
International Journal of Mathematical, Engineering and Management Sciences 

Vol. 11, No. 1, 64-81, 2026 

https://doi.org/10.33889/IJMEMS.2026.11.1.004 
 

64 | https://www.ijmems.in 

Mathematical Optimisation of 3D Container Loading Using Simulated 

Annealing and Ant Colony Algorithms 

 
Penpark Mahanin  

Department of Science and Mathematics, 

Rajamangala University of Technology Isan, Surin Campus, Surin, Thailand. 

E-mail: penpark.si@rmuti.ac.th 

 

Ekrem Aljimi  
Faculty of Applied Science,  

Public University “Kadri Zeka”, Gjilan, Republic of Kosova. 

E-mail: ekrem.halimi@uni-gjilan.net 

 

Thawatchai Boontan  
Faculty of Science and Technology, 

Rajabhat Maha Sarakham University, Maha Sarakham, Thailand.  

Corresponding author: thawatchai.bo@rmu.ac.th 

 
(Received on June 6, 2025; Revised on August 13, 2025; Accepted on September 4, 2025) 

 

 

 

Abstract  

The surge in online purchasing has intensified price competition, compelling businesses to reduce product costs and shipping fees 

to remain competitive in a rapidly expanding digital marketplace. For logistics service providers, an effective strategy for reducing 

shipping costs is to maximize the use of container storage capacity while minimizing wasted space, an approach referred to as the 

container loading problem. This classic optimisation challenge has wide applications in delivery companies, particularly due to the 

limited number of containers suitable for box packaging. As a result, manufacturers and postal delivery services have faced 

challenges in transporting and dispatching parcels efficiently. This highlights the need for an effective solution to the packing 

problem in rectangular containers. The proposed approach aims to reduce storage and shipping costs while minimizing processing 

and delivery times. To accomplish this, metaheuristic algorithms, particularly Simulated Annealing (SA) and Ant Colony 

Optimisation (ACO), were used in combination with the Axis Order Test (AOT) and Corner Point Placing (CPP). The performances 

of SA-AOT, SA-CPP, ACO-AOT, and ACO-CPP in terms of space utilisation and processing time were then compared. The results 

indicated that the ACO-CPP model was more effective than the others, achieving a maximum space utilisation of up to 98.19 per 

cent and having the fastest processing time (under 0.2 hours). The ACO-CPP model reduced packaging time and operational costs, 

offering a sustainable solution for logistics providers in the new era of e-commerce.  

 

Keywords- Three-dimensional packing problem, Axis order test, Corner point placing, Simulated annealing, Ant colony 

optimisation. 

 

 

 

1. Introduction  
According to a Statista report, global retail e-commerce sales amounted to approximately 3.6 trillion U.S. 

dollars in 2024 and are forecast to reach around 5 trillion U.S. dollars by 2030. (Statista Research 

Department, 2025). E-commerce has grown rapidly in recent years, a trend that expanded following the 

COVID-19 pandemic. The crisis reshaped consumer behavior, making online shopping more prevalent as 

people increasingly valued convenience, speed, and simplicity. Thus, the demand for faster and more 

efficient logistics has increased, placing significant pressure on businesses, especially on transport and 

logistics providers. Therefore, there is a need to optimise operations and reduce costs while maintaining 

speed and quality of service. We can see that recent developments, such as the supply chain digital twin 

concept, have been shown to enhance supply chain resilience and decision-making through real-time 
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simulation and optimization (Barykin et al., 2020). For example, practical applications of digital twins for 

modern logistics operations enabled the optimisation of the flow of goods and information across the end-

to-end supply chain, and also supported the use of snapshots to forecast supply chain dynamics. However, 

inefficient pallet and container loading still persist, causing unnecessary costs due to underutilized space or 

degradation of products in storage, especially if environmental factors like humidity are not properly 

managed (Almasarwah et al., 2023). These issues become particularly important when considering the 

available shipping modes. Globally, commodities are primarily shipped via land, sea, and air transport. 

Among these modes, the sea transports more than 50% of the value and 80% of the volume of international 

trade due to its comparatively lower cost than air transport (Ferrari et al., 2023).  

 

However, shipping by sea has several constraints, such as limited routes, operating times, container and 

port capacity, fuel costs, seasonal changes shifts in demand, and loading capacity. Since shipping can result 

in costly delays or dispatch of underutilized containers leading to wasted resources, one of the most critical 

constraints is loading capacity, in that it is significantly affected by the inaccurate estimation of the number 

of containers. The container loading problem, a subset of the broader packing problem, is an optimisation 

challenge that involves arranging items efficiently within a container, truck, or pallet (Zhao et al., 2016; 

Pietri et al., 2021). As such, the relationship between logistics and container loading is critical to the overall 

efficiency of the supply chain. Efficient container loading has a direct impact on the logistics system since 

it helps to optimise transportation efficiency, lowers shipping costs, and reduces fuel consumption (Doukas 

et al., 2021). In addition, organized packing methods lead to improved handling, reduced shipping time, 

and better environmental performance. These are all areas of primary focus in green logistics, which is 

widely accepted around the world. Thus, the container loading problem is considered one of the most 

important factors in improving overall logistics service performance (Jugović, 2020; De Souza et al., 2022; 

Chien et al., 2024). To achieve both effectiveness and sustainability in meeting customer demands, 

organizations are increasingly embracing new technologies such as metaheuristic algorithms to address 

difficult problems of optimal packing. Given these challenges in logistics optimisation, container loading 

remains one of the most critical issues. To address these issues, many researchers have become increasingly 

interested in using computational methods to improve operations management. Among these, the 

metaheuristic approach is widely employed to solve optimisation problems, particularly packing problems. 

