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Abstract 
In this paper, a functionally graded thick hollow sphere is considered for the analysis of two-dimensional steady state 

mechanical stress in the radial and circumferential directions under mechanical loading. Modulus of elasticity is varying 

with continuous nonlinear variation along the radial direction and Poisson’s ratio is kept as constant. The Legendre series 

and Euler differential equation are used to solve Navier equations. Geometry of the sphere is assumed in spherical 

coordinate system. Applying mechanical boundary conditions at inner and outer radii, we have carried out the analytical 

solutions for stresses, strains and displacements. In the numerical example, only internal pressure is varying along 

circumferential direction and external pressure is kept as zero. Displacements and mechanical stresses are presented 

graphically and the results are discussed numerically. 
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1. Introduction 
In the beginning, Functionally Graded Materials (FGMs) were used to design heat resisting material 

in the aerospace industry. But by the passage of time, the concept of FGM is applied in many 

structural problems by engineers and researchers. Usually, these materials are used to design 

several structural components to optimize the response of component under thermal and 

mechanical loading. Basically, functionally graded materials are the new kind of nonhomogeneous 

engineering materials in which composition and structure change continuously over the volume 

(Xu et al., 2019). By handling the change in the mechanical and thermal properties of the material 

in different dimensions, engineers can design multipurpose device (Aragh and Hedayati, 2012). 

Prediction is made for the partial behaviour of stresses of thick-walled functionally graded cylinder 

subjected to uniform inner and outer pressure along thickness direction by Nejad and Fatehi (2015). 

Using Frobenius series method, a cylindrical pressure vessel made of functionally graded material 

is investigated as elasticity problem by Gharibi et al. (2017). Sahni and Sharma (2017) have carried 

out the results of elastic-plastic stresses in a rotating solid disk with varying density in thickness 

direction followed by an exponential law. 

 

In recent years, many researchers have worked for the analysis of thermo-mechanical stresses for 

one-dimensional functionally graded material. But there are only few researchers that are working 

on 2D and 3D thermo-mechanical problems under steady and unsteady state conditions. A long 

functionally graded hollow cylinder is analysed under internal pressure and uniform heat generation 
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by Evci and Gülgeç (2018). A functionally graded hollow cylinder is investigated analytically for 

thermal and mechanical stresses under non-axisymmetric steady state loads by Jabbari et al. (2003). 

An infinite length cylinder made of functionally graded material is analysed for two-dimensional 

thermos elastic problem under unstable condition using Green’s function approach following 

laminate theory (Kim and Noda, 2002). Wang and Noda (2001) adopted integral transform method 

to carry out the results on failure status of a damaged functionally graded actuator on a surface 

under temperature load. 

 

A two-dimensional axisymmetric problem is solved to explore the response of wave propagation 

using finite element method for a thick hollow cylinder formed of functionally graded material with 

finite length under effective internal pressure (Asgari et al., 2009). Loghman et al. (2017) have 

solved a no symmetric thermo-elastic problem analytically for FGM cylinder under mechanical and 

thermal loadings subjected to uniform magnetic field. A thick-walled pressure vessel of spherical 

shape having inner FGM coating is investigated for elastic and plastic stresses under the external 

and internal pressures (Seyyed Nosrati et al., 2019). Using linear theory of elasticity, a three-

dimensional homogeneous isotropic rotating cylindrical panel made of functionally grade material 

is examined for wave propagation by Selvamani and Ponnusamy (2011). Using Finite element 

method, Mehta and Sahni (2020) have done stress analysis for functionally graded rotating disc 

under the influence of internal pressure, centrifugal body forces and thermal loading in radial 

direction. Natural frequencies of free vibrations are studied for isotropic, spherically symmetric, 

thermos-elastic and FG (Functionally Graded) sphere using Laplace Transform without 

implementing its inversion (Sharma and Mishra, 2017). Theory of elasticity in uncoupled form is 

utilized to inspect the influence of heat source on temperature stresses in functionally graded solid 

sphere as a fusion of ceramic ZrO2 and alloy Ti-6A1-4V (Pawar et al., 2017). 

