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Abstract 

In this work, we focus on the evaluation and statistical inference of the multicomponent reliability parameter of an s-out-of-k:G 

system under a competing risk setting with the risks playing the role of multiple stresses that put under pressure the operation of 

the system. The problem is expressed through multistate systems using a generalized unified distribution family for both stress and 

strength. The distributions involved are assumed to belong to two special subclasses of the well-known Lehmann Alternative 

Family of distributions. The originality of the work lies on the fact that it brings within the above two distribution subclasses, 

several distributions popular in reliability theory and at the same time investigates the reliability parameter under the competing 

risks framework. Several probabilistic properties including the probability of failure due to specific cause are presented. The 

applicability of the proposed methodology is explored via two representative examples based on the Power and Lomax distribution. 

 

Keywords- Multicomponent strength-stress parameter, Reliability analysis, Competing risks, Class of distributions, Lahmann 

alternative family. 

 

 

 

1. Introduction 
Reliability analysis is a cornerstone of modern engineering design, ensuring that components and systems 

can withstand uncertain operational environments and maintain functionality throughout their intended 

lifetimes. Among the classical reliability characteristics is the so-called strength–stress reliability parameter 

R which has been widely employed to evaluate reliability by considering the probability that the inherent 

strength of a component X exceeds the applied stress Y (see e.g. Birnbaum et al., 1961; Johnson, 1988). 

This framework provides an intuitive yet rigorous way to quantify reliability: 

𝑅 = 𝑃(𝑋 > 𝑌).  
 

When only a single stress factor is considered, the model captures essential aspects of failure risk. However, 

in practice one rarely encounters a single source of stress. Indeed, most technical systems typically operate 

under multiple, frequently interacting stresses, like thermal, mechanical, electrical, environmental etc., that 

jointly contribute to degradation and eventual failure of the system. 

 

Such systems with multiple stresses can be viewed as competing risks so that the corresponding models 

could provide a natural extension. Indeed, the competing risks framework acknowledges that failure can 
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arise from one of several possible stress factors, with each stress acting as a potential “failure cause.” The 

overall reliability is then determined by taking into consideration these stresses and the system strength (see 

for instance Crowder, 2001; Lawless, 2003). Competing risks remains in the center of attention of many 

researchers for several years. Indeed, for instance, Dui et al. (2024) explore system resilience in a multi-

state context with competing risks and maintenance while Dimitrakopoulou et al. (2025) explored the 

connection between the competing risks problem and the multi-state system methodology. Wang and Yan 

(2025) discuss semi-parametric estimation under hierarchical Archimedean copulas and Fayomi et al. 

(2025) combine Bayesian and classical inference under censoring using specific distributions. The Bayesian 

perspective for inferential statistics was also examined by Llopis-Cardona et al. (2021). The semi-Markov 

modelling was recently investigated by Barbu et al. (2017) and also by Garcia-Maya et al. (2022) who 

analysed competing risks via the semi-Markov phase-type distribution with some identifiability issues 

studied in Lindqvist (2023). For related references the interested reader may refer to Gaynor et al. (1993), 

Andersen et al. (2002), Lau et al. (2009), Wei et al. (2018), Schuster et al. (2020), and Karagrigoriou et. al 

(2025). 

 

The significance of addressing this issue is primarily theoretical since the combination of strength–stress 

reliability with competing risks provides a unified framework to analyze which stress dominates the failure 

process and enhancing interpretability beyond a single aggregated failure probability. At the same time, 

from a practical perspective, many safety-critical systems such as mechanical, electrical or aerospace face 

uncertain environments with various competing stresses/risks. It is thus crucial to consider more complex 

modeling techniques to ensure a reliable design, risk assessment, and preventive maintenance strategies. 

 

This study addressing this important issue by developing a generalized strength–stress reliability framework 

under for multiple stresses under competing risks. The proposed approach is presented under a general class 

of distributions which are frequently encountered in reliability settings. The present analysis allows not 

only the estimation of overall reliability and the inference for the parameters involved but also the allocation 

of failure probabilities to individual stresses, offering actionable insights for system designers and 

operators. 

 

The remainder of the paper is organized as follows: The reliability parameter is discussed in Section 2 while 

Section 3 is devoted to the reliability evaluation and probabilistic results under the competing risks setting 

for the single, multiple and heterogeneous cases as well as for the cases of systems in series and parallel. 

Generalizations of the previous theoretical results are presented in Sub section 3.4 which are further 

extended in Sub section 3.5, to two special subclasses of the well-known Lehmann Alternative family of 

distributions (Lehmann, 1953). Section 4 deals with the statistical inference and more specifically with 

point and interval estimation for the distributional parameters involved. Section 5 provides applications 

while some concluding remarks are stated in Section 6. 

 

2. Reliability Parameter 
One of the popular concepts in reliability theory is the multicomponent stress-strength reliability parameter 

or simply the reliability parameter which measures the reliability associated with a model of k components, 

when at least s components simultaneously survive a common random stress Y which acts independently 

of the strength. The definition of the reliability parameter of an s-out-of-k system is due to Bhattacharyya 

and Johnson (1974) and given by  

𝑅𝑠,𝑘 = ℙ( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑠  𝑜𝑓  𝑡ℎ𝑒   𝑋1, … , 𝑋𝑘    𝑒𝑥𝑐𝑒𝑒𝑑   𝑌) = ∑𝑘
𝑖=𝑠 (

𝑘
𝑖

) ∫
∞

−∞
(1 − 𝐹𝑋(𝑥))𝑖(𝐹𝑋(𝑥))𝑘−𝑖𝑑𝐹𝑌(𝑥)              (1) 

 

where, the k components 𝑋1, … , 𝑋𝑘 have a common distribution 𝐹𝑋(⋅) and the stress variable 𝑌, which is 
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independent of the 𝑋′𝑠, has a cdf 𝐹𝑌(⋅). 

 

In reliability analysis, the maximum order statistic plays a central role when the system of interest continues 

to operate as long as at least one component is functioning—capturing the notion of system survival under 

best-case scenarios. This is particularly useful for modeling parallel-type configurations or backup-based 

systems, where failure only occurs after all the elements failed. Along with the stress-strength framework, 

this provides a general tool for assessing the capacity of a system to resist external challenges over time. 

 

To model such scenarios effectively, it is important to consider families of distributions closed under the 

operation of taking the maximum. Specifically, we focus on the class of distributions 𝒢max consisting of 

distributions 𝐺 that satisfy the property:  

𝐺(⋅; 𝑎𝑗) = (𝐺(⋅; 1))
𝑎𝑗

,    𝑎𝑗 > 0                                                                                                                  (2) 

 

Suppose that G(⋅;αj) is absolutely continuous with respect to the Lebesgue measure. In this case, there exists 

an associated density function which, as characterized by the relation in Equation (2), takes the form  

𝑔(⋅; 𝑎𝑗): = 𝑎𝑗(𝐺(⋅; 1))
𝑎𝑗−1

𝑔(⋅; 1)                                                                                                               (3) 

 

This structure includes several common lifetime models, such as the power function, Type I extreme value, 

and discrete analogs like the Bernoulli in binary failure settings. 

