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Abstract 

Code Smells have been detected, predicted and studied by researchers from several perspectives. This literature review is 

conducted to understand tools and algorithms used to detect and analyze code smells to summarize research agenda. 114 

studies have been selected from 2009 to 2022 to conduct this review. The studies are deeply analyzed under the categorization 

of machine learning and non-machine learning, which are found to be 25 and 89 respectively. The studies are analyzed to gain 

insight into algorithms, tools and limitations of the techniques. Long Method, Feature Envy, and Duplicate Code are reported to 

be the most popular smells. 38% of the studies focused their research on the enhancement of tools and methods. Random Forest 

and JRip algorithms are found to give the best results under machine learning techniques. We extended the previous studies on 

code smell detection tools, reporting a total 87 tools during the review. Java is found to be the dominant programming language 

during the study of smells.  

 

Keywords- Code smells, Machine learning, Non- machine learning, Datasets, Detection tool. 

 

 

 

1. Introduction 
Software system is modified several times as per the requirement. During this modification, defects are 

introduced which do not alter the working but depreciate its quality. These software defects are termed as 

code smells. The modified software contains defects in the design of software which leads to technical 

debt (Cunningham, 1992). Code smells arise due to bad programming practices. They are resultants of 

poor designing of software (Tufano et al., 2015). The term “Code smell” is frequently used by agile 

programmers. This term was first coined by Kent Beck while writing the book on Refactoring (Fowler 

and Beck, 1997). Code smells are different from software bugs as they are resultant of violations during 

programming practices which do not impact the code directly. Anti patterns are the patterns which always 

lead to negative impact whereas code smells are the hint of some “problem” but not the pattern. These 

design defects decrease the maintainability of the system thereby increasing the cost. As per International 

Organization for Standardization (ISO) standard 8402-1986 software quality is described as “the totality 

of features and characteristics of a product or service that bears its ability to satisfy stated or implied 

needs” (Karapetrovic and Willborn, 1998). Code smells not only leads to structural instability but also 

shorten the life cycle of the software (Sharma et al., 2017).  
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Refactoring is the process of altering the source code without adding any new function in it. This 

alteration in the design of the software improves readability, complexity, maintainability and 

extensibility. (Fowler and Beck, 1997) identified code smells which could be solved by refactoring. 

Various studies have been conducted for the detection of code smell. A lot of effort has been made by the 

researchers to develop the tools for detection of code smell and its methodology. Studies throw light on 

the development of tools for prediction of bad smell in order to avoid the wastage of human effort. Tools 

such as Find Bugs, PMD (Programming Mistake Detector), Check style, SonarQube identify the bad 

smell automatically. Software smells are studied from different perspectives. Sharma et al. (2016) 

classifies smells in three categories on the basis of the scope of their impact: - 1) Implementation Smell: 

These smells have limited scope and are confined to a class or a file, they have less local impact, they 

require less effort to refractor. 2) Design Smell: These smells impact a set of classes e.g.- insufficient 

modularization like God class, multi-faceted abstraction like divergent change, broken hierarchy like 

refused bequest. 3) Architectural smell: These smells span multiple components and have a system level 

impact. Figure 1 depicts the categorization of smells on the basis of scope of impact. One of the important 

components which gained researchers’ interest is the usage of machine learning technique in the detection 

of bad smell.  

 
Table 1. List of 23 code smells and 7 anti patterns in Java code. 

 

Code No. Code smells 

1. Duplicated Code 

2. Long Method 

3. Large Class 

4. Long Parameter List 

5. Divergent Change 

6. Shotgun Surgery 

7. Feature Envy 

8. Data Clumps 

9. Primitive Obsession 

10. Switch Statements 

11. Parallel Inheritance Hierarchies 

12. Lazy Class 

13. Speculative Generality 

14. Temporary Field 

15. Message Chains' 

16. Middle Man 

17. Inappropriate Intimacy 

18. Alternative Classes with Different Interfaces 

19. Incomplete Library Class 

20. Data Class 

21. Refused Parent Bequest 

22. Comments 

23. Dead Code 

24. Brain Class 

25. Brain Method 

26. Blob 

27. Sphagetti Code 

28. God Class 

29. God Method 

30. Swiss Army Knife 

 

In this study we include the works published in well recognized journals and proceedings available in 

Scopus database. The review spans from 2009 to 2022. Quality assessment of the 157 selected studies 

was done and 114 studies were filtered on the basis of the quality scores obtained on the several judgment 

criteria. Review Questions are framed on the basis of challenges and problems faced by researchers. 
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Table 1 tabulates the code smells and anti patterns found in any Java code. The rest of the paper is 

organized as follows: The paper is divided into five sections. Section 2 discloses the related research on 

code smells, its categorizations and tools used to study it. Section 3 lays the methodology to conduct this 

review. Section 4 presents the discussions of the Research Questions (RQs) considered in this SLR. 

Section 5 presents the conclusion and the limitations of this SLR. 

 

 
 

Figure 1. Smell classification based on scope of impact. 

 

 

2. Related Research 
Several studies have been conducted by the researchers to gain understanding on code smells detection 

and prediction (Fowler and Beck, 1997; Cunningham, 1992; Gupta et al., 2018; Aivaloglou and 

Hermans, 2016; Tandon et al., 2022; Kumar and Ram, 2021). Few other studies which draw our attention 

in retrieving answers to the research questions are: - Gupta et al. (2018) focused their study on the 

prediction of bad smell using mathematical models. Study by Aivaloglou and Hermans, (2016) was 

conducted on the block- based programming language Scratch. 250,000 projects were retrieved and code 

smells including large scripts and unmatched broadcast signals were found presented by authors. 

Gottschalk et al. (2012) proposes to detect and remove waste code using software re-engineering 

services. 

 

Several review studies have been considered and analyzed from the perspectives of both machine learning 

and non – machine learning techniques. The review studies considered as the basis of the study conducted 

are: - the systematic literature review conducted by Zhang et al. (2011) on code smells covering papers 

from the span of 2000 to June 2009. Their SLR laid stress on: - a) The code smells attracting the most 

attention by researchers b) Why studies are carried on code smells? c) Methodologies used to study code 

smells d) Evidence indicating problems in the code. Azeem et al. (2019) conducted SLR considering 

papers published during 2005 -2017 and laid following points: - a) Usage of machine learning technique 

in detection of smells, b) Algorithms used by researchers for the detection of code smells, c) Performance 

of code smell prediction models. The literature review conducted by Rasool and Arshad (2015) focused 

their study on techniques and tools used for code smells from the source code of different software 

applications. A comparative study on the code mining techniques based on key characteristics was 

reported by Rasool and Arshad (2015). Most techniques were performed on different open-source systems 

and do not calculate the accuracy of the results due to absence of formal definition of code smells. The 

recommendations given by them are: - a) Detection techniques should be flexible enough to incorporate 

the integration of analysis methods and concepts. b) Metrics threshold values can either be based on 

expert knowledge or automatic. c) Detection techniques should be capable of detecting all 22 code smells 

identified by Fowler and Beck (1997). d) Standard benchmark desirable of evaluating results of code 

smells detection tools. 

 

2.1 Contributions 
This SLR has been broadly classified into two categories –  
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i) Studies deploying Machine Learning Techniques: Machine Learning techniques are being used currently 

and still have lot of scope for research due to - performance of classifiers over sample of total instances in 

the dataset, analysis of minimum training set to accurately detect smells and to analyze the number of 

smells detected by different classifiers over dataset (Fontana et al., 2016a). 

 

ii) Studies deploying on-Machine Learning techniques: Several techniques under this category motivated 

the researchers to conduct their studies on code smells. Empirical studies, modeling, mathematical 

techniques, survey and several other apart from the machine learning techniques have been grouped under 

this category. 

 

Gaps observed which motivated us to conduct this study adding value to the research. The contributions 

made by this study are as follows: - 

 

• The difficulty in finding studies focusing its review both on Machine learning and non-machine 

learning techniques. This will not only reduce the effort but will also give comparative view for future 

research. 

• This study reports the datasets used by the researchers in their study. This dataset will promote further 

research in this field. 

• We have extended the study conducted by Fernandes et al. (2016) in identifying the tools for detecting 

code smells. 

• Limitations of the strategies and performances of few studies considered for this review study have 

been reported in Table 2 to enhance further research. 
 

