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Abstract

In this work, we focus on the evaluation and statistical inference of the multicomponent reliability parameter of an s-out-of-k:G
system under a competing risk setting with the risks playing the role of multiple stresses that put under pressure the operation of
the system. The problem is expressed through multistate systems using a generalized unified distribution family for both stress and
strength. The distributions involved are assumed to belong to two special subclasses of the well-known Lehmann Alternative
Family of distributions. The originality of the work lies on the fact that it brings within the above two distribution subclasses,
several distributions popular in reliability theory and at the same time investigates the reliability parameter under the competing
risks framework. Several probabilistic properties including the probability of failure due to specific cause are presented. The
applicability of the proposed methodology is explored via two representative examples based on the Power and Lomax distribution.

Keywords- Multicomponent strength-stress parameter, Reliability analysis, Competing risks, Class of distributions, Lahmann
alternative family.

1. Introduction

Reliability analysis is a cornerstone of modern engineering design, ensuring that components and systems
can withstand uncertain operational environments and maintain functionality throughout their intended
lifetimes. Among the classical reliability characteristics is the so-called strength—stress reliability parameter
R which has been widely employed to evaluate reliability by considering the probability that the inherent
strength of a component X exceeds the applied stress Y (see e.g. Birnbaum et al., 1961; Johnson, 1988).
This framework provides an intuitive yet rigorous way to quantify reliability:

R=P(X >Y).

When only a single stress factor is considered, the model captures essential aspects of failure risk. However,
in practice one rarely encounters a single source of stress. Indeed, most technical systems typically operate
under multiple, frequently interacting stresses, like thermal, mechanical, electrical, environmental etc., that
jointly contribute to degradation and eventual failure of the system.

Such systems with multiple stresses can be viewed as competing risks so that the corresponding models
could provide a natural extension. Indeed, the competing risks framework acknowledges that failure can
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arise from one of several possible stress factors, with each stress acting as a potential “failure cause.” The
overall reliability is then determined by taking into consideration these stresses and the system strength (see
for instance Crowder, 2001; Lawless, 2003). Competing risks remains in the center of attention of many
researchers for several years. Indeed, for instance, Dui et al. (2024) explore system resilience in a multi-
state context with competing risks and maintenance while Dimitrakopoulou et al. (2025) explored the
connection between the competing risks problem and the multi-state system methodology. Wang and Yan
(2025) discuss semi-parametric estimation under hierarchical Archimedean copulas and Fayomi et al.
(2025) combine Bayesian and classical inference under censoring using specific distributions. The Bayesian
perspective for inferential statistics was also examined by Llopis-Cardona et al. (2021). The semi-Markov
modelling was recently investigated by Barbu et al. (2017) and also by Garcia-Maya et al. (2022) who
analysed competing risks via the semi-Markov phase-type distribution with some identifiability issues
studied in Lindqvist (2023). For related references the interested reader may refer to Gaynor et al. (1993),
Andersen et al. (2002), Lau et al. (2009), Wei et al. (2018), Schuster et al. (2020), and Karagrigoriou et. al
(2025).

The significance of addressing this issue is primarily theoretical since the combination of strength—stress
reliability with competing risks provides a unified framework to analyze which stress dominates the failure
process and enhancing interpretability beyond a single aggregated failure probability. At the same time,
from a practical perspective, many safety-critical systems such as mechanical, electrical or aecrospace face
uncertain environments with various competing stresses/risks. It is thus crucial to consider more complex
modeling techniques to ensure a reliable design, risk assessment, and preventive maintenance strategies.

This study addressing this important issue by developing a generalized strength—stress reliability framework
under for multiple stresses under competing risks. The proposed approach is presented under a general class
of distributions which are frequently encountered in reliability settings. The present analysis allows not
only the estimation of overall reliability and the inference for the parameters involved but also the allocation
of failure probabilities to individual stresses, offering actionable insights for system designers and
operators.

The remainder of the paper is organized as follows: The reliability parameter is discussed in Section 2 while
Section 3 is devoted to the reliability evaluation and probabilistic results under the competing risks setting
for the single, multiple and heterogeneous cases as well as for the cases of systems in series and parallel.
Generalizations of the previous theoretical results are presented in Sub section 3.4 which are further
extended in Sub section 3.5, to two special subclasses of the well-known Lehmann Alternative family of
distributions (Lehmann, 1953). Section 4 deals with the statistical inference and more specifically with
point and interval estimation for the distributional parameters involved. Section 5 provides applications
while some concluding remarks are stated in Section 6.

