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Abstract

This article introduces a new numerical approach based on the Laplace Homotopy Perturbation Method (LHPM) to solve the
one-dimensional Fuzzy Time-Fractional Advection-Diffusion Equation (FTFADE) in the Caputo sense, considering fuzzy initial
conditions. The proposed method demonstrates how fuzzy numerical solutions gradually converge to precise ones, supported by
clear illustrative examples. We also establish sufficient conditions that guarantee the uniqueness of the solution and analyze the
convergence of the method. Moreover, we compare fuzzy solutions for different uncertainty levels and fractional orders to
provide a deeper understanding of the model’s behavior. The results are presented graphically to highlight the accuracy,
efficiency, and reliability of the proposed method.

Keywords- Caputo fractional derivative, Fuzzy fractional partial differential equation, Perturbation, Homotopy, Advection
diffusion equation.

1. Introduction

The investigation of Fuzzy Fractional Partial Differential Equation (FFPDE) has garnered significant
interest from numerous researchers and emerged as a prominent focus within uncertain mathematical
analysis. Fractional order models of fuzzy differential equations hold greater significance compared to
their conventional integer-order models. The research on the theory of Fractional Partial Differential
Equation (FPDE) of non-integer order is interesting due to these theories provides an effective approach
for recitation uncertainty that manifests in several fields of dynamical systems affected by roughness and
exhibiting non-standard dynamical behaviours with hereditary effects. Also, studies on the numerical
solutions of fractional PDE have been increasing in number along with the development of fuzzy
fractional calculus. PDEs play a vital role in numerous engineering applications, plasma physics, and
various branches of science, as anticipated in forthcoming studies (Dumbser et al., 2023). The Advection
Diffusion Equation (ADE)is extensively utilized across multiple domains of science and engineering,
encompassing atmospheric science, environmental science application (Zhang et al., 2022). The ADE,
Partial Differential Equation (PDE), arises in many physicaland engineering applications, such as porous
media flow (Nikan et al.,, 2020), groundwater hydrology (Rahaman et al., 2022), and chemical
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engineering, where the transport of solutes or contaminants is influenced by both advection and diffusion.
ADE finds crucial applications in modelling the transportation of air pollutants and water pollutants
within the atmosphere and water bodies, carrying significant implications for public health and the
environment. This is important for understanding the fate of pollutants and assessing the potential impact
on aquatic ecosystems and human health (Singh et al., 2019) Therefore fuzzy and fractional form of
advection diffusion equation will be a potent tool for comprehending the movement of substances in
various physical and biological systems. The Time-Fractional ADE (TFADE), which extends the
conventional ADE by integrating fractional time derivatives, has grown in popularity in recent years
(Zhang et al., 2022; Shah et al., 2023).

Fractional calculus has proven to be a valuable tool for modeling anomalous diffusion phenomena, which
classical diffusion models cannot sufficiently describe. Many FPDE are used in the study of numerical
simulations and analytical approaches for magneto-acoustic waves in cold plasma. The wide application
of fractional calculus results in plenty of books, and research articles. It is significantly playing a vital role
in science, technology, engineering, and biological problems of the real-world (Podlubny, 1998; Petra,
2011). Over the last two decades, researchers have become increasingly interested in exploring analytical
and approximate solutions for FPDEs in initial and boundary situations (Rezazadeh et al., 2019; Zafar et
al., 2022). PDEs and FPDEs have been solved numerically using various methods, such asVariational
Iteration Method (VIM), Homotopy Analysis Method (HAM), Adomian Decomposition Method(ADM),
Transform, finite difference, neural networks method (Shah et al., 2025a, 2025b), wavelet technique
(Jahan et al., 2025), new extended direct algebraic method (Rezazadeh, 2018) etc., depending on the
specific problem and boundary conditions. Remarkably, these established techniques for non-linear and
linear Fractional Differential Equation (FDE) and FPDE have demonstrated reliability and efficiency in
providing analytical and numerical solutions for real-world problems. While many physical phenomena
depend on both space and time, FPDE can take account of time and space aspects by incorporating vivid
fractional derivative operators (Karniadakis et al., 2015; Bilal et al., 2024). In Eslami & Rezazadeh (2016)
integral technique for analytic solution of nonlinear conformable time-fractional partial differential
equations. Besides, the fractional differential operator offers a higher degree of flexibility in solving
complex problems. The theories of Riemann-Liouville, Hadamard, Caputo, Caputo-Hadamard fractional
integral or derivative operators, Cuputo Fabrizio have been used for a great deal in many manuscripts.
Among various fractional differential operators Caputo, a useful operator, provides a greater degree of
freedom. As a result, this area has received a lot of interest, and several research articles, monographs,
books, etc. have been written about it from various angles on various fractional problems (Kumar et al.,
2017, Rubbab et al., 2021, Ahmad et al., 2025).

One more concept, that is, concept of fuzzy (Zadeh, 1965) is often used in the context of complex
systems, where traditional methods of modeling and analysis may not be sufficient to accurately represent
the behaviour of the system. Over the recent years, several applications of theory of fuzzy set in research
have witnessed a surge, encompassing the concepts of fixed-point, control systems, topology, fuzzy
automata, and other areas. Chang & Zadeh (1996) expanded the theory of fuzzy sets by introducing fuzzy
control and mapping. The idea of "fuzzy time" pertains to time being treated as a fuzzy variable, implying
that it lacks precise definition and carries some degree of uncertainty. Fuzzy numbers, as compared with
crisp numbers, have been employed to represent the parameters in situations where the information
appears fuzzy and insufficient. Fuzzy differential, partial and integral equations have garnered significant
attention from researchers in applied sciences (Babolian et al., 2004; Salahshour et al., 2012a;
Chakraverty et al., 2016). Subsequently, the mathematical modeling of specific real-world systems,
accounting for data uncertainty, has led to the emergence of FFADE. Over the past decade, a large
number of researchers have shown interest in the model of fuzzy and fractional together (Salahshour et
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al., 2012a; Tapaswini & Chakraverty, 2013). The upper and lower solution method, as well as the
monotone iterative strategy, were described by the authors (Alikhani & Bahrami, 2013) as ways to find
maximal and minimal solutions for the fuzzy fractional integrodifferential equations. In recent years,
numerous scholars have delved into the FFPDE using various models, leading to significant contributions
from researchers such as (Ahmadian et al., 2018; Allahviranloo & Ghanbari, 2020; Zureigat et al., 2021).
Researchers Shah et al. (2020), Ahmad et al. (2021) and Pedro et al. (2023) have utilized effective
mathematical technique numerical analytical methods to FFPDE. Notably, (Naeem et al., 2022) have
conferred applications of derivative for solving fuzzy fractional order KdV equation. Furthermore, as
demonstrated by Hoa et al. (2019), and Vu et al. (2022), authors have investigated new techniques for
finding the solutions of CK fuzzy FDE. Keshavarz et al. (2022) solved a fuzzy fractional diffusion model
of cancer tumours using fuzzy integral transforms. The FTFADE holds significant potential for
application in the realm of environmental engineering, specifically in the study of groundwater
contamination. The incorporation of fuzzy time aspect in the equation enables more realistic modeling of
the unpredictable nature of groundwater flow and contaminant transport over time (Li et al., 2020).
Authors (Kirtiwant et al., 2017; Li et al., 2019; Aghdam et al., 2021; Zureigat et al., 2021; Zhang et al.,
2022) have applied various methods, depending on the FTFAD problem with initial and boundary
condition.

