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Abstract

This paper investigates the reliability modeling of systems subject to probabilistic competing failure behaviors with complicated
failure propagation effects. To be specific, besides local failure (LF) that only affects the component itself, a component can also
experience propagated failure with global effect (PFGE) leading to the system-wide failure, and propagated failure with selective
effect (PFSE) that affects the set of other components. There exists a probabilistic functional dependence dynamic between system
components, where some components (referred to as the probabilistic-dependent components) functionally depend on other
components (designated as trigger components) and can be isolated by the trigger component failure in a probabilistic manner.
Trigger component LF and PF of probabilistic-dependent components compete in the time domain. Different occurrence orderings
of these component failures can lead to dramatically different system states. However, the existing reliability assessment methods
are not applicable to addressing such probabilistic competing failure behaviors with considering both PFGEs and PFSEs in the
system reliability analysis. A novel combinatorial reliability methodology is presented to tackle this issue with its applicability and
effectiveness being demonstrated through step-by-step reliability analysis on a smart home sensor system. The proposed method is
verified and the methodology complexity is discussed by comparing with the Markov method.

Keywords- Probabilistic competing failure, Propagated failure with selective effect, Propagated failure with global effect,
Combinatorial method.

1. Introduction

In many real-world complex systems, component failures fall into two categories: local failures (LFs) that
only cause malfunction of the component itself, and propagated failures (PFs) which also affect other
system components (Xing & Levitin, 2010). PFs are further classified into two types based on the extent of
impact: propagated failure with selective effect (PFSE) and propagated failure with global effect (PFGE).
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PFSE influences a specific subset of system components, while PFGE causes failure of the whole system.
Meanwhile, probabilistic functional dependence behavior can also exist between system components,
where some components (referred to as probabilistic-dependent components) functionally depend on other
components (referred to as trigger components) in a probabilistic manner, that is, the trigger component
failure can lead to the inability or restricted access of probabilistic-dependent (PDEP) components within
the same PDEP group with a certain probability p (referred to as isolation factor) (Wang et al., 2015).
Systems with probabilistic functional dependence involve a time-domain competition between trigger
component LF and PDEP component PFs. Different failure sequences result in distinct system states,
illustrating the complexity of failure dynamics in such systems. (Xing et al., 2012a, 2012b, 2018).
Specifically, when the trigger component experiences LF first, the probabilistic isolation effect is induced,
and each PDEP component is isolated with a specific isolation factor p. The PFs originating from the
isolated PDEP components are prevented from causing further impact to other system components. Once
isolated, the PDEP component is inaccessible and regarded as functionally failed, and the system state is
evaluated according to system structure and the remaining components. On the contrary, if a PF from PDEP
components precedes the trigger component LF, the failure propagation effect will take place. In such case,
a PFGE of the relevant PDEP component will result in system-wide failure and a PFSE from the relevant
PDEP component will affect certain system components. Particularly, if the isolation factor p = 1, this
dynamic behavior is simplified to deterministic competing failure behavior.

Many real-world systems exhibit probabilistic competing failure behaviors with both PFGEs and PFSEs
(Levitin & Xing, 2010). For instance, in a smart home sensor system (SHSS) with n sensors connected in
parallel, due to signal attenuation or battery-saving plans, the sensors normally achieve long-distance signal
transmission to intelligent terminals through relay nodes. Sensors and relay nodes can experience LF (from
malfunction), PFGE (via jamming attacks), and PFSE (from targeted signal interference). When a relay
node fails, connected sensors may boost transmission power to facilitate direct terminal interconnection.
The likelihood of this response is dynamically contingent on their residual power. When the residual power
fails to sustain direct interconnection, the SHSS implements isolation of the sensor. As a result, the sensors
probabilistically depend on the relay nodes and form one or more PDEP groups with the relay nodes. Relay
node LF and sensor PFs within the same PDEP group engage in time-domain competition. In the case where
relay node LF occurs priorly, each corresponding sensor and its PF is isolated from the SHSS with a
probability modeled by a specific isolation factor p. While if any PF from sensors occur before the relay
node LF, the PF would propagate to other sensors even crash the entire SHSS (Luo et al., 2013). Such
complex failure competition behaviors pose challenges for the reliability assessment of systems,
necessitating comprehensive consideration of probabilistic competing effects in reliability modeling.

As far as we know, there is currently no effective method to comprehensively address the reliability
modeling of probabilistic competing failures with system components subject to both PFGEs and PFSEs.
This paper makes a significant contribution by introducing a combinatorial method for analyzing the
reliability of systems subject to probabilistic competing failure, explicitly addressing both PFGEs and
PFSEs. The proposed method does not restrict failure rate distributions for system components, which
improves its versatility. A SHSS case study is carried out to illustrate the effectiveness and applicability of
the proposed method.

The organization of this paper is as follows: a literature review is presented in Section 2. Section 3 shows
the proposed combinatorial method. Section 4 presents a case study of a SHSS and employs the proposed
combinatorial method to perform reliability analysis on the example SHSS. The proposed method is verified
through comparison with the Markov method. Section 5 further generalizes the proposed method. Section
6 discusses efficiency of the method through a comparison with the Markov method. The paper is concluded
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in Section 7, which also delineates future research directions.

2. Literature Review

Existing reliability studies have covered different types of competing failures. For example, developing a
competition model for degradation mechanisms and random external shock events (Wang et al., 2020; Lyu
et al., 2025a); investigating competing processes within the framework of accelerated life testing (Moustafa
et al., 2021), system maintenance strategies (Yousefi et al., 2020), and system size optimization (Song et
al., 2014); studying the competition between unexposed and covered failure modes of components in
systems with incomplete failure coverage (Xing, 2007; Xiang et al., 2014). Unlike prior studies, this paper
focuses on the competition between failure propagation and isolation effects, which is induced by functional
dependences and different failure modes between different system components.

Reliability modeling of systems with competing failure behaviors caused by functional dependences has
been investigated in many works, and several methods have been developed including simulation methods
(Yeh, 2022; Oszczypata et al., 2024), Markov analysis methods (Zhou et al., 2021; Mittal et al., 2024; Lyu
et al., 2025b), and combinatorial methods (Xing et al., 2019). Combinatorial methods exceed the limitations
of simulation methods that only provide approximate results, as well as the limitations of Markov analysis
that may suffer from state space explosion. Existing research has introduced combinatorial method for
system reliability modeling with probabilistic competing failures, validating their effectiveness via case
studies across various system categories. These methods integrate the strengths of different methods to
enable comprehensive system reliability analysis. A novel combinatorial method is developed for reliability
analysis of probabilistic competing failure systems with a single PDEP group (Wang et al., 2015). Then a
combinatorial procedure is generated for modeling the impacts of correlated and probabilistic competing
failures in reliability assessment for nonrepairable binary-state systems (Wang et al., 2018). To explore the
s-independent and s-dependent dependencies between a component’s LF and PF, a combinatorial method
is developed to evaluate reliability of non-repairable systems with probabilistic failure isolation effects and
failure propagation (Wang et al., 2017b). Competitions of probabilistic isolation and failure propagation
effect is also modeled in relay-assisted wireless sensor networks reliability analysis with multi-level
performance (Wang et al., 2018a). By incorporating multi-valued decision diagrams, reliability of systems
subject to phase-dependent probabilistic competing failures is further addressed (Wang et al., 2018b). Then
a hierarchical combinatorial method is developed to assess reliability of cascading probabilistic competing
failure systems with random failure propagation time (Zhao & Xing, 2020). The aforementioned studies
focused mainly on the PFGEs. With focusing on deterministic competing failures, a new combinatorial
method for handling deterministic competing effects in reliability assessment of systems exhibiting both
PFGEs and PFSEs is developed (Wang et al., 2012).

