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Abstract  

This paper deals with the presentation and study of alternative coupling techniques for maximum and minimum values 

between data sets, namely the problem which is examined in this work is the possible appearance of maximum or 

minimum values between data sets in the same or neighboring time points. The data can be time-dependent (time series) 

or non-time-dependent. In this work, the analysis is focused on time series and novel indices are defined in order to 

measure whether the values of N sets of data display in terms of time, the maximum or minimum values at the same 

instances or at very close instances. For this purpose, two methods will be compared, one direct method and one indirect 

method. The indirect method is based on Matrices of dimensionless indicators which are denoted by [μ][MKN], and the 

direct method is based on a variance-type measure which is denoted by [V][MKN].  

 

Keywords- Coupling techniques, Time series, Indices, Index matrix [μ][MKN].  

 

 

 

1. Introduction 
The purpose of data analysis is from one point of view to understand the variation of the data, in 

order to be able to predict future values for the case that the data depend on time or their frequency 

of occurrence for the case that the data are independent of time. The tools to achieve this goal are 

the use of statistical methods such as descriptive statistics, hypothesis testing, regression analysis, 

analysis of variance, quality control, regression models (Álvarez et al., 2021), time series analysis, 

etc. Many papers have been published in the field of time series analysis, publications with 

applications to data derived from demography, economics, financial stability (Nguyen and Bui, 

2020) and financial indicators, results from biological laboratories, health science (clinical trials), 

industrial production lines, etc. The analysis of time series coming from a great variety of situations, 

is based on the study of various characteristics of the data, such as the Trend, the Periodicity, the 

Stationarity or Similarity between time series.  

 

The similarity between two (or even many) time series attempts with various techniques to study 

the common changes of two-time series. The methods of calculating the similarity between two-

time series can be achieved with simple mathematical measures (Iglesias and Kastner, 2013), by 

using some transformations in the data (Lin et al., 2003) or by using algorithms (Keogh et al., 2001; 

Morse and Patel, 2007; Nakamura et al., 2013; Serra and Arcos, 2012), or are based on local 
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autopatterns (Baydogan and Runger, 2016), or by using correlation-aware measures (Mirylenka et 

al., 2017). Another approach are the measures of divergence defined between two probability 

distributions, the most well-known being the measure of Kullback-Leibler (Kullback and Leibler, 

1951), the Csiszar’s φ-divergence family of measures (Ali and Silvey, 1966; Csiszár, 1964), the 

Cressie and Read measures including well-known measures such as the Pearson’s χ2 measure and 

the classical loglikelihood ratio statistics (Cressie and Read, 1984), the BHHJ deviation measure 

of Basu (Basu et al., 1998), the generalized BHHJ family of measures (Mattheou et al., 2009), and 

entropy-type measures and divergences with applications in engineering (Koukoumis and 

Karagrigoriou, 2021). Finally, there are many dissimilarity measures (Huber-Carol et al., 2002; 

Meselidis and Karagrigoriou, 2020; Toma, 2008, 2009; Zhang, 2002). 

 
The indices and the corresponding matrices that will be presented in the present work are based on 

and are a continuation of the idea of MKN indices defined in Makris (2017) and Makris (2018). 

Through these indices the simultaneous time pairing (i.e., time display) of the maximum (or 

minimum) values between time series was compared, based on the values of the time series. MKN 

indices were defined for the first time in experimental data measuring forces, moments, 

displacements, and rotations for two types of floating wind turbines. More specifically, the 

combined effect of the anchor lines and the turbine (wind turbine) was considered in relation to the 

response of the floating body in order to study the hydrodynamic aspects of the floating wind 

turbine and the undulations of the combined wind and wave action for two data cases, firstly for 

the case that the data come from regular waves and secondly for the case that the data come from 

irregular waves (Makris, 2017). Epidemiological data from Greece collected during the period of 

2004-2017 and related to influenza were considered in Makris (2018). 