It appears that only an insignificant amount of study physicalhas been using Homotopy Perturbation
Method (HPM)coupled with Laplace transform (LHPM) on FFADE. LHPM is a powerful numerical
technique that synergizes the Laplace transform and the HPM. In situations where, conventional
analytical methods fall short in solving nonlinear differential equations, the LHPM proves to be a
valuable tool. Its versatility makes it a valuable tool in diverse scientific and engineering domains that
frequently encounter nonlinear problems. He (1999) was the first to propose the HPM. Since then, many
authors have studied and applied this method on linear and nonlinear PDE in a variety of scientific as well
technological disciplines. The HPM (He, 2005; Tapaswini & Chakraverty, 2013), ADM (Duan et al.,
2012), VIM (Ganji, 2012), LHPM (Kashyap et al., 2023; Kashyap et al., 2025) have all found
applications in studying diverse physical problems. The motivation behind this work is to discuss
comparative analysis of proposed method on FTFADE at different fractional orders and various
uncertainty level . LHPM has been successfully employed in handling linear, nonlinear differential
equations, PDEs, and fractional PDE resulting in more accurate outcomes as related to methods.
Moreover, we conduct a comparative analysis among approximate solutions for FTFADE at various
fractional orders ranging from O to 1 in the Caputo sense. The LHPM scheme is utilized, and its
performance is compared with the exact solutions of test cases to assess its accuracy and effectiveness.

The structure of paper is summarized as: in Section 2 we discuss a review of theorems and lemmas.
Section 3 exhibits a discussion of FTFADE, while Section 4 discusses about uniqueness and convergence
of LHPM solution on FTFADE. In the next Section 5 proposed method on FTFADE. Moving on to
Section 6, the proposed method is validated through the utilization of two cases. Section 7 with
subsection presents a thorough analysis of the outcomes of FTFADE, utilizing numerical approximations,
graphs, and tables, numerical comparison and validation, sensitivity analysis of fuzzy parameters and
comparative analysis with existing methods. Finally, Section 8 contains the conclusion of this paper and
discusses the outlines potential future developments.

2. Preliminaries

This section provides some notations and definitions, which we have referenced later in this paper. It also
presents the concept of fuzzy numbers, with various theorems defined in references (Dubois & Prade,
1982; Salahshour et al., 2012a; El Mfadel et al., 2021).
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Definition 2.1 Fuzzy number (Tapaswini & Chakraverty, 2013)

A fuzzy number w is convex normalized fuzzy set W of the real line R such that

{uz(X):R - [0,1],V X € R}Where ug is called the membership function of the fuzzy set and it is
piecewise continuous.

Definition 2.2 Triangular fuzzy number (TFN) (Tapaswini & Chakraverty, 2013)

TFN represented by W can be defined as convex and normalized fuzzy set U on the real number line R.
This definition encompasses the following key characteristics.

i) Xy €R for which pg(X,) = 1(X, is designated as mean value of W), where pg is called the
membership function of the fuzzy set.

il) g (X) is piecewise continuous.

Definition 2.3 In parametric form (Shah et al., 2020), the fuzzy number can be represented as
k() = [l_((/r), 1}(,,~)] where 7 € [0, 1] satisfies the following conditions:

i) k() is left side continuous, bounded, and increasing function.

ii) k(#") is right side continuous, bounded and decreasing function.

iii) k() < k(#).

where, 7~ is a crisp number “if k(#) = k(#) = 7.

Definition 2.4 A continuous fuzzy function W on [0,b] < R (Shah et al., 2020), then fuzzy fractional
integral in Riemann-Liouvilli sense corresponding to t as

0gr() = [¢E=DTIW@)
°w(t) = |, @ dQ, Q € (0, ).

As W € CF[0,b] n LF[0,b], where, CF[0,b] is the space of fuzzy continuous functions and LF[0, b] is the
space of fuzzy Lebesgue integrable functions respectively, then fractional fuzzy integral is defined as:

[1°W(0)],- = [1°w,-(£),19%,-(£)], 0 < #~ < 1 such that

G _ (-0 tw(@)
Pw,.(t) = N o) dq,
0,0 € (0,00).

60— _ t (-0 w()
1°w,.(t) = |, —o dq,
0,0 € (0,).

Definition 2.5 A function W € CF[0,b] N LF[0,b] (Shah et al., 2020, Arfan et al., 2021), Caputo
fractional derivative is defined as [D®W(t)] - = [Deﬂ(t), Dev_v,,(t)], 0 <7 <1, where

_g—q dM
0 | e ™ omw(@)
D W’V’(t) - [fo F(m—E) dE it ’
=lo

_g—1 d™ _
m-6 1deW(Q)

F'(m-Q)

DEW (1) = [Lf - o ]

t=t,

such that the integration on right sides converges and m = [0].
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Definition 2.6 Let W € CF[0,b] N LF[0,b] such that [#(t)], = [&(t),m(t)] where, 0 < 7 < 1.The
Laplace transform of fuzzy Caputo derivative of order 0 < a < 1 is defined as (Salahshour et al., 2012a):