Table 2. Comparative analysis of review studies. 
 

 SCOPE ADVANTAGES LIMITATIONS 

Proposed Study 2009-2022 • Aims and tools deployed for studying smells 

using ML and Non-ML techniques 

• Dataset of the studies are reported 

• Metrics could be studied further 

deploying ML techniques 

Zhang et al. (2011) 2000-2009 • Why study smell 

• Methodology 

• Evidences Indicating problems 

• Generic code smell review  

Azeem et al. (2019) 2005-2017 • Review used ML technique for detection of smell 

• Performance of models for smell detection 

• Mainly focus on Machine learning 

techniques for detection of smells 

Rasool and Arshad 
(2015) 

1999-2015 • Techniques and tools used for smells • Comparative study on code 

mining techniques 

 

3. Research Methodology 
To conduct literature review, its planning, processing and reporting are the key aspects which have been 

done during its study. The review conducted is focused on the studies published in all well recognized 

journals from the year 2009-2022. In this study the Theory, Methods and Context (TCM) framework 

proposed by Paul et al. (2023) is used. The steps considered in this study have been depicted pictorially in 

Figure 2. The first steps to frame the search strategy of the studies which are to be considered during this 

review. Then the selection criteria of the studies are framed to identify the relevant studies considered for 

this SLR. Step three focuses on the quality assessment of the studies. During this step a checklist is 

framed to evaluate the weight age of each study. Studies having a score less than 5 are rejected due to the 

lack of quality parameters which are considered for the review. In the data extraction step, several 

parameters are identified and tabulated. We have documented the important aspects as well as learning’s 

related to smells. In data synthesis stage, asset of research questions is presented to analyze and conduct 

their view. TCM framework is considered as the review protocol to conduct unbiased and clear systematic 
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literature review. The subsequent subsections present the details of the review protocol used to conduct 

this SLR. 

 

3.1 Search Strategy 
The search string is formed by deriving the terms from the objectives of the study, their alternatives as 

well as synonyms are searched. A search strategy is formulated considering the processes laid in the 

textbooks by Mitchell (1997) and Witten and Frank (2002).  

 

3.2 Study Selection 
Selection of adequate and proper resources play a vital role in conducting a review. This literature review 

included the papers from the following searched electronic databases: 

 

(i) SpringerLink (https://link.springer.com/). 

(ii) IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp). 

(iii) ScienceDirect (https://www.sciencedirect.com/). 

(iv) ACM Digital Library (https://dl.acm.org/). 

(v) Wiley Online Library (https://onlinelibrary.wiley.com/). 

 

 
 

Figure 2. Selection process of studies. 

 

After exhaustive searching of databases 421 studies were found, which were filtered to 157 studies on 

which inclusion criteria was applied. 43 studies were filtered out in exclusion criteria and finally 114 

studies from the period of 2009-2022 were selected. Papers were identified using the following inclusion 

and exclusion criteria: - 

 

Inclusion Criteria: We consider the following selection criteria for this literature review: - 

• Papers including the following titles in their subject: - Code smell/ Bad smell, AI Techniques for Code 

smell detection, code smell detection, model for code smell detection, code smell using machine 

learning. 

• Studies published in well-known journals, conferences, workshops and seminars in the timeline of 

2009-2022. 

• Papers indexed in web of science and Scopus are considered. 

https://www.sciencedirect.com/
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Exclusion Criteria: We excluded the papers which are: - 

● Out of the scope of the above- mentioned knowledge areas. 

● Not lying in the timeline from 2009- 2022. 
 

Table 3. Studies published in journals. 
 

JOURNALS PAPER COUNT 
IMPACT FACTOR (As 

per 2021) 

Journal of software maintenance and evolution (Wiley) 3 1.864 

Empirical Software Engineering 8 3.762 

Applied Soft Computing 1 8.263 

Information and software technology 4 3.862 

Journal of systems and software 3 3.514 

JOT (Journal of Object Technology) 1 1.21 

Innovations system software engineering 1 1.44 

Transactions on Software Engineering and methodology 10 3.685 

Formal aspects of computing 1 1.170 

Software Quality 1 1.813 

ENTROPY 1 2.738 

TOTAL 34  

 
Table 4. Studies published in conferences and workshops. 

 

CONFERENCES and WORKSHOPS PAPER COUNT 

The International Conference on Evaluation and Assessment in Software Engineering (EASE) 4 

The Mining Software Repositories (MSR) 1 

Software Analysis, Evolution and Reengineering 2 

Empirical software engineering and measurement (ESEM) 3 

International Conference on Software Maintenance 2 

WRT: Refactoring tools 3 

Symposium on Search Based Software Engineering (SSBSE) 1 

Quality of Information and Communications Technology, Proceedings of International Conference, QUATIC  2 

Workshop on emerging trends in software metrics (WETSoM) 2 

International Conference on Software Engineering (ICSE) 8 

Managing Technical Debt (MTD) 3 

Software architecture and metrics 1 

Source code analysis and manipulation (SCAM) 4 

International conference on software testing, verification and validation workshops  2 

International Conference on Software Maintenance and Evolution 6 

Proceedings of the XP2017 Scientific Workshops  1 

International Conference on Mobile Software Engineering and Systems 1 

International Conference on Program Comprehension 4 

International Conference on Quality Software  1 

Working Conference on Reverse Engineering  3 

International conference on Aspect-oriented Software Development  3 

International symposium on Software visualization  1 

software engineering 2 

International Conference on Automated Software Engineering (ASE)  1 

data and software engineering 1 

Working conference on reverse engineering (WCRE)  2 

International conference on software analysis, evolution and reengineering (saner) 2 

International Conference on Computer Science and Engineering (UBMK) 1 

Computer Software and Applications Conference (COMPSAC)  1 

TOTAL 68 

 

The review focused on the studies published on code smells in leading software engineering journals and 

conferences to the best of our knowledge. Publication details of the studies selected for the review is 

tabulated in Table 3 (Studies published in Journals) and Table 4 (Studies published in conferences and 

workshops) respectively. Figure 3 depicts that 62% of the total papers are considered for this SLR and are 
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published in conferences and 38% of the total papers are published in journals. 

 

 
 

Figure 3. Percentage of sources of selected studies. 

 

3.3 Identifying Search Terms 
Relevant search terms are found by following the below listed five steps as recommended by Kitchenham 

et al. (2009): 

 

I.  The keywords in the titles and abstracts of the studies are searched. 

II.  To derive the search string, we find the synonyms of the extracted terms. 

III. The Boolean operators OR operator is used in case of alternative spellings and synonyms; the AND   

 operator is used for the concatenation of major terms. 

IV. The obtained search string is integrated. 

V.  The research questions are used to derive the major terms. 

 

Outcome of I: In the first step, we derived the keywords on the basis of the previous research on code 

smells. 

Code smells, Technique, Software design defects, Machine learning algorithms, Tools, Programming 

language, Dataset. 

 

Outcome of II: In this step the synonyms or the alternate spellings of all the major terms detected in step 

I are reported. 

 

Code smell, Bad smell, Code Bad Smells, Smell, Software design defects, architectural smell, design 

smell, implementation smell; Techniques, learning, data mining, artificial intelligence, review, study. 

 

Outcome of III: The Boolean operators OR and AND are used to concatenated the major terms retrieved 

during this process. 

 

Smells (code smells OR bad smells OR Code Bad Smells OR Software design Defects Or architectural 

smell OR Design Smell OR implementation smell) AND Study (prediction) AND Techniques (learning OR 

data mining OR artificial intelligence OR review OR study). 

Outcome of IV: The obtained search string is reported as: 

“Smells” (“code smells” OR “bad smells” OR “Code Bad Smells” OR “Software design Defects” Or 

“architectural smell” OR “Design Smell” OR “implementation smell”) AND “Techniques” (“learning” 

OR “data mining” OR “artificial intelligence” OR “review” OR “study”). 

62%

38%

PERCENTAGE

CONFERENCES/WORKSHOPS

JOURNALS
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The resultant search string is considered and the studies undergone quality assessment. 