 

Paul and Sahni (2019) used Power series method to derive two-dimensional stresses of an 

axisymmetric cylindrical pressure vessel made of FGM. Spherical shell, cylindrical shell and plates 

made of functionally graded material are considered for the thermal stress analysis under different 

thermal loadings using finite element method by Reddy and Chin (1998). Stress analysis of a 

rotating disc along its thickness direction is investigated by Singh and Sahni (2016). Mahbadi 

(2017) has applied an approximation method to carry out the results of stress potency factor for 

functionally graded rotating solid cylinder having fracture in radial direction under plain stress and 

plain strain conditions subjected to thermal and mechanical loadings. 

 

In this work, Young’s modulus is varying with nonlinear variation in radial direction and Poisson’s 

ratio is fixed as constant. Displacements are calculated in radial and tangential directions. 

Equilibrium equations are transformed into second order partial differential equations in 

displacement components and further solved by Legendre series. Employing Legendre series, we 

convert partial differential equation into homogeneous Euler differential equations. Applying 

harmonic boundary conditions on displacements and mechanical stresses we are able to find 

displacements, strains and stresses. Boundary conditions are changing along circumferential 

direction for this problem. 

 

2. Mathematical Formulation of Stress Analysis 

Assume a functionally graded thick hollow sphere with inner radius ′𝑟1′and outer radius ′𝑟2′. 
Spherical coordinate axes (𝑟, 𝜃, 𝜙) is considered for FGM sphere that represents radial distance, 

polar angle and azimuthal angle respectively and internal pressure 𝑝1(𝜃) , external pressure 𝑝2(𝜃) 

are varying along tangential direction as shown in the Figure 1. 
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Figure 1. FGM Thick sphere with spherical coordinates. 

 

 

Stresses, strains and displacements are varying along ′𝑟′ and ′𝜃′ dimensions. Modulus of elasticity 

has smooth and continuous variation along the radial direction and follows the nonlinear for 

 

𝑌(𝑟) = 𝑌0𝑟2
𝛽 𝑙𝑜𝑔(𝑟)                                                                                                                                                                 (1) 

 

where 𝛽 ≠ 0, −6 ≤ 𝛽 ≤ 10 and 𝑌0 refers the constant value of Young’s modulus and ′𝛽′ is material 

parameter. 

 

Hooke’s law for isotropic material can be written as (Poultangari et al., 2008). 

 

𝜎𝑟𝑟 = (𝜉 + 2𝜂)𝜀𝑟𝑟 + 𝜉𝜀𝜃𝜃 + 𝜉𝜀𝜙𝜙, 𝜎𝜃𝜃 = 𝜉𝜀𝑟𝑟 + (𝜉 + 2𝜂)𝜀𝜃𝜃 + 𝜉𝜀𝜙𝜙 . 

𝜎𝜙𝜙 = 𝜉𝜀𝑟𝑟 + 𝜉𝜀𝜃𝜃 + (𝜉 + 2𝜂)𝜀𝜙𝜙 , 𝜎𝑟𝜃 = 2𝜂𝜀𝑟𝜃 , 𝜎𝜃𝜙 = 𝜎𝑟𝜙 = 0                                                             (2) 

 

where 𝜎𝑚𝑛 and 𝜀𝑚𝑛 represent stress and strain tensors for 𝑚, 𝑛 = 𝑟, 𝜃, 𝜙. Lame’s constants ′𝜉′ and 

′𝜂′ involving Young’s modulus ′𝑌(𝑟)′ and Poisson’s ratio ′𝑣′ are written as (Poultangari et al., 

2008). 

 

𝜉 =
𝑣𝑌(𝑟)

(1+𝑣)(1−2𝑣)
, 𝜂 =

𝑌(𝑟)

2(1+𝑣)
                                                                                                            (3) 
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Strain-displacement equations are assumed in the radial and circumferential directions as 

(Mahbadi, 2017). 