LT () = [ (0w (0)), LD T D)),

where,
[L (Dt“&(t))] = s%L (&(t)) - s“‘lg(O), and

(LD )] = s“L(w(©)) — s :(0),

3. Fuzzy Time-Fractional Advection-Diffusion Equation (FTFADE)

The focal point of this investigation is the time fractional one-dimensional ADE as introduced by Zureigat
et al. (2021). FTFADE is an effective tool for comprehending and simulating transport phenomena in
systems with uncertain, nonlocal, and memory-driven behaviours. In this equation, the Caputo fractional
derivative is employed, giving rise to the one-dimensional FTFADE. To elaborate further, the
representation of the FTFADE is provided below:

DA1i(X,t) = @(X) Dyti(X, t) + b(X)Dyxii(X,t) +3(X,t), 0<a<1 (1)
with fuzziness in the initial and boundary conditions

u(X,0)=g(X), 0<x <l 2)
@(0,8) = fo(0, a4, t) = /1), >0 3)

Equation (1) defines the fuzzy concentration, denoted as #i(X, t) which represents a quantity, such as
mass and energy, with respect to precise variables X and t. It incorporates the fuzzy time fractional
derivative D,* of order a. The parameters@(X), b(X) and §(X,t) = k(#) q(X,t) are the average
velocity, diffusion coefficient, and fuzzy function of crisp variables, respectively.

The fuzzy initial condition and boundary conditions are expressed as @ (X ,0), % (0,t), and % (L, t)
respectively. Now, when Equation (1) is formulated in terms of the #~ - level (uncertainty level), it results
in the following representation.

[D:%u(X, t:7), D" u(X, t: )] = [a(X:7),a(X: 7)]|[Dxu(X, t:#), Dxu(X, t: )] +

[b(2: 7, BOC )] [Pyt (X, £:77), Do (X, £:47)] + [ q (2, £:4), (X, 7)) )
Given the uncertain initial condition, the equation can be expressed with the following notation:

[(X, 0:47), 7(X, 0:7)] = [ g, 0:7), (X, 0:47)] 5)
and the accompanying boundary conditions are outlined below.

[0, £:47),5(0, t: )] = [fo (2, 0:7), Fo (2, 0: )] ©6)
[ t:), a0 )] = [ ), i )] (7)
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4. Analysis of Uniqueness and Convergence in FTFADE Solution
In this section, we discuss the uniqueness and convergence of the LHPM solution for the FTFADE:

Theorem 1 (Uniqueness Theorem): The LHPM solution of FTFADE is unique, whenever 0 < 8 < 1,
where, f = {Q(X)S + B(X)c} T.

Proof: The solution of FTFADE in Equation (1) is (X, t) = Y=o Un (X, t). Assuming & and &i* be two
different solutions of FTFADE (1) such that |#i| < A and |@i*| < B. Now we have
| = |1 Lia L[EQODx (@ — @) + B0 Dy (@ — a*)]“,

Applying the convolution theorem to the inverse Laplace Transform yields the following outcome:
|L-1 Ll L[E3QO)Dy (@ — &%) + D) Dy (& — ﬁ*)]“

= |, {ECOD @ = &) + BEODxx (@ — )T e

< fot |{5(X)Dx(a — @) + bO)D ey (fi — 7*) r(zl‘—f);) dz;|,

~ t ~ ~ % ~ t ~ ~ -8«
< 3(0) fy D (17 = @) +BOO) fy Dy (12— &' e &,

< {00 [{otia ~ D) + BEO flo(a - w D} ae

Utilizing the integral mean value theorem on the equation above, we obtain the following result:
<{a@s(a —a*)) + bOo(la — TP} T,

< (Ja —a*D{aE0)s + b(X)a},

< Blu—al,

Further it gives|ti — "] (1 =) < 0,as0 < B < 1.
Hence |&i — @*| = 0 and so @ = @*. Therefore, the LHPM solution is unique.

Theorem 2 (Convergence Theorem) (Salahshour et al., 2012b; Kumar et al., 2018; Verma et al., 2023):
Let E be a Banach space. Then there exists a nonlinear mapping defined from F:E — E, such that
IIF(@) — F(@Il < BT — fll, Yu, ue E. According to Banach’s fixed point theory, F has a fixed point, and
if fly, fiy € E then the sequence formed by the LHPM solution converges to the fixed-point F.

It = all < s 1 = ol

Proof: Let Banach space (C[J],||.]|) of all the continuous functions on J with the norm defined as
lg Il = maxy;|g(t)].

Consider ||&i,, — iyl = max ¢)|tly, — iy,

= max oy |17 |35 L@QODx @iy = Tnt) + B (o = )] |
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Applying the convolution theorem to the inverse Laplace Transform, the subsequent outcome is as
follows:

tr~ ~ ~ =~ ~ ~ t—&€)*
Sy (@QODx (1 = 1) + BOODscx W1 = Ttn-1)} 15 €],

= Max ¢

t](~ ~ ~ = ~ ~ t-6)%
< maxiey Jy ({200 Dx (m-s = ftp—1) + BOODsx (omes ~ )} 170 %

-5«
r(i+a)

< maxie {@Q0) f; Dx (Him—s = 1) + BOO) f Do (imoy = 1D} e A€,

< maxeey (@00 [y 6(lm-s = TnoaD) + BOO) f; 0 (fimor = Tt D} i -

By employing the Integral Mean Value Theorem on the preceding equation, the following outcome is
derived.

< maxe; [{@(0) §(|fip—y — @n_1l) + BX) 0(|fim—y — Gn-1D} T},
< maxye) (|tim-1 = tin-1 D{@X) § + b(X) G} T,
< B ”ﬂm—l _an—lll:

Taking m = n+1 then
ltnsy — Tnll < B lln — Tpall < B2NTn—1 — Tin—2ll < B3Nl — Tn-sll < -+ < BRIIE; — Dol

By triangle inequality, we have following results.

”am - 7:inll < ”an+1 - 7:inll + “ﬁn+2 - ﬁn+1” + e +”ﬁm - ﬁm—l” < Bn”ﬁl - ﬁO” + .Bn+1”ﬁ1 - ﬁo”
+ o AT = Tl S [BT A+ BT + B2 4+ BT+ B — T,

SBA+B 4B A+ TR+ FTT iy — T,

1-— m-n—1
<o [ - ol

as0 < B <1,s01—pB™ ™1 < 1. Using this we finally obtained

n
[, — || < f_—ﬁ N1ty — i l. Since [|i, — g |l < o and 50 ||y, — Gy || < 0 if M — oo,

Hence the sequence {ii,,} is a Cauchy sequence in C[J]implying its convergence.