 

A key advantage of the family in Equations (2) and (3) lies in its closure under the maximum operation, as 

formalized below. 

 

Proposition 1 (Closure Under Maximum) Let 𝑇1, … , 𝑇𝑘 be independent random variables such that 𝑇𝑗 ∼

𝐺(𝑡; 𝑎𝑗) with 𝐺 ∈ 𝒢𝑚𝑎𝑥. Then the maximum random variable,  

𝑇𝑚𝑎𝑥 = 𝑇(𝑘) = 𝑚𝑎𝑥(𝑇1, … , 𝑇𝑘),  

 

has a distribution that belongs to the class Gmax, with cumulative distribution function:  

𝐺(𝑘)(𝑡; 𝑎1, … , 𝑎𝑘) = (𝐺(𝑡; 1))
𝑎0

,    𝑤ℎ𝑒𝑟𝑒  𝑎0 = ∑𝑘
𝑗=1 𝑎𝑗                                                                         (4) 

 

Furthermore, observe that the distribution of the r-th order statistic 𝑇(𝑟) in this setting can be expressed, 

following results analogous to those by Balasubramanian et al. (1991), as:  

𝐺(𝑟)(𝑡) = ∑𝑘−𝑟
𝑖=0 (−1)𝑘−𝑟−𝑖 (

𝑘 − 𝑖 − 1
𝑘 − 𝑟 − 𝑖

) (
    𝑘
𝑘 − 𝑖

) (𝐺(𝑡; 1))𝛼0 .  

 

3. Reliability Expressions under Competing Risks 
In this section, we derive closed-form expressions for the reliability of multicomponent systems subject to 

competing risks, under the stress-strength framework. We assume that all components 𝑋𝑖 and competing 

risks 𝑌𝑗 follow a common lifetime distribution belonging to the class 𝒢max, with possibly different shape 

parameters. 

 

We begin with the simplest case involving a single component under competing risks, and then generalize 

to multiple-component systems under both series and partial-redundancy configurations. 

 

3.1 Single Component under Competing Risks 
We first consider a system consisting of a single component 𝑋1, subject to 𝑚 competing risks 𝑌1, 𝑌2, … , 𝑌𝑚, 
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where each 𝑌𝑗 has a shape parameter 𝑎2𝑗. The strength variable 𝑋1 is assumed to follow a distribution from 

the same class, with shape parameter 𝑎1. 

 

Theorem 1 Let 𝑋1 ∼ 𝐺(𝑥; 𝑎1) and 𝑌𝑗 ∼ 𝐺(𝑥; 𝑎2𝑗) for 𝑗 = 1,2, … , 𝑚, where all variables are independent 

with 𝐺 belonging to the distribution class given in Equation (2). If 𝑌(𝑚) = 𝑚𝑎𝑥{𝑌1, … , 𝑌𝑚}, then the stress-

strength reliability is given by  

𝑅𝑋1
= ℙ(𝑋1 > 𝑌(𝑚)) =

𝑎1

𝑎1+𝑎𝑚
                                                                                                                    (5) 

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗.  

 

Proof. From the definition of multicomponent stress-strength reliability in Equation (1) and Proposition 1, 

we have  

𝑅𝑋1
= ℙ(𝑋1 > max{𝑌1, … , 𝑌𝑚})  

= ∫
∞

0
[1 − (𝐺(𝑥; 1))𝑎1] ⋅ 𝑎𝑚[𝐺(𝑥; 1)]𝑎𝑚−1𝑔(𝑥; 1) 𝑑𝑥.  

 

Let 𝑢 = 1 − 𝐺(𝑥; 1). The above integral becomes  

𝑎𝑚 ∫
1

0
[1 − 𝑢𝑎1]𝑢𝑎𝑚−1 𝑑𝑢  

= 𝑎𝑚 ∫
1

0
𝑢𝑎𝑚−1 − 𝑢𝑎1+𝑎𝑚−1 𝑑𝑢  

= 𝑎𝑚 [
1

𝑎𝑚
−

1

𝑎1+𝑎𝑚
]  

=
𝑎1

𝑎1+𝑎𝑚
.  

 

3.2 General (𝒔, 𝒌) System under Competing Risks 
We now consider a more general configuration in which the system functions if at least 𝑠 out of the 𝑘 

components are operational. This setting includes both series and parallel systems as special cases. Theorem 

1 above can be considered as a special case of the Theorem below: 

 

Theorem 2 Let 𝑋𝑖 ∼ 𝐺(𝑥; 𝑎1)  for 𝑖 = 1, … , 𝑘  and 𝑌𝑗 ∼ 𝐺(𝑥; 𝑎2𝑗)  for 𝑗 = 1, … , 𝑚 , with all variables 

mutually independent. Under the assumption that the system functions if at least 𝑠 components survive 

longer than the maximum competing risk 𝑌(𝑚), the stress-strength reliability is 

𝑅(𝑠,𝑘) =
𝑎𝑚

𝑎1
∑𝑘

𝑖=𝑠 (
𝑘
𝑖

) 𝐵 (𝑖 + 1, 𝑘 − 𝑖 +
𝑎𝑚

𝑎1
)                                                                                               (6) 

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗 and 𝐵(𝑎, 𝑏) denotes the Euler Beta function.  

 

Proof. The reliability is defined as the probability that at least 𝑠 components out of 𝑘 survive beyond the 

minimum of the competing risks. Following the structure of the binomial survival model, we get  

𝑅(𝑠,𝑘) = ∑𝑘
𝑖=𝑠 (

𝑘
𝑖

) ∫
∞

0
[1 − (𝐺(𝑥; 1))𝑎1]𝑖[𝐺(𝑥; 1)]𝑎1(𝑘−𝑖)𝑎𝑚[𝐺(𝑥; 1)]𝑎𝑚−1𝑔(𝑥; 1) 𝑑𝑥.  

 

Using the substitution 𝑢 = 𝐺(𝑥; 1), the integral becomes a weighted Beta integral, yielding the expression 

in Equation (6).  
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These results provide compact expressions for system reliability using Beta functions, assuming 

independent and identically distributed strength variables and independent not necessarily identically 

distributed random variables which is typical in competing risks which usually experience different rates 

of failure. 

 

The assumption of equal shape parameters within the 𝑋-group simplifies derivations and facilitates closed-

form results. 