 

𝜀𝑟𝑟 =
𝜕𝑢

𝜕𝑟
, 𝜀𝜃𝜃 =

𝑢

𝑟
+

1

𝑟

𝜕𝑤

𝜕𝜃
, 𝜀𝜙𝜙 =

𝑢

𝑟
+

𝑤

𝑟
𝑐𝑜𝑡 𝜃 , 𝜀𝑟𝜃 =

1

2
(

1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑤

𝜕𝑟
−

𝑤

𝑟
)                                      (4) 

 

where ′𝑢′ and ′𝑤′are components of radial and tangential displacements respectively. 

 

Equilibrium stress equations, ignoring inertia and body forces in ‘𝑟’ and ‘𝜃’ dimensions are 

(Poultangari et al., 2008). 

 
𝜕𝜎𝑟𝑟

𝜕𝑟
+

1

𝑟
(

𝜕𝜎𝑟𝜃

𝜕𝜃
+ 2𝜎𝑟𝑟) −

1

𝑟
(𝜎𝜃𝜃 + 𝜎𝜙𝜙 − 𝜎𝑟𝜃 𝑐𝑜𝑡 𝜃) = 0                                                            (5) 

 
𝜕𝜎𝑟𝜃

𝜕𝑟
+

1

𝑟
(

𝜕𝜎𝜃𝜃

𝜕𝜃
+ 3𝜎𝑟𝜃) +

1

𝑟
(𝜎𝜃𝜃 − 𝜎𝜙𝜙) 𝑐𝑜𝑡 𝜃 = 0                                                                     (6) 

 

Inserting 𝜓 = 𝑐𝑜𝑠 𝜃 and using equations (1) -(6), the displacement equations are as 

 
𝜕2𝑢

𝜕𝑟2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 2)
1

𝑟

𝜕𝑢

𝜕𝑟
+

2

𝑟2 (
𝑣

1−𝑣
𝛽 𝑙𝑜𝑔 𝑟2 − 1) +

1

2𝑟

1

(1−𝑣)

𝜕

𝜕𝑟
(𝑤 𝑐𝑜𝑡 𝜃 −

𝜕𝑤

𝜕𝜓
𝑠𝑖𝑛 𝜃) +

1

2𝑟2

1−2𝑣

1−𝑣
((1 − 𝜓2)

𝜕2𝑢

𝜕𝜓2 − 2𝜓
𝜕𝑢

𝜕𝜓
) +

1

𝑟2 (
𝑣

1−𝑣
𝛽 𝑙𝑜𝑔 𝑟2 −

3−4𝑣

2−2𝑣
) (𝑤 𝑐𝑜𝑡 𝜃 −

𝜕𝑤

𝜕𝜓
𝑠𝑖𝑛 𝜃) = 0           (7) 

 

 
𝜕2𝑤

𝜕𝑟2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 2)
1

𝑟

𝜕𝑤

𝜕𝑟
−

1

𝑟2 (𝛽 𝑙𝑜𝑔 𝑟2 +
1

1−𝜓2

2−2𝑣

1−2𝑣
) 𝑤 −

√1−𝜓2

𝑟(1−2𝑣)

𝜕2𝑢

𝜕𝑟𝜕𝜓
 

+
2

𝑟2

1−𝑣

(1−2𝑣)
((1 − 𝜓2)

𝜕2𝑤

𝜕𝜓2 − 2𝜓
𝜕𝑤

𝜕𝜓
) −

√1−𝜓2

𝑟2 (𝛽 𝑙𝑜𝑔 𝑟2 +
4−4𝑣

1−2𝑣
)

𝜕𝑢

𝜕𝜓
= 0                                     (8) 

 

The equations (7) and (8) represent Navier equations in the form of second order partial differential 

equations. Radial and tangential displacements are stated in the form of Legendre series as 

 