5. Laplace Homotopy Perturbation Method on Fuzzy Time Fractional Advection-Diffusion
Equations

This show case the efficacy of our approach by employing the LHPM to construct fuzzy approximate
solutions of FTFADE. To achieve this, we utilize the Caputo formula for time fractional derivatives in the
application of the Laplace transform (Podlubny, 1998). Continuing with our approach, we employ the
Laplace transform on Equation (1) as shown below:

LIDSa(X, )] = L [a(X)Dxi(X,t) + b(X)Dxx (X, t) + §(X, )] (8)

By utilizing Laplace transform properties in the context of the fractional Caputo derivative, the following
results are achieved.

sAU(X,s) — s*7H(C, 0) = L[@(X0)D,a(X, t) + b(XX)Dyx (X, 8) + §(X,0)] )
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where, L(#(X,t)) = U(X,s) and L(G(X, 1)) = Q(X,s).
Ux,s) = L2+ 88 4 21, [aQ0)Dx (X, £) + bX) Dy (X, )] (10)

After applying the Inverse Laplace transform to the previously mentioned equation, we obtain the
following result:

a(x,t) = L1 [Mﬂm]u—l LLL [@(X0) Dy (X, t) + E(x)Dxxa(x,t)]] (11)

sa s
The homotopy of Equation (11) is formulated as:
Hw,p) = a(X,t) — L7 [£52 4+ €8] —pp 1 L%L[d(X)Dxﬁ(x, £) + B(X0) Dy U(X, t)]] =0 (12)

Considering the perturbation method, we adopt the following approach:
WX, t) = Eno P n (X, 1) = pPilo(X, 1) + Pl (X, 1) + p*THp (X, 6) + - 4 - (13)

After applying the perturbation method to Equation (12) and compiling -coefficients of
p° pl,p?%,..p"these coefficients and other terms are substituted into Equation (13). Subsequently, the
embedded parameter p approaches 1. The resulting series form represents the approximate solution, also
known as the LHPM solution or Fuzzy solution of the FTFADE.

(X, t) = Ug(X,t) + 1, (0, t) + U (X, ) + Uz (X, t)+... (14)

The series solution incorporating fuzziness and bounded by lower and upper limits is depicted as follows
(Salahshour et al., 2012a; Hoa et al., 2019; Vu et al., 2022):
u(X, ) = ug(X, 0) + uy (X, 6) + up (X, )+ ... (15)

u(X,t) =up(X,t) +u (6, t) + up (X, ) +. ... (16)
6. Illustrative Examples

In this section, we provide two examples of FTFADE. We utilize our proposed method to assess the fuzzy
approximate results for these instances.

Example 1: (Ibis & Bayram, 2014; and Zureigat et al., 2021): Let's consider linear FFADE with
A(X)=-1,b(X) = 0 and (X, 1) = k(#)(sin(X) + t cos( X)) in Equation (1):

t—(l

1
r2-a)

Da(X, ) + i (X, ) = k(r) | sin(X) + tcos(X)|,t>0,X €RO0O<a<1 (17)

with boundary conditions: #(0,t) = #i(l,t) = 0 and fuzzy initial conditions as
4(X,0)=0[r—-11-7r]=k(r)=0 (18)

From (Kirtiwant et al., 2017)
k() =k=[k() k)] k(r)=r—-1k(r)=1- r. (19)

The exact solution to Equation (18) is stated as:
u(X,t) =tsin(X) (20)

Proof: To establish the solution, we consider the Laplace transform to apply on Equation (18).
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To—a sin(x) +t cosx]] 1)

L(D,“@(X, £)) + Ly (X, £) = [k(«)[

By substituting the initial condition and subsequently performing the inverse Laplace transform, we attain
the following result:

(X, t) = L1

[k( )[F(2 sm(X)+cos(X)]”—L‘1 [S%L(Dx(ﬁ,t))] (22)

Applying the Homotopy and Perturbation Method, 0 < p < 1, to Equation (22), we arrive at the
following result.

NP (X, 6) = L7 [ [k(r)[

r@-a

sm(x) +t cos(X)]H —pL™t [Sia L(D,Cr-op™ ta (X, t)))] (23)

After comparing the coefficients of p n = 0,1,2,3,4,5, the results for the coefficient of pois as follows:
fig(X,t) = k() [ tsin(X) + cos(X)] (24)

1"( +2)

Since 1y (X, t: 7) and uy (X, t: 7), upper and lower bounds of iy (X, t)
(X, t: 1) = k() [tsm(X) + cos(X)]

( +2)

uo(X, tir) = k(r) [t sin(X) + cos(X)] (25)

F( +2)

Further we compare another coefficient of pt,p?,p3,p* p®so on. The approximate fuzzy solution upto 5
steps are obtained as: The coefﬁcient of p yields the upper and lower bounds of i, (X, t) as follows:

(X, tir) = k(ﬂr)[ sin(X) — cos(X)]

r2a+2) F(a+2)

w, (6, t:7) = k() [

sm(X) — cos(X)] (26)

r2a+2) F( +2)

Coefficient of p?: upper and lower bounds of ﬂz (X, t) are
i, (X, t:7) = k(r) [ sin(X) — cos( X)]

r(2a+2) F(3a+2)

sin(X) —

u, (X, tir) = k(/r)[ cos(X)] (27)

F(2a+2) F(3 +2)

Coefficient of p3: upper and lower bounds of ﬂ3 (X t) are.
(O, t: ) = k(r) [ ——sin(X) + cos(X)],

r(4a+2) r(3 +2)

sm( X))+

us (X, t:7) = k(1) [— cos(X)] (28)

r(4a+2) F(3 +2)

Coefficient of p*: upper and lower bounds of ﬁ4 (X, t) are.
(X, t: ) = k(/r)[ sin(X) + cos(X)]

r(4a+2) r(s +2)
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4a+1

u (X, tir) = k(r) _r(4a+2)sm(X) + r(5 o cos(X) (29)
Coefficient of p°: upper and lower bounds of ti5 (X, t) are.
r t6a+1 1
s (X, t:) = k(r) TS in(X) _1"(5 o cos(X) ,
[ t6a+1
us(X, tir) = k(r) _F(6a+2)sm(X) — r(5 o cos(X) (30)

By utilizing these coefficients in both Equations (15) and (16) we derive a fuzzy approximate solution for
FTFADE. The resulting solution encompasses both the upper and lower bounds expressed as:

u(X, t:r) = k() [tsm(X) + sin(X)+.. ] 31

F(6 +2)

u(X, t:r) =k(r) [t sin(X) + sm(X)+ ] (32)

F(6a+2)

Subsequently, we will proceed to evaluate the numerical value of the approximate solution for FTFADE,
limiting our consideration to the first five terms. This assessment is aimed at gaining a clear
understanding of the effectiveness of LHPM in addressing FFPDE. To enhance comprehension, we
provide graphical representations of u(X,t;7) and u(X,t;7) in Figures 1 and 2 while varying the
values of a (0.6, 0.8, 0.9, 0.95, and 1) across different levels of uncertainty .