  

Metaheuristic techniques are algorithms for optimisation that are used to find the optimal solution to 

complex problems. Exact solutions are costly to compute and may not guarantee the discovery of an optimal 

solution will be found (Tomar et al., 2023; Houssein et al., 2025). Consequently, researchers increasingly 

prioritize metaheuristic approaches to derive high-quality approximations for complex optimisation 

challenges. This has led to an increasing number of studies focusing on how metaheuristic algorithms can 

be used to address container loading scenarios. For instance, in 2021, Penpark et al. (2021) employed a 

heuristic method combining a genetic algorithm (GA) and simulated annealing (SA) to manage food box 

packing problems in rectangular containers. The findings indicated that the proposed method significantly 

reduced packaging time and decreased the total cost of food container distribution (Penpark et al., 2021). 

Romero et al. (2023) pioneered a hybrid approach to address real-world bin packing problems using 

quantum annealing techniques. The study introduced a hybrid quantum-classical approach to solve real-

world 3D Bin Packing Problems (Q4RealBPP) with realistic constraints. Their findings revealed that 

Q4RealBPP effectively addressed all generated instances, including various real-world scenarios. The final 

two occurrences, 3dBPP_11 and 3dBPP_12, were particularly important since they activated all defined 

limitations (Romero et al., 2023). Later in the same year, Yang et al. (2024) proposed a two-layer heuristic 

approach for solving container packaging problems. Their research introduced an innovative technique for 

designing container sizes to better accommodate packaged items. Moreover, 3D-MBSBPP and 3D-ODP 

techniques have been combined and used to solve a multidimensional bin design and packing problem, 



Mahanin et al.: Mathematical Optimisation of 3D Container Loading Using Simulated … 
 

66 | Vol. 11, No. 1, 2026 

developing a two-layer heuristic method. In this framework, the inner layer utilized a deterministic 

constructive heuristic to generate effective solutions, while the outer layer applied genetic algorithms (GA) 

to design appropriate container types. Simulation results demonstrated the effectiveness of this combined 

approach, providing better solution quality and reducing the cost of bins. These findings represent 

significant progress in both applied research and relevant industries (Yang et al., 2024). 

 

The research discussed above has potential applications in the land transportation industry, particularly in 

addressing the container loading problem. As indicated in previous studies, the global export sector plays 

a critical role in international economic development and the expansion of global trade. The continued 

growth in export activities is largely driven by advancements in manufacturing infrastructure and 

technological innovation including IoT devices (e.g., sensors, cameras, smart locks) for cargo tracking and 

smart sensors. In addition, smart sensors in the supply chain can improve operating efficiency through 

automation, decrease repair costs and maintenance downtime through better monitoring, and perform real-

time inventory tracking with improved demand planning. Moreover, the increasing demand for high-quality 

products and services has broadened access to global markets. The rapid increase in global e-commerce 

further contributes to this growth, presenting both new opportunities and challenges to the export and 

logistics industry. Among these challenges, efficient container packing management is a critical concern. 

Poorly managed packing operations can lead to financial losses, delayed delivery, and compromised 

performance. In addition, unhappy customers may not place future orders, and may warn family, friends 

and social media followers not to utilize the company. Such issues may negatively affect the credibility of 

exporting countries and diminish consumer confidence in products delivered through international trade. 

Improving logistical efficiency has become a necessity for companies aiming to meet rising consumer 

expectations. In response, e-commerce companies and other businesses around the world have been 

developing new features and services. These strategies aim to make the online shopping experience as 

smooth and convenient as in-store purchasing. However, the rapid development of online transactions has 

created logistical issues, including delivery delays and rising shipping transit costs. Projections indicate that 

transportation costs will continue to rise in the coming decades (Raj et al., 2024; Tjandra et al., 2024). This 

is predicted to drive companies around the world into adopting advanced cargo planning solutions for 

improved efficiency, security, and cost-effectiveness in transportation management. The implementation 

of initiatives such as container packing optimisation, route optimisation, and sustainable logistics practices 

will be vital in addressing the challenges within the global export industry. Businesses engaged in 

international trade must enhance these areas to meet the growing demand for fast, reliable shipping services.  

 

To solve such logistical problems, global logistics companies are employing modern technologies in 

packing processes to reduce operational costs, cargo frequency and environmental impact. Current studies 

have also focused on improved heuristic approaches based on dynamic corner fitness and spatial knowledge 

reuse to enhance the efficiency of container loading operations. (Fang et al., 2024; Liu & Jiang, 2024).  

 

This study proposes a fast and effective method for solving packing problems in rectangular containers by 

combining metaheuristic algorithms, particularly Simulated Annealing (SA), and Ant Colony Optimisation 

(ACO). The novelty of these hybrid approaches lies in the integration of metaheuristic algorithms with 

distinct placement strategies —Axis Order Test (AOT) and Corner Point Placing (CPP). This model enables 

detailed cross-comparison of hybrid strategies. Our approaches operate without the need for prior training 

and can be used for real-time logistics applications. Additionally, combining pheromone-based learning 

with simulated annealing improves the convergence rate and optimises packing efficiency without adding 

to the computational cost. 
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This article is organized as follows: Section 2 describes the formulation for the three-dimensional packing 

problem. Section 3 outlines the main structure of the proposed metaheuristic algorithm. The empirical 

results and discussion of both solutions are discussed in Section 4. Finally, Section 5 summarises the key 

findings of the study. 

 

2. Mathematical Formulation for the Three-Dimensional Packing Problem 
This section presents the mathematical formulation for the three-dimensional container loading problem, 

which involves packing a set of items (i.e., boxes) within a container such that there is no overlap and all 

items remain within the container’s boundaries. The proposed method builds upon concepts originally 

developed for the analogous two-dimensional packing problem, and then applies them to the three-

dimensional packing problem (3D-BPP) through substantial changes and incremental improvements. 

 

 
 

Figure 1. The axis order test (AOT). 