2. Reliability Parameter

One of the popular concepts in reliability theory is the multicomponent stress-strength reliability parameter
or simply the reliability parameter which measures the reliability associated with a model of & components,
when at least s components simultaneously survive a common random stress Y which acts independently
of the strength. The definition of the reliability parameter of an s-out-of-k system is due to Bhattacharyya
and Johnson (1974) and given by

Ry, = P(at least s of the Xy,.., X, exceed Y) =YK, (i() f_czo (1 — Fy (x) (Fx (X)) tdFy (x) (1

where, the k components X, ..., X, have a common distribution Fx(-) and the stress variable Y, which is
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independent of the X's, has a cdf Fy (-).

In reliability analysis, the maximum order statistic plays a central role when the system of interest continues
to operate as long as at least one component is functioning—capturing the notion of system survival under
best-case scenarios. This is particularly useful for modeling parallel-type configurations or backup-based
systems, where failure only occurs after all the elements failed. Along with the stress-strength framework,
this provides a general tool for assessing the capacity of a system to resist external challenges over time.

To model such scenarios effectively, it is important to consider families of distributions closed under the
operation of taking the maximum. Specifically, we focus on the class of distributions G, consisting of
distributions G that satisfy the property:

6(54)=(6GD)Y, a>0 )

Suppose that G(+;a;) is absolutely continuous with respect to the Lebesgue measure. In this case, there exists
an associated density function which, as characterized by the relation in Equation (2), takes the form

9(5a):= g (6 1)) g(5 1) (3)

This structure includes several common lifetime models, such as the power function, Type I extreme value,
and discrete analogs like the Bernoulli in binary failure settings.

A key advantage of the family in Equations (2) and (3) lies in its closure under the maximum operation, as
formalized below.

Proposition 1 (Closure Under Maximum) Let T, ..., Ty be independent random variables such that Tj ~
G(t; a;) with G € Gpax. Then the maximum random variable,
Thax = Tky = max(Ty, ..., Ty),

has a distribution that belongs to the class Gua, With cumulative distribution function:
¢®(t;ay, .., ar) = (6(t; 1)), where ag = Yhoy 4)

Furthermore, observe that the distribution of the r-th order statistic T(yy in this setting can be expressed,

following results analogous to those by Balasubramanian et al. (1991), as:

(@] — Vk-1 _q\k-7T-i k—i-1 k . a
¢O® =3y (T (L F ) Gy,
3. Reliability Expressions under Competing Risks
In this section, we derive closed-form expressions for the reliability of multicomponent systems subject to
competing risks, under the stress-strength framework. We assume that all components X; and competing
risks ¥; follow a common lifetime distribution belonging to the class Gp,ax, With possibly different shape

parameters.

We begin with the simplest case involving a single component under competing risks, and then generalize
to multiple-component systems under both series and partial-redundancy configurations.

3.1 Single Component under Competing Risks
We first consider a system consisting of a single component X;, subject to m competing risks Y3, Y5, ..., ¥y,
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where each Y; has a shape parameter a, ;. The strength variable X; is assumed to follow a distribution from
the same class, with shape parameter a;.

Theorem 1 Let X; ~ G(x; a,) andY; ~ G(x; ayj) for j = 1,2, ..., m, where all variables are independent
with G belonging to the distribution class given in Equation (2). If Yy = max{¥y, ..., Y, }, then the stress-
strength reliability is given by

Ry, = P(X; > Vo)) = —2— )

a
where, @, = ¥Lq ayj.

Proof. From the definition of multicomponent stress-strength reliability in Equation (1) and Proposition 1,
we have
RX1 = P(Xl > maX{Yl, ,Ym})

= 7 [1 = (66 1)4] - anlG(x; D] g(x; 1) dx.