 

3.4 Quality Assessment of Studies  

Quality assessment is done to weigh each study to filter the relevant studies to conduct the review. A 

questionnaire is framed and tabulated in Table 5 to assess the relevance and quality of studies considered 

for this literature review. Every question in the questionnaire has three parameters “YES”, “PARTLY”, 

“NO”. Here “YES” weighs 1 point, “NO” weighs 0 point and “PARTLY” carries 0.5 point. Every study 

is assessed for the quality and the score is summed. Studies having a quality score greater than 5(50% 

perfect score) are considered for this review to ensure that they contain maximum quality parameters. 

Studies with score less than 5 are thereby rejected. The obtained quality scores of the selected studies are 

presented in a table in Appendix A. 

 
Table 5. Quality assessment questions. 

 

QA# QUESTIONS 

QA1 Are the aims of research clearly specified? 

QA2 Is the bad smell context described sufficiently? 

QA3 Is the methodology for smells detection or prediction well defined? 

QA4 Does the selected study contribute to the literature? 

QA5 Are ML techniques specified in the selected study? 

QA6 Are non-ML techniques specified in the selected study? 

QA7 Any comparative analysis of ML techniques? 

QA8 Any comparative analysis of non-ML techniques? 

QA9 Are the results and findings clearly stated? 

QA10 Are the limitations specified? 

 

3.5 Data Extraction and Synthesis 
The data extraction process finds the answers to the research questions considered for this SLR. The 

parameters mentioned in Table 6 are considered for the extraction process. The selected 114 research 

studies are considered for this process. The process not only extracts answers for the research questions 

but also finds limitations. The RQs are framed after brainstorming sessions by all the authors and 

professors. 

 
Table 6. Parameters for paper extraction. 

 

S. No. PARAMETER 

1. Publication Year of the study 

2. Types of Code smell studied 

3. Aims of studies used by non-ML algorithms 

4. Algorithms used by ML Techniques 

5. Limitations of the study 

 

 

3.6 Research Questions (RQs) 
The aim of conducting this SLR is to find the answers to the questions which have been tabulated on the 

basis of the gaps and evidences obtained from the studies. Table 7 presents seven research questions 

which are discussed in this SLR. The relevance of code smells in software design is discussed as RQ1. 

The studies are analyzed to identify the most studied code smell in RQ2. RQ3 targets to find the most 

deployed technique to study code smells and its analysis. RQ4 focuses on identifying Machine Learning 

(ML) algorithms which gave the best results in the previous research works.  Tools to detect code bad 

smells are found during the review of the available literature and reported under RQ5. RQ6 highlights the 

programming language which was preferred mostly by the researchers. RQ7 tabulates the datasets used 

by the researchers during their studies. 
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Table 7. Research questions. 
 

S. No. Research Question 

RQ1 Relevance of Code smell in software design 

RQ2 Identification of the most studied code smells 

RQ3 To find the most deployed technique to study code smell and its analysis 

RQ4 Recognizing the ML Algorithms deployed to give the best results 

RQ5 Finding the studies on tools used in the detection of code smells 

RQ6 Recognizing the programming languages used to study code smells 

RQ7 To discern the datasets used by researchers during their study of smells 

 

4. Discussion 
This section discusses the research questions and its results considered for this systematic literature 

review. The seven research questions and their results are discussed hereby. The studies primarily used 

open-source software or public data sets. We provide directions for future research in the domain of 

software defects using the Theory, Methods and Context (TMC) framework.  

 

4.1 Theory 
Code smell has gained the most attention among researchers. There are possibilities in the future that the 

code smell which had least attention could be further investigated. The tools and the data with respect to 

the code smell which one wants to study can easily be accessible by going through the tabularized 

information. Table 8 presents the percentage and number of studies on each code smell and antipattern. 23 

code smells and 7 anti-patterns are commonly found in any code of Java. Fontana et al. (2016b) proposed 

the taxonomies of smells, which are - Bloaters are those categories of smells which become 

unmanageable because of their size or volume; Object Orientation Abusers is a class of smells which 

deviate from actual practices of object-oriented principles; Change Preventers are the set of smells which 

make maintenance harder due to the nature of existing implementation. Dispensable are those smells 

which contain unnecessary code which should be removed. Couplers are the smells which contribute to 

excessive coupling between classes. Encapsulators are the smells which are increased at the cost of each 

other. Others is that category of smells which contain those units which are not fitted in the above-

mentioned categories. 

 

RQ1- Relevance of Code smell in software design  

The potential breaches in the design of the code are termed smells. These technical debt affects the quality 

of the code adversely. Smells are easier and quicker to recognize than the ant patterns, which are more 

abstract and subtle. Causal analysis will help in studying the causes and effects of each category on the 

other. There may be cumulative effect of one or more categories which maybe more dangerous than the 

single category. After decades of research on this defect of software, researchers should now concentrate 

their studies on the cumulative effects of the categories of smells. 

 

Research Agenda: We not only derive the agenda to study the categories of code smells but would also 

recommend for the causal analysis of categories of smells- Bloaters, Object Orientation Abusers, 

Dispensables, Encapsulators, Change Preventers and Couplers. 

 

RQ2- Identification of the most studied code smells 

During the review of previous studies, it was found that Bloaters is the most studied category of smell 

constituting of about 61.76% of studies. Anti patterns are the second highest studied category with 

55.88% of total studies followed by Dispensables studied in 50.98% of studies. Couplers and Object-

Oriented Abusers are analyzed by 27.45% and 14.7% of studies respectively. Encapsulators, Change 

Preventers and other categories are the least to be studied with 12.74%, 11.76% and 1.9% respectively. 
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Table 8. Count of publications on code smells. 
 

S. No. Code Smells Study Count Category 

1. Duplicated Code 15 Dispensables 

2. Long Method 28 Bloater 

3. Large Class 14 Bloaters 

4. Long Parameter List 14 Bloaters 

5. Divergent Change 0 Change Preventers 

6. Shotgun Surgery 12 Change Preventers 

7. Feature Envy 24 Couplers 

8. Data Clumps 6 Bloaters 

9. Primitive Obsession 1 Bloaters 

10. Switch Statements 4 Object Oriented Abusers 

11. Parallel Inheritance Hierarchies 0 Object Oriented Abusers 

12. Lazy Class 9 Dispensables 

13. Speculative Generality 7 Dispensables 

14. Temporary Field 0 Object Oriented Abusers 

15. Message Chains' 9 Encapsulators 

16. Middle Man 4 Encapsulators 

17. Inappropriate Intimacy 4 Couplers 

18. Alternative Classes with Different Interfaces 0 Object Oriented Abusers 

19. Incomplete Library Class 2 Others 

20. Data Class 18 Dispensables 

21. Refused Parent Bequest 11 Object Oriented Abusers 

22. Comments 0 Others 

23. Dead Code 3 Dispensables 

24. Brain Class 7 Antipattern 

25. Brain Method 6 Antipattern 

26. Blob 8 Antipattern 

27. Sphagetti Code 8 Antipattern 

28. God Class 23 Antipattern 

29. God Method 3 Antipattern 

30. Swiss Army Knife 2 Antipattern 

 

Research Agenda: The least investigated categories need further investigation with respect to correlation 

with other categories. There is a possibility of the occurrence of the least category of smell due to 

presence of any of the prevailed ones. The hypothesis needs to be justified by further investigation and 

analysis of these design defects. 

 

4.2 Methods and Context 
An unbiased review is conducted with a motive to find the techniques widely used to study code smells. 

In the selected study span of the chosen studies to conduct the review, 25 studies are found to investigate 

the machine learning technique. 89 papers either used heuristic or metric strategies or are review studies. 

The distribution of studies deploying ML and non-ML techniques has been shown by the pie chart in 

Figure 4. Few studies compared the performance of machine learning and non-machine learning methods 

for metric-based code smell detection. Pecorelli et al. (2019) reported DÉCOR tool to have better 

performance than machine learning approaches but the precision is low thus making its usage less and 

limited. Pecorelli et al. (2019) reported that code smell detection using machine learning techniques is 

still used very less and is a problem which needs more research. Karađuzović et al. (2018b) analyzed the 

performance of machine learning methods for detection of God class, feature envy, long method and 

retrieved that the performance of reduced feature set was considerably better than the one achieved by 

Fontana et al. (2013a). 

