example 2 Example 1 Example 1 

0 0 0.4965853 0.6 0.386531 1.64872127 

0.1 0.064422 0.60653066 0.7 0.450952 2.01375271 

0.2 0.128844 0.74081822 0.8 0.515374 2.45960311 

0.3 0.193265 0.90483742 0.9 0.579796 3.00416602 

0.4 0.257687 1.10517092 1 0.644218 3.66929667 

0.5 0.322109 1.34985881    
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The Fuzzy LHPM solution of  𝑢(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇) at various fractional orders of both the cases are 

shown in Figures 9 and 10 at specific 𝒳 and 𝑡. The effect of the uncertainty has been shown along with 

variation in fractional order of the cases through figures. Firstly, in Figure 9 for example 1, we notice that 

when the fractional order increases, the graphs of both bounds begin to converge fast as 𝓇 approaches to 

cusp. Secondly, as the fractional order is raised, both bounds of the approximate solution move closer to 

the origin. Finally, as the uncertainty 𝓇 approaches 1, the solution graph at α = 0.4, 0.6, 0.8, 0.9, 0.95, 1 

coincides. However, we observe a similar analysis in Figure 10 for example 2. It is interesting to 

conclude that increasing the fractional order, both branches of fuzzy solution converging toward the cusp 

where 𝓇 = 1.  

 

 
 

Figure 9. Fuzzy LHPM solutions at α = 0.6 ,0.8, 0.9, 0.95 and 1 at 𝒳 = 0.7, 𝑡 = 0.5 at different 𝓇- levels for 

example 1. 

 

 

 
 

Figure 10. Fuzzy LHPM solutions at α = 0.6, 0.8, 0.9, 0.95 and 1 at 𝒳 = 0.7, 𝑡 = 0.5 at different 𝓇- levels for 

example 2. 
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The absolute error of the numerical solution is defined as 

[Ẽ]
𝓇

= |Fuzzy LHPM solution − Exact solution| 

[Ẽ]
𝓇

= ={
[E̅]𝓇 = |𝑢(𝒳, 𝑡: 𝓇) − 𝑘(𝓇)Exact solution|

[E]
𝓇

= | 𝑢(𝒳, 𝑡: 𝓇) − 𝑘(𝓇)Exact solution|
 

 
Table 4. Absolute relative error of lower bound of fuzzy numerical solution with k(𝓇) exact solution of example 1, 

keeping 𝒳 = 0.7 and t= 0.5. 
 

 

 

In case 1, in Table 4, at distinct fractional order α, absolute errors of lower bound are inclusively 

analysed, taking 𝒳 = 0.7 and 𝑡 = 0.5 as constant, withk(𝓇) Exact solution. At different levels from 0 to 1 

the absolute error at fractional order from 0.6 to 1 decrease significantly.  

 

In Table 5, absolute relative error of upper bound with exact solution is analysed at distinct fractional 

order α, with consideration 𝒳 = 0.7 and t = 0.5 as constant. At different levels from 0 to 1 the absolute 

error decrease significantly. 

 
Table 5. Absolute relative error upper bound of fuzzy numerical solution of example 1, keeping 𝒳 = 0.7 and 𝑡 = 0.5. 

 

α 
[E̅]𝓇 

0.6 0.8 0.9 0.95 1 

𝓻-level      

0 0.01024115 0.00259839 0.00139102 0.00102853 0.000764973 

0.1 0.00921703 0.00233855 0.00125192 0.00092567 0.000688476 

0.2 0.00819292 0.00207871 0.00111282 0.00082282 0.000611979 

0.3 0.0071688 0.00181887 0.00097372 0.00071997 0.000535481 

0.4 0.00614469 0.00155903 0.00083461 0.00061712 0.000458984 

0.5 0.00512057 0.0012992 0.00069551 0.00051426 0.000382487 

0.6 0.00409646 0.00103936 0.00055641 0.00041141 0.000305989 

0.7 0.00307234 0.00077952 0.00041731 0.00030856 0.000229492 

0.8 0.00204823 0.00051968 0.0002782 0.00020571 0.000152995 

0.9 0.00102411 0.00025984 0.0001391 0.00010285 0.0000765 

1 0 0 0 0 0 

 

In case 2, in Table 6, at distinct fractional order α, absolute relative error of lower bound and upper bound 

with with k(𝓇)exact solutionis analysed, with 𝒳 = 0.7 and 𝑡 = 0.5. At different levels from 0 to 1 the 

absolute error at fractional order from 0.6 to 1 decrease significantly. From this Table we can very surely 

conclude LHPM solution as fast and robust method. 