𝑢(𝑟, 𝜓) = ∑ 𝑈𝑘(𝑟)𝑃𝑘(∞
𝑘=0 𝜓), 𝑤(𝑟, 𝜓) = ∑ 𝑊𝑘(𝑟)𝑃′𝑘(∞

𝑘=0 𝜓)√1 − 𝜓2                                      (9) 

 

where𝑈𝑘(𝑟) and 𝑊𝑘(𝑟) are functions of 𝑟. Placing equation (9) into (7) and (8), and using 

recurrence relations of Legendre polynomial, we get 

 

𝑑2𝑈𝑘(𝑟)

𝑑𝑟2
+ (𝛽 𝑙𝑜𝑔 𝑟2 + 2)

1

𝑟

𝑑𝑈𝑘(𝑟)

𝑑𝑟
+

1

𝑟2
(

2𝑣

1 − 𝑣
𝛽 𝑙𝑜𝑔 𝑟2 − 𝑘(𝑘 + 1)

1 − 2𝑣

2 − 2𝑣
− 2) 𝑈𝑘(𝑟) 

+
𝑘(𝑘+1)

2𝑟(1−𝑣)

𝑑𝑊𝑘(𝑟)

𝑑𝑟
+

𝑘(𝑘+1)

𝑟2 (
𝑣

1−𝑣
𝛽 𝑙𝑜𝑔 𝑟2 −

3−4𝑣

2−2𝑣
) 𝑊𝑘(𝑟) = 0                                                                         (10) 

 

𝑑2𝑊𝑘(𝑟)

𝑑𝑟2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 2)
1

𝑟

𝑑𝑊𝑘(𝑟)

𝑑𝑟
−

1

𝑟(1−2𝑣)

𝑑𝑈𝑘(𝑟)

𝑑𝑟
−

1

𝑟2 (𝛽 𝑙𝑜𝑔 𝑟2 + 𝑘(𝑘 + 1)
2−2𝑣

1−2𝑣
) 𝑊𝑘(𝑟) −

1

𝑟2 (𝛽 𝑙𝑜𝑔 𝑟2 +
4−4𝑣

1−2𝑣
) 𝑈𝑘(𝑟) = 0                                                                                                   (11) 
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Equations (10) and (11) are representing homogeneous Euler ordinary differential equations whose 

general solution can be found by the method of substitution. Thus, the general solutions for these 

equations can be found by substituting. 

 

𝑈𝑘(𝑟) = 𝑅𝑟𝜌, 𝑊𝑘(𝑟) = 𝑆𝑟𝜌                                                                                                        (12) 

 

where ′𝜌′ can be found using the equation (15) and 𝑅, 𝑆are unknown constants. 

 

Using equation (12) into the equations (10) and (11), we get 

 

(𝜌2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 1)𝜌 +
2𝑣𝛽 𝑙𝑜𝑔 𝑟2

1 − 𝑣
− 𝑘(𝑘 + 1)

1 − 2𝑣

2 − 2𝑣
− 2) 𝑅 + 

𝑘(𝑘+1)

2−2𝑣
(𝜌 + 2𝑣𝛽 𝑙𝑜𝑔 𝑟2 − 3 + 4𝑣)𝑆 = 0                                                                                      (13) 

 

−
1

1−2𝑣
(𝜌 + (1 − 2𝑣)𝛽 𝑙𝑜𝑔 𝑟2 + 4 − 4𝑣)𝑅 + (

𝜌2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 1)𝜌
−𝛽 𝑙𝑜𝑔 𝑟2

−𝑘(𝑘 + 1)
2−2𝑣

1−2𝑣

) 𝑆 = 0                          (14) 

 

Equations (13) and (14) give homogeneous system of linear equations in 𝑅 and 𝑆. 