 

The analysis begins in Section 2 with the presentation of a direct way of solving the above problem 

(of the simultaneous time pairing), illustrated through examples with the help of a modified 

measure of variance. In Section 3 we introduce an indirect method of comparing time series and 

the MKN indices. In Section 4 we generalize the MKN indices by introducing an extra parameter 

and rename the indices as 𝜇[𝛭𝛫𝛮] and in the last section we define the Matrix [𝜇][𝛭𝛫𝛮] based on 

the indices 𝜇[𝛭𝛫𝛮]. 

 

2. Introduction of the Method V 
For a better understanding and comparison of the concepts that will be presented in the present 

work, we will first present an alternative method of calculating the coupling of maximum and 

minimum values between time series. The method is denoted by the letter V (since it is related to 

the definition of Variance) and is a direct method (as opposed to the indirect method that will be 

presented later) and is calculated based on a modification of the Variance. The analysis in this work 

will focus on time-dependent data, i.e., time series. 

 

2.1 Definition of the Matrix [𝑽][𝜧𝜥𝜨] 

The first part of the analysis begins with the presentation of the measure 𝑉[𝑀𝐾𝛮] which is defined 

for N=2 time series, by:  
 

𝑉(𝑖,𝑗)
[𝑀=Max,𝐾,𝛮=2]

=
1

𝐾
∑ (𝑡𝑖(𝑛−𝑟+1) − 𝑡𝑗(𝑛−𝑟+1))

2𝐾
𝑟=1                                                                           (1) 

 

In relation (1), i and j are two time series of equal length (i.e. each time series has n observations), 

where the notation 𝑡𝑖(𝑛−𝑟+1) expresses the time when the  time series i displays its (𝑛 − 𝑟 + 1)𝑡ℎ 
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maximum value, and 𝑡𝑗(𝑛−𝑟+1)  denotes the time when the time series j displays its (𝑛 − 𝑟 + 1)𝑡ℎ 

maximum value, while 𝑖(𝑛−𝑟+1) represents the (𝑛 − 𝑟 + 1)𝑡ℎ ordered observation of the  time series 

i and 𝑗(𝑛−𝑟+1) represents the (𝑛 − 𝑟 + 1)𝑡ℎ ordered observation of the time series j (see also Makris 

et al., 2021). 

 

It is noted that the function defined in (1) as well as others that will follow, depend on three 

parameters denoted by M, K and N, where the parameter M denotes whether the values of the time 

series under investigation are Maximum or Minimum, i.e., M is a binary parameter which takes as 

values the functions Min and Max, or in code 0 for the Minimum values and 1 for the Maximum 

values. The parameter K stands for the number of the maximum or minimum values based on which 

the calculations are made, (for instance if K takes the value 3 then the 3 highest values of a time 

series {𝑖𝑟}𝑟=1
𝑛  are 𝑖(𝑛), 𝑖(𝑛−1), 𝑖(𝑛−2)), and parameter N is the number of time series that are 

simultaneously compared where in (1) as previously said, the N parameter is equal to 2 (time series 

i and j). 

 

If M=min the measure defined in (2) takes the form 

𝑉(𝑖,𝑗)
[𝑀=Min,𝐾,𝛮=2]

=
1

𝐾
∑ (𝑡𝑖(𝑟) − 𝑡𝑗(𝑟))

2𝐾
𝑟=1 .                                                                                       (2) 

 

For the case where the number of time series that are analyzed simultaneously is N >2, the matrix 

of functions [𝑉][𝑀𝐾𝑁] of dimensions N×N (relation (3) below) is created, combining the time series 

in pairs, based on (1) or (2), and the letter V is enclosed in brackets to distinguish it from definition 

(1) or (2) which refer to a value: 

[𝑉][𝑀𝐾𝑁] = ⟦

𝑉(1,1)
[𝑀𝐾𝑁]

… 𝑉(1,𝑁)
[𝑀𝐾𝑁]

⋮ ⋮ ⋮

𝑉(𝑁,1)
[𝑀𝐾𝑁]

… 𝑉(𝑁,𝑁)
[𝑀𝐾𝑁]