Letu =1 — G(x;1). The above integral becomes
am fol [1—u%]u%n~1 du

1 _ —
=a, fo u%m=1 _ yaitam=1 gy,

-a [ 1 1 ]
Mla, a;+apm

ag

aj+an’

3.2 General (s, k) System under Competing Risks

We now consider a more general configuration in which the system functions if at least s out of the k
components are operational. This setting includes both series and parallel systems as special cases. Theorem
1 above can be considered as a special case of the Theorem below:

Theorem 2 Let X; ~ G(x;aq) for i =1,...,k and Y; ~ G(x; ayj) for j = 1,..,m, with all variables
mutually independent. Under the assumption that the system functions if at least S components survive
longer than the maximum competing risk Y(,, the stress-strength reliability is

_ Am <k k . ., Qm
Rp =23k, (F)B(i+ Lk —i+%m) (6)
where, a,y, = Z;-’;l a,j and B(a, b) denotes the Euler Beta function.

Proof. The reliability is defined as the probability that at least s components out of k survive beyond the
minimum of the competing risks. Following the structure of the binomial survival model, we get

Resi = T () 7 11 = (606 1) 116 (6 11D [606 D] g (x51) dlx.

Using the substitution u = G (x; 1), the integral becomes a weighted Beta integral, yielding the expression
in Equation (6).
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These results provide compact expressions for system reliability using Beta functions, assuming
independent and identically distributed strength variables and independent not necessarily identically
distributed random variables which is typical in competing risks which usually experience different rates
of failure.

The assumption of equal shape parameters within the X-group simplifies derivations and facilitates closed-
form results.

3.3 Extensions to Heterogeneous Subgroup Structures

The results derived in the previous section assume a homogeneous structure where all component lifetimes
share a common shape parameter within the X -group. However, practical systems often involve
heterogeneous subsystems composed of components with different reliability characteristics. For example,
different types of devices, materials, or redundancies may coexist within the same system, leading to natural
partitions among components.

In this section, we extend the (s,k) -system reliability formulation to handle such heterogeneity.
Specifically, we consider systems where the k components are divided into r distinct subgroups. Within
each subgroup, components share a common shape parameter, but this parameter may differ across groups.
The system is assumed to function if a minimum number of components survive in each group (for series
systems), or if at least one group satisfies its minimum operational requirement (for parallel systems). These
configurations generalize both the fully homogeneous (s, k) model and includes the classic series/parallel
systems as special cases.

3.3.1 Series System with Heterogeneous Subgroups

Consider a system with k components where Xy, ..., X, are drawn from G (:; a11), Xi 41, -+ X, 4k, from
G(:; a1,), and so on, with the last k,- components following G (-; a;,-). Each subgroup i must have at least
s; components operational for the overall system to function, with the constraints s; + +--+ 5, = s and
ki+-+k,=k s<k.

Theorem 3 Let the k components be partitioned into v subgroups with distributions from the class given
in Equation (2) and each subgroup j characterized by a shape parameter aq jo LetYy, .., Yy denote the
competing risks, each from the same class with respective shape parameters a,;, i = 1, ...,m. Then, the
multicomponent reliability index of the series-type system that operates if at least s; components out of k;
function foralli = 1, ...,7r is

alj
where, aym = YL, ay;.

3.3.2 Parallel System with Heterogeneous Subgroups

In contrast to the previous configuration, suppose the system operates if at least one subgroup satisfies its
internal reliability requirement, that is, if at least one of the r subgroups functions. This setup is a
heterogeneous parallel system with internal group-wise reliability thresholds.

Theorem 4 Let the partition and component distributions be as defined above. Then the reliability of the
system under this parallel operational rule is given by
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ki (k; . , m
R(S,k) = Z;=1 Ziis]- (L])B (l + 1, kj —1 +a—> (8)

alj
where, apy, = YL, ay;.

These models are particularly useful in real-world applications where systems are usually composed of
multiple subsystems or modules with unique reliability profiles. In aerospace systems, for example,
different components like avionics, propulsion, and structural support can experience different failure
behavior due to differences in design, utilization, or exposure to the environment. Similarly, in large power
grids or communication networks, reliability is typically dependent on the synchronized performance of
heterogeneous submodules, each built up by different technologies and redundancies. By allowing group-
wise reliability requirements and substitute shape parameters, the introduced expressions in Equations (7)
and (8) are a general-purpose model for characterizing such heterogeneous systems with modular
architecture and partial redundancy. This makes the analysis more realistic and aligned with the system
engineers’ and reliability analysts’ practical problems.