 

3.3 Extensions to Heterogeneous Subgroup Structures 
The results derived in the previous section assume a homogeneous structure where all component lifetimes 

share a common shape parameter within the 𝑋 -group. However, practical systems often involve 

heterogeneous subsystems composed of components with different reliability characteristics. For example, 

different types of devices, materials, or redundancies may coexist within the same system, leading to natural 

partitions among components. 

 

In this section, we extend the (𝑠, 𝑘) -system reliability formulation to handle such heterogeneity. 

Specifically, we consider systems where the 𝑘 components are divided into 𝑟 distinct subgroups. Within 

each subgroup, components share a common shape parameter, but this parameter may differ across groups. 

The system is assumed to function if a minimum number of components survive in each group (for series 

systems), or if at least one group satisfies its minimum operational requirement (for parallel systems). These 

configurations generalize both the fully homogeneous (𝑠, 𝑘) model and includes the classic series/parallel 

systems as special cases. 

 

3.3.1 Series System with Heterogeneous Subgroups 
Consider a system with 𝑘 components where 𝑋1, … , 𝑋𝑘1

 are drawn from   𝐺(⋅; 𝑎11), 𝑋𝑘1+1, … , 𝑋𝑘1+𝑘2
 from 

𝐺(⋅; 𝑎12), and so on, with the last 𝑘𝑟 components following 𝐺(⋅; 𝑎1𝑟). Each subgroup 𝑖 must have at least 

𝑠𝑖  components operational for the overall system to function, with the constraints 𝑠1 + ⋯ + 𝑠𝑟 = 𝑠 and 

𝑘1 + ⋯ + 𝑘𝑟 = 𝑘, 𝑠 < 𝑘. 

 

Theorem 3 Let the 𝑘 components be partitioned into 𝑟 subgroups with distributions from the class given 

in Equation (2) and each subgroup 𝑗 characterized by a shape parameter 𝑎1𝑗. Let 𝑌1, … , 𝑌𝑚 denote the 

competing risks, each from the same class with respective shape parameters 𝑎2𝑖, 𝑖 = 1, … , 𝑚. Then, the 

multicomponent reliability index of the series-type system that operates if at least 𝑠𝑖 components out of 𝑘𝑖 

function for all 𝑖 = 1, … , 𝑟 is  

𝑅(𝑠,𝑘) = ∏𝑟
𝑗=1 ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) 𝐵 (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
)                                                                                       (7) 

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗.  

 

3.3.2 Parallel System with Heterogeneous Subgroups 
In contrast to the previous configuration, suppose the system operates if at least one subgroup satisfies its 

internal reliability requirement, that is, if at least one of the 𝑟  subgroups functions. This setup is a 

heterogeneous parallel system with internal group-wise reliability thresholds. 

 

Theorem 4 Let the partition and component distributions be as defined above. Then the reliability of the 

system under this parallel operational rule is given by  
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𝑅(𝑠,𝑘) = ∑𝑟
𝑗=1 ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) 𝐵 (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
)                                                                                       (8) 

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗.  

 

These models are particularly useful in real-world applications where systems are usually composed of 

multiple subsystems or modules with unique reliability profiles. In aerospace systems, for example, 

different components like avionics, propulsion, and structural support can experience different failure 

behavior due to differences in design, utilization, or exposure to the environment. Similarly, in large power 

grids or communication networks, reliability is typically dependent on the synchronized performance of 

heterogeneous submodules, each built up by different technologies and redundancies. By allowing group-

wise reliability requirements and substitute shape parameters, the introduced expressions in Equations (7) 

and (8) are a general-purpose model for characterizing such heterogeneous systems with modular 

architecture and partial redundancy. This makes the analysis more realistic and aligned with the system 

engineers’ and reliability analysts’ practical problems. 

 

3.4 Probabilistic Theorems 
This section presents two key theorems that extend and generalize the reliability results established in the 

previous sections. The first theorem provides a closed-form expression in Equation (9) for the probability 

that a component lasts longer than the 𝑟-th ordered stress in the presence of multiple competing risks. The 

second theorem provides in Equation (10) the probability that a specific component (stress) is the cause of 

failure. These results are derived by applying the class 𝒢max and include the earlier theorems as particular 

cases. 

 

Theorem 5 Let 𝑋 ∼ 𝐺(𝑥; 𝑎1) and 𝑌(𝑟) denote the 𝑟𝑡ℎ order statistic among 𝑘 independent 𝑌𝑗 ∼ 𝐺(𝑥; 𝑎2𝑗) 

stress variables, where 𝐺(⋅;⋅) ∈ 𝒢𝑚𝑎𝑥, 𝑗 = 2, … , 𝑚. Then,  

ℙ(𝑋 > 𝑌(𝑟)) = ∑𝑚−𝑟
𝑖=0 (−1)𝑘−𝑟−𝑖 (

𝑘 − 𝑖 − 1
𝑘 − 𝑟 − 𝑖

) (
    𝑘
𝑘 − 𝑖

) [
𝑎1

𝑎1+𝑎𝑚
]                                                                 (9) 

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗.  

 

Proof. We start from the definition of reliability for the 𝑟-th order statistic:  

ℙ(𝑋 > 𝑌(𝑟)) = ∫ (1 − 𝐺(𝑥; 1)𝑎1) 𝑑𝐺𝑌(𝑟)
(𝑥)  

 

The pdf of the 𝑟-th order statistic is:  

𝑓𝑌(𝑟)
(𝑥) = ∑𝑚−𝑟

𝑖=0 (−1)𝑚−𝑟−𝑖 (
𝑚 − 𝑖 − 1
𝑚 − 𝑟 − 𝑖

) (
   𝑚
𝑚 − 𝑖

) 𝑎𝑚𝐺(𝑥; 1)𝑎𝑚−1𝑔(𝑥; 1).  

 

Thus, 

ℙ(𝑋 > 𝑌(𝑟)) = 

= ∫
∞

0
(1 − 𝐺(𝑥; 1)𝑎1) ∑𝑚−𝑟

𝑖=0 (−1)𝑚−𝑟−𝑖 (
𝑚 − 𝑖 − 1
𝑚 − 𝑟 − 𝑖

) (
   𝑚
𝑚 − 𝑖

) 𝑎𝑚𝐺(𝑥; 1)𝑎𝑚−1𝑔(𝑥; 1) 𝑑𝑥  

= ∑𝑚−𝑟
𝑖=0 (−1)𝑚−𝑟−𝑖 (

𝑚 − 𝑖 − 1
𝑚 − 𝑟 − 𝑖

) (
   𝑚
𝑚 − 𝑖

) 𝑎𝑚 ∫
1

0
(1 − 𝑢)𝑎1𝑢𝑎𝑚−1 𝑑𝑢  

= ∑𝑚−𝑟
𝑖=0 (−1)𝑚−𝑟−𝑖 (

𝑚 − 𝑖 − 1
𝑚 − 𝑟 − 𝑖

) (
   𝑚
𝑚 − 𝑖

) 𝑎𝑚 [
1

𝑎𝑚
−

1

𝑎1+𝑎𝑚
]  
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= ∑𝑚−𝑟
𝑖=0 (−1)𝑚−𝑟−𝑖 (

𝑚 − 𝑖 − 1
𝑚 − 𝑟 − 𝑖

) (
   𝑚
𝑚 − 𝑖

) [
𝑎1

𝑎1+𝑎𝑚
].  