 

Non-trivial solution from equations (13) and (14) can be obtained as 

 

(𝜌2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 1)𝜌 +
2𝑣𝛽 𝑙𝑜𝑔 𝑟2

1 − 𝑣
− 𝑘(𝑘 + 1)

1 − 2𝑣

2 − 2𝑣
− 2)

× (𝜌2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 1)𝜌 − 𝛽 𝑙𝑜𝑔 𝑟2 − 𝑘(𝑘 + 1)
2 − 2𝑣

1 − 2𝑣
) 

+
𝑘(𝑘+1)

2−2𝑣
(𝜌 + 2𝑣𝛽 𝑙𝑜𝑔 𝑟2 − 3 + 4𝑣) (−

1

1−2𝑣
(

𝜌 + (1 − 2𝑣)𝛽 𝑙𝑜𝑔 𝑟2

+4 − 4𝑣
)) = 0                                      (15) 

 

Solving equation (15) for 𝜌, we get four eigen values 𝜌𝑘𝑖(𝑖 = 1,2,3,4) for different 𝑘, and using 

these values, general solutions for equation (12) are obtained as 

 

𝑈𝑘(𝑟) = ∑ 𝑅𝑘𝑖𝑟𝜌𝑘𝑖4
𝑖=1 , 𝑊𝑘(𝑟) = ∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖4

𝑖=1                                                                       (16) 

 

where  𝑆𝑘𝑖 = 𝐷𝑘𝑖𝑅𝑘𝑖and 𝐷𝑘𝑖 =
𝜌𝑘𝑖

2+(𝛽 𝑙𝑜𝑔 𝑟2+1)𝜌𝑘𝑖+
2𝑣𝛽 𝑙𝑜𝑔 𝑟2

1−𝑣
−𝑘(𝑘+1)

1−2𝑣

2−2𝑣
−2

−
𝑘(𝑘+1)

2−2𝑣
(𝜌𝑘𝑖+2𝑣𝛽 𝑙𝑜𝑔 𝑟2−3+4𝑣)

. 

 

If we consider 𝑘 = 0, then 𝑃′𝑘(𝜓) becomes zero. Thus, equations (10) and (11) are converted into 

one differential equation as 

 
𝑑2𝑈0(𝑟)

𝑑𝑟2 + (𝛽 𝑙𝑜𝑔 𝑟2 + 2)
1

𝑟

𝑑𝑈0(𝑟)

𝑑𝑟
+

1

𝑟2 (
2𝑣

1−𝑣
𝛽 𝑙𝑜𝑔 𝑟2 − 2) 𝑈0(𝑟) = 0                                          (17) 
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Solving above homogeneous ordinary differential equation, we get the general solution for 𝑈0(𝑟) 

 

𝑈0(𝑟) = ∑ 𝑅0𝑖𝑟𝜌0𝑖

2

𝑖=1

, 

 

where 𝜌01, 𝜌02 =
−(𝛽 𝑙𝑜𝑔 𝑟2+1)±((𝛽 𝑙𝑜𝑔 𝑟2+1)2−8(

𝑣𝛽 𝑙𝑜𝑔 𝑟

1−𝑣
−1))

1
2

2
                                                                             (18) 

 

Thus, using the equations (16), (17) and (18), complete solutions of the displacements along radial 

and tangential directions for all inputs of 𝑘 are given as 

 

𝑢(𝑟, 𝜓) = ∑ 𝑅0𝑖𝑟𝜌0𝑖

2

𝑖=1

+ ∑ [∑ 𝑅𝑘𝑖𝑟𝜌𝑘𝑖

4

𝑖=1

]

∞

𝑘=1

𝑃𝑘(𝜓), 

𝑤(𝑟, 𝜓) = ∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖4
𝑖=1 ]∞

𝑘=1 𝑃′𝑘(𝜓)√1 − 𝜓2                                                                   (19) 

 

Further, using strain-displacements equation (4) and stress-strain equation (2), we can find strains 

and stresses in radial and tangential directions as 

 

𝜀𝑟𝑟 = ∑ 𝜌0𝑖𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝜌𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓)                                                      (20) 

 