Example 2: Consider one dimensional linear fuzzy fractional ADE (ibis & Bayram, 2014) and (Zureigat
etal., 2021):

D (X, t) = =ty (O, t) + Ty (X, 8) ,t >0,X ER (33)
with 0 < a < 1 and fuzzy initial conditions:
#(X,0) = k(r)e™ (34
and
k(r) = [k(r), k()] 35)
The exact solution of Equation (33) (Singh, 2022) is
(X, t) = e Xe?t (36)
The computed upper and lower bounds of fuzzy approximate solution of this case are as:
[ 142 4127 83 |
_ . _r -X I'(a+1) TrI'Qa+1) Tr@Ba+l)
u(X, t:r) = k(r)e L6sta 32454 (37
r(4a+1) ra+1) 77777
n 2t 4t2% 8t3% 1
. _ -x r'a+1) TrQa+1) TIGa+l)
E(‘x, t: /’ﬂ) - K(”ﬂ)e 16t%% 32¢52 (38)
r¢a+1) r@Ga+1y) T

The fuzzy approximate solution of FTFADE coincides exactly with the results obtained from Fractional
ADE as discussed by (ibis & Bayram, 2014).In the next section we provide graphical representations of
u(X, t; ) and u(X, t; ) varying at the values of a (0.6, 0.8, 0.9, 0.95, and 1) across different levels of
uncertainty 7~ in Figures 3 and 4.
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7. Result Analysis

In this section, we conduct a numerical analysis for the LHPM solution to the FTFADE cases discussed in
the previous section. The numerical values and surface graphs are obtained using MATHEMATICA 11.3
and Microsoft Excel. To facilitate comparison, Table 3 presents the exact solutions for the two cases of
FTFADE, while Tables 1 and 2 display lower, upper bounds of the fuzzy LHPM solutions. Furthermore,
to validate our proposed analysis, 3D surface graphs of the approximate solution are generated at different
fractional orders for both cases, considering different levels of uncertainty and time while holding
Xconstant. Figures 1-10 depict the numerical approximations to the solutions of the cases. Specifically,
Figures 1-2 illustrate the LHPM solutions for example 1, while Figures 3-4 showcase the LHPM
solutions for example 2. The variations in time (f) and #- level (uncertainty) range from 0 to 1,
corresponding to various fractional orders considered in the analysis. Using these figures, we can visually
comprehend the influence of uncertainty at various fractional orders. The upper surface and lower surface
plots situated above and below the cusp value (7 = 1), portray the solutions as u(X, t; ) and u(X, t; )
respectively. It is intriguing to note the striking similarities in the fuzzy solutions depicted in the surface
graphs above and below the cusp at »~ = 1, as shown in Figures 1-2 and 3-4 for both cases at different
fractional orders. These surface graphs serve as compelling evidence of the accuracy and efficiency of the
LHPM.

o010

Figure 1. Fuzzy LHPM solution, #(X, t: #7) and u(X, t: ) of Example 1 ata) a=0.6,b) 2 =0.8,¢) a=0.9
and d) a= 0.95 keeping X’ = 0.7.
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0.0 0.0
(b) (d)

Figure 3. Fuzzy LHPM solution, (X, t: ) and u(X, t: )of Example 2 at (a) a = 0.6, (b) & = 0.8, (c) a = 0.9
and (d) a = 0.95, keeping X = 0.7.

Numerical value of (x, t: 7), representing the upper bound of the fuzzy solution in FTFADE, is used for
comparison with the exact solution of ADE.
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0010

Figure 4. Fuzzy LHPM solution, (X, t: ) and u(X, t: 7) of Example 2, a = 1, with XX = 0.7.

Notably, when 7~ = 0 and o = 1, Figure 5 exhibits a striking resemblance to Figure 6, which displays the
exact solution of Example 1. This remarkable similarity is evident, even though we only computed the
estimated solution up to the first five terms.

Figure 5. Fuzzy approximation upper bound of example 1.

Furthermore, upon observing Figures 7 and 8, it becomes evident that the pattern in upper bound solution
with 7 = 0 and o = 1closely resembles the exact solution for example 2. These graphical findings serve as
strong indicators that the LHPM is a highly reliable and robust approach for solving FTFADE. We
observed that in both cases, the numerical results obtained from proposed method align perfectly with
those derived from the ADE solution when 7~ = 0, further affirming the accuracy and effectiveness of the
LHPM method in handling such scenarios.

1.00:0

Figure 6. Fuzzy approximation exact outcome of example 1.
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Figure 8. Exact outcome of example 2.

In the illustrative cases, to perform numerical computations, the infinite power series in Equations (31) to
(32) and Equations (37) to (38) were truncated up to finite terms. In case 1, Table 1 shows both bounds of
fuzzy numerical results, while Table 2 provides the corresponding bounds for case 2. The computed
fuzzy numerical results are shown for different 7~ -levels ranging from 0 to 1.In particular, the analysis
focuses on the Fuzzy LHPM solutions for various fractional orders in Example 1, Table 1 contains the
values for the upper and lower fuzzy LHPM solutions, denoted as u(X, t: #) and u(X, t: 7) respectively,
at different 7~- levels while keepingX’ = 0.7 and t = 0.5. Notably, the absolute numerical values of
u(X, t:7) and u(X, t: )are precisely the same. For example, at fractional order a = 0.8 and 7~ = 0.4, the
numerical value of u(X,t:7)andu(X,t:7)are 0.1948243 and -0.1948243, respectively, which are
numerically equal. Additionally, Table 1 presents the approximate upper bound solution for » = 0.6 at
various fractional orders a (0.6, 0.8, 0.9, 0.95, and 1) as 0.13294, 0.1298829, 0.1293999, 0.1292549, and
0.1291495, respectively. These approximate upper bounds decrease significantly as the fractional order
increases. Furthermore, it is observed that the approximate lower bound solution for - = 0.6 at various

fractional orders also decreases substantially.
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Table 1. The lower bound and upper bound of fuzzy numerical solution of example 1, keeping X = 0.7 and = 0.5.