α→ 
 [E]

𝓇
 

 0.6 0.8 0.9 0.95 1 

𝓻-level       

0  0.0102412 0.0025984 0.001391 0.0010285 0.000765 

0.1  0.009217 0.0023386 0.0012519 0.0009257 0.0006885 

0.2  0.0081929 0.0020787 0.0011128 0.0008228 0.000612 

0.3  0.0071688 0.0018189 0.0009737 0.00072 0.0005355 

0.4  0.0061447 0.001559 0.0008346 0.0006171 0.000459 

0.5  0.0051206 0.0012992 0.0006955 0.0005143 0.0003825 

0.6  0.0040965 0.0010394 0.0005564 0.0004114 0.000306 

0.7  0.0030723 0.0007795 0.0004173 0.0003086 0.0002295 

0.8  0.0020482 0.0005197 0.0002782 0.0002057 0.000153 

0.9  0.0010241 0.0002598 0.0001391 0.0001029 7.65E-05 

1  0 0 0 0 0 
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Table 6. Absolute relative error fuzzy numerical solution of example 2, keeping 𝒳 = 0.7 and 𝑡 = 0.5 at different  

𝓻-level. 
 

 
 

7.1 Numerical Comparison and Validation 
To facilitate comparison, Table 3 presents the exact solutions for the two cases of FTFADE, while 

Tables 1 and 2 display lower, upper bounds of the fuzzy LHPM solutions. Furthermore, to validate our 

proposed analysis, 3D surface graphs of the approximate solution are generated at different fractional 

orders for both cases, considering different levels of uncertainty and time while holding 𝒳  constant. 

Figures 1 to 10 depict the numerical approximations to the solutions of the cases. Specifically, Figures 1 

to 2 illustrate the LHPM solutions for example 1, while Figures 3 to 4 showcase the LHPM solutions for 

example 2. The variations in time (t) and 𝓇- level (uncertainty) range from 0 to 1, corresponding to 

various fractional orders considered in the analysis. Using these figures, we can visually comprehend the 

influence of uncertainty at various fractional orders. The upper surface and lower surface plots situated 

above and below the cusp value (𝓇 = 1), portray the solutions as 𝑢̅(𝒳, 𝑡: 𝓇) and 𝑢(𝒳, 𝑡: 𝓇) respectively.  

 

7.2 Sensitivity Analysis of Fuzzy Parameters 
To enhance the practical utility of the proposed model, this section addresses the impact of fuzzy 

parameters, specifically the average velocity 𝑎̃(𝒳)) and the diffusion coefficient b̃(𝒳), on the solution's 

behavior. A sensitivity analysis as shown in Figure 11 is crucial for understanding how uncertainty in 

these key physical parameters propagates through the model and affects the final fuzzy concentration 

 𝑢̃(𝒳, 𝑡). Such an analysis would involve systematically varying the uncertainty in 𝑎̃(𝒳)and b̃(𝒳) and 

observing the corresponding changes in the solution's upper and lower bounds. For instance, one could 

modify example 1 by defining 𝑎̃(𝒳)and b̃(𝒳) as triangular fuzzy numbers instead of crisp values. The 

expected outcome is that as the fuzziness (i.e., the spread of the fuzzy number) of the parameters 