  ⟧                                                                                           (3) 

 

It is easy to notice the following (for M=min but analogously it holds for the M=max): 

𝑉(𝑖,𝑖)
[𝑀𝐾𝑁]

=
1

𝐾
∑ (𝑡𝑖(𝑟) − 𝑡𝑖(𝑟))

2𝐾
𝑟=1 = 0                                                                                             (4) 

𝑉(𝑖,𝑗)
[𝑀𝐾𝑁]

=
1

𝐾
∑ (𝑡𝑖(𝑟) − 𝑡𝑗(𝑟))

2𝐾
𝑟=1 =

1

𝐾
∑ (𝑡𝑗(𝑟) − 𝑡𝑖(𝑟))

2𝐾
𝑟=1 = 𝑉(𝑗,𝑖)

[𝑀𝐾𝑁]
                                            (5) 

 

and therefore, the matrix [𝑉][𝑀𝐾𝑁] is symmetric with diagonal elements equal to 0. 

 

The problems created by the application of the above direct method are that in some cases incorrect 

results are extracted, as it will be evident from the presentation of Examples 1 and 2 in Section 6. 

 

2.2 Definition of the Matrix [𝑽][𝑴𝑪𝒓𝒐𝒔𝒔𝜥𝜨] 
In the previous section the function V was defined for non-complementary variables. In this section 

the function V will be defined for complementary variables. Complementary variables can be the 

demand of two substitute goods, where substitute goods are two products that the consumer can 

use for the same purpose, (some substitute goods are the tea and coffee, the water in one company 

and the water in another company). The parameters K and N remain unchanged as in the previous 

section in terms of definitions, while for the parameter M in the setting of this section, maximum 

and minimum values are used in combination in order to compare the maximum values of one time 

series with the minimum values of the other time series simultaneously (the parameter M is denoted 



Makris & Vonta: Presentation of Coupling Analysis Techniques of Maximum and … 
 

 

1130 | Vol. 6, No. 4, 2021 

here by 𝛭𝐶𝑟𝑜𝑠𝑠). For example, for the case that we study the demand of tea and coffee, as it is well 

known, when the price of coffee is increased, then the demand of coffee will reduce and the demand 

of tea (the complementary good of coffee) will increase, in order to replace the decrease in coffee 

demand. 

 

The measure 𝑉(𝑖,𝑗)
[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾,𝛮=2]

  is defined for N=2 time series, by:  

𝑉(𝑖,𝑗)
[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾,𝛮=2]

=
1

𝐾
∑ (𝑡𝑖(𝑛−𝑟+1) − 𝑡𝑗(𝑟))

2𝐾
𝑟=1                                                                                   (6) 

 

while the measure 𝑉(𝑗,𝑖)
[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾,𝛮=2]

 is defined for N=2 time series, by: 

𝑉(𝑗,𝑖)
[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾,𝛮=2]

=
1

𝐾
∑ (𝑡𝑗(𝑛−𝑟+1) − 𝑡𝑖(𝑟))

2𝐾
𝑟=1                                                                                   (7) 

 

where the notations 𝑖(𝑛−𝑟+1), 𝑗(𝑛−𝑟+1),  𝑡
𝑖(𝑛−𝑟+1) and 𝑡𝑗(𝑛−𝑟+1)  have been defined in the previous 

section (2.1). 

 

For the case where N >2, the matrix of measures [𝑉][𝑀𝐶𝑟𝑜𝑠𝑠,𝐾𝑁] of dimension N×N is based on (6) 

and (7) and is defined by:  

[𝑉][𝑀𝐶𝑟𝑜𝑠𝑠,𝐾𝑁] = ⟦

𝑉(1,1)

[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾𝑁]
… 𝑉(1,𝑁)

[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾𝑁]

⋮ ⋮ ⋮

𝑉(𝑁,1)

[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾𝑁]
… 𝑉(𝑁,𝑁)

[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾𝑁]

  ⟧                                                                     (8) 

 