 

Note that when 𝑟 = 𝑚 the above Theorem reduces to Equation (5) in Theorem 1. 

 

In reliability theory, an important question is the probability that system failure can be attributed to a 

particular component when there are multiple independent risks. The next result establishes a closed-form 

expression for the probability that failure is caused by the 𝑖-th component. 

 

Theorem 6 Let 𝑋 ∼ 𝐺(𝑥; 𝑎1) and 𝑌𝑗 ∼ 𝐺(𝑥; 𝑎2𝑗) for 𝑗 = 1, … , 𝑚, all independent, where 𝐺(⋅;⋅) ∈ 𝒢𝑚𝑎𝑥. 

Then the probability of failure being caused by component/stress 𝑖 is:  

ℙ(failure due to cause 𝑖)  = ℙ(𝑋 < 𝑌𝑖    and   𝑌𝑗 < 𝑋  ∀𝑗 ≠ 𝑖) =
𝑎1𝑎2𝑖

(𝑎𝑚−𝑎2𝑖+𝑎1)(𝑎𝑚+𝑎1)
                             (10) 

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗 and 𝑎𝑚−𝑖 = ∑𝑚

𝑗=1
𝑗≠𝑖

𝑎2𝑗. 

 

Proof. The event of failure due to component 𝑖 is:  

ℙ(𝑋 < 𝑌𝑖  and 𝑌𝑗 < 𝑋  ∀𝑗 ≠ 𝑖) 

= ∫
∞

0
(1 − 𝐺(𝑥; 1)𝑎2𝑖)𝐺(𝑥; 1)𝑎𝑚−𝑖𝑎1𝐺(𝑥; 1)𝑎1−1𝑔(𝑥; 1) 𝑑𝑥  

= 𝑎1 ∫
∞

0
(1 − 𝐺(𝑥; 1)𝑎2𝑖)𝐺(𝑥; 1)𝑎𝑚−𝑖+𝑎1−1𝑔(𝑥; 1) 𝑑𝑥  

= 𝑎1 ∫
1

0
(1 − 𝑢𝑎2𝑖)𝑢𝑎𝑚−𝑎2𝑖+𝑎1−1𝑑𝑢  

= 𝑎1 [
1

𝑎𝑚−𝑎2𝑖+𝑎1
−

1

𝑎𝑚+𝑎1
]  

=
𝑎1𝑎2𝑖

(𝑎𝑚−𝑎2𝑖+𝑎1)(𝑎𝑚+𝑎1)
.  

 

According to the proceeding result, the probability of no failure can be obtained which is in accordance 

with Theorem 1. Indeed, 

 

Corollary 1 The probability of no failure is:  

ℙ(No failure) =
𝑎1

𝑎𝑚+𝑎1
  

 

Proof. The probability of no failure is given by  

ℙ(No failure) = ∫
∞

0
𝐺(𝑥; 1)𝑎𝑚𝑎1𝐺(𝑥; 1)𝑎1−1𝑔(𝑥; 1) 𝑑𝑥.  

 

Letting 𝑢 = 𝐺(𝑥; 1) the result is immediate.  

 

3.5 Subclasses of the Lehmann Alternative Family 
The family 𝐺(⋅; 𝑎𝑗) defined in Equation (2) can be viewed as a subclass of the well-known Lehmann 

alternative family (Lehmann, 1953), where each cumulative distribution function 𝐹𝑗 of the family, is given 

by  

𝐹𝑗 = 𝑓𝑗(𝐹)  
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with pdf given by  

𝑓𝑗(𝑥) = 𝑥𝑎𝑗 ,    and    𝐹 = 𝐹(𝑥; 1).  

 

In general, the functions 𝑓𝑗 are continuous, non-decreasing, and defined on the interval [0,1], satisfying the 

boundary conditions 𝑓𝑗(0) = 0 and 𝑓𝑗(1) = 1, for 𝑗 = 1,2, … , 𝑚. Thus, the class given in Equation (2) 

forms a subclass within the Lehmann alternative family which according to Equation (4), is closed under 

maxima, a feature not generally shared by the full Lehmann family. This additional property makes the 

subclass particularly useful for modeling reliability systems and competing risks. 

 

Complementary to the above subclass which is closed under maxima, one could consider another subclass 

within the Lehmann alternative family, defined by  

𝒢min = {𝑓𝑗(𝑥) = 1 − (1 − 𝑥)𝑎𝑗 ,    with    𝐹 = 𝐹(𝑥; 1)}. 

 

The extra feature of the above 𝒢min subclass is that it is closed under minima, making it suitable for systems 

where failure or degradation is driven by the weakest component/stress. Both 𝒢min and 𝒢max subclasses are 

widely applicable in statistical inference for reliability analysis and modeling of competing risks, due to 

their respective closure properties under extrema. 

 

The second subclass is given below: 

Let  

𝒢min = {𝐺 | 𝐺(⋅; 𝑎𝑗) = 1 − (1 − 𝐺(⋅; 1))𝑎𝑗 ,    𝑎𝑗 > 0}                                                                             (11) 

 

with corresponding pdf given by  

𝑔(⋅; 𝑎𝑗): = 𝑎𝑗(1 − 𝐺(⋅; 1))𝑎𝑗−1𝑔(⋅; 1)                                                                                                       (12) 

 

The class 𝒢min includes many well-known distributions that follow the structure given in Equations (11) 

and (12). This common form helps bring together different classical distributions into one general family. 

Some examples are the Geometric, Exponential, Weibull, Pareto, truncated Erlang, truncated Exponential, 

and Kumaraswamy distributions, all of which can be written in the form shown in 𝒢min. 

 

The theorems given in the previous section can also be formulated under the setting of the new subclass 

𝒢min, as defined in Equations (11) and (12). This subclass, which is closed under minima, leads to analogous 

but inverted reliability expressions due to its structural properties. 