 

 

 
 

Figure 2. Corner point placing (CPP). 

 

 

Therefore, in this study, we consider the three-dimensional packing problem (3D-BPP) using the Axis 

Order Test (AOT), as shown in Figure 1, and Corner Point Placing (CPP), as shown in Figure 2, with the 

following conditional constraints: (i) the items have to be placed without overlapping, (ii) the items should 

be packed with their edges parallel to the container's borders, and (iii) the items are cuboid and cannot be 

rotated, because in practical logistics applications, many items must be kept upright to avoid damage or 
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prevent leakage such as food boxes, liquid containers, and medical equipment. Therefore, condition number 

3 should maintain a fixed orientation to contribute to increased safety and optimise the cargo unloading 

process. The description of the two methods is as follows:  

 

2.1 Axis Order Test (AOT) 
The Axis Order Test (AOT) algorithm is a strategic approach for optimizing the placement sequence of 

three-dimensional rectangular items within a container. Algorithm 1 contains a pseudo-code representation 

of the AOT algorithm, which is used to solve three-dimensional packing problems. This concept is inspired 

by the bottom-left-fill metaheuristic algorithm used in two-dimensional packing scenarios. Each item (i.e., 

box) is initially positioned at the top right-hand corner of the sheet and then moved successively downwards 

and leftwards as far as possible until the item (i.e., box) is placed in a stable position without overlapping, 

as shown in Figure 1. In this research, each item 𝑖 = {1, 2, 3, … , 𝑁} is defined by its dimensions : 

(𝑅𝑥𝑖, 𝑅𝑦𝑖 , 𝑅𝑧𝑖). 

 

where, 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 are the coordinates of the bottom -left -front corner of item 𝑖, 
𝑅𝑥𝑖 is the width of item (i.e., box) 𝑖 
𝑅𝑦𝑖 is the length of item (i.e., box) 𝑖 
𝑅𝑧𝑖 is the height of item (i.e., box) 𝑖 
The dimensions of the container are denoted as : 
(𝑋, 𝑌, 𝑍). 

 

where,  

𝑋 is the width of the container 𝑖, 
𝑌 is the length of the container 𝑖, 
𝑍 is the height of the container 𝑖, 
and 𝑁 represents the total number of items (i.e., boxes). 

The purpose of the AOT is to design an optimal packing configuration so that : 

∑ 𝑉𝑖 ≤ 𝑉𝑐  𝑁
𝑖=1                                                                                                                                                    (1) 

 

Here, 𝑉𝑐 is the volume of the container 𝑋 × 𝑌 × 𝑍. 

𝑉𝑖 is the volume of item (i.e., box) 𝑖, which is 𝑅𝑥𝑖 × 𝑅𝑦𝑖 × 𝑅𝑧𝑖. 

The details of AOT are presented in Algorithm 1 and we can consider the optimisation formulation as 

follows : 

 

Objective Function: Maximize the total volume of packed items   

𝑉 = 𝑚𝑎𝑥 ∑ 𝛿𝑖 ∙ 𝑉𝑖 𝑁
𝑖=1                                                                                                                                        (2) 

 

where, 𝛿𝑖 ∈ {0,1} indicates whether item (i.e., box) 𝑖 is placed (1) or not (0), 𝑉 is the total volume of packed 

items. 

 

Constraints : 

(i) Container boundaries (for all 𝑖): 

𝑋 ≥ 𝑥𝑖 + 𝑅𝑥𝑖 ∙ 𝛿𝑖 ,  𝑌 ≥ 𝑦𝑖 + 𝑅𝑦𝑖 ∙ 𝛿𝑖 , 𝑍 ≥ 𝑧𝑖 + 𝑅𝑧𝑖 ∙ 𝛿𝑖                                                                                (3) 

 

(ii) Non-overlapping items (for all  𝑖 ≠ 𝑗): 
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(𝑥𝑗 ≥ 𝑥𝑖 + 𝑅𝑥𝑖) ∨  (𝑥𝑖 ≥ 𝑥𝑗 + 𝑅𝑥𝑗) ∨ (𝑦𝑗 ≥ 𝑦𝑖 + 𝑅𝑦𝑖) ∨ (𝑦𝑖 ≥ 𝑦𝑗 + 𝑅𝑦𝑗) ∨ (𝑧𝑗 ≥ 𝑧𝑖 + 𝑅𝑧𝑖) ∨ (𝑧𝑖 ≥

𝑧𝑗 + 𝑅𝑧𝑗)                                                                                                                                                        (4) 

 

This ensures that item (i.e., box) 𝑖 and 𝑗 do not overlap in three-dimensional space. 

 

(iii) Binary decision variables (for all 𝑖): 𝛿𝑖 ∈ {0,1}. 

 

Algorithm 1 Axis Order Test (AOT) Packing Algorithm 

Input: A container dimensions (𝑋, 𝑌, 𝑍), and a set of 𝑁 boxes with dimensions (𝑅𝑥𝑖 , 𝑅𝑦𝑖 , 𝑅𝑧𝑖) 

Output: Coordinates 𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) for each packed item 

for 𝑘 = 1 to 𝑁 do 

 Initialize candidate position 𝑐𝑖 = (0,0,0)of container 

 while item 𝑘 not placed do 

  if item 𝑘 fits at 𝑐 without overlapping then 

   Place item 𝑘 at 𝑐𝑘 = 𝑐 

   Mark item 𝑘 as placed 

   break 

  end if 

  Move 𝑐 along Z-axis 

  if Z-direction fully placed then 

   Reset Z, move along Y-axis 

  end if 

  if Y-direction fully placed then 

   Reset Y and Z, move along X-axis 

  end if 

  if All feasible directions tested then 

   Mark item 𝑘 as unplaced; break 

  end if 

 end while 

end for 

Return All feasible positions {𝑐1, … , 𝑐𝑛} 
 

2.2 Corner Point Placing (CPP) 
The Corner Point Placing (CPP) method is based on the intersection of three-dimensional planes and 

identifies potential placement positions by considering the plane sections formed by the top, bottom, left, 

and right sides of items already placed in the container, as illustrated in Figure 2. All previously packed 

items are fixed in position and cannot be moved further down, top, up, or backward. Besides, whenever a 

new item (i.e., box) is added to the container, its position should not overlap with an already packed item .  