In contrast to the previous section (where the matrix [𝑉][𝑀𝐾𝑁] has the diagonal elements equal to 

zero), in this section the diagonal elements of matrix [𝑉][𝑀𝐶𝑟𝑜𝑠𝑠,𝐾𝑁] are not equal to zero, that is, 

𝑉(𝑖,𝑖)
[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾,𝛮=2]

=
1

𝐾
∑ (𝑡𝑖(𝑛−𝑟+1) − 𝑡𝑖(𝑟))

2𝐾
𝑟=1 ≠ 0 .                                                                         (9) 

 

Finally, in the present section, the symmetric property (5) of the previous section does not apply, 

namely, 

𝑉(𝑖,𝑗)
[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾,𝛮=2]

≠ 𝑉(𝑗,𝑖)

[𝑀𝐶𝑟𝑜𝑠𝑠,𝐾,𝛮=2]
.                                                                                                (10) 

 

3. Definition of the Indices MKN 
In this section we present the MKN indices (Maximum or Minimum K values of N time series), 

which were proposed in order to study the existence of time coupling of maximum or minimum 

values of the time series (depending on what we are interested in each time i.e., maximum or 

minimum values) and constitute an indirect method of pairing maximum or minimum values, as 

the time points are correlated based on the actual values of the time series. 

 

These indices are defined under a condition and are calculated from the definition (11) below. For 

two time series i and j, the calculation of the MKN index of the time series j given the series i (which 

is denoted by 𝛭𝛫𝛮(𝑗\𝑖)) is performed based on the K time points that the K larger (or smaller 

values) of the time series i are materialized (which constitutes the aforementioned condition). Let 

𝑡𝑖{𝑛−𝐾+1}  denote the K time points where the time series i displays its K larger values. The numerator 

of the index fraction in (11) calculates the average of the K values of the time series j conditionally 

on the time points that the time series i displays its K larger values, when the maximum values are 
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under consideration (or the minimum, when the minimum values are under consideration), while 

in the denominator is the average value of all the values of the time series j, denoted by 𝑗𝑇𝑜𝑡𝑎𝑙. 

 

The comparison between the two time series (N=2) is achieved by comparing the index 𝛭𝛫𝛮(𝑗\𝑖) 

with the corresponding MKN index of the time series i itself, which is defined as the ratio of the 

average of the K maximum values of the time series i divided by the average of all the values of 

the time series i (and which is denoted by 𝛭𝛫𝛮(𝑖\𝑖)). If the value of the index 𝛭𝛫𝛮(𝑗\𝑖) is close to 

the value of the index 𝛭𝛫𝛮(𝑖\𝑖), then this means that the two time series display their K maximum 

values in the same or closely situated time points.  For the maximum values, the index is defined 

as: 

𝛭𝛫𝛮(𝑗\𝑖) = (Μax, 𝛫𝛮)(𝑗\𝑖)  =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒([𝑗\𝑡

𝑖{𝑛−𝐾+1}])

𝐴𝑣𝑒𝑟a𝑔𝑒([𝑗𝑇𝑜𝑡𝑎𝑙])
                                                                  (11) 

 

4. Generalization of the Indices to 𝝁[𝜧𝜥𝜨] 
In this section we generalize the definition of the index MKN defined in (11) by introducing the 

definition (12) below, of which definition (11) is a special case. The generalized indices are denoted 

by 𝜇[𝛭𝛫𝛮], where the parameter μ introduced plays the role of a statistical function or statistic. 

More specifically, the 𝜇[𝛭𝛫𝛮]  index is defined as the ratio of the statistical functions 𝜇𝐾 and 𝜇𝑇, 

where 𝜇𝐾 is a statistical function of the K maximum or minimum values (based on the condition 

defined in the previous section), while respectively 𝜇𝑇 is the statistical function of all (total) values 

of the time series under consideration. The statistical functions 𝜇𝐾 and 𝜇𝑇 can be one of the 

following known statistical functions such as the Average, the Median, the Variance, the Standard 

Deviation, the Covariance or Correlation or some other statistical characteristic or even a constant 

value. In fact, 𝜇𝑇 does not have to be the same function as 𝜇𝐾 (i.e., the numerator can be the 

Standard deviation and the denominator the Average and as a result a generalized definition of the 

coefficient of variation arises). 