α 𝓻-level 𝒖(𝟎. 𝟕, 𝟎. 𝟓: 𝓻) [𝑬]
𝓻

 𝒖(𝟎. 𝟕, 𝟎. 𝟓: 𝓻) [𝑬̅]𝓻 

0.6 

0.2 -11.28763517 10.20774812 11.28763517 10.20774812 

0.4 -8.465726377 7.655811093 8.465726377 7.655811093 

0.6 -5.643817585 5.103874062 5.643817585 5.643817585 

0.8 -2.821908792 2.551937031 2.821908792 2.551937031 

1 0 0 0 0 

0.8 

0.2 -3.002821841 1.922934795 3.002821841 1.922934795 

0.4 -2.252116381 1.442201096 2.252116381 1.442201096 

0.6 -1.501410921 0.961467398 1.501410921 0.961467398 

0.8 -0.75070546 0.480733699 0.75070546 0.480733699 

1 0 0 0 0 

0.9 

0.2 -1.966978677 0.887091631 1.966978677 0.887091631 

0.4 -1.475234008 0.665318723 1.475234008 0.665318723 

0.6 -0.983489339 0.443545816 0.983489339 0.443545816 

0.8 -0.491744669 0.221772908 0.491744669 0.221772908 

1 0 0 0 0 

0.95 

0.2 -1.644464746 0.5645777 1.644464746 0.5645777 

0.4 -1.233348559 0.423433275 1.233348559 0.423433275 

0.6 -0.822232373 0.28228885 0.822232373 0.28228885 

0.8 -0.411116186 0.141144425 0.411116186 0.141144425 

1 0 0 0 0 

1 

0.2 -1.400108873 0.320221827 1.400108873 0.320221827 

0.4 -1.050081655 0.24016637 1.050081655 0.24016637 

0.6 -0.700054437 0.160110914 0.700054437 0.160110914 

0.8 -0.350027218 0.080055457 0.350027218 0.080055457 

1 0 0 0 0 
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r-level
Exact

Solution
LHPM

Solution
ADM

Solution

LHPM
Absolute

Error

ADM
Absolute

Error

r-level 0.2 0.2 0.257687 0.258299 0.258614 0.000612 0.000927

r-level 0.4 0.4 0.193265 0.193724 0.194119 0.000459 0.000854

r-level 0.6 0.6 0.128844 0.12915 0.129462 0.000306 0.000618

r-level 0.8 0.8 0.064422 0.064575 0.064798 0.000153 0.000376

00.10.20.30.40.50.60.70.80.9

𝓇
-

le
ve
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Comparative Metrics

Comparison of LHPM and ADM

r-level 0.2 r-level 0.4 r-level 0.6 r-level 0.8

increases, the spread of the resulting fuzzy solution  𝑢̃(𝒳, 𝑡)  will also widen. This demonstrates the 

model's response to input uncertainty, a vital aspect for real-world applications like contaminant transport, 

where these coefficients are often imprecisely known. 

 

 
 

Figure 11. Fuzzy solution 𝑢(𝒳, 𝑡: 𝓇)versus the 𝓇-level. 

 

 

7.3 Comparative Analysis with Existing Methods 
To substantiate the claim of novelty and efficiency for the proposed LHPM, Figure 12 provides a direct 

quantitative comparison of the Laplace Homotopy Perturbation Method (LHPM) and the Adomian 

Decomposition Method (ADM) against an exact solution at four distinct uncertainty levels (𝓇 -levels).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. Comparison of LHPM and ADM solutions and their absolute errors for example 1 at various 𝓇-levels 

with constant α = 1, 𝒳 = 0.7, t = 0.5. 
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Figure 12 provides a direct quantitative comparison of the Laplace Homotopy Perturbation Method 

(LHPM) and the Adomian Decomposition Method (ADM) against an exact solution at four distinct 

uncertainty levels (𝓇 -levels). The primary and most significant conclusion are the superior accuracy of 

the LHPM. For every 𝓇 -level 0.2, 0.4, 0.6, and 0.8 the absolute error associated with the LHPM solution 

is consistently lower than that of the ADM. For example, at an 𝓇  -level of 0.4, the LHPM error is 

0.000459, which is substantially smaller than the ADM error of 0.000854. This demonstrates that the 

LHPM yields a more accurate result and deviates less from the exact solution compared to the ADM. 

 

8. Limitations and Future Research Directions 
The analysis is confined to one-dimensional, linear Fuzzy Time-Fractional Advection-Diffusion 

Equations (FTFADEs). Future work should extend the LHPM to multi-dimensional and nonlinear 

systems, which are more representative of real-world phenomena. Additionally, the advection and 

diffusion coefficients in the illustrative examples were treated as crisp, non-fuzzy values. A more robust 

validation would implement these parameters as fuzzy numbers to fully model system uncertainty. 

 

Finally, the comparative analysis was limited, benchmarking the LHPM solely against the Adomian 

Decomposition Method (ADM). Future studies could provide a more comprehensive performance profile 

by including comparisons with other techniques like the Variational Iteration Method (VIM). Addressing 

these aspects will broaden the method’s applicability and further validate its effectiveness. 

 

9. Conclusion 
In the present research article, we provide a novel method to analyse the approximate and numerical 

solution of FTFADE using Caputo fractional derivative. Additionally, we have obtained sufficient 

condition for the uniqueness of the solution. Moreover, by leveraging the fixed-point theorem, we have 

demonstrated the convergence of the proposed method. This approach exhibits both efficiency and 

accuracy, manifesting a remarkable correspondence between the numerical approximations and exact 

solutions across different fractional orders. To further support our findings, we have illustrated our results 

with examples involving FTFADE. The outcomes of the examples numerically and graphically justify the 

pertinence, precision, robustness, and effectiveness of our approach. Notably, this approach has broader 

applicability, thus, can be extended to other fuzzy linear and nonlinear fractional order equations. This 

extension promises to yield informative results across various fields, including financial modelling. The 

proposed method presents researchers with a valuable tool to obtain efficient and accurate solutions for 

complex equations involving uncertain parameters, contributing to advancements in research and 

problem-solving in relevant field. 
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