Previous studies indicate that existing system reliability analysis methods for probabilistic competing
failure systems have certain limitations. Specifically, methods applicable to systems with PFGE cannot be
directly applied to systems where both PFGE and PFSE coexist. Considering the complex scenarios in
practical applications where probabilistic competing failures are combined with PFGE and PFSE, this work
introduces a new combinatorial method to analyze such systems’ reliability, thereby making an original
contribution.

3. Proposed Combinatorial Methodology

A five-step general procedure is presented in this section to evaluate the reliability of probabilistic
competing failure systems experiencing both PFGEs and PFSEs. Non-repairable systems and independent
PDEP groups are assumed when presenting the methodology.
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3.1 PDEP Behavior Modeling

When developing a dynamic fault tree (DFT), the probabilistic functional dependence (PFD) gate provides
an effective approach to model the PDEP behavior, as depicted in Figure 1 (Wang et al., 2017b). The PFD
gate includes a trigger event and at least one PDEP events. Once the trigger event is activated, the
corresponding PDEP events are initiated with certain (normally different) probabilities, and the switch
symbols within the gate are used to model this probabilistic behavior. In terms of the time-domain
competition between failure propagation and isolation effects considered in this paper, the trigger
component LF is the trigger event, and the isolation of PDEP component is PDEP event. when the trigger
component fails, each corresponding PDEP component is isolated, i.e., losing its accessibility or availability,
with a certain probability.

PFD

(\

Trigger event d b

PDEP events

Figure 1. PFD gate.

3.2 Method Description
The proposed methodology assumes that propagated failures only originate from PDEP components, which
will be relaxed in Section 5. The proposed five-step reliability analysis method can be stated as follows.

Step 1. Define two disjoint trigger events according to whether the trigger component fails.

Designated as a trigger component failure event (TCFE), each event captures the dual possibilities of trigger
component failure, encompassing both its failure and non-failure conditions.

TCFE;,: Trigger component does not fail.

TCFE,: Trigger component fails.

By invoking the law of total probability, system unreliability can be defined as
Pr(sytem fails) = Pr(system fails|TCFE,;) X Pr(TCFE;) + Pr(system fails|TCFE,) X Pr(TCFE,) (1)

Step 2: Separate the impact of PFGEs for TCFE;.

When the trigger component operates without malfunction, both failure competition and failure isolation
are absent. In this state, any PFGE stemming from a PDEP component has the potential to trigger an entire
system failure. Pr(system fails|TCFE,) is calculated by decomposing PFGEs.

TCFE; can be decomposed into two complementary events, each event, referred to as a PFGE occurrence

event (PGE), represents the occurrence and non-occurrence of PFGEs in PDEP components.
PGE; 1: No PFGE occurs.
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PGE, ,: At least one PFGE is generated by the PDEP component.

Therefore,
Pr(system fails|TCFE,) x Pr(TCFE,) = ¥?—[Pr(system fails|PGE; ;) x Pr(PGE, ;)] )

According to the definition of PFGE, the system will inevitably fail when PGE;, occurs, that is,
Pr(system fails|PGE1,2) = 1. Therefore,
Pr(system fails|TCFE;) X Pr(TCFE;) = Pr(system fails|PGE; ;) X Pr(PGE; 1) + Pr(PGE, ;) 3)

Due to the consideration of both PFGEs and PFSEs in this paper, the calculation of Pr(system fails|PGE ;)
will be handled via an effective method later in Step 4.

Step 3: Separate the impact of PFGEs for TCFE,.

Time domain failure competition as well as the probabilistic failure isolation effects should be addressed
during system reliability modeling in the following steps.

Step 3.1: Establish the probabilistic dependence event space.

In order to target the PDEP component of which PF has a time domain competition with the trigger
component LF, different probabilistic dependence events are first identified, and each event is a different
combination of whether the PDEP component remain functional given that the corresponding trigger
component LF occurs. Assume there are n distinct PDEP components ¢, (x = 1,2,...,n). When the trigger
component experiences LF, the PF from component c, is isolated with a probability of p,, (isolation factor),
and thus cannot be isolated with a probability of (1 — p,.). If the component can be isolated, it is in state S,
and is referred to as an isolable component. If the component cannot be isolated, it is in state S, and is
referred to as a non-isolable component. The following dependence events are defined and each event is
represented by I}, (k = 1,2,...,2").

L=5NSN..NS,,

L=5nNnSn..nS,,

Im,=5nS,n.NnS, 4)

where, I; represents all PDEP components are isolable components and can be isolated by the trigger
component LF; I, represents that component ¢, is a non-isolable component and cannot be isolated by the
trigger component LF; I,n represents that all PDEP components are non-isolable and could not be isolated
by their respective trigger component LF. The probability of occurrence for each dependence event is
expressed as

Pr(ly) = py X p2 X .. X Dp»
Pr(l;) = (1 —p1) X Pz X ... X pp,

Pr(lzn) = (1 =py) X (1 =pz) X..X (1= pp) )

Table 1 shows the isolable component set (D;, ) and non-isolable component set (N Dy, ) of each dependence
event.
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Table 1. The Dy, and ND), of each dependence event.

Event D,, ND,,
11 {61'CZJ"'JCn} ?
L {CZr"'rCn} {Cl}
Iy o {encpien

The components in D;, do not possess sufficient capabilities to operate independently of their
corresponding trigger component, so the trigger component LF. can render the isolable components
unavailable. In addressing the time domain competition between trigger component LF and isolable
components PFs, it becomes crucial to recognize that the sequence of these two occurrences exerts a
substantial effect on the system’s overall state. Conversely, the components in ND;, have sufficient
capabilities to operate without relying on the trigger component. The LF of trigger component has no impact
on the non-isolable components, and the PFs from the non-isolable components will affect other system
components. Therefore, separating the impact of PFGEs involves considering the occurrence sequences of
the PFs of isolable components and the LF of trigger component, as well as whether the PFs of non-isolable
components occur.

Step 3.2: Separate the impact of PFGE:s.

Similar to Step 2, we define two events PGE, ; and PGE; ,.

PGEj, 1: No PFGE occurs or all PFGEs of the isolable components (referred to the components in Dy, ) occur
after the LF of trigger component. In this event, assessing the system unreliability requires further
consideration of the PFSEs originating from non-isolable components, and the time domain competition
between PFSEs of the isolable components and LF of the trigger component. This analysis will take into
account the varying dependence conditions and be thoroughly elaborated in Step 4.

PGE, ,: Either no fewer than one PFGE derived from the isolable components transpires prior to the trigger
component LF, or no fewer than one PFGE derived from non-isolable components takes place. The
occurrence of PGE, , alone is sufficient to induce total system failure, overriding any influence from PFSEs

or associated competition effects. Consequently, the conditional probability Pr(system fails|PGE2_2) is
definitively equal to 1.