3.4 Probabilistic Theorems

This section presents two key theorems that extend and generalize the reliability results established in the
previous sections. The first theorem provides a closed-form expression in Equation (9) for the probability
that a component lasts longer than the r-th ordered stress in the presence of multiple competing risks. The
second theorem provides in Equation (10) the probability that a specific component (stress) is the cause of
failure. These results are derived by applying the class G, and include the earlier theorems as particular
cases.

Theorem 5 Let X ~ G(x; a,) and Y denote the rt order statistic among k independent Y, ~ G(x; azj)
stress variables, where G(*;*) € Gax, J = 2, ..., m. Then,

—_\ym-r _ k-r—i (k—i—1 k e N
[P(X > Y(r)) - Zi=0 ( 1) (k —r = i) (k — i) [a1+am] (9)

where, apy, = YL, ay;.

Proof. We start from the definition of reliability for the r-th order statistic:
P(X > Y) = [ (1 - G(x D™) dGy,, ()

The pdf of the r-th order statistic is:

Fren@ = 205" O (M) () amG s DI g 1.

Thus,

P(X > Yy) =

=y =6 D™ Com (M IT () ) anGls DIl 1) dx

- —r—i —-i—-1 m _
=3 o (M T T ) (s ) am fy (- WSt du

=3y GO (ML (M Y ag [ - ]

m-—r—i/\m—i anm  ai+an,
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e o (G )

m-—r—i/\m-—1 la;+tapy
Note that when r = m the above Theorem reduces to Equation (5) in Theorem 1.

In reliability theory, an important question is the probability that system failure can be attributed to a
particular component when there are multiple independent risks. The next result establishes a closed-form
expression for the probability that failure is caused by the i-th component.

Theorem 6 Let X ~ G(x; a,) and Y; ~ G(x; ay;) for j = 1,...,m, all independent, where G(:;) € Gmax-
Then the probability of failure being caused by component/stress 1 is:
P(failure due to cause i) = P(X <Y; and Y; <X Vj #i) =

a4z

(am—azita)(am+as)

(10)

— m — m
where, ay, = ijl azj and apy,_; = Y= ayj.
Jj#i

Proof. The event of failure due to component i is:
P(X <Y;andY; < X Vj #1i)

= fooo (1 _ G(x; 1)a2i)G(x; 1)am—ialG(x; 1)a1—1g(x; 1) dx
=a fooo (1 _ G(x; 1)a2i)G(x; 1)am_i+a1—1g(x; 1) dx

=a, f()l (1 — uazi)uam_a2i+a1_1du

-a [ 1 1 ]
1 am—aszi+aq am+aq

aiazi

(@am-azi+ay)(@m+ar)

According to the proceeding result, the probability of no failure can be obtained which is in accordance
with Theorem 1. Indeed,

Corollary 1 The probability of no failure is:
P(No failure) = .
am+a,
Proof. The probability of no failure is given by
P(No failure) = fooo G(x; 1)%a,G(x; )% 1g(x; 1) dx.

Letting u = G(x; 1) the result is immediate.

3.5 Subclasses of the Lehmann Alternative Family

The family G(; ;) defined in Equation (2) can be viewed as a subclass of the well-known Lehmann
alternative family (Lehmann, 1953), where each cumulative distribution function F; of the family, is given
by

Fy = f;(F)
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with pdf given by
fi(x) =x%, and F =F(x;1).

In general, the functions f; are continuous, non-decreasing, and defined on the interval [0,1], satisfying the
boundary conditions f;(0) = 0 and f;(1) = 1, for j = 1,2,...,m. Thus, the class given in Equation (2)
forms a subclass within the Lehmann alternative family which according to Equation (4), is closed under
maxima, a feature not generally shared by the full Lehmann family. This additional property makes the
subclass particularly useful for modeling reliability systems and competing risks.

Complementary to the above subclass which is closed under maxima, one could consider another subclass
within the Lehmann alternative family, defined by
Gmin = {fj(x) =1-(1-x)%, with F=F(x;1)}.

The extra feature of the above G,;,, subclass is that it is closed under minima, making it suitable for systems
where failure or degradation is driven by the weakest component/stress. Both G i, and Gax subclasses are
widely applicable in statistical inference for reliability analysis and modeling of competing risks, due to
their respective closure properties under extrema.