As a consequence, the boundary between the empty and occupied spaces is defined by the set of all corner 

points within  the container. Let 𝑁 denote  the number of items in CPP method. The first item (i.e., box) is 

positioned at the origin coordinates 𝑋1 × 𝑌1 × 𝑍1. Following this  placement (i.e., box), three new points are 

generated  at the edges of the item: ((0 + 𝑋1, 0,0), (0,0 + 𝑌1, 0), (0,0,0 + 𝑍1)) , excluding the original 

corner  (0,0,0). Subsequent items are placed at these new positions. If an item cannot be placed at a given 

point, alternative items are considered until a suitable one is found. This technique reduces unused space 

and increases the overall compactness of the packing arrangement. The pseudo code for determining the 

placement order  is presented in Algorithm 2: 
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Algorithm 2 Corner Point Placing (CPP) Algorithm 

Input: A container dimensions (𝑋, 𝑌, 𝑍), and a set of 𝑁 boxes with dimensions (𝑅𝑥𝑖 , 𝑅𝑦𝑖 , 𝑅𝑧𝑖) 

Output: Placement coordinates 𝑐𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) for each box 

Initialize corner point set 𝐶1 = (0,0,0) 

for 𝑘 = 1 to 𝑁 do 

 placed = false 

 for all 𝑐 in 𝐶𝑘 do 

  if box 𝑘 fits at 𝑐 without overlap or overflow then 

   Place box 𝑘 at 𝐶𝑘 = 𝑐 

   𝐶𝑘+1 update the new corner points generated by placing 

   Remove the used corner point from 𝐶𝑘+1 

   placed = true; break 

  end if 

 end for 

 if not placed then 

  k = k + 1 

 end if 

end for 

Return {𝑐1, 𝑐2, … , 𝑐𝑛} 

 

Let 𝑖 ∈ {1, 2, … , 𝑁} be  the set of items (i.e., boxes) to be packed, (𝑅𝑥𝑖, 𝑅𝑦𝑖, 𝑅𝑧𝑖) are  the dimensions of item 

(i.e., box), 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are the coordinates of the bottom -left-front corner of item, and 𝐶𝑘 ⊂ ℝ3 is the set of 

available corner points at step k. The algorithm selects a corner point 𝑐𝑘 = (𝑥, 𝑦, 𝑧) ∈ 𝐶𝑘 at each packing 

step 𝑘 such that : 

 

(i) Feasibility constraint- Each item must lie entirely within the container ’s boundaries : 

𝑋 ≥ 𝑥𝑖 + 𝑅𝑥𝑖,  𝑌 ≥ 𝑦𝑖 + 𝑅𝑦𝑖 ,  𝑍 ≥ 𝑧𝑖 + 𝑅𝑧𝑖                                                                                             (5) 

 

(ii) Non-overlapping constraint- The item should not overlap  with any previously placed item (i.e., box) 

𝑗, for all 𝑗 < 𝑖: 

(𝑥𝑗 ≥ 𝑥𝑖 + 𝑅𝑥𝑖) ∨  (𝑥𝑖 ≥ 𝑥𝑗 + 𝑅𝑥𝑗) ∨ (𝑦𝑗 ≥ 𝑦𝑖 + 𝑅𝑦𝑖) ∨ (𝑦𝑖 ≥ 𝑦𝑗 + 𝑅𝑦𝑗) ∨ (𝑧𝑗 ≥ 𝑧𝑖 + 𝑅𝑧𝑖) ∨ (𝑧𝑖 ≥

𝑧𝑗 + 𝑅𝑧𝑗)                                                                                                                                                        (6) 

 

(iii) Corner preference rule  – Among all feasible corner points, choose the one minimizing : 

min
(𝑥,𝑦,𝑧)∈𝐶𝑘

𝑧 + 𝛽𝑦 + 𝛾𝑥                                                                                                                                     (7) 

 

Here, 𝛽, 𝛾 are  the small positive constants used to break ties and prefer front -left -lower positions .  When an  

item is placed at (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) = 𝑐𝑘  , the corner point list 𝐶𝑘+1 is updated by adding new corner points 

generated from the exposed corners of the newly placed item. 

 

3. Metaheuristics Method 
This study proposes a model utilising Simulated Annealing (SA) and Ant Colony Optimisation (ACO) to 

derive efficient and optimal solutions to packaging problems in containers or similar scenarios. A novel 

methodological contribution of this study is the structured integration of each metaheuristic algorithm —

Simulated Annealing (SA) and Ant Colony Optimisation (ACO)—with two placement strategies: Axis 

Order Test (AOT) and Corner Point Placing (CPP). The performance of SA-AOT, SA-CPP, ACO-AOT, 
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and ACO-CPP was then compared. The aim of this work is to minimise resource usage or costs associated 

with packaging and transportation processes, which may involve reducing storage space in containers, 

decreasing delivery times, or lowering transportation expenses. The details of SA and ACO are illustrated 

in the following sections.  