According to the established dependence events [}, (k = 1,2,...,2™) in Step 3.1, each PGE can be further
defined as:

Iy N PGE,,: Components in ND;, do not experience PFGEs, and components in D;, either experience
PFGE:s after the trigger component LF or do not experience PFGEs. Note that for event I,» N PGE3 1, Dy,
is empty, i.e., no component can be isolated due to the trigger component LF appeared. When I;» N PGE; 4
occurs, the probability of system failure is equal to the probability of system failure under event PGE; 1,
that is, Pr(system fails|12n n PGEZ,l) = Pr(system fails|PGE; ;).

I, N PGE, ,: Either no fewer than one PFGE from a component within D;, occurs prior to the LF of the
trigger component, or at least one PFGE from a component in ND,, takes place.

We have
Pr(system fails|TCFE,) X Pr(TCFE,)

= Y20, 32 [Pr(system fails|I; N PGE,;) X Pr(I; N PGE, ;)] (6)
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where, Pr(system fails|I;, N PGE;,) = 1, as the occurrence of event I, N PGE, , leads to the dominance
of the global failure propagation effect, which will lead to the overall failure of the system. Therefore,
Pr(system fails|TCFE,) x Pr(TCFE,) = Y.2_,[Pr(system fails|I; N PGE, 1) x Pr(I,, N PGE, ;) +

Pr(lx N PGE,,)] (7

When evaluating Pr(system fails|I, N PGE, ;) X Pr(I N PGE, 1) (k = 1,2,3,...,2" — 1), the impact of
PFSEs cannot be overlooked, and a detailed discussion of this aspect is provided in Step 4. In this step, we
only calculate Pr(I, N PGE, ;) (k = 1,2,3, ...,2™) and Pr(Iyn» N PGE, 4).

For random variables X;, X,, ... X,, representing components’ time to failure, the sequential failure
probability for n components is calculated through multiple integration as Equation (8) (Xing et al., 2013).
Define X; — X, as the occurrence of event X; prior to event X,.

Pr(Xy = X > = X)) = [0 [ [l Ty fr,(r)dty o dty (8)

Let cxpg (x =1,2,...,n) denote the event of the PFGE of occurrence for component c,, and let event T
represent the trigger component LF. The probability of occurrence of events I) N PGE, 5, I, N PGE, 5(k =
2,...,2" = 1) and I;n N PGE, ; can be calculated using Equation (8) in a straightforward manner as

Pr(l; N PGE,,) = Pr(ly) X Pr[(cipg U capg -+ U Cnpg) = T

= Pr(l) X fy J; f(cupgUcspg-cupg) F1) X fri(F2)dTadry ©

((Clpg U Ck-1)pg) N Tl)

U ((Ckpg U Cnpg) = Tl)

= Pr(I}) x [Pr ((clpg U C(r—1)pg) N Tl) +Pr ((ckpg U Cppg) = Tl) — Pr(cipg U Ckm1)pg) X
Pr ((Ciepg U Cupg) = TL)| (10)

Pr(Iy;» N PGE, ;) = Pr(I;n) X Pr{(cipg U capg =+ U Cnpg) N T (11)

Pr(I;, N PGE,;) = Pr(l}) X Pr

According to the definition of event I,n N PGE, 4, Pr([ on N PGEzrl) is calculated by Equation (12) as
Pr(Iyn N PGEy ;) = Pr(Iyn) X Pr|(Cipg N T2pg =+ N Copg) N T1] (12)

Step 4: Define the events to address PFSEs and evaluate the conditional system failure probabilities.

For calculating Pr(system fails|PGE] ;) and Pr(system fails|I,» N PGE, 1), since no PFGE occurs under
these two events, it is only necessary to consider how the PFSEs of PDEP components affect the system
state. An event space is constructed to address PFSEs, with each element, called a combinational PFSE
occurrence event (PSE), encoding the presence or absence of the PFSE event for each PDEP component.
PSE; (i =1,2,...,2™) consists of 2™ events, corresponding to the maximum of m independent PFSE
events could occur during trigger component operation. Let cyps(x = 1,2,...,n) represent event that the
PFSE of component c,, occurring.

PSE; = Tips N Tapg N ... N Trps,
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PSEZ = Clps N C2ps n..nN Cnpsa
PSEyn = C1ps N Caps N...N Cpps (13)

where, PSE, represents no PFSE occurring; PSE, represents that the PFSE of component ¢; occurs; PSE,
represents all PFSEs occurring.

Pr(system fails|PGE1,1) and Pr(system fails|12n N PGE2,1) can be computed as
Pr(system fails|PGE1,1) = Pr(system fails|12n N PGE2,1)

= Y27 [Pr(system fails|PSE;) x Pr(PSE;)] (14)

For events of I, N PGE; 1, (k = 1,2,...,2™ — 1), although the PFGE:s of isolable components are isolated,
PFSEs could occur either before or after the trigger component LF. Therefore, the PFSEs should be
addressed in the calculation of Pr(system fails|l, N PGE, ;) (k = 1,2,...,2™ — 1). All propagation effects
are isolated if no PFSE occurs or PFSEs of components in D;, occur after trigger component LF. However,
when no fewer than one PFSE deriving from a component in D;, occurs before the trigger component LF
or any PFSE deriving from the component in ND;, happens, the PFSEs dominate. In order to consider the
combination of PFSE events and the sequential occurrence between the trigger component LF and PFSEs
of the components in Dy, , an event space PSEy; (i = 1,2,..., 2%+bk) consisting of 2% +Pk events should

be set up. This event space encompasses the combinatorial occurrence and non-occurrence of a; competing
PFSE events for components in D, (representing that PFSEs of components in D;, happen before the

trigger component LF), and b, PFSE events for components in NDy, . Therefore,

Pr(system fails|l, N PGE,,) X Pr(I;, N PGE, 1)

= Pr(l) X $24" ¥ [pr(system fails|PSEy ;) X PSEy] (15)
To determine the conditional failure probability of system, within the fault tree (FT) model of system, events
denoting the trigger component LF and the corresponding isolation of isolable component are substituted
with constant "1" (TRUE). Simultaneously, considering the impact of PFSEs on the system, component
failure events induced by PFSEs are also replaced with constant "1" to derive a reduced system FT.

Following the reduced FT, a BDD is built to model the simplified system, from which the conditional failure
probabilities under PSEs occurrences are obtained through BDD evaluation.

Step 5: Integrate to obtain the system failure probability.
Step 2 to Step 4, the unreliability of system is determined by Equation (16).

Pr(system fails)
= Pr(system fails|TCFE,) X Pr(TCFE;) + Pr(system fails|TCFE,) X Pr(TCFE,)

= Y27 [Pr(system fails|PSE;) x Pr(PSE;)] x Pr(PGEy ;) + Pr(PGE, ;) +
iz_ll {Pr(lk N PGEZ,Z) + Pr(I,) x Zf:’fbk[Pr(system failslPSEk,i) X Pr(PSEk,L-)]} +

Pr(I,n N PGE, ;) x Y20, [Pr(system fails| PSE;) x Pr(PSE;)] + Pr(I;n N PGE, ;) (16)
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This method achieves effective decomposition and processing of the problem by breaking down the original
reliability problem into multiple simplified sub-problems. The flowchart is shown in Figure 2.