 

Literature study was conducted with the data collected from the years 2009-2022 and was sorted and 

segregated. The data was analyzed and found that 72.80% of the studies used non-ML techniques to study 
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code smell. 21.92% of studies used ML techniques and 5.26% are reported to conduct the review of code 

smell. An increasing trend in the application of machine learning algorithms for the study of code smell is 

noted with a maximum of 32% reported in 2018. 

 

 
 

Figure 4. Percentage of techniques deployed by studies. 
 

 

RQ3- To find the most deployed technique to study code smell and its analysis 

It is pictorially observed that 72.80% of studies deployed non-ML techniques to study code smell either 

using heuristic and metric strategies in comparison to 21.92% of them using ML techniques. This shows 

there is scope for research in the detection of code smell using ML techniques considering its limitations. 

There is a reported rise in the trend of ML techniques used for code smell studies in recent years. 

Qualitative assessment using software metrics and further usage of algorithms of machine learning will be 

recommended for validated and precision of results. The focused aspects of code smell on which the 

researchers have worked were investigated. The analysis of studies which used non- AI techniques for 

their work is compiled and tabulated in Table 9 which depicts that: 

 

● 38% of studies focused on tools and methods. Studies (Witten and Frank, 2002; Holschuh et al., 2009; 

Olbrich et al., 2009; Yamashita et al., 2009; Carneiro et al., 2010; Tempero et al., 2010; Fontana et al., 

2011; Macia et al., 2011; Maneerat and Muenchaisri, 2011; Oliveto et al., 2011; Zhang et al., 2011; 

Fontana et al., 2012a; Peters and Zaidman, 2012; Fontana et al., 2013a; Palomba et al., 2013; 

Chatzigeorgiou and Manakos, 2014; Wohlin, 2014; Fontana et al., 2016b; Hermans and Aivaloglou, 

2016; Palomba et al., 2016; Mansoor et al., 2017; Wang et al., 2018; Azeem et al., 2019; Guggulothu 

and Moiz, 2020; Pritam et al., 2019; Pritam et al., 2019; Gupta et al., 2021; Jain and Saha, 2021) are 

found to enhance tools and proposed methodology to identify code smells. This depicts that the primary 

goal during the study on code smell was the detection of smell and its methodology. 

● 28% of studies are found to be either reports or case studies. Studies (Cunningham, 1992; Mitchell, 

1997; Abebe et al., 2009; Yamashita et al., 2009; Chatzigeorgiou and Manakos, 2010; Counsell et al., 

2010; Fontana et al., 2011; Meananeatra et al., 2011; Fontana et al., 2012b; Yamashita and Moonen, 

2013c; Palomba et al., 2014a; Sahin et al., 2014; Fontana et al., 2015b; Rasool and Arshad, 2015; 

Sharma et al., 2016; Charalampidou et al., 2017; Palomba et al., 2018; Fontana et al., 2019) are found to 

improve the understanding on code smells. 

21.92%

72.80%

6%

Percentage Of Techniques 
Deployed By Studies

ML NON-ML REVIEW
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● 21% of studies are grouped under empirical studies. Studies (Yamashita et al., 2009; Li and Thompson, 

2010; Olbrich et al., 2010; Zazworka et al., 2011a; Hermans et al., 2012; Yamashita and Moonen, 2012; 

Hall et al., 2014; Fontana et al., 2015c; Szőke et al., 2015; Ahmed et al., 2017; Karađuzović-Hadžiabdić 

& Spahić, 2018b; Wang et al., 2018; Pecorelli et al., 2019; Kumar and Ram, 2021; Pigazzini et al., 

2021) are found to analyze the data using existing techniques of code smell detection. 

● 12% are found to target refactoring. Studies (Zhang et al., 2011; Yamashita and Moonen, 2012; Sjøberg 

et al., 2012; Fontana et al., 2013b; Hermans et al., 2016; Nagy and Cleve, 2017; Palomba et al., 2017; 

Di et al., 2018; Jain and Saha, 2021) enhanced the knowledge of refactoring. 

● 1% of the study i.e. study by Azeem et al. (2019) is found to be a survey. 

 

Research Agenda: By analyzing the above data, we can conclude that mostly the researchers aimed to 

enhance the tools and methodology for detecting code smells. Non-ML studies are found to be the most 

deployed technique by the researchers. In this technique 38% of studies enhance the tools and methods 

followed by 28% focusing on case studies and reports followed by 21% of empirical studies, 12% on 

refactoring and 1% on survey. 

 
Table 9. Distribution of studies using non-ML techniques. 

 

Aims of Studies Count of Studies Percentage 

Case Study/Reports 23 28% 

Tools/Methods/Experiments 32 38% 

Refactor 10 12% 

Empirical Study 18 21% 

Survey 1 1% 

Total 84 100%  
 

RQ4- Recognizing the ML algorithms deployed to give best results 

This RQ aims to report the algorithms which have given the best results in the previous studies. Maneerat 

and Muenchaisri (2011) compare the performances of the seven ML algorithms which used several 

statistical significance tests such as prediction accuracy, hypothesis test, sensitivity, specificity and 

predictive value of tests. Few algorithms are not suitable for the prediction of code smell because of their 

low prediction rate. The algorithms Naïve Bayes, VFI and J48 achieve less than 90% prediction average 

rate. Logistic regression, IB1, IBk and Random Forest achieves a higher overall prediction rate as they 

achieve 90% above average rate. Karađuzović-Hadžiabdić & Spahić (2018b) concluded that there is no 

best ML algorithm that accurately predicts all selected bad smells. ML algorithm should be considered 

based on the type of bad smell. Karađuzović-Hadžiabdić & Spahić (2018b) extended the work of Fontana 

et al. (2013a) by classifying code smells into 4 categories- no smell, non- severe smell, smell, severe 

smell and performed severity analysis by using six ML algorithms. The best result obtained for the data 

class by using the Random Forest ML method achieved 98.5% accuracy in performance. Results obtained 

for God class achieved 97.86% in performance using JRip. Fontana et al. (2016) report that the 

application of ML algorithms to detect code smells can provide high accuracy (>96%). 

 

Research Agenda: It can be concluded that Random Forest and JRip are the most promising algorithms 

which gave better results in maximum studies than other algorithms. Decision Trees and Support Vector 

Machines are the most widely used algorithms for research. The performance of the reduced feature set is 

found to be better. Deep learning techniques are recommended to be used in studying this software defect 

to achieve more promising results. 

 

RQ5- Finding the studies on tools used in the detection of code smells 

Researchers find it difficult to choose which tools to use to conduct their study. This motivated us to 
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include this research question in the literature review. All the tools used by researchers in their previous 

studies on code smells are reported. A total of 87 tools are found which have been reported in Table 10. 

JDeodorant is found to be the most studied tool for detecting code smells followed by iPlasma, infusion, 

DÉCOR, PMD. These tools target to detect smells in the source code of software written in Java, C, C++, 

and C#. This SLR extended the study conducted by Fernandes et al. (2016) in identifying the tools for 

detecting code smell by reviewing the papers in the last decade.  

 

Research Agenda: It is reported that a total of 87 tools for code smell detection have been reported during 

the literature review. Several detection tools for varied coding languages are reported. It is recommended 

to develop and use prediction-based tools to improve the prediction accuracy of the software. Prediction 

tools are recommended to avoid wastage of time and efforts on refactoring. 

 
Table 10. List of tools to detect code smells. 