 

Theorem 7 Let 𝑋 ∼ 𝐺(𝑥; 𝑎1), and let 𝑌(𝑟) denote the 𝑟-th order statistic among independent variables 𝑌𝑗 ∼

𝐺(𝑥; 𝑎𝑗), where 𝐺(⋅;⋅) ∈ 𝒢𝑚𝑖𝑛. Then,  

ℙ(𝑋 > 𝑌(𝑟)) = ∑𝑟−1
𝑖=0 (−1)𝑟−𝑖−1 (

𝑚 − 𝑖 − 1
    𝑚 − 𝑟

) (
   𝑚
𝑚 − 𝑖

) [
𝑎𝑚

𝑎1+𝑎𝑚
]  

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎𝑗.  

 

Proof. We start with the definition of the reliability for the 𝑟-th order statistic:  

ℙ(𝑋 > 𝑌(𝑟)) = ∫ (1 − 𝐺(𝑥; 1))𝑎1  𝑑𝐺𝑌(𝑟)
(𝑥).  

 

The pdf of the 𝑟-th order statistic is given by:  

𝑓𝑌(𝑟)
(𝑥) = ∑𝑟−1

𝑖=0 (−1)𝑟−𝑖−1 (
𝑚 − 𝑖 − 1
    𝑚 − 𝑟

) (
   𝑚
𝑚 − 𝑖

) 𝑎𝑚(1 − 𝐺(𝑥; 1))𝑎𝑚−1𝑔(𝑥; 1).  
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Then,  

ℙ(𝑋 > 𝑌(𝑟)) = ∫
∞

0
(1 − 𝐺(𝑥; 1))𝑎1 ∑𝑟−1

𝑖=0 (−1)𝑟−𝑖−1 (
𝑚 − 𝑖 − 1
    𝑚 − 𝑟

) (
   𝑚
𝑚 − 𝑖

) × 𝑎𝑚(1 −

𝐺(𝑥; 1))𝑎𝑚−1 𝑔(𝑥; 1) 𝑑𝑥  

= ∑𝑟−1
𝑖=0 (−1)𝑟−𝑖−1 (

𝑚 − 𝑖 − 1
    𝑚 − 𝑟

) (
   𝑚
𝑚 − 𝑖

) 𝑎𝑚 ∫
1

0
𝑢𝑎1𝑢𝑎𝑚−1 𝑑𝑢  

 = ∑𝑟−1
𝑖=0 (−1)𝑟−𝑖−1 (

𝑚 − 𝑖 − 1
    𝑚 − 𝑟

) (
   𝑚
𝑚 − 𝑖

) 𝑎𝑚 [
1

𝑎1+𝑎𝑚
] 

= ∑𝑟−1
𝑖=0 (−1)𝑟−𝑖−1 (

𝑚 − 𝑖 − 1
    𝑚 − 𝑟

) (
   𝑚
𝑚 − 𝑖

) [
𝑎𝑚

𝑎1+𝑎𝑚
].  

 

For 𝑟 = 1, the stress-strength reliability associated with the minimum order statistic reduces to the case of 

a single component, and is given by  

ℙ(𝑋 > 𝑌(1)) =
𝑎𝑚

𝑎1+𝑎𝑚
.                                                                                                                           

 

For the subclass 𝒢min we are able to derive expressions for the probability that failure occurs due to some 

given component. This probability, often referred to as the probability of failure due to cause 𝑖, characterizes 

the situation where the lifetime of component 𝑖 exceeds that of the system, while all other components 

survive beyond the system failure time. The following theorem provides this probability in closed form 

under the assumption that all variables follow distributions in 𝒢min. 

 

Theorem 8 Let 𝑋 ∼ 𝐺(𝑥; 𝑎1) and 𝑌𝑗 ∼ 𝐺(𝑥; 𝑎2𝑗) for 𝑗 = 1, … , 𝑚, all independent, where 𝐺(⋅;⋅) ∈ 𝒢𝑚𝑖𝑛. 

Then the probability that the failure is caused by component 𝑖 is given by:  

ℙ(failure  due  to  cause  𝑖) = ℙ(𝑋 < 𝑌𝑖and𝑌𝑗 > 𝑋  ∀𝑗 ≠ 𝑖) =
𝑎1(𝑎𝑚−𝑎2𝑖)

(𝑎𝑚+𝑎1)(𝑎2𝑖+𝑎1)
,                                     

 

where, 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗 and 𝑎𝑚−𝑖 = ∑𝑚

𝑗=1
𝑗≠𝑖

𝑎2𝑗. 

 

Proof. ℙ(𝑋 < 𝑌𝑖   and  𝑌𝑗 > 𝑋  ∀𝑗 ≠ 𝑖) 

= ∫
∞

0
(1 − 𝐺(𝑥; 1))𝑎2𝑖[1 − (1 − 𝐺(𝑥; 1))𝑎𝑚−𝑖]𝑎1(1 − 𝐺(𝑥; 1))𝑎1−1𝑔(𝑥; 1) 𝑑𝑥  

= 𝑎1 ∫
∞

0
(1 − 𝐺(𝑥; 1))𝑎2𝑖+𝑎1−1[1 − (1 − 𝐺(𝑥; 1))𝑎𝑚−𝑎2𝑖]𝑔(𝑥; 1) 𝑑𝑥  

= 𝑎1 ∫
1

0

𝑢𝑎2𝑖+𝑎1−1(1 − 𝑢𝑎𝑚−𝑎2𝑖) 𝑑𝑢        (with  𝑢 = 1 − 𝐺(𝑥; 1)) 

= 𝑎1 [
1

𝑎2𝑖+𝑎1
−

1

𝑎𝑚+𝑎1
] =

𝑎1(𝑎𝑚−𝑎2𝑖)

(𝑎𝑚+𝑎1)(𝑎2𝑖+𝑎1)
.  

 

 

4. Point and Interval Estimation in Component and System Reliability 
For estimating the unknown parameter 𝑎 of a distribution 𝐺(⋅; 𝑎) belonging to the 𝒢max class, one can 

consider a random sample from 𝐺(⋅; 𝑎) and apply the classical maximum likelihood estimation (MLE) 

method. The Theorem below provides the expression for the MLE of 𝑎  together with the associated 

asymptotic theory. 
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Theorem 9 Let 𝑍1, … , 𝑍𝑛 ∼
𝑖.𝑖.𝑑.

𝐺(⋅; 𝑎), with 𝐺(⋅;⋅) ∈ 𝒢𝑚𝑎𝑥. Then:   

1) The maximum likelihood estimators (MLEs) are  

𝑎̂ = − (
1

𝑛
∑𝑛

𝑖=1 ln𝐺(𝑍𝑖; 1))
−1

.  

 

2) Provided that regularity assumptions (smoothness, identifiability, finite information) hold, the 

estimators satisfy  

√n (â − a)
d
→ N(0, ℐ(a)−1)  

 

where, the Fisher information for a single observation is ℐ(a) = 1/a2. Consequently,  

Var(â) ≈
a2

n
. 