The probabilities of LF for
individual components, PFGE and

PFSE for PDEP components. The failure probability of
3 system.
Define two disjoint trigger events according to whether T
the trigger component fails. (Step 1)

Integrate to obtain the system failure

bability (Step 5
Does the trigger component fail? probabulity (Step 5)

No

Separate the impact of PFGE when the trigger
component does not fail. (Step 2)

Yes
Does any PFGE occur? No—

Construct a BDD for the reduced system FT.

Replace the events representing the failure of|
the trigger component and related 1solable

Yes components with the constant "1" to obtain a
Separate the impact of PFGE when the reduced FT of the system.
No y ;
Establish the probabilistic dependence event Replace the events representing the affected

components' failures with constant "1" (TRUE)
in the FT.
¥

I
Yes

space. (Step 3.1)

I
1
1
I
I
I
I
I
I
I
1
|
1
trigger component fails. (Step 3) ! T
* |
I
|
I
1
1
1
I
I
I
I
1

Separate the impact of PEGEs.(Step 3.2)

Does any PFGE
oceur before the LF of the trigger
component?

component?

No

Figure 2. The flowchart of the proposed combinatorial methodology.

4. Case Study

To demonstrate the detailed application and effectiveness of the proposed combinatorial method, a case
study on reliability analysis of SHSS is presented in this section since SHSS has been gradually embedded
in all aspects of modern life with extremely wide applications. Figure 3 shows the considered example
SHSS for security application, which can prevent intrusion by strangers and protect personal safety (Kodali
et al., 2016; Hoque & Davidson, 2019; Zhao & Xing, 2023). A human infrared sensor (4) and a door
magnetic sensor (B) are set up outside the door. 4 can monitor the activities of people passing through the
doorway in real-time through sensing the heat of the human body using infrared technology. B is used to
detect the opening and closing statuses of the door and sends a signal immediately when the status of the
door is changed. In this way, even if one of the sensors fails, the system is still able to monitor the situation
outside the door. To achieve long-distance signal transmission, both 4 and B need to transmit the signals to
the central control system via a relay node (R). A PFD behavior exists between R and (4, B), and the LF of
R can cause isolation effect to the two sensors in a probabilistic manner. Specifically, when R is locally
failed, if 4 or B has enough residual power to transmit the signals to the central control system, no isolation
effect will occur; conversely, A4 or B has insufficient residual power to enable direct signal transmission to
the central control system, isolation effect will occur. A human body sensing sensor (C) is set indoors to
monitor the real-time changes in human movements. When the sensor detects abnormal movement patterns,
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such as a sudden fall or prolonged immobility, it will immediately trigger an alarm and send the information
to the central control system. The system is also equipped with a smart bracelet (D) that integrates multiple
sensors capable of monitoring the wearer’s physiological status and activity in real-time. Additionally, the
wristband featuring fall detection and an emergency call button further enhances the safety and protection
capability of the SHSS. In SHSS, all components experience LF (malfunction). Only sensors 4 and B can
experience both PFGEs (jamming attacks through signal interference) and PFSEs (targeted attacks). Define
events X, Xpg and Xps as the event of LF, PFGE, and PFSE for component X, where X could be
components R, A, B, C, or D. Table 2 enumerates component failure events and the components affected
by each event categorized by global or selective failure propagation effects. This paper assumes PFSEs only
cause LFs in affected components. For instance, PFSE originating from 4 only causes the LF of B, while
the PF (either PFGE or PFSE) originating from B can still happen due to the independence of LF and PF
for each component. As long as either 4 or B is operational, the outdoor security module is considered
reliable. When both the outdoor and indoor sensors are unavailable, the outdoor and indoor security
modules are deemed to have failed. The entire SHSS for security is considered to have failed only when the
smart bracelet, outdoor, and indoor sensors all malfunction. The system FT model is built as in Figure 4.

O RC
W

Smart
Bracelet

A

Q" P
a Human Infrared

R Sensor
Body Sensing
Sensor n < 1
{
Central Control D

System Door Magnetic
Sensor

B

Figure 3. An example SHSS.

Table 2. SHSS component failure events and affected components.

Component Event Affected components by failure propagation
R RI None
Al None
A Apg All
Aps {B,C}
Bl None
B Bpg All
Bps {A, D}
C Cl None
D DI None
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SHSS Failure

Figure 4. The FT model.

All component failure times are assumed to follow exponential distribution in this paper. Table 3 lists the
LF and PF rates of all components (Wang et al., 2022; Chen et al., 2024). The probability density function
(pdf) of the failure rate is presented in Equation (17) and cumulative distribution function (cdf) is presented
in Equation (18). The analysis is conducted at a mission time of ¢ = 1000 hours.

Table 3. Failure rates of components(/#™!).

Component PFGE rate PFSE rate LF rate

4, B 0.00005 0.00005 0.0001

R,C,D 0 0 0.0001
f() =2e~ 7
Fit)=1—eH (18)

Using the combinatorial method introduced in Section 3, the SHSS reliability analysis steps are shown
below:

Step 1: Define two disjoint trigger events according to whether the trigger component fails.

TCFE;: The relay node R does not experience LF during working time.

TCFE,: The relay node R experiences LF during working time.

Thus, the unreliability of SHSS can be expressed as

Pr(SHSS fails) = Pr(SHSS fails|TCFE;) X Pr(TCFE;) + Pr(SHSS fails|TCFE,) X Pr(TCFE,) (19)

Step 2: Separate the impact of PFGEs for TCFE};.

Since TCFE; means that R does not fail and the failure competition does not occur, two events PGE; ; and
PGE), , are defined for whether PFGEs occur within the SHSS.

PGE; 1: No PFGE occurs within the SHSS.

PGE, ,: At least one PFGE occurs within the SHSS.

Therefore,
Pr(SHSS fails|TCFE;) x Pr(TCFE,) = Pr(SHSS fails|PGE; ;) X Pr(PGE; 1) +
Pr(SHSS fails|PGE; ,) X Pr(PGE, ;) (20)
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In Equation (20,
Pr(PGE;,1) = Pr(Apg N Bng NRI) = (1 = qupg) X (1 = qapg) X (1 — qa1) o)
Pr(PGE, ;) = Pr(TCFE,) = Pr(PGEy 1) = (1 - qgo) — Pr(PGE) 1) 22

Since the failure probabilities of the components are as follows,
Qapg = ABpg = Qaps = Qpps = 1 — 70000051000 = 0,04877,

qri =94 = qp1 = qc1 = qpy = 1 — e700001x1000 = 0 09516,

Pr(PGE,; ) = 0.81873 and Pr(PGE, ;) = 0.08611. From the definition of PGE| ,, in the case that R does
not fail, as long as PFGE occurs in the system, the whole SHSS fails, so Pr(SHSS fails|PGE1,2) = 1. The
only value unknown in Equation (20) is Pr(SHSS fails|PGE1,1), in the case that R is functional and no PFGE
occurs in the system, evaluating the SHSS reliability should not only consider the component LF, but also
address the impact of PFSEs on the system. The evaluation of Pr(SHSS fails|PGE1,1) will be given in Step
4.

Step 3: Separate the impact of PFGEs for TCFE,.
Step 3.1: Establish the probabilistic dependence event space.