 

S. No. Tools Paper Count S. No. Tools Paper Count 

1. Absinthe 1 45. Java Clone Detector 1 

2. Anti-pattern Scanner 1 46. J Code Canine 1 

3. Refactoring Tools 5 47. J Cosmo 2 

4. AutoMeD 1 48. J deodorant 10 

5. Bad Smell Detection Tool (BSDT) 1 49. J Smell 1 

6. Bad Smells Finder 1 50. JS Nose 1 

7. bespoke tool 1 51. J SpIRIT 2 

8. Bauhaus 1 52. Kaleidoscope 1 

9. Bayesian Detection Expert (BDTEX) 1 53. Kaur and Singh 1 

10. Borland together 1 54. Keivanloo and Rilling 1 

11. Bug Forecast 1 55. Komondoor and Horwitz 1 

12. CC Finder 1 56. Matthew Munro 1 

13. Check style 4 57. MOGP 1 

14. Clone Detector 1 58. NiCad 2 

15. Clone Detective 1 59. Nose Prints 1 

16. Clone Digger 1 60. P-EA 1 

17. Coco Viz 1 61. Paprika 1 

18. Code Nose 1 62. PMD 6 

19. code smell detector 1 63. PoSDef 1 

20. Code Smell Explorer 1 64. PROblem DEtector O-O System (PRODEOOS) 1 

21. Code Vizard 3 65. ProDeOOS 1 

22. Colligens 1 66. Reclipse Tool Suite 1 

23. Concern ReCS 1 67. Refactoring Browser 1 

24. Con QAT 1 68. Ribeiro and Borba 1 

25. CP-Miner 1 69. SCOOP 1 

26. Crespo 1 70. Scorpio 1 

27. Crocodile 1 71. SD Metrics 1 

28. DÉCOR 8 72. Sextant 1 

29. DECKARD 1 73. Smell checker 1 

30. DETEX 1 74. Solid FX 1 

31. DuDe 1 75. SonarQube 1 

32. Dup 1 76. Stasys Peldzius 1 

33. Duploc 1 77. Stench Blossom 4 

34. Evo Lens 1 78. SVM Detect 1 

35. Excel Macros 1 79. SY Make 2 

36. Fault Buster 1 80. TACO 1 

37. Gendarme 1 81. True Refactor 1 

38. HIST 3 82. Understand 1 

39. In Code 1 83. VCS-Analyzer 1 

40. Infusion 8 84. Web Scent 1 

41. IntelliJ IDEA 1 85. Weka Nose 1 

42. I Plasma 6 86. Wrangler 2 

43. I SPARQL 1 87. Xquery-based Analysis Framework (XAF) 1 

44. It’s Your Code (IYC) 1    



Tandon et al.: Study of Code Smells: A Review and Research Agenda 
 

 

485 | Vol. 9, No. 3, 2024 

RQ6-Recognizing the programming languages used to study code smells 

By analyzing the 114 selected studies, we observe that about 73% of studies (83 in total) reported the 

programming language of the source code used to study smells. 31 studies either didn’t declare the 

language of the source code considered or is a review study. 75 studies are found to use JAVA source 

code for studying code smells. 7 studies were considered C# to study smells. We found 6 studies using 

C++ source code and 4 studies using C code. 1 study each using R, Python and ABAP respectively is 

reported during the literature review. Figure 5 presents data of the distribution of programming languages 

considered by the researchers for the study of code smell. Detection tools are mainly proposed for the 

code of JAVA language thereby, giving it a rise to be the most dominant language to study code smells 

followed by C++ and C. Few researchers used the source code in C#, R, Python ABAP during their study. 

The ease of availability of the detection tool of any Java code has been reported by many studies. This 

certainly gives an opportunity to explore other programming languages. Charalampidou et al. (2017) 

stated the limitation of tools for identifying code smell as the reason to restrict their selection to Java 

projects. 

 

Research Agenda: During this review, it is noted that few studies concentrated on multi language support 

for code smell detection. These findings report the opportunity of research in less explored programming 

languages. 

 

 
 

Figure 5. Languages used by researchers to study code smells. 
 

RQ7-To discern the datasets used by researchers during their study of smells 

After conducting review of 114 selected studies, we analyzed the datasets used by respective researcher. 

We believe this data tabulated in Table 11 will not only add novelty to the work but will also help future 

research with comprehensive information. Many researchers performed their experiments on Java based 

open-source systems or small internal projects. It was found that the dataset used by few researchers was 

either common or a part of the same data. This not only adds value to the subject data but also helps in 

setting a benchmark for evaluation of code smell detection tools and techniques. Fontana et al. (2011, 

2013a, 2015a, 2015b, 2015c, 2019) Fontana and Spinelli (2011), Fontana and Zanoni (2011), Fontans et 

al. (2012) and Di Nucci et al. (2018) used the datasets of Tempero et al. (2010) in their works on code 

smells. These works by the authors are a great source of learning about code smells and were extended 

and used by other researchers. Karađuzović-Hadžiabdić and Spahić (2018a) and Szőke et al. (2015) 

conducted studies and used the dataset of Fontana et al. (2013b) in their study. Recent studies conducted 

by Jain and Saha (2021, 2022) are also reported to use the datasets of Fontana et al. (2013a). The study by 

Alazba and Aljamaan, (2021) used both the studies of Di Nucci et al. (2018) and Fontana et al.(2016a) to 

conduct their experiment. It is reported that the authors would like to replicate their study with new code 

smell datasets of different sizes. Eken et al. (2021) conducted their study by dividing the dataset into two 

2% 4% 5%

64%
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24%
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parts. The first part of the dataset is obtained by extending the dataset of Palomba et al. (2017) and the 

second part of datasetis obtained by including three additional open sources used in the study of Palomba 

et al. (2018). Sahin et al. (2014) collected their dataset using the open-source software in their study and 

also evaluated the proposal on the industrial system of Ford Motor Company. 

 

Research Agenda: This article reports the list of tools which have been developed by several researchers. 

Prediction tools are not studied much and need to be explored as not much literature has been reported on 

it. 
 

Table 11. Datasets used by researchers in their studies. 
 

S. 

No. 

STUDIES DATASET/ SOFTWARE SYSTEM REFERENCE 

1. 

Comparing and Experimenting Machine 

learning techniques for code smell 

detection 

Dataset available at-

http://essere.disco.unimib.it/reverse/MLCSD. html. 

Fontana et al. (2016) 

2. 
Code smell detection as a bilevel 

problem 

JFreeChart, GanttProject, ApacheAnt, Nutch, Log4J, Lucene, 

Xerces-J, and Rhino.  

Sahin et al. (2014) 

3. 
Building Empirical Support for 

Automated code smell detection 

Unnamed Schumacher et al. 

(2010) 

4. 
Quantifying the effect of code smells on 

maintenance effort 

Unnamed SYSTEM A, B, C, D  Sjøberg et al. (2012) 

5. 

Assessing the capability of code smells 

to explain maintenance problems: An 
empirical Study combining quantitative 

and qualitative data 

 Simula Research Laboratory’s Software Engineering department 

web-based information system referred as System A, B, C, D 

Yamashita (2014) 

6. Lexicon Bad Smells in Software Alice, WinMerge Abebe et al. (2009) 

7. 
Automatic detection of bad smells in 
code: An experimental assessment 

6 versions of Gantt Project Fontana et al. (2012b) 

8. 
Identifying Code Smells with Multiple 

Concern Views 

5 versions of Open-source system Mobile Media Carneiro et al. (2010) 

9. 
Assessing Code Smell Interest 
Probability: A Case Study 

Spring, AndEngine open-source projects  Charalampidou et al. 
(2017) 

10. 
Investigating the Evolution of Bad 

Smells in Object-Oriented Code 

Jflex, JFreeChart Chatzigeorgiou and 

Manakos (2010) 

11. 
Investigating the evolution of code 

smells in object-oriented systems 

Jflex, JFreeChart Chatzigeorgiou and 

Manakos (2014) 

12. 
Is a Strategy for Code Smell Assessment 

Long Overdue? 

Antlr, PDFBox, Velocity, Tyrant, HSQLDB Counsell et al. (2010) 

13. 
Build Code Analysis with Symbolic 

Evaluation 

SCST, LINN, GCC, MIN, LINS, FIRE, TS Tamrawi et al. (2012) 

14. 

Exploring the Impact of Inter-smell 

Relations on Software Maintainability: 
An Empirical Study 

Simula Research Laboratory’s Software Engineering department 

web-based information system referred as System A, B, C, D 

Yamashita and 

Counsell (2013) 

15. 

Investigating the Impact of Code Smells 

Debt on Quality Code Evaluation 

Columba1.0, Drawswf1.2.9, Galleon2.3.0, C_jdbc 2.0.2, Heritrix 

1.8.0, Struts 2.2.1, Ganttproject 2.0.9, Jhotdraw 7.5.1, Velocity 
1.6.4, Antlr 3.2, Drjava 20100913-r5387, Pmd 4.2.5 

Fontana et al. (2013a) 

16. 

Using bad smell-driven code refactorings 

in mobile applications to reduce battery 

usage 

Fivestones, Sorter and Apps Rodriguez et al. (2015) 

17. 