𝜀𝜃𝜃 = ∑ 𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓) + ∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 (𝑘(𝑘 +

1)𝑃𝑘(𝜓) − 𝜓𝑃′𝑘(𝜓))                                                                                                                   (21) 

 

𝜀𝜙𝜙 = ∑ 𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓) + ∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝜓𝑃′𝑘(𝜓)  (22) 

 

𝜀𝑟𝜃 = ∑ [∑ (𝐷𝑘𝑖(𝜌𝑘𝑖 − 1) − 1)𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14
𝑖=1 ]∞

𝑘=1 𝑃′𝑘(𝜓)
√1−𝜓2

2
                                                  (23) 

 

𝜎𝑟𝑟 = (𝜉 + 2𝜂) (∑ 𝜌0𝑖𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝜌𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓)) + 𝜉 (2 ∑ 𝑅0𝑖𝑟𝜌0𝑖−12

𝑖=1 +

2 ∑ [∑ 𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14
𝑖=1 ]∞

𝑘=1 𝑃𝑘(𝜓)) + 𝜉 (∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14
𝑖=1 ]∞

𝑘=1 𝑘(𝑘 + 1)𝑃𝑘(𝜓))                    (24) 

 

𝜎𝜃𝜃 = 𝜉(∑ 𝜌0𝑖𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝜌𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓)) + 2(𝜉 +

𝜂)(∑ 𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓)) + (𝜉 + 2𝜂) ∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 (𝑘(𝑘 +

1)𝑃𝑘(𝜓) − 𝜓𝑃′𝑘(𝜓)) + 𝜉 ∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14
𝑖=1 ]∞

𝑘=1 𝜓𝑃′𝑘(𝜓)                                                   (25) 
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𝜎𝜙𝜙 = 𝜉(∑ 𝜌0𝑖𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝜌𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓)) + 2(𝜉 +

𝜂)(∑ 𝑅0𝑖𝑟𝜌0𝑖−1 +2
𝑖=1 ∑ [∑ 𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑃𝑘(𝜓)) + 𝜉 ∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14

𝑖=1 ]∞
𝑘=1 𝑘(𝑘 +

1)𝑃𝑘(𝜓) + 2𝜂(∑ [∑ 𝐷𝑘𝑖𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14
𝑖=1 ]∞

𝑘=1 𝜓𝑃′𝑘(𝜓))                                                                   (26) 

 

𝜎𝑟𝜃 = 𝜂(∑ [∑ (𝐷𝑘𝑖(𝜌𝑘𝑖 − 1) − 1)𝑅𝑘𝑖𝑟𝜌𝑘𝑖−14
𝑖=1 ]∞

𝑘=1 𝑃′𝑘(𝜓)√1 − 𝜓2)                                       (27) 

 

In the equations (19) - (27), four unknowns 𝑅𝑘𝑖(𝑖 = 1,2,3,4) can be evaluated by applying any four 

boundary conditions picked from the following mechanical boundary conditions as 

 

𝑢(𝑟1, 𝜓) = 𝑓1(𝜓), 𝑢(𝑟2, 𝜓) = 𝑓2(𝜓), 𝑤(𝑟1, 𝜓) = 0, 𝑤(𝑟2, 𝜓) = 0. 

𝜎𝑟𝑟(𝑟1, 𝜓) = 𝑓3(𝜓), 𝜎𝑟𝑟(𝑟2, 𝜓) = 𝑓4(𝜓), 𝜎𝑟𝜓(𝑟1, 𝜓) = 0, 𝜎𝑟𝜓(𝑟2, 𝜓) = 0                                              (28) 

 

where 𝑓𝑗(𝜓) for 𝑗 = 1,2,3,4 are some known functions of 𝜓 on inner and outer surfaces of the 

sphere. 