Four events are decomposed as shown in Table 4, where p, = 0.1 and pz = 0.9 are the isolation factors
modeling the probabilistic isolation effects from LF of R to components 4 and B.

Table 5 shows the D;, and ND;, of each dependence event. When the LF of R occurs, the sensors within
Dy, have insufficient remaining power to enable direct transmission to the central control system and are
isolated from the SHSS. There is a time domain competition between the LF of R and the PFs of the isolable
components. Conversely, the sensors within ND;, have sufficient remaining power to enable direct
transmission to the central control system. The LF of R has no impact on the non-isolable components.
Once the PFs from the non-isolable components occur, they will affect the SHSS.

Table 4. Probabilistic dependence events for the example SHSS.

Event Definition Occurrence probability
I ANB P X Py
I, AnB (1 =py) Xpg
I ANnB paX (1 —pp)
Iy AnB (A-p) %1 —pp)

Table 5. The Dy, and ND, of each dependence event.

Event Dy, ND,;,
I {A,B} [0)
L {B} A}
I3 fA} {B}
1, ) {4,B}
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Step 3.2: Separate the impact of PFGEs.

PGE, ;: No PFGE occurs within the SHSS or all PFGEs originating from the isolable components (i.e.,
components in Dy, ) occur after the LF of R.

PGE,; ,: No fewer than one PFGE of the isolable component happens before the LF of R or at least one
PFGE of the non-isolable component (i.¢., components in ND;, ) occurs.

According to the established dependence events I, (k = 1,2,...,4) in Step 3.1, each PGE can be further
distinguished as two disjoint events I, N PGE, ; and I, N PGE; ,.

We have
Pr(SHSS fails|l, N PGE,,) % Pr(I; N PGE, 1)

Pr(SHSS fails|TCFE;) X Pr(TCFE;) = ¥%_ 23
( | 1) X Pr(TCFEL) = Diems +Pr(SHSS fails|I,, N PGE, ;) x Pr(I; N PGE, ) (23)

where, Pr(SHSS fails|l,, N PGE,,) = 1.

Therefore,

Pr(SHSS fails|TCFE;) x Pr(TCFE;) = ¥j-,[Pr(SHSS fails|l;, N PGE, ;) X Pr(Ix N PGE,,) + Pr(l, N

PGE,,)| (24)

where, Pr(SHSS fails|l, N PGE,,) X Pr(Iy N PGE, ) (k = 1,2,3) and Pr(SHSS fails|I, N PGE,,) will
be solved in the Step 4 due to the consideration of PFSEs. In this step, Pr(Ik n PGEZ_Z) (k=1,2,3,4) and
Pr(I4 n PGEZ_l) will be solved as the following:

I; N PGE, ,: No fewer than one PFGE originating from 4 or B happens before the LF of R. Pr(11 N PGEZ,Z)
is calculated through the following formula.

Pr(; n PGEZ,Z) = Pr[(Apg U Bpg) — RIl] X Pr(l;) (25)
Due to

Pr(Apg UBpg) =1—Pr(Apg N Bpg) =1 — e~ (apg+Anpg)t (26)
fapguspg = (Aapg + Appg e~ apatiopa)t (27)

the solution of Pr[(Apg U Bpg) — Rl] in Equation (25) is

Pr[(Apg u Bpg) - Rl] = fot frtl prgUBpg(Tl)le(TZ)dTdel = fot fftl(AApg +

Appg)e” PavatA8pg)Ti ) o= RIT2 4T, d T, = 0.00453 (28)
therefore, Pr(I; N PGE,,) = 0.00041.

I, N PGE; ,: Either PFGE from 4 occurs, or PFGE from B occurs prior to the LF of R. Pr(12 N PGE2,2) is
calculated through the following formula.
Pr(I, N PGE,,) = Pr[(Apg N Rl) U (Bpg - R1)] = {Pr(Apg N Rl) + Pr(Bpg - RI) —

Pr[Apg n (Bpg — RD]} x Pr(I;) (29)
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Similar to Equation (28), Pr(Bpg — RI) = 0.00230. Therefore, Pr(I, N PGE, ;) = 0.00553.

I3 N PGE, ,: Either PFGE from B occurs, or PFGE from A4 occurs prior to the LF of R. Pr(13 N PGEZ,Z) is
calculated through the following formula.

Pr(I3 N PGE,,) = Pr[(Apg — R1) U (Bpg N R1)] x Pr(I3) = {Pr(Bpg - RL) + Pr(Apg N RI) —
Pr[(Apg — Rl) n Bpgl} x Pr(l5) (30)

where, Pr(dpg — Rl) = 0.00230. Therefore, Pr(I3 N PGE,,) = 0.00007.
I, N PGE,,: Any PFGE originating from A4 or B occurs. Pr(14 N PGEZ,Z) is calculated through the
following formula.

Pr(1, N PGE,,) = Pr[(Apg U Bpg) N RI] x Pr(I,) = 0.00082 (31)

I, N PGE, ;: No PFGE occurs to 4 or B. Pr(l4 n PGEZ,l) is calculated through the following formula.
Pr(I, N PGE, 1) = Pr[(Apg N Bpg) N RI] x Pr(I,) = 0.00775 (32)

Step 4: Define the events to address PFSEs and evaluate the conditional system failure probabilities.

Pr(SHSS fails|PGE1,1): R always remains operational and no PFGE occurs during working hours, it is only
necessary to consider how PFSEs of 4 and B affect the system state.

Table 6. Event space for considering PFSEs under the condition PGE ;.

Event Event definition Unaffected components Occurrence probabilistic
PSE1 A—pS n B_ps {A: B,C, D} (1 - QAps) X (1 - qus)
PSE, Aps N B_ZJS {D} Qaps X (1 - qus)
PSE, Aps N Bps [ (1 = qaps) X daps
PSE, Aps N Bps () 9aps X 9Bps

Table 6 outlines the construction of an event space, with the second column defining events via PFSE
occurrence combinations, the third column identifying unaffected components for each PSE, and the fourth
column quantifying PSE occurrence probabilities. By invoking the law of total probability, it follows that

Pr(SHSS fails|PGE; ;) = Y{_,[Pr(SHSS fails|PSE;) x Pr(PSE,)] (33)

We assess the conditional failure probability of SHSS when each event occurred.

Pr(SHSS fails|PSE;): In this case, R does not fail, and neither 4 nor B experiences PFSE during mission
hours. Figure 5 shows the reduced FT model, and Figure 6 is the BDD model of the reduced FT. Based on
the BDD model, Pr(SHSS fails|PSE;) = 0.00984.

Pr(SHSS fails|PSE,): The LF of component D determines the failure state of the SHSS. Figure 7 shows
the reduced FT, and thus Pr(SHSS fails|PSE,) = 0.09516.
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SHSS Failure|PSE1

LDE®OO

Figure 5. Reduced FT for evaluating Pr(SHSS fails|PSE; ).

Figure 6. BDD model for evaluating Pr(SHSS fails|PSE,).

SHSS Failure|PSE>

Figure 7. Reduced FT for evaluating Pr(SHSS fails|PSE,).

Pr(SHSS fails|PSE3) or Pr(SHSS fails|PSE,): All components within the SHSS fail due to the occurrence
of PSE events. Therefore, Pr(SHSS fails|PSE;) = Pr(SHSS fails|PSE,) = 1.