U, 1)
a— 0.6 0.8 0.9 0.95
r-level | u(X, t:r) u(x, t:r) u(X, t:r) u(xX, t:r) uX,t:r) | uX,tr) | uX,ttr) | u(X, t:r) | ulX t:r) u(X, t:r)
0 -0.33235 0.33235 -0.3247072 0.3247072 -0.3234999 0.3234999 -0.3231374 0.3231374 -0.3228738 0.3228738
0.1 -0.299115 0.299115 -0.2922365 0.2922365 -0.2911499 0.2911499 -0.2908236 0.2908236 -0.2905864 0.2905864
0.2 -0.26588 0.26588 -0.2597658 0.2597658 -0.2587999 0.2587999 -0.2585099 0.2585099 -0.2582991 0.2582991
0.3 -0.232645 0.232645 -0.2272951 0.2272951 -0.2264499 0.2264499 -0.2261962 0.2261962 -0.2260117 0.2260117
0.4 -0.19941 0.19941 -0.1948243 0.1948243 -0.1940999 0.1940999 -0.1938824 0.1938824 -0.1937243 0.1937243
0.5 -0.166175 0.166175 -0.1623536 0.1623536 -0.1617499 0.1617499 -0.1615687 0.1615687 -0.1614369 0.1614369
0.6 -0.13294 0.13294 -0.1298829 0.1298829 -0.1293999 0.1293999 -0.1292549 0.1292549 -0.1291495 0.1291495
0.7 -0.099705 0.099705 -0.0974122 0.0974122 -0.09705 0.09705 -0.0969412 0.0969412 -0.0968621 0.0968621
0.8 -0.06647 0.06647 -0.0649414 0.0649414 -0.0647 0.0647 -0.0646275 0.0646275 -0.0645748 0.0645748
0.9 -0.033235 0.033235 -0.0324707 0.0324707 -0.03235 0.03235 -0.0323137 0.0323137 -0.0322874 0.0322874
1 0 0 0 0 0 0 0 0 0 0

Now in Table 2, the approximate upper bound solutions for #~ = 0.4 at various fractional orders a(0.6,
0.8, 0.9, 0.95, and 1) are 1.8226, 0.999256, 0.850856, 0.796264, and 0.74943, respectively. Interestingly,
the approximate upper bounds decrease substantially as the fractional order increases. Likewise, the
approximate lower bound solutions for - = 0.4 at various fractional orders also decrease very rapidly.

Table 2. The lower bound and upper bound of fuzzy numerical solution of Example 2, keeping X’ =0.7 and t = 0.5.

u(X, t:r)
a— 0.6 0.8 0.9 0.95
-
leve | u(X, t:7) | u(X,t:7) | u(X, t:r) | u(X, t:r) | u(X, t:r) | u(X, t:r) | u(X, t:r) | u(X, t:r) | u(X, t:7) | (X, t:r)

1]

0 -3.03766 3.03766 -1.66543 1.66543 -1.41809 1.41809 -1.32711 1.32711 -1.24905 1.24905
0.1 -2.7339 2.7339 -1.49888 1.49888 -1.27628 1.27628 -1.1944 1.1944 -1.12414 1.12414
0.2 -2.43013 2.43013 -1.33234 1.33234 -1.13447 1.13447 -1.06168 1.06168 -0.99924 0.99924
0.3 -2.12636 2.12636 -1.1658 1.1658 -0.992665 0.992665 -0.928974 0.928974 -0.874335 0.874335
04 -1.8226 1.8226 -0.999256 0.999256 -0.850856 0.850856 -0.796264 0.796264 -0.74943 0.74943
0.5 -1.51883 1.51883 -0.832713 0.832713 -0.709046 0.709046 -0.663553 0.663553 -0.624525 0.624525
0.6 -1.33657 1.33657 -0.732787 0.732787 -0.623961 0.623961 -0.583927 0.583927 -0.549582 0.549582
0.7 -0.911299 0.911299 -0.499628 0.499628 -0.425428 0.425428 -0.398132 0.398132 -0.374715 0.374715
0.8 -0.607533 0.607533 -0.333085 0.333085 -0.283619 0.283619 -0.265421 0.265421 -0.24981 0.24981
0.9 -0.303766 0.303766 -0.166543 0.166543 -0.141809 0.141809 -0.132711 0.132711 -0.124905 0.124905

1 0 0 0 0 0 0 0 0 0 0

In both cases, the upper and lower numerical values of LHPM solutions of FTFADE decrease as the
fractional order o approaches 1 at a specific 7~ -level. This observation leads us to conclude that the
LHPM is a very fast converging method, with its solutions exhibiting remarkable convergence

characteristics as the fractional order increases.

Table 3. The precise solutions for the given examples at X’ = 0.7.

Time Exact solution Time Exact solution
Example 1 Example 2 Example 1 Example 1
0 0 0.4965853 0.6 0.386531 1.64872127
0.1 0.064422 0.60653066 0.7 0.450952 2.01375271
0.2 0.128844 0.74081822 0.8 0.515374 2.45960311
0.3 0.193265 0.90483742 0.9 0.579796 3.00416602
0.4 0.257687 1.10517092 1 0.644218 3.66929667
0.5 0.322109 1.34985881
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The Fuzzy LHPM solution of u(X, t: #) and u(X, t: 7°) at various fractional orders of both the cases are
shown in Figures 9 and 10 at specific X and t. The effect of the uncertainty has been shown along with
variation in fractional order of the cases through figures. Firstly, in Figure 9 for example 1, we notice that
when the fractional order increases, the graphs of both bounds begin to converge fast as 7~ approaches to
cusp. Secondly, as the fractional order is raised, both bounds of the approximate solution move closer to
the origin. Finally, as the uncertainty 7~ approaches 1, the solution graph at a = 0.4, 0.6, 0.8, 0.9, 0.95, 1
coincides. However, we observe a similar analysis in Figure 10 for example 2. It is interesting to
conclude that increasing the fractional order, both branches of fuzzy solution converging toward the cusp

where 7 = 1.