JSNOSE: Detecting JavaScript Code 

Smells 

Webapplications: PeriodicTable , CollegeVis, ChessGame, 

Symbolistic, Tunnel, GhostBusters, TuduList, FractalViewer, 

PhotoGallery, TinySiteCMS, TinyMCE 

Fard and Mesbah 

(2013) 

18. 
A Review-based Comparative Study of 
Bad Smell Detection Tools 

Junit version 4, MobileMedia version 9 Fernandes et al. (2016) 

19. 
An experience report on using code 

smells detection tools   

GanttProject v1.10.2 Fontana et al. (2011) 

20. 
Some Code Smells Have a Significant 
but Small Effect on Faults 

API Recoder Hall et al. (2014) 

21. 
An Empirical Study of the Performance 

Impacts of Android Code Smells 

Open- source mobile apps: Sound Waves Podcast, Terminal 

Emulator 

Hecht et al. (2016) 
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Table 11 continued… 
 

22. 
Detecting Code Smells in Spreadsheet 

Formulas 

EUSES Corpus Hermans et al. (2012) 

23. 
Detecting and refactoring code smells in 
spreadsheet formulas 

EUSES Corpus Hermans et al. (2016) 

24. 

A Cooperative Parallel Search-Based 

Software Engineering Approach for 

Code-Smells Detection 

ApacheAnt , Xerces-J  , GanttProject , Rhino , Log4J , Lucene , 

Nutch and JFreeChart 

Kessentini et al. (2014) 

25. 
A Bayesian Approach for the Detection 

of Code and Design Smells 

GanttProject v1.10.2, Xerces v2.7.0 Khomh et al. (2009a) 

26. 

An Exploratory Study of the Impact of 

Code Smells on Software Change-
proneness 

9 releases of Azureus and in 13 releases of Eclipse Khomh et al. (2009b) 

27. 
Schedule of Bad Smell Detection and 

Resolution: A New Way to Save Effort 

Java Source Metric and Thout Reader Liu et al. (2011) 

28. 
Dynamic and Automatic Feedback-
Based Threshold Adaptation for Code 

Smell Detection 

AutoFlight, DirBuster, Java3DModeler, DavMail, PDF Split and 
Merge 

Liu et al. (2015) 

29. 
Deep Learning Based Code Smell 
Detection 

Junit, PMD, JExcelAPI, Areca, FreePlane, jEdit, Weka, 
AbdExtractor, Art of Illusion, Grinder 

Liu et al. (2019) 

30. 

Are Automatically-Detected Code 

Anomalies Relevant to Architectural 

Modularity? 

HealthWatcher,AspectualWatcher, MobileMedia, 

AspectualMedia, MIDAS 

Macia et al. (2012) 

31. 
An Exploratory Study of Code Smells in 

Evolving Aspect-Oriented Systems 

iBATIS, HealthWatcher,MobileMedia Macia et al. (2011) 

32. 
From a domain analysis to the 
specification and detection of code and 

design smells 

Xerces v2.7.0 and GanttProject v1.10.2 Moha et al. (2010) 

33. 

DECOR: A Method for the Specification 

and Detection of Code and Design 
Smells 

ARGOUML, AZUREUS, GANTTPROJECT, LOG4J, 

LUCENE, NUTCH, PMD, QUICKUML, two versions of 
XERCES, and ECLIPSE. 

Moha et al. (2009) 

34. 
Code Anomalies Flock Together HealthWatcher, MobileMedia, Apache OODT, S1, S2, S3, 

S4(due to intellectual property constraints not specified) 

Oizumi et al. (2016) 

35. 
The Evolution and Impact of Code 
Smells: A Case Study of Two Open-

Source Systems 

Apache Lucene and Apache Xerces 2 J Olbrich et al. (2009) 

36. 
Are all Code Smells Harmful? A Study 
of God Classes and Brain Classes in the 

Evolution of three Open-Source Systems 

Log4j, Apache Lucene, Apache Xerces Olbrich et al. (2010) 

37. 
Improving Multi-Objective Code-Smells 

Correction Using Development History 

Xerces-J, JFreeChart, GanttProject, ArtOfIllusion, JHotDraw Ouni et al. (2015) 

38. 
Detecting Bad Smells in Source Code 

using Change History Information 

Apache Ant3, Apache Tomcat4, jEdit5 and five 

projects belonging to the Android APIs 

Palomba et al. (2013) 

39. 

Do they Really Smell Bad? A Study on 

Developers’ Perception of Bad Code 
Smells 

ArgoUML, Eclipse, jEdit Palomba et al. (2014a) 

40. 

Mining Version Histories for Detecting 

Code Smells 

Apache Ant, Apache Tomcat, jEdit, Android API, Apache 

Commons Lang, Apache Cassandra, Apache Commons Codec, 
Apache Derby, Eclipse Core, Apache James Mime4j, Google 

Guava, Aardvark, And Engine, Apache Commons IO, Apache 

Commons Logging, Mongo DB 

Palomba et al. 

(2014b) 

41. 

A Textual-based Technique for Smell 

Detection 

Apache Ant 1.8.0, aTunes 2.0.0, Eclipse Core 3.6.1, Apache Hive 

0.9, Apache Ivy 2.1.0, Apache Lucene 3.6, JVLT 1.3.2, Apache 

Pig 0.8, Apache Qpid 0.18, Apache Xerces 2.3.0 

Palomba et al. 

(2016) 

42. 
Evaluating the Lifespan of Code Smells 
using Software Repository Mining 

CalDAV4j, Evolution Chamber, JDiveLog, jGnash, Saros, VLCJ, 
Vrapper (Base), Vrapper (Core branch) 

Peters and Zaidman 
(2012) 

43. 
Clones: what is that smell? APACHE httpd, NAUTILUS, EVOLUTION, GIMP Rahman et al. 

(2012) 

44. 
A Proposal of Software Maintainability 
Model using Code Smell Measurement 

BSIS 0.7.8, UniCenta POS 3.81, Traccar 3.1, JHotDraw7.0.6, 
JChart2D 3.2.2, Columba1.4 

Wagey et al. (2015) 

45. 
Investigating the Impact of Design Debt 

on Software Quality 

unnamed projects Zazworka et al. 

(2011b) 
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Table 11 continued… 
 

46. 

Investigating Code Smell Co-occurrences 

using Association Rule Learning: A 

Replicated Study 

ArgoUML, Ant, aTunes, Cassandra, Derby, Eclipse Core, Elastic 

Search, FreeMind, Hadoop, HSQLDB, Hbase, Hibernate, Hive, 

Incubating, Ivy, Lucene, Jedit, JHotDraw, JFreeChart, Jboss, JVlt, 
jSL, Karaf, Nutch, Pig, Qpid, Sax, Struts, Wicket, Xerces 

Palomba et al. 

(2017) 

47. 

On the diffuseness and the impact on 

maintainability of code smells: a large-
scale empirical investigation 

ArgoUML, Ant, aTunes, Cassandra, Derby, Eclipse Core, Elastic 

Search, FreeMind, Hadoop, HSQLDB, Hbase, Hibernate, Hive, 
Incubating, Ivy, Lucene, JEdit, JHotDraw, JFreeChart, JBoss, 

JVlt, jSL, Karaf, Nutch, Pig, Qpid, Sax, Struts, Wicket, Xerces 

Palomba et al. 

(2018) 

48. 
Code Smell Detection using Multilabel 

Classification Approach 

datasets at: http://essere. 

disco.unimib.it/reverse/MLCSD.html 

Guggulothu and 

Moiz (2020) 

49. 

Assessment of Code Smell for Predicting 

Class Change Proneness using Machine 

Learning 

ACI, CheckStyle, FreePlane, Jkiwi, Joda, JStock, JText, LWJGL, 

ModBus, OpenGTS, OpenRocket, Quartz, Spring, SubSonic   

Pritam et al. (2019) 

50. 
Comparing Heuristic and Machine 
Learning Approaches for Metric-Based 

Code Smell Detection 

Ant, ArgoUML, Cassandra, Derby, Eclipse, Elastic Search, 
Hadoop, HSQLDB, Incubating, Nutch, Qpid, Wicket, Xerces 

Pecorelli et al. 
(2019) 

51. 
Using Code Evolution Information to 
Improve the Quality of Labels in Code 

Smell Datasets 

Tomcat, Jruby, netty Wang et al. (2018) 

52. 
Multi-objective code-smells detection 

using good and bad design examples 

ArgoUML v0.26, ArgoUML v0.3, Xerces v2.7, Ant-Apache v1.5, 

Ant-Apache v1.7.0, Gantt v1.10.2, Azureus v2.3.0.6 

Mansoor et al. 