Integrating the results obtained above, the result of Equation (33) is
Pr(SHSS fails|PGE; ;) = Y.{_;[Pr(SHSS fails|PSE;) x Pr(PSE;)] = 0.06209.
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Pr(SHSS fails|I; N PGE, ;) X Pr(I; N PGE; 1): A and B will become unavailable due to the failure of R. In
this situation, it is necessary to consider the time domain competition between the PFSEs of 4 and B and
the LF of R.

Build an event space as shown in Table 7. It provides the definition of each event and the components that
remain unaffected within the system when the event occurs. Therefore,
Pr(SHSS fails|l; N PGE,,) x Pr(I; N PGE, )

= Pr(l;) X Y{—,[Pr(SHSS fails|PSE; ;) x Pr(PSE, ;)] (34)

Table 7. Event space for considering PFSEs under the condition I; N PGE, ;.

Event Event definition Unaffected components
PSE, , No PF occurs before the occurrence of Rl {D}

PSE,, Only Aps occurs before RI occurs {D}

PSE; 5 Only Bps occurs before Rl occurs [9)

PSE; , Aps and Bps both occur before Rl occurs [0)

The occurrence probability of each event and the SHSS failure probability under each event are evaluated.

PSE; 1: No PF occurred before the occurrence of RI.

Pr(PSE, ;) = Pr(Rl) — Pr(at least one PF happens before Rl happens) = Pr(Rl) — Pr[(4Aps U Apg U
Bps U Bpg) = RI] (35)

In Equation (35),

t ot t ot
Pr[(Aps U Apg U Bps U Bpg) — Rl] = fO le fapsuapgupsubpg (T1) X fri(T2)dTodT, = fo frl [(AAps +
Apg + Aps + ABpg) x e~ (Raps+Aapg+Apps+appg)T1 i Art X e_ARlTZ] dt,dty = 0.00877,
therefore, Pr(PS 51,1) = 0.08639. Since the failure status of the SHSS in this case only depends on whether
D fails, Pr(SHSS fails|PSE; 1) = qp; = 0.09516.

PSE; ,: Only Aps occurred before RI.
Pr(PSE, ) = Pr(dps - Rl) — Pr{[Aps n (Apg U Bps U Bpg)] - RI} (36)

In Equation (36),
t ot
Pr{[Aps n (Apg U Bps U Bpg)] - RI} = J-O f‘rl prsn(AngBpsUBpg) (t1) X fri(T2)dTdTy =

’1Aps+)“Apg
Ao + _( Aapg >1:1—( Aapstadapg >Xe_<+/13ps+/13pg>71
rg X e +/18ps+/’prg +ABPS+)’BPQ

t ot -2
fo fT1 Aaps X €~ 4pst1 + ( X Apy X

Bps T Aspg
e %2 dr,dr; = 0.00022,

Therefore, Pr(PSELZ) = 0.00209. Since in this case the failure status of the SHSS only depends on
whether D fails, Pr(SHSS fails|PSE; ;) = qp; = 0.09516.

PSE; 3: Only Bps occurred before RI.
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Pr(PSE;3) = Pr(Bps - Rl) — Pr{[Bps n (Apg U Aps U Bpg)] - Rl} (37)

Similarly, Pr(PSEm) = 0.00209. Since all system components are affected by the occurrence of PSE] 3
and failed, Pr(SHSS fails|PSE; 3) = 1.

PSE; 4: Aps and Bps both occur before RI.
Pr(PSE, ,) = Pr[(Aps N Bps) — RI] — Pr{[Aps n Bps n (Apg LU Bpg)] - R} (38)

It is easily known that Pr(PSE; ,) = 0.00007 and Pr(SHSS fails|PSE, ,) = 1.

Integrating the results obtained above, the result of Equation (34) is
Pr(SHSS fails|l; N PGE, 1) X Pr(I; N PGE,;) = 0.00095.

Pr(SHSS fails|12 N PGEZ'l) X Pr(12 N PGEzll): Only B will become unavailable due to the LF of R, while
the PFSE of 4, if happens, can still affect other components. In this case, the time domain competition

between the PFSE of B and the LF of R should be addressed.

Establish an event space considering the PFSEs as shown in Table 8. We have
Pr(SHSS fails|l, N PGE,,) x Pr(I, N PGE,,) = Pr(l;) X Y{_,[Pr(SHSS fails|PSE,;) x Pr(PSE,;)] (39)

Table 8. Event space for considering PFSEs under the condition I, N PGE, ;.

Event Event definition Unaffected components
PSE, , Aps does not occur and Bps occurs after Rl occurs {A,C,D}

PSE,, Aps occurs and Bps occurs after Rl occurs {D}

PSE, 5 Aps does not occur and Bps occurs before Rl occurs [4)

PSE, , Aps occurs and Bps occurs before Rl occurs [0}

Similarly, we evaluate the probability of each event occurring and the corresponding conditional failure
probability of the SHSS given each event.

PSE,,: Aps does not occur and Bps occurs after Rl occurs. Pr(PSEzjl) is calculated through the

following formula.
Pr(PSE, 1) = {Pr(Rl) — Pr[(Bps U Bpg) - RI]} x Pr(Aps n Apg) = 0.08201 (40)

l SHSS Failure|PSE21 |

Figure 8. Reduced FT for evaluating Pr(SHSS fails|PSE2‘1).
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Pr(SHSS fails|PSE2_1): In this case, the components 4, C, and D in the SHSS are not affected. Figure 8
shows the reduced FT, and Figure 9 is the BDD model of the reduced FT.

Figure 9. BDD model for evaluating Pr(SHSS fails|PSE, ;).

According to the BDD model, Pr(SHSS fails|PSE, ;) = 0.01725.

PSE,,: Aps occurs and Bps occurs after Rl occurs. Pr(PSEZ,Z) is calculated through the following
formula.
Pr(PSE,,) = {Pr(Rl) — Pr[(Bps U Bpg) - RI]} x Pr(4Aps n Apg) = 0.00420 (41)

Pr(SHSS fails|PSE2_2): If Aps occurs, B and C will be affected and fail; Bps occurs after the occurrence of
Rl and is isolated. Only D is functioning normally, Pr(SHSS failslPSEzjz) = 0.09516.

PSE, 5: Aps does not occur and Bps occurs before Rl occurs. Pr(PSEzjg) is calculated through the
following formula.
Pr(PSE,3) = {Pr(Bps - RL) — Pr[(Bps N Bpg) — RI]} x Pr(Aps n Apg) = 0.00201 (42)

Pr(SHSS fails|PSE2‘3): Aps does not occur, B and C will not be affected; however, Bps occurs before the
occurrence of Rl, causing A and D to fail due to failure propagation effect. The whole system fails and
Pr(SHSS fails|PSE, 3) = 1.

PSE, ,: Aps occurs and Bps occurs before Rl occurs. Pr(PSEM) is calculated through the following
formula.

Pr(PSE,,) = {Pr(Bps - RL) — Pr[(Bps n Bpg) — RI]} X Pr(Aps N Apg) = 0.00010 (43)

Pr(SHSS fails|PSE2,4): If Aps occurs, B and C will be affected and fail; if Bps occurs before Rl occurs, 4
and D will fail as a result of the propagation effect of Bps . The whole system fails,
Pr(SHSS fails|PSE, ,) = 1.

