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Abstract 

This paper investigates the reliability modeling of systems subject to probabilistic competing failure behaviors with complicated 

failure propagation effects. To be specific, besides local failure (LF) that only affects the component itself, a component can also 

experience propagated failure with global effect (PFGE) leading to the system-wide failure, and propagated failure with selective 

effect (PFSE) that affects the set of other components. There exists a probabilistic functional dependence dynamic between system 

components, where some components (referred to as the probabilistic-dependent components) functionally depend on other 

components (designated as trigger components) and can be isolated by the trigger component failure in a probabilistic manner. 

Trigger component LF and PF of probabilistic-dependent components compete in the time domain. Different occurrence orderings 

of these component failures can lead to dramatically different system states. However, the existing reliability assessment methods 

are not applicable to addressing such probabilistic competing failure behaviors with considering both PFGEs and PFSEs in the 

system reliability analysis. A novel combinatorial reliability methodology is presented to tackle this issue with its applicability and 

effectiveness being demonstrated through step-by-step reliability analysis on a smart home sensor system. The proposed method is 

verified and the methodology complexity is discussed by comparing with the Markov method.  

 

Keywords- Probabilistic competing failure, Propagated failure with selective effect, Propagated failure with global effect, 

Combinatorial method. 

 

 

 

1. Introduction 
In many real-world complex systems, component failures fall into two categories: local failures (LFs) that 

only cause malfunction of the component itself, and propagated failures (PFs) which also affect other 

system components (Xing & Levitin, 2010). PFs are further classified into two types based on the extent of 

impact: propagated failure with selective effect (PFSE) and propagated failure with global effect (PFGE). 
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PFSE influences a specific subset of system components, while PFGE causes failure of the whole system. 

Meanwhile, probabilistic functional dependence behavior can also exist between system components, 

where some components (referred to as probabilistic-dependent components) functionally depend on other 

components (referred to as trigger components) in a probabilistic manner, that is, the trigger component 

failure can lead to the inability or restricted access of probabilistic-dependent (PDEP) components within 

the same PDEP group with a certain probability p (referred to as isolation factor) (Wang et al., 2015). 

Systems with probabilistic functional dependence involve a time-domain competition between trigger 

component LF and PDEP component PFs. Different failure sequences result in distinct system states, 

illustrating the complexity of failure dynamics in such systems. (Xing et al., 2012a, 2012b, 2018). 

Specifically, when the trigger component experiences LF first, the probabilistic isolation effect is induced, 

and each PDEP component is isolated with a specific isolation factor p. The PFs originating from the 

isolated PDEP components are prevented from causing further impact to other system components. Once 

isolated, the PDEP component is inaccessible and regarded as functionally failed, and the system state is 

evaluated according to system structure and the remaining components. On the contrary, if a PF from PDEP 

components precedes the trigger component LF, the failure propagation effect will take place. In such case, 

a PFGE of the relevant PDEP component will result in system-wide failure and a PFSE from the relevant 

PDEP component will affect certain system components. Particularly, if the isolation factor 𝑝 = 1, this 

dynamic behavior is simplified to deterministic competing failure behavior.  

 

Many real-world systems exhibit probabilistic competing failure behaviors with both PFGEs and PFSEs 

(Levitin & Xing, 2010). For instance, in a smart home sensor system (SHSS) with n sensors connected in 

parallel, due to signal attenuation or battery-saving plans, the sensors normally achieve long-distance signal 

transmission to intelligent terminals through relay nodes. Sensors and relay nodes can experience LF (from 

malfunction), PFGE (via jamming attacks), and PFSE (from targeted signal interference). When a relay 

node fails, connected sensors may boost transmission power to facilitate direct terminal interconnection. 

The likelihood of this response is dynamically contingent on their residual power. When the residual power 

fails to sustain direct interconnection, the SHSS implements isolation of the sensor. As a result, the sensors 

probabilistically depend on the relay nodes and form one or more PDEP groups with the relay nodes. Relay 

node LF and sensor PFs within the same PDEP group engage in time-domain competition. In the case where 

relay node LF occurs priorly, each corresponding sensor and its PF is isolated from the SHSS with a 

probability modeled by a specific isolation factor p. While if any PF from sensors occur before the relay 

node LF, the PF would propagate to other sensors even crash the entire SHSS (Luo et al., 2013). Such 

complex failure competition behaviors pose challenges for the reliability assessment of systems, 

necessitating comprehensive consideration of probabilistic competing effects in reliability modeling. 

 

As far as we know, there is currently no effective method to comprehensively address the reliability 

modeling of probabilistic competing failures with system components subject to both PFGEs and PFSEs. 

This paper makes a significant contribution by introducing a combinatorial method for analyzing the 

reliability of systems subject to probabilistic competing failure, explicitly addressing both PFGEs and 

PFSEs. The proposed method does not restrict failure rate distributions for system components, which 

improves its versatility. A SHSS case study is carried out to illustrate the effectiveness and applicability of 

the proposed method.  

 

The organization of this paper is as follows: a literature review is presented in Section 2. Section 3 shows 

the proposed combinatorial method. Section 4 presents a case study of a SHSS and employs the proposed 

combinatorial method to perform reliability analysis on the example SHSS. The proposed method is verified 

through comparison with the Markov method. Section 5 further generalizes the proposed method. Section 

6 discusses efficiency of the method through a comparison with the Markov method. The paper is concluded 
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in Section 7, which also delineates future research directions. 

 

2. Literature Review 
Existing reliability studies have covered different types of competing failures. For example, developing a 

competition model for degradation mechanisms and random external shock events (Wang et al., 2020; Lyu 

et al., 2025a); investigating competing processes within the framework of accelerated life testing (Moustafa 

et al., 2021), system maintenance strategies (Yousefi et al., 2020), and system size optimization (Song et 

al., 2014); studying the competition between unexposed and covered failure modes of components in 

systems with incomplete failure coverage (Xing, 2007; Xiang et al., 2014). Unlike prior studies, this paper 

focuses on the competition between failure propagation and isolation effects, which is induced by functional 

dependences and different failure modes between different system components. 

 

Reliability modeling of systems with competing failure behaviors caused by functional dependences has 

been investigated in many works, and several methods have been developed including simulation methods 

(Yeh, 2022; Oszczypała et al., 2024), Markov analysis methods (Zhou et al., 2021; Mittal et al., 2024; Lyu 

et al., 2025b), and combinatorial methods (Xing et al., 2019). Combinatorial methods exceed the limitations 

of simulation methods that only provide approximate results, as well as the limitations of Markov analysis 

that may suffer from state space explosion. Existing research has introduced combinatorial method for 

system reliability modeling with probabilistic competing failures, validating their effectiveness via case 

studies across various system categories. These methods integrate the strengths of different methods to 

enable comprehensive system reliability analysis. A novel combinatorial method is developed for reliability 

analysis of probabilistic competing failure systems with a single PDEP group (Wang et al., 2015). Then a 

combinatorial procedure is generated for modeling the impacts of correlated and probabilistic competing 

failures in reliability assessment for nonrepairable binary-state systems (Wang et al., 2018). To explore the 

s-independent and s-dependent dependencies between a component’s LF and PF, a combinatorial method 

is developed to evaluate reliability of non-repairable systems with probabilistic failure isolation effects and 

failure propagation (Wang et al., 2017b). Competitions of probabilistic isolation and failure propagation 

effect is also modeled in relay-assisted wireless sensor networks reliability analysis with multi-level 

performance (Wang et al., 2018a). By incorporating multi-valued decision diagrams, reliability of systems 

subject to phase-dependent probabilistic competing failures is further addressed (Wang et al., 2018b). Then 

a hierarchical combinatorial method is developed to assess reliability of cascading probabilistic competing 

failure systems with random failure propagation time (Zhao & Xing, 2020). The aforementioned studies 

focused mainly on the PFGEs. With focusing on deterministic competing failures, a new combinatorial 

method for handling deterministic competing effects in reliability assessment of systems exhibiting both 

PFGEs and PFSEs is developed (Wang et al., 2012). 

 

Previous studies indicate that existing system reliability analysis methods for probabilistic competing 

failure systems have certain limitations. Specifically, methods applicable to systems with PFGE cannot be 

directly applied to systems where both PFGE and PFSE coexist. Considering the complex scenarios in 

practical applications where probabilistic competing failures are combined with PFGE and PFSE, this work 

introduces a new combinatorial method to analyze such systems’ reliability, thereby making an original 

contribution. 

 

3. Proposed Combinatorial Methodology 
A five-step general procedure is presented in this section to evaluate the reliability of probabilistic 

competing failure systems experiencing both PFGEs and PFSEs. Non-repairable systems and independent 

PDEP groups are assumed when presenting the methodology. 
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3.1 PDEP Behavior Modeling 
When developing a dynamic fault tree (DFT), the probabilistic functional dependence (PFD) gate provides 

an effective approach to model the PDEP behavior, as depicted in Figure 1 (Wang et al., 2017b). The PFD 

gate includes a trigger event and at least one PDEP events. Once the trigger event is activated, the 

corresponding PDEP events are initiated with certain (normally different) probabilities, and the switch 

symbols within the gate are used to model this probabilistic behavior. In terms of the time-domain 

competition between failure propagation and isolation effects considered in this paper, the trigger 

component LF is the trigger event, and the isolation of PDEP component is PDEP event. when the trigger 

component fails, each corresponding PDEP component is isolated, i.e., losing its accessibility or availability, 

with a certain probability. 

 

. . .
Trigger event

PDEP events

PFD

 

 

Figure 1. PFD gate. 

 

 

3.2 Method Description 
The proposed methodology assumes that propagated failures only originate from PDEP components, which 

will be relaxed in Section 5. The proposed five-step reliability analysis method can be stated as follows. 

 

Step 1. Define two disjoint trigger events according to whether the trigger component fails. 

 

Designated as a trigger component failure event (TCFE), each event captures the dual possibilities of trigger 

component failure, encompassing both its failure and non-failure conditions. 

𝑇𝐶𝐹𝐸1: Trigger component does not fail. 

𝑇𝐶𝐹𝐸2: Trigger component fails. 

 

By invoking the law of total probability, system unreliability can be defined as  

Pr(sytem fails) = Pr(system fails|TCFE1) × Pr(𝑇𝐶𝐹𝐸1) + Pr(system fails|𝑇𝐶𝐹𝐸2) × Pr(𝑇𝐶𝐹𝐸2)       (1) 
 

Step 2: Separate the impact of PFGEs for 𝑇𝐶𝐹𝐸1. 

 

When the trigger component operates without malfunction, both failure competition and failure isolation 

are absent. In this state, any PFGE stemming from a PDEP component has the potential to trigger an entire 

system failure. Pr(system fails|𝑇𝐶𝐹𝐸1) is calculated by decomposing PFGEs. 