The second subclass is given below:
Let

Gmin ={G1G(;a) =1-(1-G(:;1))Y, a >0} (In

with corresponding pdf given by
9Cia)i=aq;(1- GG 1)) g5 1) (12)

The class Gin includes many well-known distributions that follow the structure given in Equations (11)
and (12). This common form helps bring together different classical distributions into one general family.
Some examples are the Geometric, Exponential, Weibull, Pareto, truncated Erlang, truncated Exponential,
and Kumaraswamy distributions, all of which can be written in the form shown in Gpip.

The theorems given in the previous section can also be formulated under the setting of the new subclass
Gmin» as defined in Equations (11) and (12). This subclass, which is closed under minima, leads to analogous
but inverted reliability expressions due to its structural properties.

Theorem 7 Let X ~ G(x; a,), and let Y,y denote the r-th order statistic among independent variables Y; ~
G(x; a;), where G(+;+) € Gmin. Then,

P> Vo) = Zicd (0 (M () [

where, aym = Y11 ;.

Proof. We start with the definition of the reliability for the r-th order statistic:
P(X >Y) =) (1-G(x1)*n de(r) (x).

The pdf of the r-th order statistic is given by:
- i m—i-—1 m
fron @) = Zizg (-1 ( )(

m—r J\m— i) A (1 = G(x; 1))~ g (x; 1).
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Then,

P(XC> Yo = fy (1= GG )@ 2 (07 (M P () < am(1 -

G(x;1)%m~ 1 g(x;1) dx
=2 o (M)

m-—r
=3 0 (" ) et e ]

=3 o (Mo () ]

m-—r m—1/ la;+ay,

m

1
aq,,am—1
m ) m J, uttutmt du

l

For r = 1, the stress-strength reliability associated with the minimum order statistic reduces to the case of
a single component, and is given by

P(X > Yyqy) = —2—.

a,+am,

For the subclass Gy,i, We are able to derive expressions for the probability that failure occurs due to some
given component. This probability, often referred to as the probability of failure due to cause i, characterizes
the situation where the lifetime of component i exceeds that of the system, while all other components
survive beyond the system failure time. The following theorem provides this probability in closed form
under the assumption that all variables follow distributions in Gpip-

Theorem 8 Let X ~ G(x;a,) andY; ~ G(x; ayj) for j = 1, ...,m, all independent, where G (*;-) € Gmin.
Then the probability that the failure is caused by component i is given by:
P(failure due to cause i) = P(X < Y;andY; > X Vj #1i) = @1(am=0z0)

(am+aq)(azi+a,)

— m — m
where, @y, = YL azjand @y = Y=g ayj.
J#i

Proof. P(X <Y; and Y; > X Vj # i)
= fooo (1—-G(x;1)%i[1 - (1 —G(x;1))%i]la; (1 — G(x;1))* 1g(x; 1) dx

=a fOOO (1 _ G(X; 1))a2i+a1_1[1 — (1 — G(x; 1))am—a2i]g(x; 1) dx

1
= alj yu%2itdi=1(] —ym=%i) dy  (with u=1—G(x;1))
0

— [ 1 1 ]_ a4 (am—aszi)

1 - —_ .
azita; apta; (amtaq)(azitaq)

4. Point and Interval Estimation in Component and System Reliability

For estimating the unknown parameter a of a distribution G (-; a) belonging to the G4« class, one can
consider a random sample from G (:; a) and apply the classical maximum likelihood estimation (MLE)
method. The Theorem below provides the expression for the MLE of a together with the associated
asymptotic theory.
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Theorem 9 Let Zy, ..., Z, "5 G (5 @), with G(-3*) € Gax. Then:
1) The maximum likelihood estimators (MLEs) are

a=-(¥L, InG(Zy 1))_1.

2) Provided that regularity assumptions (smoothness, identifiability, finite information) hold, the
estimators satisfy

d
Vn (@-a)->N(0,7(a)™")
where, the Fisher information for a single observation is 7(a) = 1/a?. Consequently,

a
Var(ad) = o

Proof. The likelihood of the above sample is
n

£@ = [ [ le6@s D195 1)

i=1

Taking the logarithm, differentiating with respect to a and setting the derivative equal to 0, leads to the
desired result.