(2017) 

53. 
On investigating code smells correlations GanttProject Fontana and. 

Zanano (2011) 

54. 
Predicting Source Code Quality with 
Static Analysis and Machine Learning 

PROMISE1: It is dataset from PROMISE workshop website 
named jm1, PROMISE2 jm1 with discrete values, STUDENT: 

dataset having student hand-ins basic programming course 

Barstad et al. (2014) 

55. 

Experience Report: Evaluating the 

Effectiveness of Decision Trees for 
Detecting Code Smells 

Eclipse 3.3.1, Mylyn 3.1.1, ArgoUML 0.26 and Rhino 1.6 Amorim et al. 

(2015) 

56. 

Software Code Smell Prediction Model 

Using Shannon, Rényi and Tsallis 
Entropies 

Apache Abdera Gupta et al. (2018) 

57. 

A Novel Four-Way Approach Designed 

with Ensemble Feature Selection for Code 

Smell Detection 

Dr Java, EMMA, and FindBugs Kaur and Kaur 

(2021) 

58. 

Tracing Bad Code Smells Behavior Using 

Machine Learning with Software Metrics 

Android-Universal-ImageLoader-master, bigbluebutton-master, 

Bukkit-master, clojure-master, dropwizard-master, jfreechart-

1.0.19, JHotDraw5.3-master, junit4-master, libgdx-master, 
metrics-4.1-development, netty-4.1, nokogiri-master, okhttp-

master, presto-master 

Gupta et al. (2021) 

59. 
Code smell detection and identification in 

imbalanced environments 

GanttProject, ArgoUML, Xerces-J, JFreeChart, Ant-Apache, 

Azureus 

Boutaib et al. (2021) 

60. 
Code smell detection by deep direct-

learning and transfer-learning 

C# and JAVA repositories Sharma et al. (2021) 

61. 

A study on correlations between 

architectural smells and design patterns 

Axion, cayenne, db-derby, hsqldb, squirrel-sql, hibernate, batik, 

displaytag, drawswf, itext, jasperreports, jext, marauroa, megamek, 
checkstyle, colt, drjava,  eclipse SDK, jpf, nakedobjects, trove, 

informa, jena,  jspwiki, jtopen, openjms, oscache, picocontainer, 
xmojo, quartz, QuickServer, sunflow, tapestry, ant, antlr,  apache-

maven, javacc, jparse, nekohtml, xalan, xerces, cobertura, emma, 

findbugs, fitjava, jmeter, junit, log4j, pmd, freecs, heritrix, james, 
jfreechart, jgraph, jgraphpad, jmoney, jsXe, pooka, proguard, 

webmail 

Pigazzini et al. 

(2021) 

62. 
Are Multi-Language Design Smells 

Fault-Prone? An Empirical Study 

Rocksdb, VLC-android, Realm,Conscrypt, Pljava, Javacpp, Zstd-

jni, Jpype, Java-smt 

Abidi et al. (2021) 

 

5. Conclusion 

The paper presents the literature review of code smells using both machine learning and non- machine 

learning techniques. The scope of this paper is limited to the research publications on code smells. The 

study span considered for this paper is 2009-2022. A total of 114 studies are selected to conduct this SLR. 

Our results indicate that Long Method (27%), Feature Envy (23%) and God Class (22%) are the most 
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popular smells among researchers. This may either mean that they are easy to study or are the most 

important ones. During our study we found 72.80% of the studies deployed non-ML techniques to study 

code smell and 21.92% of them used ML techniques. This reports non-ML techniques (heuristic, metric 

etc.) are largely studied by the researchers indicating that ML technique has scope for research. This 

review studies the non-ML techniques and reports 38% of the studies are conducted on the tools and 

methodologies followed by 28% on case studies and reports. It is found that Random Forest and JRip are 

the most promising algorithms reported and Decision Trees and Support Vector Machines are the most 

widely used algorithms for research. Java is found to be the dominant language used for studying code 

smells. After exhaustive study by several researchers, the datasets used in their study are reported and 

tabulated. Limitations of the studies inspires the researchers for future work. External Validity: This study 

targets research studies conducted during 2009-2022. The construct validity relative to the category 

choice of smell is present in the study due to the non-specific category of smell in this domain. A well-

labelled dataset is obtained after collecting several studies which is filtered and it may suffer from internal 

validity despite of cross validating the filtered research papers. Lastly, conclusion validity may arise even 

though the databases are exhaustively searched, still there is a possibility that a qualifying study may be 

left. Random Forest and JRip are the most promising algorithms. This work can be further extended by 

evaluating the performance measures of all algorithms of machine learning. Causal analysis of Bloaters, 

Object Orientation Abusers, Dispensables, Encapsulators, Change Preventers and Couplers can be done 

to further enhance the work. 
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Appendix A. Quality scores of the selected studies used in this SLR 
 

S.No. STUDY QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 Q A10 TOTAL 

1. Fontana et al. (2015c) 1 1 1 1 0 0.5 0 0 1 1 6.5 

2. 
Karađuzović-Hadžiabdić & 

Spahić (2018a) 
1 1 1 1 0 1 0 1 1 1 8 

3. Szőke et al. (2015) 1 1 0.5 1 0 0.5 0 0.5 1 1 6.5 

4. Wang et al. (2018) 1 1 1 1 0 1 0 1 1 1 8 

5. Aivaloglou and Hermans (2016) 1 1 1 1 0 1 0 1 1 1 8 

6. Abebe et al. (2009) 1 1 1 1 0 1 0 1 1 1 8 

7. Fontana et al. (2016b) 1 1 1 1 0 1 0 1 1 1 8 

8. Sahin et al. (2014) 1 1 1 1 0 1 0 1 1 1 8 

9. Schumacher et al. (2010) 1 1 1 1 0 1 0 1 1 1 8 

10. Sjøberg et al. (2012) 1 1 1 1 0 0.5 0 1 1 1 7.5 

11. Yamashita (2014) 1 1 0 1 0 0.5 0 0 1 1 5.5 

12. Fontana et al. (2012a) 1 1 0.5 1 0 0.5 0 1 1 1 7 

13. Carneiro et al. (2010) 1 1 1 1 0 1 0 1 1 1 8 

14. Charalampidou et al. (2017) 1 1 1 1 0 0.5 0 1 1 1 7.5 

15. 
Chatzigeorgiou and Manakos 

(2010) 
1 1 1 1 0 1 0 1 1 1 8 

16. 
Chatzigeorgiou and Manakos 

(2014) 
1 1 1 1 0 1 0 1 1 1 8 

17. Counsell et al. (2010) 1 1 0.5 1 0 0.5 0 1 1 1 7 

18. Tamrawi et al. (2012) 1 1 0.5 1 0 1 0 0 1 1 6.5 

19 Boussaa et al. (2013) 1 1 1 1 0 1 0 0.5 1 1 7.5 



Tandon et al.: Study of Code Smells: A Review and Research Agenda 
 

 