 

𝑇𝐶𝐹𝐸1 can be decomposed into two complementary events, each event, referred to as a PFGE occurrence 

event (PGE), represents the occurrence and non-occurrence of PFGEs in PDEP components. 

𝑃𝐺𝐸1,1: No PFGE occurs. 
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𝑃𝐺𝐸1,2: At least one PFGE is generated by the PDEP component. 

 

Therefore,  

Pr(system fails|𝑇𝐶𝐹𝐸1) × Pr(𝑇𝐶𝐹𝐸1) = ∑ [Pr(system fails|𝑃𝐺𝐸1,𝑖) × Pr(𝑃𝐺𝐸1,𝑖)]2
𝑖=1                                 (2) 

 

According to the definition of PFGE, the system will inevitably fail when  𝑃𝐺𝐸1,2  occurs, that is, 

Pr(system fails|𝑃𝐺𝐸1,2) = 1. Therefore, 

Pr(system fails|𝑇𝐶𝐹𝐸1) × Pr(𝑇𝐶𝐹𝐸1) = Pr(system fails|𝑃𝐺𝐸1,1) × Pr(𝑃𝐺𝐸1,1) + Pr(𝑃𝐺𝐸1,2)                (3) 

 

Due to the consideration of both PFGEs and PFSEs in this paper, the calculation of Pr(system fails|𝑃𝐺𝐸1,1) 

will be handled via an effective method later in Step 4. 

 

Step 3: Separate the impact of PFGEs for 𝑇𝐶𝐹𝐸2. 

 

Time domain failure competition as well as the probabilistic failure isolation effects should be addressed 

during system reliability modeling in the following steps. 

 

Step 3.1: Establish the probabilistic dependence event space. 

 

In order to target the PDEP component of which PF has a time domain competition with the trigger 

component LF, different probabilistic dependence events are first identified, and each event is a different 

combination of whether the PDEP component remain functional given that the corresponding trigger 

component LF occurs. Assume there are n distinct PDEP components 𝑐𝑥  (𝑥 = 1, 2, . . . , 𝑛). When the trigger 

component experiences LF, the PF from component 𝑐𝑥 is isolated with a probability of 𝑝𝑥 (isolation factor), 

and thus cannot be isolated with a probability of (1 − 𝑝𝑥). If the component can be isolated, it is in state 𝑆𝑥 

and is referred to as an isolable component. If the component cannot be isolated, it is in state 𝑆𝑥
̅̅ ̅ and is 

referred to as a non-isolable component. The following dependence events are defined and each event is 

represented by 𝐼𝑘 (𝑘 = 1, 2, . . . , 2𝑛). 

𝐼1 = 𝑆1 ∩ 𝑆2 ∩ … ∩ 𝑆𝑛, 

𝐼2 = 𝑆1̅ ∩ 𝑆2 ∩ … ∩ 𝑆𝑛, 

⋮  
𝐼2𝑛 = 𝑆1̅ ∩ 𝑆2

̅̅̅ ∩. . .∩ 𝑆𝑛
̅̅ ̅                                                                                                                                 (4) 

 

where, 𝐼1  represents all PDEP components are isolable components and can be isolated by the trigger 

component LF; 𝐼2 represents that component 𝑐1 is a non-isolable component and cannot be isolated by the 

trigger component LF; 𝐼2𝑛 represents that all PDEP components are non-isolable and could not be isolated 

by their respective trigger component LF. The probability of occurrence for each dependence event is 

expressed as 

Pr(𝐼1) = 𝑝1 × 𝑝2 × … × 𝑝𝑛, 

Pr (𝐼2) = (1 − 𝑝1) × 𝑝2 × … × 𝑝𝑛, 

⋮  

Pr (𝐼2𝑛) = (1 − 𝑝1) × (1 − 𝑝2) ×. . .× (1 − 𝑝𝑛)                                                                                           (5) 

 

Table 1 shows the isolable component set (𝐷𝐼𝑘
) and non-isolable component set (𝑁𝐷𝐼𝑘

) of each dependence 

event. 
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Table 1. The 𝑫𝑰𝒌
 and 𝑵𝑫𝑰𝒌

 of each dependence event. 
 

Event 𝑫𝑰𝒌
 𝑵𝑫𝑰𝒌

 

𝐼1 {𝑐1, 𝑐2, ⋯ , 𝑐𝑛 } ∅ 

𝐼2 {𝑐2, ⋯ , 𝑐𝑛 } {𝑐1 } 

⋮ ⋮ ⋮ 

𝐼2𝑛 ∅ {𝑐1, 𝑐2, ⋯ , 𝑐𝑛 } 

 

The components in 𝐷𝐼𝑘
  do not possess sufficient capabilities to operate independently of their 

corresponding trigger component, so the trigger component LF. can render the isolable components 

unavailable. In addressing the time domain competition between trigger component LF and isolable 

components PFs, it becomes crucial to recognize that the sequence of these two occurrences exerts a 

substantial effect on the system’s overall state. Conversely, the components in 𝑁𝐷𝐼𝑘
  have sufficient 

capabilities to operate without relying on the trigger component. The LF of trigger component has no impact 

on the non-isolable components, and the PFs from the non-isolable components will affect other system 

components. Therefore, separating the impact of PFGEs involves considering the occurrence sequences of 

the PFs of isolable components and the LF of trigger component, as well as whether the PFs of non-isolable 

components occur. 

 

Step 3.2: Separate the impact of PFGEs. 

Similar to Step 2, we define two events 𝑃𝐺𝐸2,1 and 𝑃𝐺𝐸2,2. 

𝑃𝐺𝐸2,1: No PFGE occurs or all PFGEs of the isolable components (referred to the components in 𝐷𝐼𝑘
) occur 

after the LF of trigger component. In this event, assessing the system unreliability requires further 

consideration of the PFSEs originating from non-isolable components, and the time domain competition 

between PFSEs of the isolable components and LF of the trigger component. This analysis will take into 

account the varying dependence conditions and be thoroughly elaborated in Step 4. 

 

𝑃𝐺𝐸2,2: Either no fewer than one PFGE derived from the isolable components transpires prior to the trigger 

component LF, or no fewer than one PFGE derived from non-isolable components takes place. The 

occurrence of 𝑃𝐺𝐸2,2 alone is sufficient to induce total system failure, overriding any influence from PFSEs 

or associated competition effects. Consequently, the conditional probability Pr(system fails|𝑃𝐺𝐸2,2)  is 

definitively equal to 1. 

 
According to the established dependence events 𝐼𝑘 (𝑘 = 1, 2, . . . , 2𝑛) in Step 3.1, each 𝑃𝐺𝐸 can be further 

defined as: 

𝐼𝑘 ∩ 𝑃𝐺𝐸2,1 : Components in 𝑁𝐷𝐼𝑘
  do not experience PFGEs, and components in 𝐷𝐼𝑘

  either experience 

PFGEs after the trigger component LF or do not experience PFGEs. Note that for event 𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1, 𝐷𝐼𝑛
 

is empty, i.e., no component can be isolated due to the trigger component LF appeared. When 𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1 

occurs, the probability of system failure is equal to the probability of system failure under event 𝑃𝐺𝐸1,1, 

that is, Pr(system fails|𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1) = Pr(system fails|𝑃𝐺𝐸1,1). 

 

𝐼𝑘 ∩ 𝑃𝐺𝐸2,2: Either no fewer than one PFGE from a component within 𝐷𝐼𝑘
 occurs prior to the LF of the 

trigger component, or at least one PFGE from a component in 𝑁𝐷𝐼𝑘
 takes place. 

 

We have 

Pr(system fails|𝑇𝐶𝐹𝐸2) × Pr(𝑇𝐶𝐹𝐸2)  

= ∑ ∑ [Pr(system fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,𝑖) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,𝑖)]2
𝑖=1

2𝑛

𝑘=1                                                                          (6) 
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where, Pr(system fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,2) = 1, as the occurrence of event 𝐼𝑘 ∩ 𝑃𝐺𝐸2,2 leads to the dominance 

of the global failure propagation effect, which will lead to the overall failure of the system. Therefore, 

Pr(system fails|𝑇𝐶𝐹𝐸2) × Pr(𝑇𝐶𝐹𝐸2) = ∑ [Pr(system fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) +2𝑛

𝑘=1

Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,2)]                                                                                                                                                           (7) 

 

When evaluating Pr(system fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) (𝑘 = 1, 2, 3, … , 2𝑛 − 1), the impact of 

PFSEs cannot be overlooked, and a detailed discussion of this aspect is provided in Step 4. In this step, we 

only calculate Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,2) (𝑘 = 1, 2, 3, … , 2𝑛) and Pr(𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1). 

 

For random variables 𝑋1,  𝑋2, … 𝑋𝑛  representing components’ time to failure, the sequential failure 

probability for n components is calculated through multiple integration as Equation (8) (Xing et al., 2013). 

Define 𝑋1 → 𝑋2 as the occurrence of event 𝑋1 prior to event 𝑋2. 

Pr(𝑋1 → 𝑋2 → ⋯ →  𝑋𝑛) = ∫ ∫ … ∫ ∏ 𝑓𝑋𝑖
(𝜏𝑖)𝑑𝜏𝑛

𝑛
𝑖=1 … 𝑑𝜏1

𝑡

𝜏𝑛−1

𝑡

𝜏1

𝑡

0
                                                                        (8) 

 

Let 𝑐𝑥𝑝𝑔 (𝑥 = 1, 2, . . . , 𝑛) denote the event of the PFGE of occurrence for component 𝑐𝑥, and let event 𝑇𝑙 

represent the trigger component LF. The probability of occurrence of events 𝐼1 ∩ 𝑃𝐺𝐸2,2, 𝐼𝑘 ∩ 𝑃𝐺𝐸2,2(𝑘 =

2, . . . , 2𝑛 − 1) and 𝐼2𝑛 ∩ 𝑃𝐺𝐸2,2 can be calculated using Equation (8) in a straightforward manner as 

Pr(𝐼1 ∩ 𝑃𝐺𝐸2,2) = Pr(𝐼1) × Pr[(𝑐1𝑝𝑔 ∪ 𝑐2𝑝𝑔 ⋯ ∪ 𝑐𝑛𝑝𝑔) →  𝑇𝑙]  

= Pr(𝐼1) × ∫ ∫ 𝑓(𝑐1𝑝𝑔∪𝑐2𝑝𝑔⋯∪𝑐𝑛𝑝𝑔)(𝜏1) × 𝑓𝑇𝑙(𝜏2)𝑑𝜏2𝑑𝜏1
𝑡

𝜏1

𝑡

0
                                                                             (9) 

 

Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,2) = Pr(𝐼𝑘) × Pr [
((𝑐1𝑝𝑔 ⋯ ∪ 𝑐(𝑘−1)𝑝𝑔) ∩ 𝑇𝑙)

∪ ((𝑐𝑘𝑝𝑔 ⋯ ∪ 𝑐𝑛𝑝𝑔) →  𝑇𝑙)
]  

= Pr(𝐼𝑘) × [Pr ((𝑐1𝑝𝑔 ⋯ ∪ 𝑐(𝑘−1)𝑝𝑔) ∩ 𝑇𝑙) + Pr ((𝑐𝑘𝑝𝑔 ⋯ ∪ 𝑐𝑛𝑝𝑔) →  𝑇𝑙) − Pr(𝑐1𝑝𝑔 ⋯ ∪ 𝑐(𝑘−1)𝑝𝑔) ×

Pr ((𝑐𝑘𝑝𝑔 ⋯ ∪ 𝑐𝑛𝑝𝑔) →  𝑇𝑙)]                                                                                                                      (10) 

Pr(𝐼2𝑛 ∩ 𝑃𝐺𝐸2,2) = Pr(𝐼2𝑛) × Pr[(𝑐1𝑝𝑔 ∪ 𝑐2𝑝𝑔 ⋯ ∪ 𝑐𝑛𝑝𝑔) ∩  𝑇𝑙]                                                                  (11) 

 

According to the definition of event 𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1, Pr(𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1) is calculated by Equation (12) as 

Pr(𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1) = Pr(𝐼2𝑛) × Pr[(𝑐1𝑝𝑔̅̅ ̅̅ ̅̅ ∩ 𝑐2𝑝𝑔̅̅ ̅̅ ̅̅ ⋯ ∩ 𝑐𝑛𝑝𝑔̅̅ ̅̅ ̅̅ ) ∩  𝑇𝑙]                                                            (12) 

 

Step 4: Define the events to address PFSEs and evaluate the conditional system failure probabilities. 

 

For calculating Pr(system fails|𝑃𝐺𝐸1,1) and Pr(system fails|𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1), since no PFGE occurs under 

these two events, it is only necessary to consider how the PFSEs of PDEP components affect the system 

state. An event space is constructed to address PFSEs, with each element, called a combinational PFSE 

occurrence event (𝑃𝑆𝐸), encoding the presence or absence of the PFSE event for each PDEP component. 

𝑃𝑆𝐸𝑖  (𝑖 = 1, 2, . . . , 2𝑚 ) consists of 2𝑚  events, corresponding to the maximum of m independent PFSE 

events could occur during trigger component operation. Let 𝑐𝑥𝑝𝑠(𝑥 = 1, 2, . . . , 𝑛) represent event that the 

PFSE of component 𝑐𝑥  occurring. 

𝑃𝑆𝐸1 = 𝑐1𝑝𝑠̅̅ ̅̅ ̅ ∩ 𝑐2𝑝𝑠̅̅ ̅̅ ̅ ∩ … ∩ 𝑐𝑛𝑝𝑠̅̅ ̅̅ ̅̅ , 
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𝑃𝑆𝐸2 = 𝑐1𝑝𝑠 ∩ 𝑐2𝑝𝑠̅̅ ̅̅ ̅ ∩ … ∩ 𝑐𝑛𝑝𝑠̅̅ ̅̅ ̅̅ , 

⋮  
𝑃𝑆𝐸2𝑛 = 𝑐1𝑝𝑠 ∩ 𝑐2𝑝𝑠 ∩. . .∩ 𝑐𝑛𝑝𝑠                                                                                                              (13) 

 

where, 𝑃𝑆𝐸1 represents no PFSE occurring; 𝑃𝑆𝐸2 represents that the PFSE of component 𝑐1 occurs; 𝑃𝑆𝐸𝑛 

represents all PFSEs occurring. 

 

Pr(system fails|𝑃𝐺𝐸1,1) and Pr(system fails|𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1) can be computed as 

Pr(system fails|𝑃𝐺𝐸1,1) = Pr(system fails|𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1)  

= ∑ [Pr(system fails|𝑃𝑆𝐸𝑖) × Pr(𝑃𝑆𝐸𝑖)]2𝑚

𝑖=1                                                                                            (14) 

 

For events of 𝐼𝑘 ∩ 𝑃𝐺𝐸2,1, (𝑘 = 1, 2, . . . , 2𝑛 − 1), although the PFGEs of isolable components are isolated, 

PFSEs could occur either before or after the trigger component LF. Therefore, the PFSEs should be 

addressed in the calculation of Pr(system fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) (𝑘 = 1, 2, . . . , 2𝑛 − 1). All propagation effects 

are isolated if no PFSE occurs or PFSEs of components in 𝐷𝐼𝑘
 occur after trigger component LF. However, 

when no fewer than one PFSE deriving from a component in 𝐷𝐼𝑘
 occurs before the trigger component LF 

or any PFSE deriving from the component in 𝑁𝐷𝐼𝑘
 happens, the PFSEs dominate. In order to consider the 

combination of PFSE events and the sequential occurrence between the trigger component LF and PFSEs 

of the components in 𝐷𝐼𝑘
, an event space 𝑃𝑆𝐸𝑘,𝑖 (𝑖 = 1,2, . . . , 2𝑎𝑘+𝑏𝑘) consisting of 2𝑎𝑘+𝑏𝑘 events should 

be set up. This event space encompasses the combinatorial occurrence and non-occurrence of 𝑎𝑘 competing 

PFSE events for components in 𝐷𝐼𝑘
  (representing that PFSEs of components in 𝐷𝐼𝑘

  happen before the 

trigger component LF), and 𝑏𝑘 PFSE events for components in 𝑁𝐷𝐼𝑘
. Therefore,  

Pr(system fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,1)  

= Pr(𝐼𝑘) × ∑ [Pr(system fails|𝑃𝑆𝐸𝑘,𝑖) × 𝑃𝑆𝐸𝑘,𝑖]2𝑎𝑘+𝑏𝑘

𝑖=1                                                                                 (15) 

 

To determine the conditional failure probability of system, within the fault tree (FT) model of system, events 

denoting the trigger component LF and the corresponding isolation of isolable component are substituted 

with constant "1" (TRUE). Simultaneously, considering the impact of PFSEs on the system, component 

failure events induced by PFSEs are also replaced with constant "1" to derive a reduced system FT. 

Following the reduced FT, a BDD is built to model the simplified system, from which the conditional failure 

probabilities under PSEs occurrences are obtained through BDD evaluation. 

 

Step 5: Integrate to obtain the system failure probability. 

 

Step 2 to Step 4, the unreliability of system is determined by Equation (16). 

 

𝑃𝑟(𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑠)
= 𝑃𝑟(𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑠|𝑇𝐶𝐹𝐸1) × 𝑃𝑟(𝑇𝐶𝐹𝐸1) + 𝑃𝑟(𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑠|𝑇𝐶𝐹𝐸2) × 𝑃𝑟(𝑇𝐶𝐹𝐸2) 

= ∑ [Pr(system fails|𝑃𝑆𝐸𝑖) × Pr(𝑃𝑆𝐸𝑖)]2𝑚

𝑖=1 × Pr(𝑃𝐺𝐸1,1) + Pr(𝑃𝐺𝐸1,2) +

∑ {Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,2) + Pr(𝐼𝑘) × ∑ [Pr(system fails|𝑃𝑆𝐸𝑘,𝑖) × Pr(𝑃𝑆𝐸𝑘,𝑖)]2𝑎𝑘+𝑏𝑘

𝑖=1 }2𝑛−1
𝑘=1 +

               Pr(𝐼2𝑛 ∩ 𝑃𝐺𝐸2,1) × ∑ [Pr(system fails|𝑃𝑆𝐸𝑖) × Pr(𝑃𝑆𝐸𝑖)]2𝑚

𝑖=1 + Pr(𝐼2𝑛 ∩ 𝑃𝐺𝐸2,2)                      (16) 
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This method achieves effective decomposition and processing of the problem by breaking down the original 

reliability problem into multiple simplified sub-problems. The flowchart is shown in Figure 2. 

 

 

 

Figure 2. The flowchart of the proposed combinatorial methodology. 

 

 

4. Case Study 
To demonstrate the detailed application and effectiveness of the proposed combinatorial method, a case 

study on reliability analysis of SHSS is presented in this section since SHSS has been gradually embedded 

in all aspects of modern life with extremely wide applications. Figure 3 shows the considered example 

SHSS for security application, which can prevent intrusion by strangers and protect personal safety (Kodali 

et al., 2016; Hoque & Davidson, 2019; Zhao & Xing, 2023). A human infrared sensor (A) and a door 

magnetic sensor (B) are set up outside the door. A can monitor the activities of people passing through the 

doorway in real-time through sensing the heat of the human body using infrared technology. B is used to 

detect the opening and closing statuses of the door and sends a signal immediately when the status of the 

door is changed. In this way, even if one of the sensors fails, the system is still able to monitor the situation 

outside the door. To achieve long-distance signal transmission, both A and B need to transmit the signals to 

the central control system via a relay node (R). A PFD behavior exists between R and (A, B), and the LF of 

R can cause isolation effect to the two sensors in a probabilistic manner. Specifically, when R is locally 

failed, if A or B has enough residual power to transmit the signals to the central control system, no isolation 

effect will occur; conversely, A or B has insufficient residual power to enable direct signal transmission to 

the central control system, isolation effect will occur. A human body sensing sensor (C) is set indoors to 

monitor the real-time changes in human movements. When the sensor detects abnormal movement patterns, 
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such as a sudden fall or prolonged immobility, it will immediately trigger an alarm and send the information 

to the central control system. The system is also equipped with a smart bracelet (D) that integrates multiple 

sensors capable of monitoring the wearer’s physiological status and activity in real-time. Additionally, the 

wristband featuring fall detection and an emergency call button further enhances the safety and protection 

capability of the SHSS. In SHSS, all components experience LF (malfunction). Only sensors A and B can 

experience both PFGEs (jamming attacks through signal interference) and PFSEs (targeted attacks). Define 

events 𝑋𝑙 , 𝑋𝑝𝑔  and 𝑋𝑝𝑠  as the event of LF, PFGE, and PFSE for component X, where X could be 

components R, A, B, C, or D. Table 2 enumerates component failure events and the components affected 

by each event categorized by global or selective failure propagation effects. This paper assumes PFSEs only 

cause LFs in affected components. For instance, PFSE originating from A only causes the LF of B, while 

the PF (either PFGE or PFSE) originating from B can still happen due to the independence of LF and PF 

for each component. As long as either A or B is operational, the outdoor security module is considered 

reliable. When both the outdoor and indoor sensors are unavailable, the outdoor and indoor security 

modules are deemed to have failed. The entire SHSS for security is considered to have failed only when the 

smart bracelet, outdoor, and indoor sensors all malfunction. The system FT model is built as in Figure 4. 