 

3.1 Simulated Annealing (SA) 
Simulated Annealing (SA), introduced by Kirkpatrick et al. (1983), is a probabilistic metaheuristic inspired 

by the annealing process in metallurgy, where materials are heated and slowly cooled to minimise their 

structural energy. This method approximates the global optimum of a given function by processing many 

local minimums. In combinatorial optimisation problems, such as three-dimensional packing, SA explores 

large and non-convex solution spaces by allowing, with probability, inferior solutions to avoid local optima 

and search for a global optimum. Generally, this algorithm employs an iterative movement based on a 

changeable thermal parameter, approximating the metal annealing procedure (Henderson et al., 2003; Sahab 

et al., 2013). The concept of simulated annealing in combinations is illustrated in the flowchart in Figure 

3. 

 

 
 

Figure 3. Illustration of the flowchart of the simulated-annealing algorithm (SA). 
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Considering the flowchart in Figure 3, let  𝐸𝑘 and 𝐸𝑘+1 denote the objective function values (or energy 

levels) at iterations 𝑘 and 𝑘 + 1, respectively. The action to accept the next point or the action at iteration 

𝑘 + 1 depends on the change in the objective function values at both points . As a consequence, the system's 

energy changes from 𝐸𝑘 to 𝐸𝑘+1 , which is defined as ∆𝐸 = 𝐸𝑘+1 − 𝐸𝑘. The value of ∆𝐸 is employed in 

the computation of the probability distribution  𝑃 = 𝑚𝑖𝑛 (1, 𝑒𝑥𝑝(∆𝐸/𝑇)). Subject to the condition that ∆𝐸 

is non -positive, indicating a decrease in the objective function value, the probability 𝑃 is set to 1. The 

acceptance probability in the system for moving from state 𝑥𝑘 to 𝑥𝑘+1 is given by :   

𝑃 = {
1                 𝑖𝑓, ∆𝐸 > 0

𝑒𝑥𝑝 (
∆𝐸

𝑇
)  𝑖𝑓, ∆𝐸 ≤ 0

                                                                                                                          (8) 

 

where, 𝑇 > 0 is the current temperature. Therefore, the solution  is accepted if 𝑒𝑥𝑝(∆𝐸/𝑇) is accepted,  

where  ∆𝐸 is positive (Delahaye et al., 2019). The value of the objective function at any point within the 

considered domain is denoted as follows : 

𝐸𝑘 = ∑ 𝛿𝑖 ∙ 𝑉𝑖
𝑁
𝑖=1                                                                                                                                             (9) 

 

where,  𝛿𝑖 ∈ {0,1}, 𝛿𝑖 = 1 if the item 𝑖 is placed, 𝛿𝑖 = 0 if the item 𝑖 is not placed, 𝑉𝑖 is the volume of item 

and 𝑖, 𝐸𝑘 is the unused space. In addition, the cooling schedule can be described as : 

𝑇𝑘+1 = 𝛼𝑇𝑘  , 𝛼 ∈ (0,1)                                                                                                                             (10) 

 

From the above equation, the typical value of 𝛼 was chosen between 0.90-0.99 (McKendall & Dhungel, 

2024). In this study, we selected 𝛼 = 0.95 based on preliminary experiments that balanced convergence 

speed and solution quality. The process continues until 𝑇𝑘 ≤ 𝑇𝑚𝑖𝑛 , where 𝑇𝑚𝑖𝑛  was determined 

empirically based on problem size. 

 

3.2 Ant Colony Optimisation (ACO) 
In this metaheuristic approach, the Ant Colony Optimisation (ACO) algorithm is also considered for solving 

the optimal packing problem. This method was introduced in 2006 by Dorigo et al. (2006). The basic 

concept behind ACO originated from the ability of ants to find the most optimal path from their nest (N) to 

food sources (F) (Levine & Ducatelle, 2004). As ants travel, they deposit a chemical trail (pheromone) 

along their path. This pheromone trail serves as a guide for other ants to the target point. The path traveled 

by one ant is determined by the amount of pheromone deposited by prior ants. Ants employ pheromone 

deposit to find the most followed path, which is frequently the best or near-best option. Furthermore, as 

time passes, this chemical substance becomes less effective, and the amount left by one ant is dependent on 

the amount of food discovered and the number of ants using this pathway (Peng et al., 2005). 

 

 
 

Figure 4. Illustration of ants encountering an obstacle . 
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Figure 4 shows an example of ants encountering an obstacle: (a) Ants are moving along a trail between 

their nest (N) and the food source (F). When an obstacle blocks the original path, two new options for 

travelling, left or right of the obstacle, emerge; (b) The ants’ choice is influenced by the intensity of the 

pheromone trails left by previous ants. A higher pheromone concentration on the left path provides a 

stronger stimulus, increasing the probability that subsequent ants will choose it; (c) Over time, more 

pheromones accumulate along the shortest (or nearly optimal) path. The fundamental principles of ACO 

are detailed in the following steps. 

 

(i) Initialization 

The initialization phase of the  ACO consists of two parts :  representing the problem as a graph, and 

randomly placing ants  on the graph’s nodes. The problem is modeled as a graph 𝐺 = 〈𝑁, 𝐸〉, where each 

node (𝑁) indicates a possible position (e.g., a corner point) for placing a box within the container, and the 

connections between these positions are shown by edges (𝐸). The second step is to place a number of ants 

on randomly chosen nodes upon which each ant constructs a solution by moving from node to node based 

on a probabilistic node transition rule . 

 

(ii) Node transition rule 

In the context of the packing problem, each ant builds a feasible solution by moving from node to node in 

the packing graph, where each node represents an item placement configuration (position and orientation). 