04

03

0.2

-0.1

-0.2

-0.3

-0.4
—

0.1 -

Lower solution at
a=0.6
Upper solution at
a=0.6
Lower solution at
a=0.8
Upper solution at
a=0.8
Lower solution at
a=0.9
~=8- Upper solution at
a=0.9
Lower solution at
a=0.95
Upper solution at
a=0.95

—+— Lower solution at a=1

~— Upper solution at a=1

Figure 9. Fuzzy LHPM solutions at o = 0.6 ,0.8, 0.9, 0.95 and 1 at X’ = 0.7, t = 0.5 at different 7~- levels for

example 1.

-2.5

Lower solution at

a=1

Upper solution at

a=1

Lower solution at

a=0.95

Upper solution at

a=0.95

Lower solution at

a=0.9

& Upper solution at
a=0.9

- Lower solution at
a=0.8
Upper solution at
a=0.8

—— Lower solution at
a=0.6

-~ Upper solution at
a=0.6

Figure 10. Fuzzy LHPM solutions at a = 0.6, 0.8, 0.9, 0.95 and 1 at X = 0.7, t = 0.5 at different #~- levels for

example 2.

391 | Vol. 11, No. 1, 2026



Kashyap et al.: A New Approximate Analytical Method and its Convergence for Fuzzy Time ...

The absolute error of the numerical solution is defined as
[E]r = |Fuzzy LHPM solution — Exact solution|

B =- [El,- = [a(X, t:7) — k(r)Exact solution|
[E], == [EL, = |u(X, t: ) — k(+)Exact solution|

Table 4. Absolute relative error of lower bound of fuzzy numerical solution with k(#*) exact solution of example 1,
keeping X’ = 0.7 and = 0.5.

[E]
a— r
0.6 0.8 0.9 0.95 1
7-level
0 0.0102412 0.0025984 0.001391 0.0010285 0.000765
0.1 0.009217 0.0023386 0.0012519 0.0009257 0.0006885
0.2 0.0081929 0.0020787 0.0011128 0.0008228 0.000612
0.3 0.0071688 0.0018189 0.0009737 0.00072 0.0005355
0.4 0.0061447 0.001559 0.0008346 0.0006171 0.000459
0.5 0.0051206 0.0012992 0.0006955 0.0005143 0.0003825
0.6 0.0040965 0.0010394 0.0005564 0.0004114 0.000306
0.7 0.0030723 0.0007795 0.0004173 0.0003086 0.0002295
0.8 0.0020482 0.0005197 0.0002782 0.0002057 0.000153
0.9 0.0010241 0.0002598 0.0001391 0.0001029 7.65E-05
1 0 0 0 0 0

In case 1, in Table 4, at distinct fractional order a, absolute errors of lower bound are inclusively
analysed, taking X = 0.7 and t = 0.5 as constant, withk(#~) Exact solution. At different levels from 0 to 1
the absolute error at fractional order from 0.6 to 1 decrease significantly.

In Table 5, absolute relative error of upper bound with exact solution is analysed at distinct fractional
order a, with consideration X = 0.7 and ¢ = 0.5 as constant. At different levels from 0 to 1 the absolute

error decrease significantly.

Table 5. Absolute relative error upper bound of fuzzy numerical solution of example 1, keeping X’ = 0.7 and t = 0.5.

. [EL
0.6 0.8 0.9 0.95 1
1-level

0 0.01024115 0.00259839 0.00139102 0.00102853 0.000764973
0.1 0.00921703 0.00233855 0.00125192 0.00092567 0.000688476
0.2 0.00819292 0.00207871 0.00111282 0.00082282 0.000611979
0.3 0.0071688 0.00181887 0.00097372 0.00071997 0.000535481
0.4 0.00614469 0.00155903 0.00083461 0.00061712 0.000458984
0.5 0.00512057 0.0012992 0.00069551 0.00051426 0.000382487
0.6 0.00409646 0.00103936 0.00055641 0.00041141 0.000305989
0.7 0.00307234 0.00077952 0.00041731 0.00030856 0.000229492
0.8 0.00204823 0.00051968 0.0002782 0.00020571 0.000152995
0.9 0.00102411 0.00025984 0.0001391 0.00010285 0.0000765

1 0 0 0 0 0

In case 2, in Table 6, at distinct fractional order a, absolute relative error of lower bound and upper bound
with with k(#~)exact solutionis analysed, with X’ = 0.7 and t = 0.5. At different levels from 0 to 1 the
absolute error at fractional order from 0.6 to 1 decrease significantly. From this Table we can very surely
conclude LHPM solution as fast and robust method.
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Table 6. Absolute relative error fuzzy numerical solution of example 2, keeping X’ = 0.7 and t = 0.5 at different

7-level.
a r-level u(0.7,0.5: ) [E], 1(0.7,0.5:7) [E],

0.2 -11.28763517 10.20774812 11.28763517 10.20774812
0.4 -8.465726377 7.655811093 8.465726377 7.655811093
0.6 0.6 -5.643817585 5.103874062 5.643817585 5.643817585
0.8 -2.821908792 2.551937031 2.821908792 2.551937031

1 0 0 0 0
0.2 -3.002821841 1.922934795 3.002821841 1.922934795
0.4 2252116381 1.442201096 2.252116381 1.442201096
0.8 0.6 -1.501410921 0.961467398 1.501410921 0.961467398
0.8 -0.75070546 0.480733699 0.75070546 0.480733699

1 0 0 0 0
0.2 -1.966978677 0.887091631 1.966978677 0.887091631
0.4 -1.475234008 0.665318723 1.475234008 0.665318723
0.9 0.6 -0.983489339 0443545816 0.983489339 0.443545816
0.8 -0.491744669 0.221772908 0.491744669 0.221772908

1 0 0 0 0
0.2 -1.644464746 0.5645777 1.644464746 0.5645777
0.4 -1.233348559 0.423433275 1.233348559 0.423433275
0.95 0.6 -0.822232373 0.28228885 0.822232373 0.28228885
0.8 -0.411116186 0.141144425 0411116186 0.141144425

1 0 0 0 0
0.2 -1.400108873 0.320221827 1.400108873 0.320221827
0.4 -1.050081655 0.24016637 1.050081655 0.24016637
1 0.6 -0.700054437 0.160110914 0.700054437 0.160110914
0.8 -0.350027218 0.080055457 0.350027218 0.080055457