 

   

 

Figure 3. An example SHSS. 

 

 

Table 2. SHSS component failure events and affected components. 
 

Component Event Affected components by failure propagation 

R Rl None 

A 

Al None 

Apg All 

Aps {𝐵, 𝐶} 

B 

Bl None 

Bpg All 

Bps {𝐴, 𝐷} 

C Cl None 

D Dl None 
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Figure 4. The FT model. 
 

 

All component failure times are assumed to follow exponential distribution in this paper. Table 3 lists the 

LF and PF rates of all components (Wang et al., 2022; Chen et al., 2024). The probability density function 

(pdf) of the failure rate is presented in Equation (17) and cumulative distribution function (cdf) is presented 

in Equation (18). The analysis is conducted at a mission time of 𝑡 =  1000 hours. 

 
Table 3. Failure rates of components(h-1). 

 

Component PFGE rate PFSE rate LF rate 

A, B 0.00005 0.00005 0.0001 

R, C, D 0 0 0.0001 

 
 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡                                                                                                                                                                            (17) 

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡                                                                                                                                                                (18) 

 

Using the combinatorial method introduced in Section 3, the SHSS reliability analysis steps are shown 

below: 

Step 1: Define two disjoint trigger events according to whether the trigger component fails. 

𝑇𝐶𝐹𝐸1: The relay node R does not experience LF during working time. 

𝑇𝐶𝐹𝐸2: The relay node R experiences LF during working time. 
Thus, the unreliability of SHSS can be expressed as 

Pr(SHSS fails) = Pr(SHSS fails|𝑇𝐶𝐹𝐸1) × Pr(𝑇𝐶𝐹𝐸1) + Pr(SHSS fails|𝑇𝐶𝐹𝐸2) × Pr(𝑇𝐶𝐹𝐸2)               (19) 

 

Step 2: Separate the impact of PFGEs for 𝑇𝐶𝐹𝐸1. 

Since 𝑇𝐶𝐹𝐸1 means that R does not fail and the failure competition does not occur, two events 𝑃𝐺𝐸1,1 and 

𝑃𝐺𝐸1,2 are defined for whether PFGEs occur within the SHSS. 

𝑃𝐺𝐸1,1: No PFGE occurs within the SHSS. 

𝑃𝐺𝐸1,2: At least one PFGE occurs within the SHSS. 

 

Therefore,  

Pr(SHSS fails|𝑇𝐶𝐹𝐸1) × Pr(𝑇𝐶𝐹𝐸1) = Pr(SHSS fails|𝑃𝐺𝐸1,1) × Pr(𝑃𝐺𝐸1,1) +

 Pr(SHSS fails|𝑃𝐺𝐸1,2) × Pr(𝑃𝐺𝐸1,2)                                                                                                                                        (20) 
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In Equation (20), 

Pr(𝑃𝐺𝐸1,1) = Pr(𝐴𝑝𝑔̅̅ ̅̅ ̅̅ ∩ 𝐵𝑝𝑔̅̅ ̅̅ ̅̅ ∩ 𝑅𝑙̅̅̅) = (1 − 𝑞𝐴𝑝𝑔) × (1 − 𝑞𝐵𝑝𝑔) × (1 − 𝑞𝑅𝑙)                                          (21) 

Pr(𝑃𝐺𝐸1,2) = Pr(𝑇𝐶𝐹𝐸1) − Pr(𝑃𝐺𝐸1,1) = (1 − 𝑞𝑅𝑙) − Pr(𝑃𝐺𝐸1,1)                                                          (22) 

 

Since the failure probabilities of the components are as follows, 

𝑞𝐴𝑝𝑔 = 𝑞𝐵𝑝𝑔 = 𝑞𝐴𝑝𝑠 = 𝑞𝐵𝑝𝑠 = 1 − 𝑒−0.00005×1000 =  0.04877, 

𝑞𝑅𝑙 = 𝑞𝐴𝑙 = 𝑞𝐵𝑙 = 𝑞𝐶𝑙 = 𝑞𝐷𝑙 = 1 − 𝑒−0.0001×1000 =  0.09516, 

 

Pr(𝑃𝐺𝐸1,1) = 0.81873 and Pr(𝑃𝐺𝐸1,2) = 0.08611. From the definition of 𝑃𝐺𝐸1,2, in the case that R does 

not fail, as long as PFGE occurs in the system, the whole SHSS fails, so Pr(SHSS fails|𝑃𝐺𝐸1,2) = 1. The 

only value unknown in Equation (20) is Pr(SHSS fails|𝑃𝐺𝐸1,1), in the case that R is functional and no PFGE 

occurs in the system, evaluating the SHSS reliability should not only consider the component LF, but also 

address the impact of PFSEs on the system. The evaluation of Pr(SHSS fails|𝑃𝐺𝐸1,1) will be given in Step 

4. 

 

Step 3: Separate the impact of PFGEs for 𝑇𝐶𝐹𝐸2. 

 

Step 3.1: Establish the probabilistic dependence event space. 
 

Four events are decomposed as shown in Table 4, where 𝑝𝐴 = 0.1 and 𝑝𝐵 = 0.9 are the isolation factors 

modeling the probabilistic isolation effects from LF of R to components A and B.  

 

Table 5 shows the 𝐷𝐼𝑘
 and 𝑁𝐷𝐼𝑘

 of each dependence event. When the LF of R occurs, the sensors within 

𝐷𝐼𝑘
 have insufficient remaining power to enable direct transmission to the central control system and are 

isolated from the SHSS. There is a time domain competition between the LF of R and the PFs of the isolable 

components. Conversely, the sensors within 𝑁𝐷𝐼𝑘
  have sufficient remaining power to enable direct 

transmission to the central control system. The LF of R has no impact on the non-isolable components. 

Once the PFs from the non-isolable components occur, they will affect the SHSS. 

 
Table 4. Probabilistic dependence events for the example SHSS. 

 

Event Definition Occurrence probability 

𝐼1 𝐴 ∩ 𝐵 𝑝𝐴 × 𝑝𝐵 

𝐼2 𝐴̅ ∩ 𝐵 (1 − 𝑝𝐴) × 𝑝𝐵 

𝐼3 𝐴 ∩ 𝐵̅ 𝑝𝐴 × (1 − 𝑝𝐵) 

𝐼4 𝐴̅ ∩ 𝐵̅ (1 − 𝑝𝐴) × (1 − 𝑝𝐵) 

 

 

Table 5. The 𝑫𝑰𝒌
 and 𝑵𝑫𝑰𝒌

 of each dependence event. 
 

Event 𝑫𝑰𝒌
 𝑵𝑫𝑰𝒌

 

𝐼1 {𝐴, 𝐵 } ∅ 

𝐼2 {𝐵} {𝐴} 

𝐼3 {𝐴 } {𝐵} 

𝐼4 ∅ {𝐴, 𝐵} 
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Step 3.2: Separate the impact of PFGEs. 

 

𝑃𝐺𝐸2,1: No PFGE occurs within the SHSS or all PFGEs originating from the isolable components (i.e., 

components in 𝐷𝐼𝑘
) occur after the LF of 𝑅.  

 

𝑃𝐺𝐸2,2: No fewer than one PFGE of the isolable component happens before the LF of 𝑅 or at least one 

PFGE of the non-isolable component (i.e., components in 𝑁𝐷𝐼𝑘
 ) occurs. 

 

According to the established dependence events 𝐼𝑘 (𝑘 = 1, 2, . . . , 4) in Step 3.1, each PGE can be further 

distinguished as two disjoint events 𝐼𝑘 ∩ 𝑃𝐺𝐸2,1 and 𝐼𝑘 ∩ 𝑃𝐺𝐸2,2. 

 

We have 

𝑃𝑟(SHSS fails|𝑇𝐶𝐹𝐸1) × Pr(𝑇𝐶𝐹𝐸1) = ∑ [
Pr(SHSS fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,1)

+Pr(SHSS fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,2) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,2)
]4

𝑘=1         (23) 

 

where, Pr(SHSS fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,2) = 1.  

 

Therefore, 

Pr(SHSS fails|𝑇𝐶𝐹𝐸1) × Pr(𝑇𝐶𝐹𝐸1) = ∑ [Pr(SHSS fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) + Pr(𝐼𝑘 ∩4
𝑘=1

𝑃𝐺𝐸2,2)]                                                                                                                                                                (24) 

 

where, Pr(SHSS fails|𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,1) (𝑘 = 1, 2, 3)  and Pr(SHSS fails|𝐼4 ∩ 𝑃𝐺𝐸2,1)  will 

be solved in the Step 4 due to the consideration of PFSEs. In this step, Pr(𝐼𝑘 ∩ 𝑃𝐺𝐸2,2) (𝑘 = 1, 2, 3, 4) and 

Pr(𝐼4 ∩ 𝑃𝐺𝐸2,1) will be solved as the following: 

 

𝐼1 ∩ 𝑃𝐺𝐸2,2: No fewer than one PFGE originating from A or B happens before the LF of R. Pr(𝐼1 ∩ 𝑃𝐺𝐸2,2) 

is calculated through the following formula. 

Pr(𝐼1 ∩ 𝑃𝐺𝐸2,2) = Pr[(𝐴𝑝𝑔 ∪ 𝐵𝑝𝑔) → 𝑅𝑙] × Pr(𝐼1)                                                                                   (25) 

 

Due to 

Pr(𝐴𝑝𝑔 ∪ 𝐵𝑝𝑔) = 1 − Pr(𝐴𝑝𝑔̅̅ ̅̅ ̅̅ ∩ 𝐵𝑝𝑔̅̅ ̅̅ ̅̅ ) = 1 − 𝑒−(𝜆𝐴𝑝𝑔+𝜆𝐵𝑝𝑔)𝑡                                                                   (26) 

𝑓𝐴𝑝𝑔∪𝐵𝑝𝑔 = (𝜆𝐴𝑝𝑔 + 𝜆𝐵𝑝𝑔)𝑒−(𝜆𝐴𝑝𝑔+𝜆𝐵𝑝𝑔)𝑡                                                                                                    (27) 

 

the solution of Pr[(𝐴𝑝𝑔 ∪ 𝐵𝑝𝑔) → 𝑅𝑙] in Equation (25) is 

Pr[(𝐴𝑝𝑔 ∪ 𝐵𝑝𝑔) → 𝑅𝑙] = ∫ ∫ 𝑓𝐴𝑝𝑔∪𝐵𝑝𝑔(𝜏1)𝑓𝑅𝑙(𝜏2)𝑑𝜏2𝑑𝜏1
𝑡

𝜏1

𝑡

0
= ∫ ∫ (𝜆𝐴𝑝𝑔 +

𝑡

𝜏1

𝑡

0

𝜆𝐵𝑝𝑔)𝑒−(𝜆𝐴𝑝𝑔+𝜆𝐵𝑝𝑔)𝜏1𝜆𝑅𝑙𝑒−𝜆𝑅𝑙𝜏2𝑑𝜏2𝑑𝜏1 =  0.00453                                                                                       (28) 

therefore, Pr(𝐼1 ∩ 𝑃𝐺𝐸2,2) = 0.00041. 