  

Proof. The likelihood of the above sample is  

ℒ(𝑎) = ∏

𝑛

𝑖=1

[𝑎 𝐺(𝑍𝑖; 1)𝑎−1𝑔(𝑋𝑖; 1)]. 

 

Taking the logarithm, differentiating with respect to 𝑎 and setting the derivative equal to 0, leads to the 

desired result. 

 

As for the asymptotic distribution let us consider a single random variable 𝑍 ∼ 𝐺(⋅; 𝑎), where the log-

likelihood is  

lnℒ𝑋(𝑎) = ln𝑎 + (𝑎 − 1)ln𝐺(𝑋; 1) + ln𝑔(𝑋; 1). 
 

First and second derivatives are  
𝜕lnℒ𝑋

𝜕𝑎
=

1

𝑎
+ ln𝐺(𝑋; 1),    

𝜕2lnℒ𝑋

𝜕𝑎2 = −
1

𝑎2.  

 

Taking expectations, the Fisher information per observation is  

ℐ(𝑎) = 𝔼 [−
𝜕2lnℒ𝑋

𝜕𝑎2 ] = 1/𝑎2.  

 

By standard MLE theory, we have  

Var(𝑎̂) =
𝑎2

𝑛
, 

 

and the asymptotic normality results follow directly. 

 

Consequently, confidence intervals for 𝑅 can be constructed via the delta method or through parametric 

bootstrap techniques, offering practical tools for system reliability assessment in real-world applications. 

 

4.1 Delta Method Confidence Interval for a Single Component System 
Theorem 10 Let 𝑎1  be the shape parameter corresponding to a strength component, and let 𝑎𝑚 =
∑𝑚

𝑗=1 𝑎2𝑗  denote the total shape parameter corresponding to the maximum of 𝑚  independent stress 

components. The reliability index (see Theorem 1) is defined as 𝑅 =
𝑎1

𝑎1+𝑎𝑚
. 
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Then an (1 − 𝛼) × 100% confidence interval for 𝑅 is:  

𝑅̂ ± 𝑧𝛼/2 ⋅ √
1

(𝑎̂1+𝑎̂𝑚)4 [𝑎̂𝑚
2 ⋅

𝑎̂1
2

𝑛1
+ 𝑎̂1

2 ⋅ ∑𝑚
𝑗=1

𝑎̂2𝑗
2

𝑛2𝑗
],   

 

where, 𝑎̂𝑚 = ∑𝑚
𝑗=1 𝑎̂2𝑗, and 𝑅̂ = 𝑎̂1/(𝑎̂1 + 𝑎̂𝑚).  

 

Proof.  

Var(𝑎̂1) =
𝑎1

2

𝑛1
,    Var(𝑎̂2𝑗) =

𝑎2𝑗
2

𝑛2𝑗
.  

 

Applying the delta method in the Reliability parameter we have that  

Var(𝑅̂) = (
𝜕𝑅

𝜕𝑎1
)

2
Var(𝑎̂1) + ∑𝑚

𝑗=1 (
𝜕𝑅

𝜕𝑎2𝑗
)

2

Var(𝑎̂2𝑗)  

= (
𝑎𝑚

(𝑎1+𝑎𝑚)2)
2

⋅
𝑎1

2

𝑛1
+ ∑𝑚

𝑗=1 (
−𝑎1

(𝑎1+𝑎𝑚)2)
2

⋅
𝑎2𝑗

2

𝑛2𝑗
.  

 

Equivalently,  

Var(𝑅̂) =
1

(𝑎1+𝑎𝑚)4 [𝑎𝑚
2 ⋅

𝑎1
2

𝑛1
+ 𝑎1

2 ⋅ ∑𝑚
𝑗=1

𝑎2𝑗
2

𝑛2𝑗
].  

 

By replacing the parameters with their estimates we obtain the desired results.  

 

4.2 Delta Method Confidence Interval for the (𝒔, 𝒌) System 
Theorem 11 Let 𝑎1  be the common shape parameter associated with 𝑘  i.i.d. strength and let 𝑎𝑚 =
∑𝑚

𝑗=1 𝑎2𝑗 be the total shape parameter for the maximum of 𝑚 independent stress components (competing 

risks). The reliability index for a general (𝑠, 𝑘) system is:  

𝑅 =
𝑎𝑚

𝑎1
∑𝑘

𝑖=𝑠 (
𝑘
𝑖

) 𝐵 (𝑖 + 1, 𝑘 − 𝑖 +
𝑎𝑚

𝑎1
),    

 

where, 𝐵(⋅,⋅) is the beta function. 

Then an (1 − 𝛼) × 100% confidence interval for 𝑅 is:  

𝑅̂ ± 𝑧𝛼/2 ⋅ √(
𝜕𝑅

𝜕𝑎1
)

2 𝑎̂1
2

𝑛1
+ ∑𝑚

𝑗=1 (
𝜕𝑅

𝜕𝑎2𝑗
)

2 𝑎̂2𝑗
2

𝑛2𝑗
,    

 

where, 𝑎̂𝑚 = ∑𝑚
𝑗=1 𝑎̂2𝑗 and 𝑅̂ is obtained by substituting estimates into the expression of 𝑅.  

 

Proof. Let  

𝑔(𝑎1, 𝑎𝑚) =
𝑎𝑚

𝑎1
∑𝑘

𝑖=𝑠 (
𝑘
𝑖

) 𝐵 (𝑖 + 1, 𝑘 − 𝑖 +
𝑎𝑚

𝑎1
).  

 

Define 𝑢 = 𝑎𝑚/𝑎1 and write:  

𝑅 = 𝑢 ∑𝑘
𝑖=𝑠 (

𝑘
𝑖

) 𝐵(𝑖 + 1, 𝑘 − 𝑖 + 𝑢).  

 

Using the chain rule, compute the derivatives:  
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𝜕𝑅

𝜕𝑎1
=

𝜕𝑅

𝜕𝑢
⋅

𝜕𝑢

𝜕𝑎1
= [∑𝑘

𝑖=𝑠 (
𝑘
𝑖

) (𝐵(𝑖 + 1, 𝑘 − 𝑖 + 𝑢) + 𝑢 ⋅
𝜕𝐵(𝑖+1,𝑘−𝑖+𝑢)

𝜕𝑢
)] ⋅ (−

𝑎𝑚

𝑎1
2 ),  

𝜕𝑅

𝜕𝑎2𝑗
=

𝜕𝑅

𝜕𝑢
⋅

𝜕𝑢

𝜕𝑎2𝑗
= [∑𝑘

𝑖=𝑠 (
𝑘
𝑖

) (𝐵(𝑖 + 1, 𝑘 − 𝑖 + 𝑢) + 𝑢 ⋅
𝜕𝐵(𝑖+1,𝑘−𝑖+𝑢)

𝜕𝑢
)] ⋅ (

1

𝑎1
),  

 

where,  
𝜕𝐵(𝑖+1,𝑘−𝑖+𝑢)

𝜕𝑢
= 𝐵(𝑖 + 1, 𝑘 − 𝑖 + 𝑢)[𝜓(𝑘 − 𝑖 + 𝑢) − 𝜓(𝑖 + 1 + 𝑘 − 𝑖 + 𝑢)],   

 

and 𝜓(𝑧) =
𝑑

𝑑𝑧
lnΓ(𝑧) is the digamma function. 