Rather than making purely random decisions, ants rely on both the pheromone intensity and the desirability 

of the placement based on some heuristic factor (e.g., volume fit or spatial efficiency). In particular, for an 

ant currently located at node 𝑖, the probability of moving to a feasible next node  𝐽 ∈ 𝑁𝑖
𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

 is defined 

as : 

𝑃𝑖𝑗 =
[𝜏𝑖𝑗]

𝛼
∙[𝜂𝑖𝑗]

𝛽

∑ [𝜏𝑖𝑘]𝛼∙[𝜂𝑖𝑘]𝛽
𝑘𝜖𝑁

𝑖
𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

                                                                                                                          (11) 

 

Here, 𝜏𝑖𝑗 is the amount of pheromone deposited on edge (𝑖, 𝑗), 𝜂𝑖𝑗  is the heuristic desirability of choosing 

node 𝑗, typically based on volume fit or spatial efficiency, and the parameters controlling the influence of 

pheromone and heuristic are 𝛼 and 𝛽 respectively. In this study, we set 𝛼 = 1 and 𝛽 = 2 based on widely 

accepted values in combinatorial optimization literature (Stützle et al., 2012). Infeasible nodes such as 

placements resulting in overlap or boundary violations are excluded from the candidate set 𝑁𝑖
𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

. This 

ensures that each ant generates only valid packing sequences. For other potential state transitions, the trail 

level and attractiveness are represented by 𝜏(𝑖, 𝑘) and 𝜂(𝑖, 𝑘).  

 

(iii) Pheromone updating rule  

Using the node transition rule iteratively, each ant moves along the edges of the graph from node to node, 

constructing a complete solution to the packing problem. Once all ants have generated their respective 

solutions, one full cycle of the ant colony algorithm is considered complete. At the end of each cycle, after 

all ants have constructed their respective packing solutions, the pheromone updating rule is applied to adjust 

the pheromone intensity on each edge. The pheromone on each edge (𝑖, 𝑗) is adjusted using the following 

update rule : 

𝜏(𝑖, 𝑗) ← (1 − 𝜌) ∙ 𝜏(𝑖, 𝑗) + ∑ ∆𝜏𝑘(𝑖, 𝑗)𝑛
𝑘=1                                                                                               (12) 

 

Here, n is the total number of ants, 𝜌 ∈ (0,1)  denotes the rate of pheromone evaporation which is 

considered at 0.5 and ∆𝜏𝑘(𝑖, 𝑗) denotes the amount of pheromone that the 𝑘𝑡ℎ ant laid along the edge (𝑖, 𝑗) 
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during the current cycle. If total the cost (e.g., unused volume or packing inefficiency) of the solution is 

defined as 𝐿𝑘 , which is generated by the 𝑘𝑡ℎ ant, then ∆𝜏𝑘(𝑖, 𝑗) can be determined by : 

∆𝜏𝑘(𝑖, 𝑗) = {

𝑄

𝐿𝑘
, 𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑏𝑦 𝑎𝑛𝑡 𝑘

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                    (13) 

 

Here, a constant parameter is represented by Q (Stützle et al., 2012). Pheromone evaporation serves a 

similar function to forgetting in learning systems. By gradually reducing the influence of previously 

accumulated pheromone trails over time, it prevents the algorithm from converging too early to a poor 

region. Meanwhile, pheromone reinforcement by ∆𝜏𝑘(𝑖, 𝑗) enhances the directions that lead to better quality 

solutions, leading the searching process to more promising areas. 

 

(iv) Stopping criterion 

The  stopping criterion for the Ant Colony Optimization is defined by either reaching the maximum number 

of operating cycles or the CPU time limit. ACO can be adapted to a wide range of optimization  problems. 

In this research, ACO is applied to address packing problems that require significant time and resources, 

such as arranging items within containers of different sizes and shapes. The use of ACO in this scenario 

illustrates its suitability and effectiveness for efficiently solving complex problems. The procedural steps 

of the ACO algorithm are summarized in Figure 5. 

 

4. Results and Discussion 
This study aimed to evaluate the efficiency of the Simulated Annealing (SA) and the Ant Colony 

Optimisation (ACO), both integrated with the Axis Order Test (AOT) and Corner Point Placing (CPP) 

techniques. Three test scenarios were conducted to validate the proposed method. To assess probabilistic 

outcomes, a set of items and containers were designed based on standard shipping containers and parcel 

box dimensions commonly used in Thailand. In this scenario, the weight of the items and the pressure they 

might exert on each other were not considered. All items and containers were rectangular in shape, and item 

orientation was fixed, meaning the items could not be rotated. The boxes used in the experiments varied in 

size to reflect realistic packing scenarios. 

 

 
Table 1. Summary of box instances and average volumes.  

 

Problem No. of boxes Box size variants Container size (W×L×H) Avg. box volume 

1 75 3 8×19×8 30.33 

2 100 4 8×19×8 31.75 

3 150 5 8×19×8 30.20 

 

 

 

SA and ACO, applied to three-dimensional packing problem, were compared in order to determine the most 

efficient packaging method. In this research, we used a container with approximate dimensions of 8 feet 

(2.43 m) in width, 19 feet (5.79 m) in length, and 8 feet (2.43 m) in height. The problem was divided into 

three phases: Problem 1 consisted of 75 items, with 25 boxes for each of the three sizes: 2×3×5, 3×5×3, 

and 2×4×2. Problem 2 consisted of 100 items, with 25 boxes for each of the four sizes: 2×4×2, 3×4×3, 

2×3×5, and 3×5×3. Problem 3 involved packing 150 items, with 30 boxes for each of the five sizes: 2×4×2, 

3×4×3, 2×3×5, 3×5×3, and 2×3×4. The average box volumes for Problems 1, 2, and 3 were 30.33, 31.75, 

and 30.20, respectively, as shown in Table 1. 
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Figure 5. Illustration of flowchart of ant colony optimisation (ACO). 
 

 

4.1 A Comparative Analysis of SA and ACO in 3D Bin Packing 
Table 2 illustrates a comparison of four hybrid models: SA–AOT, SA–CPP, ACO–AOT, and ACO–CPP. 