 

𝐼2 ∩ 𝑃𝐺𝐸2,2: Either PFGE from A occurs, or PFGE from B occurs prior to the LF of R. Pr(𝐼2 ∩ 𝑃𝐺𝐸2,2) is 

calculated through the following formula.  

Pr(𝐼2 ∩ 𝑃𝐺𝐸2,2) = Pr[(𝐴𝑝𝑔 ∩ 𝑅𝑙) ∪ (𝐵𝑝𝑔 → 𝑅𝑙)] = {Pr(𝐴𝑝𝑔 ∩ 𝑅𝑙) + Pr(𝐵𝑝𝑔 → 𝑅𝑙) −

          Pr[𝐴𝑝𝑔 ∩ (𝐵𝑝𝑔 → 𝑅𝑙)]} × Pr(𝐼2)                                                                                                                                (29) 
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Similar to Equation (28), Pr(𝐵𝑝𝑔 → 𝑅𝑙) = 0.00230. Therefore, Pr(𝐼2 ∩ 𝑃𝐺𝐸2,2) = 0.00553. 

 

𝐼3 ∩ 𝑃𝐺𝐸2,2: Either PFGE from B occurs, or PFGE from A occurs prior to the LF of R. Pr(𝐼3 ∩ 𝑃𝐺𝐸2,2) is 

calculated through the following formula. 

Pr(𝐼3 ∩ 𝑃𝐺𝐸2,2) = Pr[(𝐴𝑝𝑔 → 𝑅𝑙) ∪ (𝐵𝑝𝑔 ∩ 𝑅𝑙)] × Pr(𝐼3) = {Pr(𝐵𝑝𝑔 → 𝑅𝑙) + Pr(𝐴𝑝𝑔 ∩ 𝑅𝑙) −

Pr[(𝐴𝑝𝑔 → 𝑅𝑙) ∩ 𝐵𝑝𝑔]} × Pr(𝐼3)                                                                                                                   (30) 

 

where, Pr(𝐴𝑝𝑔 → 𝑅𝑙) = 0.00230. Therefore, Pr(𝐼3 ∩ 𝑃𝐺𝐸2,2) = 0.00007. 

 

𝐼4 ∩ 𝑃𝐺𝐸2,2 : Any PFGE originating from A or B occurs. Pr(𝐼4 ∩ 𝑃𝐺𝐸2,2)  is calculated through the 

following formula. 

Pr(𝐼4 ∩ 𝑃𝐺𝐸2,2) = Pr[(𝐴𝑝𝑔 ∪ 𝐵𝑝𝑔) ∩ 𝑅𝑙] × Pr(𝐼4) = 0.00082                                                               (31) 

 

𝐼4 ∩ 𝑃𝐺𝐸2,1: No PFGE occurs to A or B. Pr(𝐼4 ∩ 𝑃𝐺𝐸2,1) is calculated through the following formula. 

Pr(𝐼4 ∩ 𝑃𝐺𝐸2,1) = Pr[(𝐴𝑝𝑔̅̅ ̅̅ ̅̅ ∩ 𝐵𝑝𝑔̅̅ ̅̅ ̅̅ ) ∩ 𝑅𝑙] × Pr(𝐼4) = 0.00775                                                               (32) 

 

Step 4: Define the events to address PFSEs and evaluate the conditional system failure probabilities. 

 

Pr(SHSS fails|𝑃𝐺𝐸1,1): R always remains operational and no PFGE occurs during working hours, it is only 

necessary to consider how PFSEs of A and B affect the system state. 
 

Table 6. Event space for considering PFSEs under the condition 𝑃𝐺𝐸1,1. 
 

Event Event definition Unaffected components Occurrence probabilistic 

𝑃𝑆𝐸1 𝐴𝑝𝑠̅̅ ̅̅ ̅ ∩ 𝐵𝑝𝑠̅̅ ̅̅ ̅ {𝐴, 𝐵, 𝐶, 𝐷} (1 − 𝑞𝐴𝑝𝑠) × (1 − 𝑞𝐵𝑝𝑠) 

𝑃𝑆𝐸2 𝐴𝑝𝑠 ∩ 𝐵𝑝𝑠̅̅ ̅̅ ̅ {𝐷} 𝑞𝐴𝑝𝑠 × (1 − 𝑞𝐵𝑝𝑠) 

𝑃𝑆𝐸3 𝐴𝑝𝑠̅̅ ̅̅ ̅ ∩ 𝐵𝑝𝑠 ∅ (1 − 𝑞𝐴𝑝𝑠) × 𝑞𝐵𝑝𝑠 

𝑃𝑆𝐸4 𝐴𝑝𝑠 ∩ 𝐵𝑝𝑠 ∅ 𝑞𝐴𝑝𝑠 × 𝑞𝐵𝑝𝑠 

 

 

Table 6 outlines the construction of an event space, with the second column defining events via PFSE 

occurrence combinations, the third column identifying unaffected components for each PSE, and the fourth 

column quantifying PSE occurrence probabilities. By invoking the law of total probability, it follows that 

Pr(SHSS fails|𝑃𝐺𝐸1,1) = ∑ [Pr(SHSS fails|𝑃𝑆𝐸𝑖) × Pr(𝑃𝑆𝐸𝑖)]4
𝑖=1                                                             (33) 

 

We assess the conditional failure probability of SHSS when each event occurred. 

 

Pr(SHSS fails|𝑃𝑆𝐸1): In this case, R does not fail, and neither A nor B experiences PFSE during mission 

hours. Figure 5 shows the reduced FT model, and Figure 6 is the BDD model of the reduced FT. Based on 

the BDD model, Pr(SHSS fails|𝑃𝑆𝐸1) = 0.00984. 

 

Pr(SHSS fails|𝑃𝑆𝐸2): The LF of component D determines the failure state of the SHSS. Figure 7 shows 

the reduced FT, and thus Pr(SHSS fails|𝑃𝑆𝐸2) = 0.09516. 
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Figure 5. Reduced FT for evaluating Pr(SHSS fails|𝑃𝑆𝐸1). 

 

 

 

 

Figure 6. BDD model for evaluating Pr(SHSS fails|𝑃𝑆𝐸1). 

 

 

 

 

Figure 7. Reduced FT for evaluating Pr(SHSS fails|𝑃𝑆𝐸2). 

 

 

Pr(SHSS fails|𝑃𝑆𝐸3)
 
or Pr(SHSS fails|𝑃𝑆𝐸4): All components within the SHSS fail due to the occurrence 

of 𝑃𝑆𝐸 events. Therefore, Pr(SHSS fails|𝑃𝑆𝐸3) = Pr(SHSS fails|𝑃𝑆𝐸4) = 1. 

 

Integrating the results obtained above, the result of Equation (33) is 

Pr(SHSS fails|𝑃𝐺𝐸1,1) = ∑ [Pr(SHSS fails|𝑃𝑆𝐸𝑖) × Pr(𝑃𝑆𝐸𝑖)]4
𝑖=1 = 0.06209. 

 



Wang et al.: Reliability Analysis of Probabilistic Competing Failure Systems with Both… 
 

30 | Vol. 11, No. 1, 2026 

Pr(SHSS fails|𝐼1 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼1 ∩ 𝑃𝐺𝐸2,1): A and B will become unavailable due to the failure of R. In 

this situation, it is necessary to consider the time domain competition between the PFSEs of A and B and 

the LF of R. 

 

Build an event space as shown in Table 7. It provides the definition of each event and the components that 

remain unaffected within the system when the event occurs. Therefore, 

Pr(SHSS fails|𝐼1 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼1 ∩ 𝑃𝐺𝐸2,1)  

= Pr(𝐼1) × ∑ [Pr(SHSS fails|𝑃𝑆𝐸1,𝑖) × Pr(𝑃𝑆𝐸1,𝑖)]4
𝑖=1                                                                                (34) 

 
Table 7. Event space for considering PFSEs under the condition 𝐼1 ∩ 𝑃𝐺𝐸2,1. 

 

Event Event definition Unaffected components 

𝑃𝑆𝐸1,1 No PF occurs before the occurrence of 𝑅𝑙 {𝐷} 

𝑃𝑆𝐸1,2 Only 𝐴𝑝𝑠
 
occurs before 𝑅𝑙 occurs {𝐷} 

𝑃𝑆𝐸1,3 Only 𝐵𝑝𝑠
 
occurs before 𝑅𝑙 occurs ∅ 

𝑃𝑆𝐸1,4 𝐴𝑝𝑠 and 𝐵𝑝𝑠
 
both occur before 𝑅𝑙 occurs ∅ 

 

 

The occurrence probability of each event and the SHSS failure probability under each event are evaluated. 

 

𝑃𝑆𝐸1,1: No PF occurred before the occurrence of 𝑅𝑙. 
 

Pr(𝑃𝑆𝐸1,1) = Pr(𝑅𝑙) − Pr(at least one PF happens before 𝑅𝑙 happens) = Pr(𝑅𝑙) − Pr[(𝐴𝑝𝑠 ∪ 𝐴𝑝𝑔 ∪

𝐵𝑝𝑠 ∪ 𝐵𝑝𝑔) → 𝑅𝑙]                                                                                                                                     (35) 

 

In Equation (35), 

Pr[(𝐴𝑝𝑠 ∪ 𝐴𝑝𝑔 ∪ 𝐵𝑝𝑠 ∪ 𝐵𝑝𝑔) → 𝑅𝑙] = ∫ ∫ 𝑓𝐴𝑝𝑠∪𝐴𝑝𝑔∪𝐵𝑝𝑠∪𝐵𝑝𝑔(𝜏1)
𝑡

𝜏1
× 𝑓𝑅𝑙(𝜏2)𝑑𝜏2𝑑𝜏1

𝑡

0
= ∫ ∫ [(𝜆𝐴𝑝𝑠 +

𝑡

𝜏1

𝑡

0

𝜆𝐴𝑝𝑔 + 𝜆𝐵𝑝𝑠 + 𝜆𝐵𝑝𝑔) × 𝑒−(𝜆𝐴𝑝𝑠+𝜆𝐴𝑝𝑔+𝜆𝐵𝑝𝑠+𝜆𝐵𝑝𝑔)𝜏1 × 𝜆𝑅𝑙 × 𝑒−𝜆𝑅𝑙𝜏2] 𝑑𝜏2𝑑𝜏1 =  0.00877,
 

therefore, Pr(𝑃𝑆𝐸1,1) = 0.08639. Since the failure status of the SHSS in this case only depends on whether 

D fails, Pr(SHSS fails|𝑃𝑆𝐸1,1) = 𝑞𝐷𝑙 = 0.09516. 