490 | Vol. 9, No. 3, 2024 

Appendix A continued… 
 

20. Rodriguez et al. (2015) 1 1 1 1 0 0.5 0 0 1 1 6.5 

21. Fard and Mesbah (2013) 1 1 1 1 0 1 0 0 1 1 7 

22. Fernandes et al. (2016) 1 1 1 1 0 1 0 0 1 1 7 

23. Fontana et al. (2011a) 1 1 1 1 0 1 0 0 1 1 7 

24. Hall et al. (2014) 1 1 1 1 0 1 0 0 1 1 7 

25. Hecht et al. (2016) 1 1 1 1 0 0.5 0 0 1 1 6.5 

26. Hermans et al. (2012) 1 1 1 1 0 0.5 0 0 1 1 6.5 

27. Hermans and Aivaloglou (2016) 1 1 1 1 0 1 0 0 1 1 7 

28. Kessentini et al. (2014) 1 1 1 1 0 1 0 0 1 1 7 

29. Khomh et al. (2009a) 1 1 1 1 0 1 0 1 1 1 8 

30. Liu et al. (2011) 1 1 1 1 0 1 0 0 1 1 7 

31. Khomh et al. (2009b) 1 1 1 1 0 1 0 0 1 1 7 

32. Liu et al. (2015) 1 1 1 1 0 1 0 0 1 0.5 6.5 

33. Liu et al. (2019) 1 1 1 1 0 1 0 1 1 1 8 

34. Macia et al. (2012) 1 1 1 1 0 1 0 1 1 1 8 

35. Macia et al. (2011) 1 1 1 1 0 1 0 1 1 1 8 

36. Moha et al. (2010) 1 1 1 1 0 1 0 0.5 1 1 7.5 

37. Moha et al. (2009) 1 1 1 1 1 1 1 0 1 1 9 

38. Oizumi et al. (2016) 1 1 1 1 0 1 0 0 1 1 7 

39. Olbrich et al. (2009) 1 1 1 1 0 1 0 0 1 1 7 

40. Olbrich et al. (2010) 1 1 1 1 0 1 0 1 1 1 8 

41. Ouni et al. (2015) 1 1 0 1 0 1 0 0 1 1 6 

42. Palomba et al. (2013) 1 1 1 1 1 0 1 0 1 1 8 

43. Palomba et al. (2014a) 1 1 1 1 0 1 0 1 1 1 8 

44. Palomba et al. (2016) 1 1 1 1 0 1 0 0.5 1 1 7.5 

45. Peters and Zaidman (2012) 1 1 1 1 0 1 0 0.5 1 1 7.5 

46. Rahman et al. (2012) 1 1 0.5 1 0 1 0 0.5 1 1 7 

47. Wagey et al. (2015) 1 1 0.5 1 0 1 0 1 1 1 7.5 

48. Mansoor et al. (2017) 1 1 1 1 0 1 0 1 1 1 8 

49. Fontana and Zanoni (2011c) 1 1 1 1 0 1 0 1 1 1 8 

50. Barstad et al. (2014) 1 1 1 1 0 1 0 1 1 1 8 

51. Amorim et al. (2015) 1 1 1 1 0 1 0 0 1 1 7 

52. Gupta et al. (2018) 1 1 0.5 1 0 1 0 0 1 1 6.5 

53. Kaur and Kaur (2021) 1 1 0.5 1 0 0.5 0 0 1 1 6 

54. Gupta et al. (2021) 1 1 1 1 1 0 1 0 1 1 8 

55. Boutaib et al. (2021) 1 1 1 1 1 0 0.5 0 1 1 7.5 

56. Sharma et al. (2021) 1 1 1 1 0 1 0 0 1 1 7 

57. Pigazzini et al. (2021) 1 1 1 1 0 1 0 0 1 1 7 

58. Abidi et al. (2021) 1 1 1 1 0 0.5 0 0 1 1 6.5 

59. Nagy and Cleve (2017) 1 1 1 1 0 1 0 1 1 1 8 

60. Moha et al. (2010) 1 1 1 1 0 1 0 0 1 1 7 

61. Pereira et al. (2022) 1 1 1 1 0 1 0 0 1 1 7 

62. Murphy-Hill and Black (2010) 1 1 1 1 0 1 0 1 1 1 8 

63. Mitchell (1997) 1 1 0 1 0 1 0 0 1 1 6 

64. Oizumi et al. (2016) 1 1 1 1 0 1 0 0 1 1 7 

65. Mansoor et al. (2017) 1 1 1 1 0 1 0 0 1 1 7 

66. Meananeatra et al. (2011) 1 1 1 1 0 1 0 1 1 1 8 

67. Kessentini et al. (2014) 1 1 1 1 0 1 0 0 1 1 7 

68. Moha et al. (2009) 1 1 1 1 0 1 0 0 1 1 7 

69. Li et al. (2010) 1 1 0.5 1 0 1 0 0 1 1 6.5 

70. Paul et al. (2023) 1 1 1 1 0 1 0 0 1 1 7 

71. Karapetrovic and Willborn (1998) 1 1 1 1 0 1 0 0 1 1 7 

72. Pigazzini et al. (2021) 1 1 0 1 0 1 0 0 1 1 6 

73. 
Karađuzović-Hadžiabdić and 

Spahić (2018a) 
1 1 0 1 0 0 0 1 1 1 6 

74. Peters and Zaidman (2012) 1 1 0 1 0 0 0 1 1 1 6 

75. Jain and Saha (2022) 1 1 1 1 0 1 0 0 1 1 7 

76. Sharma et al. (2017) 1 1 0.5 1 0 1 0 0 1 1 6.5 

77. Olbrich et al. (2010) 1 1 1 1 0 1 0 0 1 1 7 

78. Jain and Saha. (2021) 1 1 0.5 1 0 1 0 0 1 1 6.5 
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79. Sharma et al. (2021) 1 1 1 1 0 1 0 0 1 1 7 

80. Holschuh et al. (2009) 1 1 0.5 1 0 1 0 0 1 1 6.5 

81. Pritam et al. (2019) 1 1 0 1 0 1 0 0 1 1 6 

82. Schumacher et al. (2010) 1 1 1 1 1 0 0 0 1 1 7 

83. Bryton et al. (2010) 1 1 1 1 0 0 0 0 1 1 6 

84. Maneerat and Muenchaisri (2011) 1 1 1 1 1 0 1 0 1 1 8 

85. Arcoverde et al. (2011) 1 1 0.5 1 0 0 0 0 1 1 5.5 

86. Sjøberg et al. (2012) 1 1 1 1 1 0 0 0 1 1 7 

87. Pecorelli et al. (2019) 1 1 1 1 1 0 1 0 1 1 8 

88. Avgeriou et al. (2016) 1 1 1 1 1 0 1 0 1 1 8 

89. Rahman et al. (2012) 1 1 1 1 1 1 1 1 1 1 10 

90. Hecht et al. (2016) 1 1 1 1 1 0 1 0 1 1 8 

91. Rasool and Arshad (2015) 1 1 1 1 1 0 1 0 1 1 8 

92. Hall et al. (2014) 1 1 1 1 1 0 0.5 0 1 1 7.5 

93. Sahin et al. (2014) 1 1 1 1 1 0 1 0 1 1 8 

94. Haendler et al. (2017) 1 1 1 1 1 0 0.5 0 1 1 7.5 

95. Palomba et al. (2014b) 1 1 1 1 0 0.5 0 0 1 1 6.5 

96. Guo et al. (2010) 1 1 1 1 0.5 0.5 0 0 1 1 7 

97. Rodriguez et al. (2015) 1 1 1 1 0 1 0 1 1 1 8 

98. Guggulothu and Moiz (2020) 1 1 0.5 1 0 0.5 0 0.5 1 1 6.5 

99. Oliveto et al. (2011) 1 1 0.5 1 0 0.5 0 0.5 1 1 6.5 

100. Gottschalk et al. (2012) 1 1 1 1 1 0 1 0 1 1 8 

101. Ouni et al. (2015) 1 1 1 1 1 0 1 0 1 1 8 

102. Fontana et al. (2015b) 1 1 1 1 0 1 0 1 1 1 8 

103. Sharma et al. (2016) 1 1 1 1 1 0.5 0.5 1 1 1 8 

104. Tandon et al. (2022) 1 1 1 1 1 1 0.5 1 1 0.5 9 

105. Szőke et al. (2015) 1 1 1 1 1 1 1 0.5 1 0.5 9 

106. Taibi et al. (2017) 1 1 1 1 1 1 0.5 1 1 0.5 9 

107. Tamrawi et al. (2012) 1 1 1 1 1 1 0.5 0.5 0.5 0.5 8 

108. Tempero et al. (2010) 1 1 1 1 1 1 0.5 0.5 0 0 7 

109. Vidal et al. (2016) 1 1 0.5 1 0 0.5 0 0.5 1 1 6.5 

110. Wagey et al. (2015) 1 1 1 1 1 1 0 0.5 0 0 6.5 

111. Wen at al. (2012) 1 1 1 1 1 1 0 0 0 1 7 

112. Witten et al. (2002) 1 1 1 1 1 1 0.5 0.5 0 0 7 

113. Zazworka et al. (2011a) 1 1 0.5 1 0 0.5 0 0.5 1 1 6.5 

114. Zhang et al. (2011) 1 1 1 1 1 1 0 0 0 1 7 
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