Integrating the results obtained above, the result of Equation (39) is
Pr(SHSS fails|I, N PGE, ) x Pr(I, N PGE,,) = 0.00319.

Pr(SHSS fails|13 N PGEZ,l) X Pr(13 n PGEzjl): Only A will become unavailable due to the LF of R, and
the PF of B is not affected by the LF of R. Under this scenario, the time domain competition of the PFSE
of A with the LF of R and whether the PFSE of B occurs need to be considered.
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An event space considering the PFSEs is established as shown in Table 9. It is derived that
Pr(SHSS fails|l3 N PGE, ;) X Pr(I3 N PGE,,) = Pr(I3) X Y.i_,[Pr(SHSS fails|PSEs;) x Pr(PSE;;)]

Table 9. Event space for considering PFSEs under the condition I3 N PGE, ;.

(44)

Event Event definition Unaffected components
PSE; Aps occurs after Rl occurs and Bps does not occur {B,C,D}

PSE;, Aps occurs after Rl occurs and Bps occurs 4]

PSE; 3 Aps occurs before Rl occurs and Bps does not occur {D}

PSE; 4 Aps occurs before Rl occurs and Bps occurs [0)

Assess the occurrence probability of each event and the SHSS failure probability under each event.

PSEj3 4: Aps occurs after Rl occurs and Bps does not occur. Pr(PSE3,1) is calculated through the following

formula.

Pr(PSE; ;) = {Pr(Rl) — Pr[(Aps U Apg) — RI]} X Pr(Bps n Bpg) = 0.08201

(45)

Pr(SHSS fails|PSE3‘1): Due to the failure of R, A which depends on R will become unavailable, and the
PFSE of B does not occur and the PFSE of 4 does not occur before the failure of R. In this case, the
components not affected in SHSS are B, C, and D. Figure 10 shows the reduced FT, and Figure 11 shows
the BDD model of the reduced FT. From the BDD model, Pr(SHSS fails|PSE, ;) = 0.01725.

l SHSS Failure|PSE3 1 |

AND

[\

Figure 10. Reduced FT for evaluating Pr(SHSS fails|PSEs ;).

Figure 11. BDD model for evaluating Pr(SHSS fails|PSEs ;).

PSE3,: Aps occurs after Rl occurs and Bps occurs. Pr(PSE3r2) is calculated through the following

formula.
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Pr(PSE;,) = {Pr(Rl) — Pr[(Aps U Apg) — RI]} X Pr(Bps N Bpg) = 0.00420 (46)

Pr(SHSS fails|PSE3,2): If Aps does not occur before RI occurs, B and C will not be affected; if Bps occurs,
A and D will fail as a result of the propagation effect of Bps . The whole system fails,
Pr(SHSS fails|PSE3 ;) = 1.

PSE3 3: Aps occurs before Rl occurs and Bps does not occur. Pr(PSE373) is calculated through the
following formula.
Pr(PSE;3) = {Pr(Aps — RI) — Pr[(Aps N Apg) - RI]} x Pr(Bps N Bpg) = 0.00201 47)

Pr(SHSS fails|PSE3‘3): If Aps occurs before Rl occurs, B and C will be affected and fail; if Bps does not
occur, 4 and D will not be affected since the propagation effect of Bps is avoided. Only D is still running
normally, Pr(SHSS fails|PSE; 3) = 0.09516.

PSE3 ,: Aps occurs before Rl occurs and Bps occurs. Pr(PSE3,4) is calculated through the following
formula.
Pr(PSE3_4) = {Pr(Aps — Rl) — Pr[(Aps N Apg) — RIl]} X Pr(Bps N Bpg) = 0.00010 (48)

Pr(SHSS fails|PSE3‘4): If Aps occurs before Rl occurs, B and C will be affected and fail; if Bps occurs, 4
and D will fail as a result of the propagation effect of Bps. Therefore, the whole system fails and
Pr(SHSS fails|PSE;3,) = 1.

Integrating the results obtained above, the result of Equation (44) is
Pr(SHSS fails|l3 N PGE, 1) x Pr(I3 N PGE, ;) = 0.00006.

Pr(SHSS fails|14 N PGEZ'l): Neither 4 nor B will become unavailable by the LF of R. Similar to the event
that R remains operational during working hours, the time domain competition of the PFSE of 4 and B with
the LF of R is not considered. That is, the event space to consider the PFSEs is PSE; (i = 1,2,3,4).
Pr(SHSS fails|14 N PGEZ,l) can be obtained as

Pr(SHSS fails|l, N PGE, ) = X{—,[Pr(SHSS fails| PSE;) x Pr(PSE;)] = 0.06209 (49)

Step 5: Integrate to obtain the system failure probability.

According to Step 2 to Step 4, the unreliability of the SHSS is obtained by
Pr(SHSS fails) = Pr(SHSS fails|TCFE;) X Pr(TCFE;) + Pr(SHSS fails|TCFE,) X Pr(TCFE,)
4

= Z[Pr(SHSS fails|PSE;) x Pr(PSE;)] x Pr(PGE,,) + Pr(PGE, ,)

i=1
4
+ Z {Pr(lk) X Z[Pr(SHSS fails|PSEy;) x Pr(PSEy;)] + Pr(Ix N PGE,,)

k=1 =1

4
+ Pr(I, N PGE,,) X Z[Pr(SHSS fails|PSE;) x Pr(PSE;)] + Pr(I, N PGE, )

i=1
= 0.14844.
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By solving the Markov model generated for the SHSS with the same component failure rates, we derived
the probability of the system in failed state 21, which is in full agreement with the results derived by the
combinatorial method proposed in Section 3.2 (Wang et al., 2017a).

In the analysis of SHSS, the event space of TCFE is 2. For TCFE;, since there are two PDEP groups, four
event spaces are decomposed, generating four reduced problems to be dealt with for TCFE;. For TCFE,,
there is a more complex time domain competition, which can be decomposed into 4 sub-events according
to the results of competition between PFGE and isolation effect. Among them, 3 events need to be further
decomposed into 22 = 4 event spaces when considering 2 PFSE events, while the other event needs to be
considered with the same issues as TCFE; when considering PFSEs. In other words, for TCFE,, there are
12 reduced problems to be dealt with. When analyzing the SHSS reliability with the combinatorial method
proposed in this paper, only 16 reduced problems need to be considered. Compared to evaluating the 22-
state Markov model, which corresponds to 22 differential equations, the proposed approach in this paper is
computationally more efficient.

The proposed method also does not restrict the failure time distribution of components. For SHSS, we
assume that the failure times follow the Weibull distribution in Table 10. The pdf and cdf of the Weibull
distribution with scale parameter 1y, and shape parameter ay, are shown in Equation (50) and Equation
(51). The analysis considers a mission time of ¢ = 1000 4.

Table 10. The Weibull time-to-failure parameters of components.

c . PFGE PFSE LF
0mp0nen aW /1W aW /1W (XW /1W
4 B 2 0.00005 2 0.00005 2 0.0001
R C, D N } N } 2 0.0001
— - a
fwr(®) = aydy W tow 1= Awd™ (50)
_ a
Fip(£) = 1 — e~ GwdW (51

Applying the Section 3.2 method steps to numerical analysis yields an SHSS failure probability of 0.00758
for Weibull-distributed component failure times.