 

3. Numerical Results and Discussion 
Assume the inner and outer radii of the sphere, respectively as 𝑟1 = 1.2, 𝑟2 = 1.4 in meters; 

Poisson’s ratio 𝑣 = 0.3 and constant Young’s modulus 𝑌0 = 200GPa for a FGM thick hollow 

cylinder and mechanical boundary conditions are defined as 

 

𝜎𝑟𝑟(𝑟1, 𝜃) = 200 𝑐𝑜𝑠 4 𝜃MPa, 𝜎𝑟𝜃(𝑟1, 𝜃) = 0, 𝑢(𝑟2, 𝜃) = 0, 𝑤(𝑟2, 𝜃) = 0                                    (29) 

 

where radial stress is varying harmonically along tangential direction at inner radius. 

 

Figures 2 and 3 represent radial and circumferential displacement distributions over 𝑟 and 𝜃 space 

for the material parameter index 𝛽 = 2. Here, radial displacement is greater than circumferential 

displacement in magnitude. Radial displacement (𝑢) and circumferential displacement (𝑤) are zero 

at external radius and hence they are satisfying harmonic boundary conditions. 

 

Stresses can be seen graphically for the material parameter 𝛽 = 2 as shown in Figures 4-7. In 

Figures 2 and 3 radial stresses are decreasing but circumferential stresses are oscillating near zero 

and 3.5 radian as 𝑟leads from inner to outer radius. In Figure 4, peak value of radial stresses is 

higher at internal radius and lower at external radius in magnitude. In Figures 5 and 6, stresses in 

𝜃 and 𝜙 directions are almost equal due to spherically symmetric stress distribution caused by 

defined harmonic boundary conditions. By looking at Figures 4-7, it can be observed that radial 

stresses are higher than circumferential and shear stresses in magnitude. 
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Figure 2. Radial displacement at 𝛽 = 2. 

 

 

 

 

Figure 3. Circumferential displacement at 𝛽 = 2. 
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Figure 4. Radial stress at 𝛽 = 2. 

 

 

 

 

Figure 5. Circumferential stress at 𝛽 = 2. 

 



Paul & Sahni: Two-Dimensional Stress Analysis of Thick Hollow Functionally Graded… 
 

 

1124 | Vol. 6, No. 4, 2021 

 

 

Figure 6. Azimuthal stress at 𝛽 = 2. 

 

 

 
 

Figure 7. Shear stress at 𝛽 = 2. 
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On the other hand, shear stresses are lower than radial and circumferential stresses in magnitude. 

In Figure 7, shear stresses are zero at inner radius for all 𝜃 and hence satisfies defined boundary 

condition. Peak value of shear stress occurs at outer radius along 𝜃. Peak value of magnitudes of 

shear stresses near 3.5 radian is bigger than the peak value of magnitudes of shear stresses near 

zero radian as 𝑟 varies from inner to outer surface. 

 

4. Conclusions 
This paper presents an analytical solution for mechanical response of functionally graded thick-

walled spherical pressure vessel. Nonlinear variation is considered for Young’s modulus along 

thickness direction and Poisson’s ratio is taken as constant. In this study, we have considered 

nonlinear variation of Young’s modulus in an exponential form which is a generalization of the 

power law considered by various authors in the literature. This study can be validated with the 

homogeneous case in the previous work that is done by Poultangari et al. (2008). They have worked 

with temperature profile for the problem but we have not considered thermal profile in this work. 

The author has not considered this generalized form of power law that we have used in this study. 

Instead of traditional potential function method, Legendre polynomial and Euler differential 

equations are used to find the stresses. Displacements, strains and stresses are calculated by 

applying harmonic boundary conditions. An advantage of spherical pressure vessel is that it has 

smaller surface area per unit volume than any other shape of vessels. Having this property, quantity 

of pressure can be smoothly distributed throughout the surface to reduce stress concentration in the 

material. In order to get acceptable results, this series solution may contain a greater number of 

terms in the case of non-smooth boundary condition and a smaller number of terms in the case of 

smooth boundary condition. In this work, harmonic boundary conditions are varying on smooth 

functions so the series solution may converge rapidly by considering a smaller number of terms in 

the series. 
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