 

Substitute these into the delta method formula, we obtain:  

Var(𝑅̂) = (
𝜕𝑅

𝜕𝑎1
)

2
⋅

𝑎1
2

𝑛1
+ ∑𝑚

𝑗=1 (
𝜕𝑅

𝜕𝑎2𝑗
)

2

⋅
𝑎2𝑗

2

𝑛2𝑗
  .    

 

Using the estimates 𝑎̂1, 𝑎̂2𝑗 and plug into the interval, we finally have:  

𝑅̂ ± 𝑧𝛼/2 ⋅ √Var(𝑅̂).  

 

4.3 Confidence Intervals for Systems with Heterogeneous Subgroups 
The two theorems in this section provide the expression for the confidence intervals for a system in series 

and a system in parallel with heterogeneous subgroups. 

 

Theorem 12 Let the 𝑘 components be partitioned into 𝑟 subgroups, each with shape parameter 𝑎1𝑗 (𝑗 =

1, … , 𝑟), and let 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗 be the total stress shape parameter. The system operates if at least 𝑠𝑗 of 

𝑘𝑗 components function within each subgroup 𝑗, for all 𝑗 = 1, … , 𝑟. The reliability index is:  

𝑅(𝑠,𝑘) = ∏𝑟
𝑗=1 ∑

𝑘𝑗

𝑖=𝑠𝑗
𝑘𝑗𝑖

𝐵 (𝑖 + 1, 𝑘𝑗 − 𝑖 +
𝑎𝑚

𝑎1𝑗
).                                                                                       

 

Then an (1 − 𝛼) × 100% confidence interval for 𝑅(𝑠,𝑘) is:  

𝑅̂(𝑠,𝑘) ± 𝑧𝛼/2 ⋅ √(
𝜕𝑅

𝜕𝑎𝑚
)

2
⋅

𝑎̂𝑚
2

𝑛𝑚
+ ∑𝑟

𝑗=1 (
𝜕𝑅

𝜕𝑎1𝑗
)

2

⋅
𝑎̂1𝑗

2

𝑛1𝑗
.                                                                                    

 

Proof. Define the reliability index as:  

𝑅 = ∏𝑟
𝑗=1 𝑅𝑗,    where𝑅𝑗 = ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) 𝐵 (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
).  

 

The partial derivatives with respect to 𝑎𝑚 and 𝑎𝑖𝑗 respectively are:  

𝜕𝑅

𝜕𝑎𝑚
= ∑𝑟

𝑗=1 (
𝜕𝑅𝑗

𝜕𝑎𝑚
⋅ ∏𝑙≠𝑗 𝑅𝑙) ,    where    

𝜕𝑅𝑗

𝜕𝑎𝑚
= ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) ⋅

1

𝑎1𝑗
⋅ 𝐵′ (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
),  

𝜕𝑅

𝜕𝑎1𝑗
= (

𝜕𝑅𝑗

𝜕𝑎1𝑗
⋅ ∏𝑙≠𝑗 𝑅𝑙) ,    where    

𝜕𝑅𝑗

𝜕𝑎1𝑗
= ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) ⋅ (−

𝑎𝑚

𝑎1𝑗
2 ) ⋅ 𝐵′ (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
).  

 

The delta method gives:  

Var(𝑅̂) = (
𝜕𝑅

𝜕𝑎𝑚
)

2
⋅

𝑎𝑚
2

𝑛𝑚
+ ∑𝑟

𝑗=1 (
𝜕𝑅

𝜕𝑎1𝑗
)

2

⋅
𝑎1𝑗

2

𝑛1𝑗
.   
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Substitute 𝑎̂𝑚, 𝑎̂1 and obtain 𝑅 ̂its interval and its variance. 

 

Theorem 13 Consider the same partition of 𝑘 components into 𝑟 subgroups, each with shape parameter 

𝑎1𝑗 , and let 𝑎𝑚 = ∑𝑚
𝑗=1 𝑎2𝑗 . The system functions if at least one subgroup satisfies its own internal 

reliability threshold 𝑠𝑗 out of 𝑘𝑗. The reliability index is:  

𝑅(𝑠,𝑘) = ∑𝑟
𝑗=1 ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) 𝐵 (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
).                                                                                      

 

The (1 − 𝛼) × 100% confidence interval for 𝑅(𝑠,𝑘) is given by  

𝑅̂(𝑠,𝑘) ± 𝑧𝛼/2 ⋅ √(
𝜕𝑅

𝜕𝑎𝑚
)

2
⋅

𝑎̂𝑚
2

𝑛𝑚
+ ∑𝑟

𝑗=1 (
𝜕𝑅

𝜕𝑎1𝑗
)

2

⋅
𝑎̂1𝑗

2

𝑛1𝑗
.                                                                                    

 

Proof. Define:  

𝑅 = ∑𝑟
𝑗=1 𝑅𝑗,    where𝑅𝑗 = ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) 𝐵 (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
).  

 

Then:  
𝜕𝑅

𝜕𝑎𝑚
= ∑𝑟

𝑗=1 ∑
𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) ⋅

1

𝑎1𝑗
⋅ 𝐵′ (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
),  

𝜕𝑅

𝜕𝑎1𝑗
= ∑

𝑘𝑗

𝑖=𝑠𝑗
(

𝑘𝑗

𝑖
) ⋅ (−

𝑎𝑚

𝑎1𝑗
2 ) ⋅ 𝐵′ (𝑖 + 1, 𝑘𝑗 − 𝑖 +

𝑎𝑚

𝑎1𝑗
).  

 

The delta method gives:  

Var(𝑅̂) = (
𝜕𝑅

𝜕𝑎𝑚
)

2
⋅

𝑎𝑚
2

𝑛𝑚
+ ∑𝑟

𝑗=1 (
𝜕𝑅

𝜕𝑎1𝑗
)

2

⋅
𝑎1𝑗

2

𝑛1𝑗
.                                                                                              

 

Substitute 𝑎̂𝑚, 𝑎̂1𝑗 to compute 𝑅̂ and confidence intervals.  