 

𝑃𝑆𝐸1,2: Only 𝐴𝑝𝑠 occurred before 𝑅𝑙. 

Pr(𝑃𝑆𝐸1,2) = Pr(𝐴𝑝𝑠 → 𝑅𝑙) − Pr{[𝐴𝑝𝑠 ∩ (𝐴𝑝𝑔 ∪ 𝐵𝑝𝑠 ∪ 𝐵𝑝𝑔)] → 𝑅𝑙}                                                 (36) 

 

In Equation (36), 

Pr{[𝐴𝑝𝑠 ∩ (𝐴𝑝𝑔 ∪ 𝐵𝑝𝑠 ∪ 𝐵𝑝𝑔)] → 𝑅𝑙} = ∫ ∫ 𝑓𝐴𝑝𝑠∩(𝐴𝑝𝑔∪𝐵𝑝𝑠∪𝐵𝑝𝑔)(𝜏1)
𝑡

𝜏1
× 𝑓𝑅𝑙(𝜏2)𝑑𝜏2𝑑𝜏1

𝑡

0
=

∫ ∫ [𝜆𝐴𝑝𝑠 × 𝑒−𝜆𝐴𝑝𝑠𝜏1 + (
𝜆𝐴𝑝𝑔 +

𝜆𝐵𝑝𝑠 + 𝜆𝐵𝑝𝑔
) × 𝑒

−(
𝜆𝐴𝑝𝑔

+𝜆𝐵𝑝𝑠+𝜆𝐵𝑝𝑔
)𝜏1−(

𝜆𝐴𝑝𝑠+𝜆𝐴𝑝𝑔

+𝜆𝐵𝑝𝑠+𝜆𝐵𝑝𝑔
)×𝑒

−(
𝜆𝐴𝑝𝑠+𝜆𝐴𝑝𝑔

+𝜆𝐵𝑝𝑠+𝜆𝐵𝑝𝑔
)𝜏1

] × 𝜆𝑅𝑙 ×
𝑡

𝜏1

𝑡

0

𝑒−𝜆𝑅𝑙𝜏2 𝑑𝜏2𝑑𝜏1 =  0.00022, 

 

Therefore, Pr(𝑃𝑆𝐸1,2) = 0.00209 . Since in this case the failure status of the SHSS only depends on 

whether D fails, Pr(SHSS fails|𝑃𝑆𝐸1,2) = 𝑞𝐷𝑙 = 0.09516. 

 

𝑃𝑆𝐸1,3: Only 𝐵𝑝𝑠
 
occurred before 𝑅𝑙. 
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Pr(𝑃𝑆𝐸1,3) = Pr(𝐵𝑝𝑠 → 𝑅𝑙) − Pr{[𝐵𝑝𝑠 ∩ (𝐴𝑝𝑔 ∪ 𝐴𝑝𝑠 ∪ 𝐵𝑝𝑔)] → 𝑅𝑙}                                                (37) 

 

Similarly, Pr(𝑃𝑆𝐸1,3) = 0.00209. Since all system components are affected by the occurrence of 𝑃𝑆𝐸1,3 

and failed, Pr(SHSS fails|𝑃𝑆𝐸1,3) = 1. 

 

𝑃𝑆𝐸1,4: 𝐴𝑝𝑠 and 𝐵𝑝𝑠 
both occur before 𝑅𝑙. 

Pr(𝑃𝑆𝐸1,4) = Pr[(𝐴𝑝𝑠 ∩ 𝐵𝑝𝑠) → 𝑅𝑙] − Pr{[𝐴𝑝𝑠 ∩ 𝐵𝑝𝑠 ∩ (𝐴𝑝𝑔 ∪ 𝐵𝑝𝑔)] → 𝑅𝑙}                                  (38) 

 

It is easily known that Pr(𝑃𝑆𝐸1,4) = 0.00007 and Pr(SHSS fails|𝑃𝑆𝐸1,4) = 1. 

 

Integrating the results obtained above, the result of Equation (34) is 

Pr(SHSS fails|𝐼1 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼1 ∩ 𝑃𝐺𝐸2,1) =  0.00095. 

 

Pr(SHSS fails|𝐼2 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼2 ∩ 𝑃𝐺𝐸2,1): Only B will become unavailable due to the LF of R, while 

the PFSE of A, if happens, can still affect other components. In this case, the time domain competition 

between the PFSE of B and the LF of R should be addressed. 

 

Establish an event space considering the PFSEs as shown in Table 8. We have 

Pr(SHSS fails|𝐼2 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼2 ∩ 𝑃𝐺𝐸2,1) = Pr(𝐼2) × ∑ [Pr(SHSS fails|𝑃𝑆𝐸2,𝑖) × Pr(𝑃𝑆𝐸2,𝑖)]4
𝑖=1           (39) 

 
Table 8. Event space for considering PFSEs under the condition 𝐼2 ∩ 𝑃𝐺𝐸2,1. 

 

Event Event definition Unaffected components 

𝑃𝑆𝐸2,1 𝐴𝑝𝑠 does not occur and 𝐵𝑝𝑠 occurs after 𝑅𝑙 occurs {𝐴, 𝐶, 𝐷} 

𝑃𝑆𝐸2,2 𝐴𝑝𝑠 occurs and 𝐵𝑝𝑠 occurs after 𝑅𝑙 occurs {𝐷} 

𝑃𝑆𝐸2,3 𝐴𝑝𝑠 does not occur and 𝐵𝑝𝑠 occurs before 𝑅𝑙 occurs ∅ 

𝑃𝑆𝐸2,4 𝐴𝑝𝑠 occurs and 𝐵𝑝𝑠 occurs before 𝑅𝑙 occurs ∅ 

 

Similarly, we evaluate the probability of each event occurring and the corresponding conditional failure 

probability of the SHSS given each event. 

 

𝑃𝑆𝐸2,1 ：𝐴𝑝𝑠  does not occur and 𝐵𝑝𝑠  occurs after 𝑅𝑙  occurs. Pr(𝑃𝑆𝐸2,1)  is calculated through the 

following formula. 

Pr(𝑃𝑆𝐸2,1) = {Pr(𝑅𝑙) − Pr[(𝐵𝑝𝑠 ∪ 𝐵𝑝𝑔) → 𝑅𝑙]} × Pr(𝐴𝑝𝑠̅̅ ̅̅ ̅ ∩ 𝐴𝑝𝑔̅̅ ̅̅ ̅̅ ) =  0.08201                                  (40) 

 

 

 

Figure 8. Reduced FT for evaluating Pr(SHSS fails|𝑃𝑆𝐸2,1). 

 



Wang et al.: Reliability Analysis of Probabilistic Competing Failure Systems with Both… 
 

32 | Vol. 11, No. 1, 2026 

Pr(SHSS fails|𝑃𝑆𝐸2,1): In this case, the components A, C, and D in the SHSS are not affected. Figure 8 

shows the reduced FT, and Figure 9 is the BDD model of the reduced FT. 

 

 

 

Figure 9. BDD model for evaluating Pr(SHSS fails|𝑃𝑆𝐸2,1). 

 

According to the BDD model, Pr(SHSS fails|𝑃𝑆𝐸2,1) = 0.01725. 

 

𝑃𝑆𝐸2,2 : 𝐴𝑝𝑠  occurs and 𝐵𝑝𝑠  occurs after 𝑅𝑙  occurs. Pr(𝑃𝑆𝐸2,2)  is calculated through the following 

formula. 

Pr(𝑃𝑆𝐸2,2) = {Pr(𝑅𝑙) − Pr[(𝐵𝑝𝑠 ∪ 𝐵𝑝𝑔) → 𝑅𝑙]} × Pr(𝐴𝑝𝑠 ∩ 𝐴𝑝𝑔̅̅ ̅̅ ̅̅ ) = 0.00420                                      (41) 

 

Pr(SHSS fails|𝑃𝑆𝐸2,2): If 𝐴𝑝𝑠 occurs, B and C will be affected and fail; 𝐵𝑝𝑠 occurs after the occurrence of 

𝑅𝑙 and is isolated. Only D is functioning normally, Pr(SHSS fails|𝑃𝑆𝐸2,2) = 0.09516. 

 

𝑃𝑆𝐸2,3 : 𝐴𝑝𝑠  does not occur and 𝐵𝑝𝑠  occurs before 𝑅𝑙  occurs. Pr(𝑃𝑆𝐸2,3)  is calculated through the 

following formula. 

Pr(𝑃𝑆𝐸2,3) = {Pr(𝐵𝑝𝑠 → 𝑅𝑙) − Pr[(𝐵𝑝𝑠 ∩ 𝐵𝑝𝑔) → 𝑅𝑙]} × Pr(𝐴𝑝𝑠̅̅ ̅̅ ̅ ∩ 𝐴𝑝𝑔̅̅ ̅̅ ̅̅ ) = 0.00201                         (42) 

 

Pr(SHSS fails|𝑃𝑆𝐸2,3): 𝐴𝑝𝑠
 
does not occur, B and C will not be affected; however, 𝐵𝑝𝑠 occurs before the 

occurrence of 𝑅𝑙, causing A and D to fail due to failure propagation effect. The whole system fails and 

Pr(SHSS fails|𝑃𝑆𝐸2,3) = 1. 

 

𝑃𝑆𝐸2,4 : 𝐴𝑝𝑠  occurs and 𝐵𝑝𝑠  occurs before 𝑅𝑙  occurs. Pr(𝑃𝑆𝐸2,4)  is calculated through the following 

formula. 

Pr(𝑃𝑆𝐸2,4) = {Pr(𝐵𝑝𝑠 → 𝑅𝑙) − Pr[(𝐵𝑝𝑠 ∩ 𝐵𝑝𝑔) → 𝑅𝑙]} × Pr(𝐴𝑝𝑠 ∩ 𝐴𝑝𝑔̅̅ ̅̅ ̅̅ ) = 0.00010                        (43) 

 

Pr(SHSS fails|𝑃𝑆𝐸2,4): If 𝐴𝑝𝑠 occurs, B and C will be affected and fail; if 𝐵𝑝𝑠 occurs before 𝑅𝑙 occurs, A 

and D will fail as a result of the propagation effect of 𝐵𝑝𝑠 . The whole system fails, 

Pr(SHSS fails|𝑃𝑆𝐸2,4) = 1. 