These models combined two metaheuristic approaches SA and ACO — with two placement strategies: 

AOT and CPP. The test problems in each experiment were solved on a PC running Microsoft Windows 10 

with 32 GB of RAM and an Intel Core i5 CPU running at 2.50 GHz. To guarantee the robustness and 

dependability of the results, each experiment was repeated 10 times. This article reports the statistical 

measures of the average (mean) and standard deviation (Mean ± Std) across these runs. In all problem cases, 

the ACO – CPP model obtained the best performance. Across the three problems, the model recorded the 

shortest average CPU times of 0.07 ± 0.01, 0.09 ± 0.01, and 0.17 ± 0.01 hours and also maintained the 

highest average container utilisation rates of 91.67% ± 0.01, 92.91% ± 2.82, and 98.19% ± 0.29, for 

Problems 1, 2, and 3, respectively, as shown in Figure 6. These results are based on 10 independent runs. 

Moreover, the memory usage for this problem was less than 2600 KB. These superior results are attributed 

to two key factors: (1) the CPP method provides a more flexible way to place the items by updating available 

Corner Point Placing, leading to more efficient use of space; and (2) the ACO algorithm, which bases its 

decisions on accumulated pheromone trail data, enables more adaptive and experience-driven optimisation 

Initialize Parameter 

Generate global random 

Compute traction probability 

New path 

End 
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No 

Start 

Pheromone updating  

Compute fitness Value 

Output the optimal 
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compared to the random perturbations used in SA. Therefore, the combination of pheromone-guided search 

and corner point placement reduced search space and sped up convergence, outperforming the SA–AOT, 

SA–CPP, and ACO–AOT models, which required longer runtimes and slightly higher memory 

consumption.  

 

  
 

Figure 6. Comparison of space utilization across algorithms. 
 

 

Table 2. Comparison of simulated annealing (SA) and ant colony optimisation (ACO) across packing problems.  
 

Model Average CPU time (h) ± SD Average used space (%) ± SD Memory usage (KB) 

Problem 1 
  

 

SA-AOT 1.27 ± 0.09 89.93 ± 0.01 1958 

ACO-AOT 0.73 ± 0.04 91.65 ± 0.01 1972 

SA-CPP 0.10 ± 0.01 86.05 ± 0.01 1954 

ACO-CPP 0.07 ± 0.01 91.67 ± 0.01 1921 

Problem 2    

SA-AOT 1.85 ± 0.11 90.19 ± 1.23 2190 

ACO-AOT 0.74 ± 0.06 92.89 ± 1.96 2176 

SA-CPP 0.11 ± 0.01 88.76 ± 2.28 2180 

ACO-CPP 0.09 ± 0.01 92.91 ± 2.82 2150 

Problem 3    

SA-AOT 2.06 ± 0.13 97.24 ± 0.01 2526 

ACO-AOT 1.21 ± 0.23 98.03 ± 0.47 2588 

SA-CPP 0.28 ± 0.31 96.54 ± 0.01 2566 

ACO-CPP 0.17 ± 0.01 98.19 ± 0.29 2480 

 
 

On the other hand, ACO-AOT produced acceptable results, achieving a similar utilisation of 91.65 ± 0.01, 

92.89 ± 1.96, and 98.03 ± 0.47, for Problems 1, 2, and 3, respectively (see Figure 6). However, it required 

a significantly longer processing time (over 0.73, 0.74, 1.21 hours for Problems 1, 2, and 3, respectively) 

and produced less compact packing arrangements, particularly in larger problem cases. The example of best 

packing performance is in Table 3. This inefficiency can be attributed to the AOT method, which scans 

items in a linear order, often resulting in fragmented and underutilized space. Generally, the combination 

of CPP and ACO yielded higher performance in terms of efficiency and accuracy, indicating the strength 

of integrating heuristic-driven search strategies with placement-based techniques. 
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Table 3. Sample packing outcomes from 10 independent runs for three case studies using a container of size 8 ft × 

19 ft × 8 ft. 
 

Problem Method 1 Volume Method 2 Volume Method 3 Volume Method 4 Volume 

1 SA-AOT 1088 ACO-AOT 1096 SA-CPP 1097 ACO-CPP 1099 

    

2 SA-AOT 1083 ACO-AOT 1133 SA-CPP 1111 ACO-CPP 1134 

    
3 SA-AOT 1189 ACO-AOT 1192 SA-CPP 1179 ACO-CPP 1192 

    

 

 

4.2 Comparative Analysis of Related Work in 3D Bin Packing 
In this section, we compare our proposed model (ACO-CPP) with previous studies to evaluate its suitability 

for application in the transportation industry. Table 4 provides a comparison overview of ACO-CPP and 

other methods in 3D bin packing.  

 

Zuo et al. (2022) studied the three-dimensional bin packing problem (3D-BPP) involving irregularly shaped 

items using a constructive heuristic algorithm. Their research introduced a new 3D bin packing model that 

accommodated rectangular-shaped and non-rectangular items. The main objective was to optimize packing 

performance and reduce the operational costs for the company logistics. Their approach achieved an 

average utilization (~87.2%), which was less than some deep learning-based techniques. Nevertheless, the 

method demonstrated practical applicability, especially in real-world fresh food delivery (Zuo et al., 2022).  

 

Yang et al. (2024) addressed three-dimensional bin design and packing problem (3D-BDPP) using a two-

layer heuristic approach. This approach integrates an outer heuristic framework and an inner deterministic 

constructive heuristic to determine optimal container dimensions and generate effective box placements. 

The goal of this research was to reduce packing costs. Benchmarking data was derived from an e-commerce 

company. Their findings indicated that the average packing utilization was around 86.1%. Moreover, 

redesigning bin sizes significantly reduced overall costs. The proposed two-layer heuristic proved effective 

for solving the 3D-BDPP, with GA providing superior solution quality, while differential evolution 

algorithm (DEA) achieved faster computation times (Yang et al., 2024). 