 

For the case that the statistical functions in the numerator and denominator are the same, for 

example the Average, i.e., 𝜇 =
𝐴𝑣𝑒𝑟a𝑔𝑒𝐾

𝐴𝑣𝑒𝑟a𝑔𝑒𝑇, then it will be written explicitly as 𝐴𝑣𝑒𝑟a𝑔𝑒 in place of 

μ. In general, the definition of the index  𝜇[𝛭𝛫𝛮]  for M=Max is as follows 

𝜇(𝑗\𝑖)
[Μax,𝛫𝛮]

=
𝜇(𝑗\𝑖)

𝛫

𝜇(𝑗\𝑗)
𝑇  =

𝜇([𝑗\𝑡
𝑖{𝑛−𝐾+1}])

𝜇([𝑗𝑇𝑜𝑡𝑎𝑙])
                                                                                             (12) 

 

Similarly, for M=Min we have  

𝜇(𝑗\𝑖)
[Μin,𝛫𝛮]

=
𝜇(𝑗\𝑖)

𝛫

𝜇(𝑗\𝑗)
𝑇  =

𝜇([𝑗\𝑡
𝑖{𝐾}])

𝜇([𝑗𝑇𝑜𝑡𝑎𝑙])
                                                                                                    (13) 

 

where by 𝑡𝑖{𝐾}  we denote the K time points where the time series i displays its K smaller values. 

 

5. Definition of the Matrix [𝝁][𝜧𝜥𝜨]  

In this section we will present the Matrix [𝜇][𝛭𝛫𝛮] based on the generalized index 𝜇[𝛭𝛫𝛮] defined 

in (12) and (13) in the previous section, for the case that N time series are analyzed simultaneously. 

 

The N time series on which the [𝜇][𝛭𝛫𝛮] matrix is calculated should have the same sampling step 

(not necessarily constant) and the same duration. The calculations in the matrix [𝜇][𝛭𝛫𝛮] are being 
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done by row, i.e., in the 𝑖𝑡ℎ row of the matrix the indices 𝜇(𝑗\𝑖)
[𝛭𝛫𝛮]

 are calculated conditionally on 

the time points of the K maximum (or minimum) values of the time series i. More specifically, one 

first needs to locate the K time points where the corresponding K maximum (or minimum) values 

of the i time series are presented  and then based on these time points the corresponding 

indices 𝜇(𝑗\𝑖)
[𝛭𝛫𝛮]

 are calculated for all  j=1,..,N, including also the diagonal index 𝜇(𝑖\𝑖)
[𝛭𝛫𝛮]

 which as 

we previously discussed is the value with which all other time series are compared with the time 

series i in terms of similarity. 

 

For example, in the general case of the matrix  [𝜇][𝑀𝐾𝑁] defined in (14) below which is of 

dimension N×N, the value of the {1, N}- element of the matrix denoted by 𝜇(𝛮\1)
[𝑀𝑁𝐾]

 calculates the 

index of the time series N based on the K time points in which the corresponding K maximum (or 

minimum) values of the first time series are presented. The matrix is defined as  

[𝜇][𝑀𝐾𝑁] = ⟦

𝜇(1\1)
[𝑀𝐾𝑁]

… 𝜇(𝑁\1)
[𝑀𝐾𝑁]

⋮ ⋮ ⋮

𝜇(1\𝑁)
[𝑀𝐾𝑁]

… 𝜇(𝑁\𝑁)
[𝑀𝐾𝑁]

⟧                                                                                            (14) 

 

As an example, if μ= average, the maximum values are under consideration and the value of the 

parameter N is equal to 2, (i.e., two time series are analyzed) the format of the above matrix reduces 

to the matrix defined in (15). 