 

Integrating the results obtained above, the result of Equation (39) is 

Pr(SHSS fails|𝐼2 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼2 ∩ 𝑃𝐺𝐸2,1) = 0.00319. 

 

Pr(SHSS fails|𝐼3 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼3 ∩ 𝑃𝐺𝐸2,1): Only A will become unavailable due to the LF of R, and 

the PF of B is not affected by the LF of R. Under this scenario, the time domain competition of the PFSE 

of A with the LF of R and whether the PFSE of B occurs need to be considered. 
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An event space considering the PFSEs is established as shown in Table 9. It is derived that 

Pr(SHSS fails|𝐼3 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼3 ∩ 𝑃𝐺𝐸2,1) = Pr(𝐼3) × ∑ [Pr(SHSS fails|𝑃𝑆𝐸3,𝑖) × Pr(𝑃𝑆𝐸3,𝑖)]4
𝑖=1           (44) 

 
Table 9. Event space for considering PFSEs under the condition 𝐼3 ∩ 𝑃𝐺𝐸2,1. 

 

Event Event definition Unaffected components 

𝑃𝑆𝐸3,1 𝐴𝑝𝑠 occurs after 𝑅𝑙 occurs and 𝐵𝑝𝑠 does not occur {𝐵, 𝐶, 𝐷} 

𝑃𝑆𝐸3,2 𝐴𝑝𝑠 occurs after 𝑅𝑙 occurs and 𝐵𝑝𝑠 occurs ∅ 

𝑃𝑆𝐸3,3 𝐴𝑝𝑠 occurs before 𝑅𝑙 occurs and 𝐵𝑝𝑠 does not occur {𝐷} 

𝑃𝑆𝐸3,4 𝐴𝑝𝑠 occurs before 𝑅𝑙 occurs and 𝐵𝑝𝑠 occurs ∅ 

 

Assess the occurrence probability of each event and the SHSS failure probability under each event. 

 

𝑃𝑆𝐸3,1: 𝐴𝑝𝑠 occurs after 𝑅𝑙 occurs and 𝐵𝑝𝑠 does not occur. Pr(𝑃𝑆𝐸3,1) is calculated through the following 

formula. 

Pr(𝑃𝑆𝐸3,1) = {Pr(𝑅𝑙) − Pr[(𝐴𝑝𝑠 ∪ 𝐴𝑝𝑔) → 𝑅𝑙]} × Pr(𝐵𝑝𝑠̅̅ ̅̅ ̅ ∩ 𝐵𝑝𝑔̅̅ ̅̅ ̅̅ ) = 0.08201                                         (45) 

 

Pr(SHSS fails|𝑃𝑆𝐸3,1):
 
Due to the failure of R, A which depends on R will become unavailable, and the 

PFSE of B does not occur and the PFSE of A does not occur before the failure of R. In this case, the 

components not affected in SHSS are B, C, and D. Figure 10 shows the reduced FT, and Figure 11 shows 

the BDD model of the reduced FT. From the BDD model, Pr(SHSS fails|𝑃𝑆𝐸2,1) = 0.01725. 

 

 

 

Figure 10. Reduced FT for evaluating Pr(SHSS fails|𝑃𝑆𝐸3,1). 

 

 

 

 

Figure 11. BDD model for evaluating Pr(SHSS fails|𝑃𝑆𝐸3,1). 

 

𝑃𝑆𝐸3,2 : 𝐴𝑝𝑠  occurs after 𝑅𝑙  occurs and 𝐵𝑝𝑠  occurs. Pr(𝑃𝑆𝐸3,2)  is calculated through the following 

formula. 
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Pr(𝑃𝑆𝐸3,2) = {Pr(𝑅𝑙) − Pr[(𝐴𝑝𝑠 ∪ 𝐴𝑝𝑔) → 𝑅𝑙]} × Pr(𝐵𝑝𝑠 ∩ 𝐵𝑝𝑔̅̅ ̅̅ ̅̅ ) = 0.00420                                     (46) 

 

Pr(SHSS fails|𝑃𝑆𝐸3,2): If 𝐴𝑝𝑠 does not occur before 𝑅𝑙 occurs, B and C will not be affected; if 𝐵𝑝𝑠 occurs, 

A and D will fail as a result of the propagation effect of 𝐵𝑝𝑠 . The whole system fails, 

Pr(SHSS fails|𝑃𝑆𝐸3,2) = 1. 

 

𝑃𝑆𝐸3,3 : 𝐴𝑝𝑠  occurs before 𝑅𝑙  occurs and 𝐵𝑝𝑠  does not occur. Pr(𝑃𝑆𝐸3,3)  is calculated through the 

following formula.  

Pr(𝑃𝑆𝐸3,3) = {Pr(𝐴𝑝𝑠 → 𝑅𝑙) − Pr[(𝐴𝑝𝑠 ∩ 𝐴𝑝𝑔) → 𝑅𝑙]} × Pr(𝐵𝑝𝑠̅̅ ̅̅ ̅ ∩ 𝐵𝑝𝑔̅̅ ̅̅ ̅̅ ) = 0.00201                       (47) 

 

Pr(SHSS fails|𝑃𝑆𝐸3,3): If 𝐴𝑝𝑠 occurs before 𝑅𝑙 occurs, B and C will be affected and fail; if 𝐵𝑝𝑠 does not 

occur, A and D will not be affected since the propagation effect of 𝐵𝑝𝑠 is avoided. Only D is still running 

normally, Pr(SHSS fails|𝑃𝑆𝐸3,3) = 0.09516. 

 

𝑃𝑆𝐸3,4 : 𝐴𝑝𝑠  occurs before 𝑅𝑙  occurs and 𝐵𝑝𝑠  occurs. Pr(𝑃𝑆𝐸3,4)  is calculated through the following 

formula.  

Pr(𝑃𝑆𝐸3,4) = {Pr(𝐴𝑝𝑠 → 𝑅𝑙) − Pr[(𝐴𝑝𝑠 ∩ 𝐴𝑝𝑔) → 𝑅𝑙]} × Pr(𝐵𝑝𝑠 ∩ 𝐵𝑝𝑔̅̅ ̅̅ ̅̅ ) = 0.00010                        (48) 

 

Pr(SHSS fails|𝑃𝑆𝐸3,4): If 𝐴𝑝𝑠 occurs before 𝑅𝑙 occurs, B and C will be affected and fail; if 𝐵𝑝𝑠 occurs, A 

and D will fail as a result of the propagation effect of 𝐵𝑝𝑠 . Therefore, the whole system fails and 

Pr(SHSS fails|𝑃𝑆𝐸3,4) = 1. 

 

Integrating the results obtained above, the result of Equation (44) is 

Pr(SHSS fails|𝐼3 ∩ 𝑃𝐺𝐸2,1) × Pr(𝐼3 ∩ 𝑃𝐺𝐸2,1) = 0.00006. 

 

Pr(SHSS fails|𝐼4 ∩ 𝑃𝐺𝐸2,1): Neither A nor B will become unavailable by the LF of R. Similar to the event 

that R remains operational during working hours, the time domain competition of the PFSE of A and B with 

the LF of R is not considered. That is, the event space to consider the PFSEs is 𝑃𝑆𝐸𝑖 (𝑖 = 1, 2, 3, 4) . 

Pr(SHSS fails|𝐼4 ∩ 𝑃𝐺𝐸2,1) can be obtained as 

Pr(SHSS fails|𝐼4 ∩ 𝑃𝐺𝐸2,1) = ∑ [Pr(SHSS fails|𝑃𝑆𝐸𝑖) × Pr(𝑃𝑆𝐸𝑖)] = 0.062094
𝑖=1                                    (49) 

 

Step 5: Integrate to obtain the system failure probability. 

 

According to Step 2 to Step 4, the unreliability of the SHSS is obtained by 

𝑃𝑟(𝑆𝐻𝑆𝑆 𝑓𝑎𝑖𝑙𝑠) = 𝑃𝑟(𝑆𝐻𝑆𝑆 𝑓𝑎𝑖𝑙𝑠|𝑇𝐶𝐹𝐸1) × 𝑃𝑟(𝑇𝐶𝐹𝐸1) + 𝑃𝑟(𝑆𝐻𝑆𝑆 𝑓𝑎𝑖𝑙𝑠|𝑇𝐶𝐹𝐸2) × 𝑃𝑟(𝑇𝐶𝐹𝐸2)

= ∑[𝑃𝑟(𝑆𝐻𝑆𝑆 𝑓𝑎𝑖𝑙𝑠|𝑃𝑆𝐸𝑖) × 𝑃𝑟(𝑃𝑆𝐸𝑖)]

4

𝑖=1

× 𝑃𝑟(𝑃𝐺𝐸1,1) + 𝑃𝑟(𝑃𝐺𝐸1,2)

+ ∑ {𝑃𝑟(𝐼𝑘) × ∑[𝑃𝑟(𝑆𝐻𝑆𝑆 𝑓𝑎𝑖𝑙𝑠|𝑃𝑆𝐸𝑘,𝑖) × 𝑃𝑟(𝑃𝑆𝐸𝑘,𝑖)]

4

𝑖=1

+ 𝑃𝑟(𝐼𝑘 ∩ 𝑃𝐺𝐸2,2)}

3

𝑘=1

+ 𝑃𝑟(𝐼4 ∩ 𝑃𝐺𝐸2,1) × ∑[𝑃𝑟(𝑆𝐻𝑆𝑆 𝑓𝑎𝑖𝑙𝑠|𝑃𝑆𝐸𝑖) × 𝑃𝑟(𝑃𝑆𝐸𝑖)]

4

𝑖=1

+ 𝑃𝑟(𝐼4 ∩ 𝑃𝐺𝐸2,2)

= 0.14844. 
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By solving the Markov model generated for the SHSS with the same component failure rates, we derived 

the probability of the system in failed state 21, which is in full agreement with the results derived by the 

combinatorial method proposed in Section 3.2 (Wang et al., 2017a). 

 

In the analysis of SHSS, the event space of 𝑇𝐶𝐹𝐸 is 2. For 𝑇𝐶𝐹𝐸1, since there are two PDEP groups, four 

event spaces are decomposed, generating four reduced problems to be dealt with for 𝑇𝐶𝐹𝐸1. For 𝑇𝐶𝐹𝐸2, 

there is a more complex time domain competition, which can be decomposed into 4 sub-events according 

to the results of competition between PFGE and isolation effect. Among them, 3 events need to be further 

decomposed into 22 = 4 event spaces when considering 2 PFSE events, while the other event needs to be 

considered with the same issues as 𝑇𝐶𝐹𝐸1 when considering PFSEs. In other words, for 𝑇𝐶𝐹𝐸2, there are 

12 reduced problems to be dealt with. When analyzing the SHSS reliability with the combinatorial method 

proposed in this paper, only 16 reduced problems need to be considered. Compared to evaluating the 22-

state Markov model, which corresponds to 22 differential equations, the proposed approach in this paper is 

computationally more efficient. 