As for the asymptotic distribution let us consider a single random variable Z ~ G(-; a), where the log-
likelihood is
InLy(a) =1na + (a — DInG(X; 1) + Ing(X; 1).

First and second derivatives are

dlnLy 1 . ®InLy 1
0 —a+lnG(X, 1), =

da? a?’

Taking expectations, the Fisher information per observation is

d%InL
I(a) = E[- =] = 1/a

By standard MLE theory, we have
2

Var(a) = a
ar(a) = o
and the asymptotic normality results follow directly.

Consequently, confidence intervals for R can be constructed via the delta method or through parametric
bootstrap techniques, offering practical tools for system reliability assessment in real-world applications.

4.1 Delta Method Confidence Interval for a Single Component System
Theorem 10 Let a, be the shape parameter corresponding to a strength component, and let a,, =

Z}":l ayj denote the total shape parameter corresponding to the maximum of m independent stress
a,

components. The reliability index (see Theorem 1) is defined as R =

aj+ay,
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Then an (1 — a) X 100% confidence interval for R is:

%) 1 2 8 a2 wm &
Riza/z- —am-n—1+a1- j=1n—2j,

(@1 +am)*

where, G,y = Y%q Gy, and R = a,/(a; + @p,).

Proof.
2

Var(d,) = a_% Var(d,:) = 2j
ar(a;) = . ar(dz;) = .
Applying the delta method in the Reliability parameter we have that
s (OR\? ~ m [ 0R\? "
Var(R) = (6_111) Var(a,) + 275, (E) Var(d,;)

2

2 2 2
= (—%m__\".%  ym (4 )" %
= (@r) oI () o

(artam)? (ar1+am)? nyj
Equivalently,

et [g2 .9 gz ym %
Var(R) = et [am ™ +ai- ity nz]]'

By replacing the parameters with their estimates we obtain the desired results.

4.2 Delta Method Confidence Interval for the (s, k) System
Theorem 11 Let a, be the common shape parameter associated with k i.i.d. strength and let a,, =
Z}Zl ayj be the total shape parameter for the maximum of m independent stress components (competing

risks). The reliability index for a general (s, k) system is:
_amvk (k . ., am
R_alzizs(i)B(ka i +5m),

1

where, B(:,") is the beta function.
Then an (1 — a) X 100% confidence interval for R is:

2 A2

~ aR \?% a2 AR \“ a3;
+ . (_) -1 m =2
R - Za/z \/ 6(11 nq + Jj=1 aazj nzj,

where, Gy, = Z;’;l a,j and R is obtained by substituting estimates into the expression of R.

Proof. Let
k

g(ay,am) = C;_TZ{LS (

l)B(i+1,k—i+‘;—T).

Define u = a,;,/a, and write:
R=u¥k, (f)B(i + 1,k — i +w).

Using the chain rule, compute the derivatives:
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R _9R du _ [ K (k) (B(i FLk—itwtu- 6B(i+1,k—i+u))] _ (_ a_r;)

da, aq au 6a1 du aj

o _0n 0 _ [yt (F)(BG+ 1k i) 4 SEEUTEO)] (1)

d0ayj 6u 6a2 a,
where,
W Bli+Lk—i+wWplk—i+w) —ypi+1+k—i+w)]

and Y (z) = %lnl‘(z) is the digamma function.

Substitute these into the delta method formula, we obtain:

~ _(0R\? a?  wm [ OR)* a%
Var(R)—(a—al) 'n—1+zj=1( ) .

aazj nzj

Using the estimates dq, @,; and plug into the interval, we finally have:

R+ z4/, -/ Var(R).

4.3 Confidence Intervals for Systems with Heterogeneous Subgroups
The two theorems in this section provide the expression for the confidence intervals for a system in series
and a system in parallel with heterogeneous subgroups.