5. Generalization of the Proposed Combinatorial Methodology

In Section 3.2, we only consider the PFs from PDEP components. In fact, including the trigger component,
those non-PDEP components can also experience PFs. This section generalizes the combinatorial method
to analyze the case where non-PDEP components of the system also have both PFGEs and PFSEs. The
steps comprising the generalized methodology are detailed below:

Step 1: Separate the PFGEs from the non-PDEP components.

Define event E;, referred to as no fewer than one PFGE from original non-PDEP components occurs.
Define event E, that is disjoint with E;, referred to as no PFGE from original non-PDEP components occurs.

The system unreliability is defined as follows
Pr(system fails) =Pr(system fails|E;) X Pr(E;) + Pr(system fails|E,) X Pr(E,),

where, Pr(system fails|E;) = 1.
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Step 2: Handle the PFSEs from the original non-PDEP components.

Similar to the Step 4 in Section 3.2, assume that there are u independent PFSEs from original non-PDEP
components, and establish an event space that comprising 2% combined events. Each event, referred to as
a combinational PFSE occurrence event (NPSE), embodies a unique combination of PFSE event presences
and absences. The system unreliability is evaluated by

Pr(system fails) = Pr(E;) + Zizzl[Pr(system failure| NPSE;) X Pr(NPSE;)] X Pr(E,)

Step 3: Evaluate the conditional system failure probability for combined events via the proposed
methodology in Section 3.2.

Step 4: Compute system unreliability via the total probability law.

In particular, if only the PFGEs from original non-PDEP components are considered, only Step 1 needs to
be added before the proposed method in Section 3.2. If only the PFSEs from original non-PDEP components
are considered, only Step 2 needs to be added before the proposed method in Section 3.2.

6. Complexity Analysis

The proposed method is verified by conducting SHSS reliability analysis with a Markov-model. Compared
with evaluating a 22-state Markov model equivalent to 22 differential equations, the proposed combinatorial
method requires only 16 simplifications for analyzing the example SHSS. In comparison with Markov
methods, the proposed method offers higher analytical efficiency when dealing with the SHSS subject to
probabilistic competing failures with complex propagated effects. To be more general, the space and time
complexity are discussed as follows:

Consider a system consisting of x independent trigger components, m PDEP components, and n
components that do not belong to any PDEP groups. Assume that the total number of system components
isN,then N = x + m + n. There are a PFSE events within the system.

For the proposed combinatorial method, when establishing the TCFE event space according to whether the
trigger components fail or not, 2¥ TCFE; events are generated. Among them, for the event TCFE; where
all trigger components function normally, the discussion on probabilistic dependent behavior is reduced.
For TCFE;, the PGE space is constant 2. Under the event PGE; ;, a PFSE event space with size of 2 is
established and the PFSE events are evaluated separately. In the worst-case scenario, a BDD model is

established for each PFSE event. The reduced FT has fewer nodes than n + %, so the size of the BDD model

for each combinatorial PFSE event must be less than 2"z (Shrestha et al., 2009), and the space required

n+>+a

for analyzing conditional system unreliability given the occurrence of TCFE] is less than 2 . For other

events TCFE; (i > 1) with m PDEP components, the dependence event space (i.e., size of I};) is 2™. For
the combined event I, N PGEj ;, the PFSEs of isolable and non-isolable components are considered. PFSE
event space with a size of 2% is established. In the worst-case scenario, the BDD model size for each

combinatorial PFSE event must be less than 22 At this time, the space required for analyzing TCFE;

(i >1) is less than 2% 2 4 (2% — 1) 27445 = 2(x+m+a+n+7) = 2(N+7+a). When the event

PGE, ; occurs, causing the system to fail, and further decomposing analysis under this event is reduced.
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Thus, the proposed combinatorial method exhibits a space complexity lower than O(Z(N+7+a)>. For the

Markov method, the worst-case number of states for k variables are 2¥. Therefore, for x + m + m+n +
a input variables, that is, N + a + m input variables, there are 2(N+m+a) giates in the Markov model
(Reibman et al., 1989). So, the Markov method space complexity is O(2WV+m+®),

The proposed method uses divide-and-conquer to split the reliability problem into independent simplified
ones. For the simplified problem, the “depth-first traversal” algorithm on the BDD is applied to derive root-
to-terminal node paths. This traversal exhibits a computational complexity of O(k), with k£ denoting the
BDD model’s node count (k < 2™ /n). This implies that the time complexity of the proposed combinatorial
method incorporating the traditional BDD is less than O(2"/n). While for the Markov method, the
computational complexity is O(w * v), with w being the number of solution steps (w = O(m?) for
equilibrium in acyclic chains ), v = O(m?) as the per-step complexity, and m = O(Z(N +m+a)) defining
the system state count (Amari & Misra, 1997).

Table 11 presents the complexity comparison between the proposed combinatorial approach and the
Markov method. Based on the afore-mentioned discussion and Table 11, the combinatorial method
proposed in this paper is superior to the Markov method in terms of both space complexity and time
complexity.

Table 11. The complexity comparison.

Method Space complexity Time complexity
. . (N+m+a) Less than
The proposed combinatorial method Less than O(Z 2 ) 0(2"/n)
(N+m+a)?
The Markov method O(2W+m+a)) of 27 3
% 2(N+m+a)

7. Conclusions and Future Work

Since the existing methods are limited when performing reliability analysis on probabilistic competing
failure systems with both PFGEs and PFSEs simultaneously, this paper introduces a novel combinatorial
method to address such issue. The proposed method allows for the application of any type of distribution
to model system component failure times and probability failure isolation factors. This flexibility greatly
enhances the method’s adaptability to various real-world scenarios, where component failure characteristics
may vary significantly. The effectiveness of the proposed method is demonstrated via a case study of SHSS
reliability analysis. In comparison to the SHSS reliability analysis procedure using the Markov method, the
correctness and efficiency of the proposed method are verified. When being adopted to the reliability
analysis of probabilistic competing failure systems with both PFGEs and PFSEs, the proposed
combinatorial method is superior to the Markov method in terms of space complexity as well as time
complexity. Furthermore, the proposed method can be applied to probabilistic competing failure systems
with single PFD group or multiple independent, non-overlapping PFD groups. The proposed method can
also be generalized to the systems with non-PDEP components experiencing LF, PFGE, and PFSE.

In the future, more complex scenarios will be explored by extending the method to analyze systems with
multiple dependent PFD groups with shared trigger or PDEP components (Wang et al., 2013). Another

future research direction is to investigate methods for multi-state systems (Wang et al., 2018a), phased-
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mission systems (Tang et al., 2023; Wang et al., 2025), and cascading functional dependence systems (Zhao
& Xing, 2019) with components affected simultaneously by PFGEs and PFSEs. In addition to extending
toward more complex scenarios, expansions can also be directed toward new application domains. With the
continuous evolution of technology and the constant expansion of application fields, novel system
characteristics and requirements have emerged successively. Subsequent research can attempt to adapt and
apply existing methods to more emerging application fields, such as the Industrial Internet of Things (Li et
al., 2025), vehicle networks (Du et al., 2025), and smart medical systems (Lin et al., 2025). These fields are
characterized by complex system architectures, sophisticated business logic, and more stringent reliability
requirements.
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