 

The proposed method also does not restrict the failure time distribution of components. For SHSS, we 

assume that the failure times follow the Weibull distribution in Table 10. The pdf and cdf of the Weibull 

distribution with scale parameter 𝜆𝑊 and shape parameter 𝛼𝑊 are shown in Equation (50) and Equation 

(51). The analysis considers a mission time of t = 1000 h.  

 

Table 10. The Weibull time-to-failure parameters of components. 
 

Component 
PFGE PFSE LF 

𝛼𝑊 𝜆𝑊 𝛼𝑊 𝜆𝑊 𝛼𝑊 𝜆𝑊 

A, B 2 0.00005 2 0.00005 2 0.0001 

R, C, D - - - - 2 0.0001 

 

 

𝑓𝑊(𝑡) = 𝛼𝑊𝜆𝑊
𝛼𝑊𝑡𝛼𝑊−1𝑒−(𝜆𝑊𝑡)𝛼𝑊

                                                                                                           (50) 

𝐹𝑊(𝑡) = 1 − 𝑒−(𝜆𝑊𝑡)𝛼𝑊
                                                                                                                             (51) 

 

Applying the Section 3.2 method steps to numerical analysis yields an SHSS failure probability of 0.00758 

for Weibull-distributed component failure times. 

 

5. Generalization of the Proposed Combinatorial Methodology 
In Section 3.2, we only consider the PFs from PDEP components. In fact, including the trigger component, 

those non-PDEP components can also experience PFs. This section generalizes the combinatorial method 

to analyze the case where non-PDEP components of the system also have both PFGEs and PFSEs. The 

steps comprising the generalized methodology are detailed below: 

 

Step 1: Separate the PFGEs from the non-PDEP components. 

 

Define event 𝐸1, referred to as no fewer than one PFGE from original non-PDEP components occurs.  

Define event 𝐸2 that is disjoint with 𝐸1, referred to as no PFGE from original non-PDEP components occurs.  

 

The system unreliability is defined as follows 

Pr(system fails) =Pr(system fails|𝐸1) × Pr(𝐸1) + Pr(system fails|𝐸2) × Pr(𝐸2), 

 

where, Pr(system fails|𝐸1) = 1. 
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Step 2: Handle the PFSEs from the original non-PDEP components. 

 

Similar to the Step 4 in Section 3.2, assume that there are 𝑢 independent PFSEs from original non-PDEP 

components, and establish an event space that comprising 2𝑢 combined events. Each event, referred to as 

a combinational PFSE occurrence event (𝑁𝑃𝑆𝐸), embodies a unique combination of PFSE event presences 

and absences. The system unreliability is evaluated by 

Pr(system fails) = Pr(𝐸1) + ∑ [Pr(system failure|𝑁𝑃𝑆𝐸𝑖) × Pr(𝑁𝑃𝑆𝐸𝑖)]2𝑢

𝑖=1 × Pr(𝐸2)  

 

Step 3: Evaluate the conditional system failure probability for combined events via the proposed 

methodology in Section 3.2. 

 

Step 4: Compute system unreliability via the total probability law. 

 

In particular, if only the PFGEs from original non-PDEP components are considered, only Step 1 needs to 

be added before the proposed method in Section 3.2. If only the PFSEs from original non-PDEP components 

are considered, only Step 2 needs to be added before the proposed method in Section 3.2. 

 

6. Complexity Analysis 
The proposed method is verified by conducting SHSS reliability analysis with a Markov-model. Compared 

with evaluating a 22-state Markov model equivalent to 22 differential equations, the proposed combinatorial 

method requires only 16 simplifications for analyzing the example SHSS. In comparison with Markov 

methods, the proposed method offers higher analytical efficiency when dealing with the SHSS subject to 

probabilistic competing failures with complex propagated effects. To be more general, the space and time 

complexity are discussed as follows: 

 

Consider a system consisting of 𝑥  independent trigger components, 𝑚  PDEP components, and 𝑛 

components that do not belong to any PDEP groups. Assume that the total number of system components 

is 𝑁, then 𝑁 =  𝑥 +  𝑚 +  𝑛. There are 𝑎 PFSE events within the system. 

 
For the proposed combinatorial method, when establishing the TCFE event space according to whether the 

trigger components fail or not, 2𝑥 𝑇𝐶𝐹𝐸𝑖 events are generated. Among them, for the event 𝑇𝐶𝐹𝐸1 where 

all trigger components function normally, the discussion on probabilistic dependent behavior is reduced. 

For 𝑇𝐶𝐹𝐸1, the PGE space is constant 2. Under the event 𝑃𝐺𝐸1,1, a PFSE event space with size of 2𝑎 is 

established and the PFSE events are evaluated separately. In the worst-case scenario, a BDD model is 

established for each PFSE event. The reduced FT has fewer nodes than 𝑛 +
𝑚

2
, so the size of the BDD model 

for each combinatorial PFSE event must be less than 2𝑛+
𝑚

2  (Shrestha et al., 2009), and the space required 

for analyzing conditional system unreliability given the occurrence of 𝑇𝐶𝐹𝐸1 is less than 2𝑛+
𝑚

2
+𝑎

. For other 

events 𝑇𝐶𝐹𝐸𝑖 (𝑖 > 1) with 𝑚 PDEP components, the dependence event space (i.e., size of 𝐼𝑘) is 2𝑚. For 

the combined event 𝐼𝑘 ∩ 𝑃𝐺𝐸1,𝑖, the PFSEs of isolable and non-isolable components are considered. PFSE 

event space with a size of 2𝑎  is established. In the worst-case scenario, the BDD model size for each 

combinatorial PFSE event must be less than 2𝑛+
𝑚

2 . At this time, the space required for analyzing 𝑇𝐶𝐹𝐸𝑖 

( 𝑖 > 1 ) is less than 2𝑎+𝑛+
𝑚

2 + (2𝑥 − 1) ∗ 2𝑚+𝑎+𝑛+
𝑚

2 = 2
(𝑥+𝑚+𝑎+𝑛+

𝑚

2
)

= 2
(𝑁+

𝑚

2
+𝑎)

 . When the event 

𝑃𝐺𝐸2,𝑖 occurs, causing the system to fail, and further decomposing analysis under this event is reduced. 
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Thus, the proposed combinatorial method exhibits a space complexity lower than O(2
(𝑁+

𝑚

2
+𝑎)

). For the 

Markov method, the worst-case number of states for 𝑘 variables are 2𝑘. Therefore, for 𝑥 + 𝑚 + 𝑚 + 𝑛 +

𝑎  input variables, that is, 𝑁 + 𝑎 + 𝑚  input variables, there are 2(𝑁+𝑚+𝑎)  states in the Markov model 

(Reibman et al., 1989). So, the Markov method space complexity is O(2(𝑁+𝑚+𝑎)). 

 
The proposed method uses divide-and-conquer to split the reliability problem into independent simplified 

ones. For the simplified problem, the “depth-first traversal” algorithm on the BDD is applied to derive root-

to-terminal node paths. This traversal exhibits a computational complexity of O(𝑘), with k denoting the 

BDD model’s node count (𝑘 < 2𝑛/𝑛). This implies that the time complexity of the proposed combinatorial 

method incorporating the traditional BDD is less than O(2𝑛/𝑛) . While for the Markov method, the 

computational complexity is O(𝑤 ∗ 𝑣) , with 𝑤  being the number of solution steps (𝑤 =  O(𝑚2)  for 

equilibrium in acyclic chains ), 𝑣 = O(𝑚3) as the per-step complexity, and 𝑚 = O(2(𝑁+𝑚+𝑎)) defining 

the system state count (Amari & Misra, 1997). 

 
Table 11 presents the complexity comparison between the proposed combinatorial approach and the 

Markov method. Based on the afore-mentioned discussion and Table 11, the combinatorial method 

proposed in this paper is superior to the Markov method in terms of both space complexity and time 

complexity. 

 
Table 11. The complexity comparison. 

 

Method Space complexity Time complexity 

The proposed combinatorial method Less than O(2
(𝑁+

𝑚

2
+𝑎)

) 
Less than  

O(2𝑛/𝑛) 

The Markov method O(2(𝑁+𝑚+𝑎)) O( 2(𝑁+𝑚+𝑎)2

∗ 2(𝑁+𝑚+𝑎)3) 

 
 

7. Conclusions and Future Work 
Since the existing methods are limited when performing reliability analysis on probabilistic competing 

failure systems with both PFGEs and PFSEs simultaneously, this paper introduces a novel combinatorial 

method to address such issue. The proposed method allows for the application of any type of distribution 

to model system component failure times and probability failure isolation factors. This flexibility greatly 

enhances the method’s adaptability to various real-world scenarios, where component failure characteristics 

may vary significantly. The effectiveness of the proposed method is demonstrated via a case study of SHSS 

reliability analysis. In comparison to the SHSS reliability analysis procedure using the Markov method, the 

correctness and efficiency of the proposed method are verified. When being adopted to the reliability 

analysis of probabilistic competing failure systems with both PFGEs and PFSEs, the proposed 

combinatorial method is superior to the Markov method in terms of space complexity as well as time 

complexity. Furthermore, the proposed method can be applied to probabilistic competing failure systems 

with single PFD group or multiple independent, non-overlapping PFD groups. The proposed method can 

also be generalized to the systems with non-PDEP components experiencing LF, PFGE, and PFSE. 

 

In the future, more complex scenarios will be explored by extending the method to analyze systems with 

multiple dependent PFD groups with shared trigger or PDEP components (Wang et al., 2013). Another 

future research direction is to investigate methods for multi-state systems (Wang et al., 2018a), phased-
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mission systems (Tang et al., 2023; Wang et al., 2025), and cascading functional dependence systems (Zhao 

& Xing, 2019) with components affected simultaneously by PFGEs and PFSEs. In addition to extending 

toward more complex scenarios, expansions can also be directed toward new application domains. With the 

continuous evolution of technology and the constant expansion of application fields, novel system 

characteristics and requirements have emerged successively. Subsequent research can attempt to adapt and 

apply existing methods to more emerging application fields, such as the Industrial Internet of Things (Li et 

al., 2025), vehicle networks (Du et al., 2025), and smart medical systems (Lin et al., 2025). These fields are 

characterized by complex system architectures, sophisticated business logic, and more stringent reliability 

requirements. 
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