 

5. Applications 

5.1 Reliability Behavior under Competing Risks 
To demonstrate the applicability of the proposed methodology, two representative distribution families are 

considered: the Power function distribution from the class 𝒢max, and the Lomax distribution from the class 

𝒢min . This helps to visualize how the reliability parameter 𝑅 = 𝑃(𝑋 > 𝑌(𝑟))  behaves under different 

scenarios involving competing risks. 

 

We first consider the case where a strength variable 𝑋 and five stress variables (competing risks) 𝑌𝑗, 𝑗 =

1,2, … ,5 follow Power function distributions, which belong to class 𝒢max  with shape parameters 𝑎1 =
0.1,0.2, … ,2  and 𝑎2𝑖 ∈ {0.2,0.6,0.9,1.5,4} , 𝑖 = 1,2, … ,5 . The results can be established for 

multicomponents but here for convenience are presented for the single component case. Continuous lines 

in Figure 1 represent the case where the true values of 𝑎1 and 𝑎2 are used, while dashed lines correspond 

to the case where these parameters are estimated, according to Theorem 9. 
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Figure 1. Reliability parameter 𝑅 for 1–5 competing risks using power function distributions (𝒢max), for 𝑟 = 𝑚. 

Solid lines: true parameters; dashed lines: estimated parameters. 

 

 

From Figure 1, we observe that the reliability 𝑅 increases with the strength parameter 𝑎1. As expected, 

higher strength improves reliability, and more competing risks (higher 𝑚) result in lower reliability. 

 

In contrast to the 𝒢max behavior, we now consider the Lomax distribution as a representative of the class 

𝒢min. More precisely, the strength variable 𝑋 follows a Lomax distribution with scale parameter 2 and 

varying shape parameters 𝑎1 = 0.1,0.2, … ,2 , while the five stress variables 𝑌  also follow a Lomax 

distribution with the same scale parameter and shape parameters equal to 0.2,0.6,0.9,1.5 & 4. The effect of 

shape parameter variation on reliability is plotted for different numbers of competing risks 𝑚 = 1,2 … ,5. 

 

 

 
 

Figure 2. Reliability parameter 𝑅 using Lomax (G min) distributions. Strength 𝑋 ∼ Lomax(2, 𝑎1), Stress 𝑌 ∼
Lomax(2, 𝑎2𝑗), 𝑗 = 1,2 … ,5 for various shape parameters and number of risks, 𝑚. 
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In Figure 2, we observe that reliability 𝑅 decreases as 𝑎1 increases, which is expected under the 𝒢min 

family. Here, a higher shape parameter corresponds to lighter tails, implying lower probability of extreme 

values — and thus, a lower chance that 𝑋 exceeds 𝑌(𝑟). This is the reverse of the trend seen in 𝒢max. 

 

The reliability parameter based on the estimated parameters is very close to the one using the true values. 

This shows that the estimation method works well and gives reliable results. The minimal difference 

between the solid and dashed lines suggests that even if the parameters are estimated from data, the 

reliability remains accurate. This makes the method useful, especially when only sample data are available. 

 

5.2 Probability of Failure Due to a Specific Cause 
We also investigate the probability that the system fails due to a specific cause 𝑖 when five competing risks 

are invloved (𝑖 = 1, 2, … ,5), under both the Power function distribution from the 𝒢max class and the Lomax 

distribution from the 𝒢min class. The results are shown in Figures 3 and 4 with the failure being due to risk 

𝑖 = 1, 2, … ,5. 

 

 
 

Figure 3. Probability of failure due to cause 𝑖 for 𝑖 = 1 to 5 under the power function distribution (𝒢max). 

 

 

For the Power function distribution (Figure 3), the failure probability for each cause increases as the 

strength shape parameter 𝑎1 becomes larger. It reflects that smaller strength increases the likelihood of 

failure due to one of the risks. The last cause (𝑖 = 𝑚) tends to have the highest chance of causing failure, 

and this probability becomes smaller for smaller 𝑖. 
 

On the other hand, in the case of the Lomax distribution (Figure 4), as the strength parameter 𝑎1 increases, 

the failure probability due to each cause decreases. In this setting, the first risk (𝑖 = 1) has the highest 

probability of causing failure, which is different from what observed in the 𝒢max case. 

 

The contrasting behavior between 𝒢max  and 𝒢min  highlights the importance of selecting appropriate 

distribution family according to the physical or operational nature of the system under investigation. 
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Figure 4. Probability of failure due to cause 𝑖 for 𝑖 = 1 to 5 under the Lomax distribution (𝒢min). 

 

 

6. Discussion and Conclusions 
In this work, we focus on the evaluation and statistical inference of the multicomponent reliability 

parameter of an s-out-of-k:G system under a competing risks setting with the risks playing the role of 

multiple stresses that put under pressure the operation of the system. 

 

The distributions involved are assumed to belong to two special subclasses of the well known Lehmann 

Alternative Family of distributions. The subclasses are closed under extrema, and thus provide a great 

flexibility since the distribution members involved are frequently encountered in reliability theory and 

survival analysis. 

 

The main contribution of this work lies on the fact that it brings within the above two distribution subclasses, 

several distributions popular in reliability theory and at the same time investigates the reliability parameter 

under the competing risks framework. 

 

The results clearly show that the reliability parameter under all scenarios examined, depends on the 

parameters 𝑎1 and 𝑎21, … , 𝑎2𝑚 associated with the distributions of the strength and stress variables (the 

competing risks). In fact, the main results in Theorems 1 - 4 reveal that the reliability parameter is associated 

with the distributional parameters for the single and multiple component cases as well as for series and 

parallel systems with heterogeneous subgroups. The main results are complemented with generalizations 

that include the probability of failure due to any one of the causes/risks involved. In addition, this work 

provides statistical inference including point and confidence interval estimation and the relevant asymptotic 

theory. 

 

The applications considered in this work confirm the theoretical results established and show a variety of 

practical implications. For instance, the reliability parameter based on the estimated parameters was found 

to be very close to the one using the true values. This shows that the estimation method works well and 

gives reliable results. Furthermore, the results clearly show that even if the parameters are estimated from 

data, the reliability remains accurate. This conclusion makes the method useful, especially when only 

sample data are available. 
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All the above results provide the background for optimizing maintenance decisions in various types of 

technical systems for general subclasses of the Lehmann Alternative Family of distributions and provide a 

valuable generalization in covering time to event analysis under the competing risks setting. At the same 

time new research directions are revealed which should be the focus of future work. Such problems include 

the extension of classical models to cover non-linear and non-monotonic strength-stress relations and the 

investigation of special families of distributions including mixed distributions. Another open problem that 

should be investigated in the future is the case of degradation-based reliability under competing risks where 

degradation models could be considered which over time, experience reduction in terms of the strength and 

accumulation in terms of the stress. 
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