Theorem 12 Let the k components be partitioned into T subgroups, each with shape parameter a,j (j =
1,..,7r), and let a,, = Z;-”zl ayj be the total stress shape parameter. The system operates if at least s; of
kj components function within each subgroup j, for all j = 1, ..., 7. The reliability index is:

kj . ., am
R(S,k) = ;=1 Ziis‘j k‘]l B (l + 1, k] -1+ —)

alj

Then an (1 — a) X 100% confidence interval for Ry is:

= dR \2 a2 R ai;
Rsiy £ Zayz (—) S (-) 4,

dam Nm da,j nyj

Proof. Define the reliability index as:
R =Ij=1 R;, whereR; —Zk (I_(j)B(i+1,kj—i+a—m>_
i

1=sj aqj

The partial derivatives with respect to a,, and a;; respectively are:

R _ g (& R,) OR; _ ki (K. L p(; L i4m
s = 2j=1 (54, [lixj R;), where S Zizsj ; P B'li+1,ki—i+ a)
OR ORj  kj kj _ Gm . ., Am
day ~ (6(11 [li+; R ), where day; Zizsj (i = B'li+1,ki—i+ o)

1

The delta method gives:
R az, - ar \* a%
Var(R) = (aa ) E+ =1 (E) o
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Substitute @, @; and obtain R its interval and its variance.

Theorem 13 Consider the same partition of k components into r subgroups, each with shape parameter
aqj, and let ay = 271:1 ayj. The system functions if at least one subgroup satisfies its own internal

reliability threshold sj out ofkj. The reliability index is:
k; k: . ) .

alj

The (1 — a) X 100% confidence interval for Ry is given by

~ oR \2 a2, or \? %
Risi) £ Zay2 - (—) 'a+2§=1( ) =

dan, a4 nyj

Proof. Define:
R = Z§=1 R;, whereR; = ngj (f’) B (i +Lki—i+ Z—m).

1j

Then:

OR _yT ij k] .
aam Jj=1 i=S]' i

i-B’(i+1,kj—i+“—m),
; .

a]_] a]_]'
OR kj kj . _a_m) ,(. o a_m)
dar; Zizsi (i ) ( a; B\i+ Lk =i+ asj)"

The delta method gives:
. 2 2 2 42
Var(R) = (B_R) .aﬂ+ ;:1 ( R ) .&_
m

dam n dayj nyj

Substitute d,,, @, j to compute R and confidence intervals.

5. Applications

5.1 Reliability Behavior under Competing Risks

To demonstrate the applicability of the proposed methodology, two representative distribution families are
considered: the Power function distribution from the class G,;,,x, and the Lomax distribution from the class
Gmin- This helps to visualize how the reliability parameter R = P(X > Y(;-)) behaves under different
scenarios involving competing risks.

We first consider the case where a strength variable X and five stress variables (competing risks) Y}, j =
1,2, ...,5 follow Power function distributions, which belong to class G,,x With shape parameters a; =
0.1,0.2,..,2 and ay; €{0.2,0.6,09154} , i=12,..,5. The results can be established for
multicomponents but here for convenience are presented for the single component case. Continuous lines
in Figure 1 represent the case where the true values of a; and a, are used, while dashed lines correspond
to the case where these parameters are estimated, according to Theorem 9.
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Reliability Parameter R for 1-56 competing risks
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Figure 1. Reliability parameter R for 1-5 competing risks using power function distributions (Gp,.x), for r = m.
Solid lines: true parameters; dashed lines: estimated parameters.

From Figure 1, we observe that the reliability R increases with the strength parameter a;. As expected,
higher strength improves reliability, and more competing risks (higher m) result in lower reliability.

In contrast to the G,,,,x behavior, we now consider the Lomax distribution as a representative of the class
Gmin- More precisely, the strength variable X follows a Lomax distribution with scale parameter 2 and
varying shape parameters a; = 0.1,0.2, ...,2, while the five stress variables Y also follow a Lomax
distribution with the same scale parameter and shape parameters equal to 0.2,0.6,0.9,1.5 & 4. The effect of
shape parameter variation on reliability is plotted for different numbers of competing risks m = 1,2 ...,5.

Reliability Parameter R for 1-5 competing risks

0 _| |
e \
x < |
o

- m=1

1 m=2

m=3

o =
© | | | | |
0.0 0.5 1.0 1.5 2.0

ail

Figure 2. Reliability parameter R using Lomax (G ;) distributions. Strength X ~ Lomax(2, a,), Stress ¥ ~
Lomax(2, a,;),j = 1,2 ...,5 for various shape parameters and number of risks, m.
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In Figure 2, we observe that reliability R decreases as a, increases, which is expected under the Gy,
family. Here, a higher shape parameter corresponds to lighter tails, implying lower probability of extreme
values — and thus, a lower chance that X exceeds Y. This is the reverse of the trend seen in Gyax-

The reliability parameter based on the estimated parameters is very close to the one using the true values.
This shows that the estimation method works well and gives reliable results. The minimal difference
between the solid and dashed lines suggests that even if the parameters are estimated from data, the
reliability remains accurate. This makes the method useful, especially when only sample data are available.