1 0 0 0 0

7.1 Numerical Comparison and Validation

To facilitate comparison, Table 3 presents the exact solutions for the two cases of FTFADE, while
Tables 1 and 2 display lower, upper bounds of the fuzzy LHPM solutions. Furthermore, to validate our
proposed analysis, 3D surface graphs of the approximate solution are generated at different fractional
orders for both cases, considering different levels of uncertainty and time while holding X constant.
Figures 1 to 10 depict the numerical approximations to the solutions of the cases. Specifically, Figures 1
to 2 illustrate the LHPM solutions for example 1, while Figures 3 to 4 showcase the LHPM solutions for
example 2. The variations in time () and 7~- level (uncertainty) range from 0 to 1, corresponding to
various fractional orders considered in the analysis. Using these figures, we can visually comprehend the
influence of uncertainty at various fractional orders. The upper surface and lower surface plots situated
above and below the cusp value (7~ = 1), portray the solutions as (X, t: 7) and u(X, t: 7) respectively.

7.2 Sensitivity Analysis of Fuzzy Parameters

To enhance the practical utility of the proposed model, this section addresses the impact of fuzzy
parameters, specifically the average velocity @(X)) and the diffusion coefficient b(X), on the solution's
behavior. A sensitivity analysis as shown in Figure 11 is crucial for understanding how uncertainty in
these key physical parameters propagates through the model and affects the final fuzzy concentration
%(X,t). Such an analysis would involve systematically varying the uncertainty in @(X)and b(X) and
observing the corresponding changes in the solution's upper and lower bounds. For instance, one could
modify example 1 by defining @(X)and b(X) as triangular fuzzy numbers instead of crisp values. The
expected outcome is that as the fuzziness (i.e., the spread of the fuzzy number) of the parameters
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increases, the spread of the resulting fuzzy solution %(X,t) will also widen. This demonstrates the
model's response to input uncertainty, a vital aspect for real-world applications like contaminant transport,
where these coefficients are often imprecisely known.

Sensitivity Analysis of fuzzy Parameters d'(X) and b (X)

Fuzzy Solution
cocoooco00
ohrNwhina VR

0

0.050251256
0.100502513
0.150753769
0.201005025
0.251256281
0.301507538
0.351758794

0.40201005
0.452261307
0.502512563
0.552763819
0.603015075
0.653266332
0.703517588
0.753768844
0.804020101
0.854271357
0.904522613
0.954773869

Uncertainty 7-- level

e | ow Uncertainty Upper bound === Low Uncertainty Lower bound

High Uncertainty Upper bound High Uncertainty Lowerbound

Figure 11. Fuzzy solution u(X, t: #)versus the 7-level.

7.3 Comparative Analysis with Existing Methods

To substantiate the claim of novelty and efficiency for the proposed LHPM, Figure 12 provides a direct
quantitative comparison of the Laplace Homotopy Perturbation Method (LHPM) and the Adomian
Decomposition Method (ADM) against an exact solution at four distinct uncertainty levels (7~ -levels).

Comparison of LHPM and ADM

| =

LHPM ADM
Exact LHPM ADM
r-level . . . Absolute | Absolute
Solution | Solution | Solution
Error Error

e -|@VE] 0.2 0.2 0.257687 | 0.258299 | 0.258614 | 0.000612 | 0.000927
er-level 0.4 0.4 0.193265|0.193724 | 0.194119 | 0.000459 | 0.000854
r-level 0.6 0.6 0.128844 | 0.12915 |0.129462 | 0.000306 | 0.000618
r-level 0.8 0.8 0.064422 | 0.064575 | 0.064798 | 0.000153 | 0.000376

Comparative Metrics

7 - level

e=——=r-level 0.2 e===r-level 0.4 r-level 0.6 r-level 0.8

Figure 12. Comparison of LHPM and ADM solutions and their absolute errors for example 1 at various 7-levels
with constanta =1, X = 0.7, t =0.5.
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Figure 12 provides a direct quantitative comparison of the Laplace Homotopy Perturbation Method
(LHPM) and the Adomian Decomposition Method (ADM) against an exact solution at four distinct
uncertainty levels (7~ -levels). The primary and most significant conclusion are the superior accuracy of
the LHPM. For every # -level 0.2, 0.4, 0.6, and 0.8 the absolute error associated with the LHPM solution
is consistently lower than that of the ADM. For example, at an #~ -level of 0.4, the LHPM error is
0.000459, which is substantially smaller than the ADM error of 0.000854. This demonstrates that the
LHPM yields a more accurate result and deviates less from the exact solution compared to the ADM.

8. Limitations and Future Research Directions

The analysis is confined to one-dimensional, linear Fuzzy Time-Fractional Advection-Diffusion
Equations (FTFADEs). Future work should extend the LHPM to multi-dimensional and nonlinear
systems, which are more representative of real-world phenomena. Additionally, the advection and
diffusion coefficients in the illustrative examples were treated as crisp, non-fuzzy values. A more robust
validation would implement these parameters as fuzzy numbers to fully model system uncertainty.

Finally, the comparative analysis was limited, benchmarking the LHPM solely against the Adomian
Decomposition Method (ADM). Future studies could provide a more comprehensive performance profile
by including comparisons with other techniques like the Variational Iteration Method (VIM). Addressing
these aspects will broaden the method’s applicability and further validate its effectiveness.

9. Conclusion

In the present research article, we provide a novel method to analyse the approximate and numerical
solution of FTFADE using Caputo fractional derivative. Additionally, we have obtained sufficient
condition for the uniqueness of the solution. Moreover, by leveraging the fixed-point theorem, we have
demonstrated the convergence of the proposed method. This approach exhibits both efficiency and
accuracy, manifesting a remarkable correspondence between the numerical approximations and exact
solutions across different fractional orders. To further support our findings, we have illustrated our results
with examples involving FTFADE. The outcomes of the examples numerically and graphically justify the
pertinence, precision, robustness, and effectiveness of our approach. Notably, this approach has broader
applicability, thus, can be extended to other fuzzy linear and nonlinear fractional order equations. This
extension promises to yield informative results across various fields, including financial modelling. The
proposed method presents researchers with a valuable tool to obtain efficient and accurate solutions for
complex equations involving uncertain parameters, contributing to advancements in research and
problem-solving in relevant field.
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