 

Nguyen & Nguyen (2023) introduced a novel method for online three-dimensional bin packing using space 

splitting and merging technique. This approach was specifically designed for robotic packing applications 
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and demonstrated real-time capability, making it suitable for industrial use. The results indicated that the 

method was both fast and straightforward due to its simple structural design, achieving an average space 

utilisation of up to 83.0% (Nguyen & Nguyen, 2023). More recently, Zhang et al. (2024) proposed a 

technique combining Generative Adversarial Networks (GAN) with GA to generate efficient packing 

sequences. The purpose of this study was to produce high quality solutions while enhancing exploration 

and exploitation capabilities. Their model achieved approximately 90% space utilization. However, it 

required long training times and was sensitive to parameter selection (Zhang et al., 2024). In the same year, 

Wong et al. (2024) employed a hybrid heuristic approach integrated with Proximal Policy Optimization 

(PPO) to maximize space utilization and enable real-time packing in actual circumstances using robot 

manipulators. Their results showed a space utilization of up to 83%. In addition, their concept supported 

real-time interaction in robotic settings. However, this approach depended on environment-specific 

reinforcement learning frameworks, making it less flexible in unseen instances (Wong et al., 2024). 

 

In comparison to the aforementioned approaches, the ACO-CPP model proposed in this study offers several 

distinct advantages. To begin with, this approach achieved approximately 92% of space utilization without 

the need for any model training. Therefore, this makes it simple, effective for immediate implementation 

in real-world applications. In addition, unlike black-box neural network-based approaches, the algorithm 

maintains transparency and interoperability. Furthermore, its design enables flexible item placement by 

utilizing corner point-based strategies alongside pheromone-guided search, which facilitates rapid 

identification of near-optimal packing configurations. This adaptability makes the model suitable for 

containers of varying sizes and shapes. The operational benefits of ACO-CPP model are particularly evident 

in real-time decision-making problems with minimal computational load. This also reflects our selection of 

SA and ACO in this work. This is because it offers a strong balance between performance and practical 

implementation. These methods are well-suited for real-world logistics applications and provide a strong 

baseline for hybrid optimization. While many metaheuristic algorithms have gained traction in recent years, 

such as Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), or deep reinforcement learning 

(DRL), they often require complex parameter settings, extensive training, higher computational overhead, 

or difficulties in designing and debugging, which may limit their suitability in real-world logistics 

environments. 

 
Table 4. Comparison of ACO-CPP with related work in 3D bin packing based on space utilisation, training 

requirements, and processing time. 
 

Method Used space Training Time Notes References 

ACO + CPP ∼92.0% No Low Fast, interpretable, real-time Our Work 

Constructive Heuristic ∼87.0% No Moderate Designed for irregular shaped items 
with packing 

Zuo et al. (2022) 

Two-layer heuristic (GA/DE 

outer,heuristic inner) 

∼86.1% No Moderate Bin design + 3D packing with support 

area space structure 

Yang et al. 

(2024) 

Space Splitting+ Merging ∼83.0% No Low- 

Moderate 

Online packing using space splitting. 

Good placement flexibility. 

Nguyen & 

Nguyen (2023)  

GAN + GA ∼90.0% Yes High Needs GAN training good 

convergence 

Zhang et al. 

(2024) 

HHPPO (Heuristic + PPO) ∼83.0% Yes Moderate-

High 

Requires RL env setup Wong et al. 

(2024) 

 

 

5. Conclusion 
This study presents an innovative approach to the container loading problem, a key challenge in logistics 

optimisation. By integrating Simulated Annealing (SA) and Ant Colony Optimisation (ACO) with the Axis 

Order Test (AOT) and corner point placement (CPP), we aimed to improve container packing efficiency 

and reduce transportation storage costs. Three problem instances were evaluated across 12 test cases. Each 
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test case was assessed over 10 independent runs (Tables 2 and 3). The ACO-CPP method outperformed 

others, achieving the highest space utilisation (over 85%) and the shortest processing times –0.07, 0.09, and 

0.17 hours for Problems 1, 2, and 3, respectively. While our method offers advantages in speed, space 

utilisation, and ease of implementation, it does not guarantee global optimality, as performance depends on 

parameter settings (e.g., pheromone persistence, temperature, cooling rate). In future work, complex real-

world constraints such as container size (according to international container specifications), irregular shape 

of items, and item rotation will be integrated into the model. Moreover, we will consider incorporating 

learning-based components, such as deep reinforcement learning and Grey Wolf Optimiser, to implement 

adaptive packing mechanisms that learn and improve over time based on feedback. It may allow the model 

to adaptively modify its decision policy to different packing scenarios, making it more universal and usable 

in industries. In addition, we will consider a dataset based on ISO-standard container sizes, allowing more 

powerful analysis across logistics systems. Further, a comparison with other methods from recent literature 

indicates the high performance of the heuristic in terms of both computational efficiency and volume 

utilisation. 

 

5.1 Limitations and Wider Applicability  
In this topic, we will explain limitations and wider applicability of our proposed algorithm. In spite of the 

good results of ACO-CPP model in term of achieving the highest space utilisation and the shortest 

processing times, there are a number of limitations of concern as follows: 

 

(1) The model has not been assessed in scenarios where environmental factors vary because the model uses 

static parameters without adaptive tuning. This may limit its applicability across different problem scales. 

(2) Our model does not handle temperature-sensitive items, fragile goods, or balanced loading. This point 

indicates that the current model assumes rectangular boxes and fixed item orientations, which may fail to 

account for the full complexity of real-world cargo. These issues can affect packing feasibility and safety 

in actual logistics operations. 

 

However, the proposed approach holds good chances to be adopted on a wider applicability because it can 

be extended to real-time logistics systems and optimisation problems. Future work will be spent on its 

various operational environments adaptation and limitation overcoming. 
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