5.2 Probability of Failure Due to a Specific Cause
We also investigate the probability that the system fails due to a specific cause i when five competing risks
are invloved (i = 1, 2, ...,5), under both the Power function distribution from the G, class and the Lomax

distribution from the G, class. The results are shown in Figures 3 and 4 with the failure being due to risk
i=1,2,..,5.

Probability of failure due to cause i for 1-5 competing risks

[T
L Ry =

P(failure due to i)

0.00 0.10 0.20 0.30

| | | | \
0.0 0.5 1.0 1.5 2.0

al

Figure 3. Probability of failure due to cause i for i = 1 to 5 under the power function distribution (Gp,.x)-

For the Power function distribution (Figure 3), the failure probability for each cause increases as the
strength shape parameter a; becomes larger. It reflects that smaller strength increases the likelihood of
failure due to one of the risks. The last cause (i = m) tends to have the highest chance of causing failure,
and this probability becomes smaller for smaller i.

On the other hand, in the case of the Lomax distribution (Figure 4), as the strength parameter a, increases,
the failure probability due to each cause decreases. In this setting, the first risk (i = 1) has the highest

probability of causing failure, which is different from what observed in the G« case.

The contrasting behavior between G, and G, highlights the importance of selecting appropriate
distribution family according to the physical or operational nature of the system under investigation.

126 | Vol. 11, No. 1, 2026



Karagrigoriou et al.: Multicomponent Stress-Strength Reliability under Competing Risks

Probability of failure due to cause i for 1-5 competing risks

P(failure due to i)
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Figure 4. Probability of failure due to cause i for i = 1 to 5 under the Lomax distribution (Gpin)-

6. Discussion and Conclusions

In this work, we focus on the evaluation and statistical inference of the multicomponent reliability
parameter of an s-out-of-k:G system under a competing risks setting with the risks playing the role of
multiple stresses that put under pressure the operation of the system.

The distributions involved are assumed to belong to two special subclasses of the well known Lehmann
Alternative Family of distributions. The subclasses are closed under extrema, and thus provide a great
flexibility since the distribution members involved are frequently encountered in reliability theory and
survival analysis.

The main contribution of this work lies on the fact that it brings within the above two distribution subclasses,
several distributions popular in reliability theory and at the same time investigates the reliability parameter
under the competing risks framework.

The results clearly show that the reliability parameter under all scenarios examined, depends on the
parameters a; and a,q, ..., @y, associated with the distributions of the strength and stress variables (the
competing risks). In fact, the main results in Theorems 1 - 4 reveal that the reliability parameter is associated
with the distributional parameters for the single and multiple component cases as well as for series and
parallel systems with heterogeneous subgroups. The main results are complemented with generalizations
that include the probability of failure due to any one of the causes/risks involved. In addition, this work
provides statistical inference including point and confidence interval estimation and the relevant asymptotic
theory.

The applications considered in this work confirm the theoretical results established and show a variety of
practical implications. For instance, the reliability parameter based on the estimated parameters was found
to be very close to the one using the true values. This shows that the estimation method works well and
gives reliable results. Furthermore, the results clearly show that even if the parameters are estimated from
data, the reliability remains accurate. This conclusion makes the method useful, especially when only
sample data are available.
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All the above results provide the background for optimizing maintenance decisions in various types of
technical systems for general subclasses of the Lehmann Alternative Family of distributions and provide a
valuable generalization in covering time to event analysis under the competing risks setting. At the same
time new research directions are revealed which should be the focus of future work. Such problems include
the extension of classical models to cover non-linear and non-monotonic strength-stress relations and the
investigation of special families of distributions including mixed distributions. Another open problem that
should be investigated in the future is the case of degradation-based reliability under competing risks where
degradation models could be considered which over time, experience reduction in terms of the strength and
accumulation in terms of the stress.
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