[𝐴𝑣𝑒𝑟a𝑔𝑒][Max,𝐾,𝑁=2] =             ⟦
𝐴𝑣𝑒𝑟a𝑔𝑒(1\1)

[Max,𝐾,𝑁]
𝐴𝑣𝑒𝑟a𝑔𝑒(2\1)

[Max,𝐾,𝑁]

𝐴𝑣𝑒𝑟a𝑔𝑒(1\2)
[Max,𝐾,𝑁]

𝐴𝑣𝑒𝑟a𝑔𝑒(2\2)
[Max,𝐾,𝑁]

⟧                                 (15) 

 

6. Results and Discussion 
It this section we study the aforementioned two methods (the direct method via function V and the 

indirect method using the proposed indices μ) through two numerical examples for two different 

cases of pairs of time series.  

 

6.1 Example 1 (Function V) 
Consider two time series A and B consisting of 20 values, where the data are given in rows 2 and 3 

respectively of Table 1. 

 

In Figure 1 it is shown that there is in fact same coupling between the two time series (A and B) in 

terms of the time instances of the four maximum values (K=1,..,4), as it is observed that both time 

series display their four largest values simultaneously in the following four time points, 𝑡𝐴(20) =
𝑡𝐵(20) = 20, 𝑡𝐴(19) = 𝑡𝐵(19) = 19, 𝑡𝐴(18) = 𝑡𝐵(18) = 18, 𝑡𝐴(17) = 𝑡𝐵(17) = 5. More specifically 

the time series A and B have their maximum value which corresponds to the case K=1, at the same 

time point as it can be seen from Figure 1, which is in fact the twentieth observation for both data 

sets, (which leads to 𝑡𝐴(20) − 𝑡𝐵(20) = 20 − 20 = 0). Also, they have their second maximum value 

at the same time point (which is the nineteenth observation for both data sets), and at the same time 

they both have their third and fourth maximum values at the eighteenth and fifth observation 

respectively. 
 

Resulting in the values of the function V for K=1,..,4 to be:  

𝑉(𝛢,𝛣)
[Max,𝐾=1,𝑁=2]

= 𝑉(𝛢,𝛣)
[Max,𝐾=2,𝑁=2]

= 𝑉(𝛢,𝛣)
[Max,𝐾=3,𝑁=2]

= 𝑉(𝛢,𝛣)
[Max,𝐾=4,𝑁=2]

= 0                               (16) 
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6.2 Example 2 (Function V) 
Consider two time series C and D with 20 values each, where the data are given in rows 4 and 5 

respectively of Table 1. 

 

Figure 2 graphically shows the values of the two time series where it appears that the two time 

series C and D display their four largest values  within the set of times {1,2,19,20} but in an  

alternating order and more specifically: 𝑡𝐶(20) = 1, 𝑡𝐶(19) = 20, 𝑡𝐶(18) = 2, 𝑡𝐶(17) = 19 and 𝑡𝐷(20) =
20, 𝑡𝐷(19) = 1, 𝑡𝐷(18) = 19, 𝑡𝐷(17) = 2. This combination has a significant effect to the values of 

function V as in this case the function V takes very large values for all the values of K=1,..,4, 

although this result is misleading because the two time series have their four maximum values as a 

combination at similar time points. The values of the function V for K=1,…4 are equal to: 
 

𝑉(𝐶,𝐷)
[Max,𝐾=1,𝑁]

= 361, 𝑉(𝐶,𝐷)
[𝑀ax,𝐾=2,𝑁]

= 361, 𝑉(𝐶,𝐷)
[Max,𝐾=3,𝑁]

= 337, 𝑉(𝐶,𝐷)
[Max,𝐾=4,𝑁]

= 325             (17) 

 

Based on these results, it appears that the direct method (i.e., definition (1)) gives satisfactory 

results in the first example, but large values in the second example for K=1,..,4. The above two 

examples show the inability of the direct method to give satisfactory results for some cases. For 

this reason, the index μ will be preferable which produces, for both cases, more reliable results. 

 
 

Table 1. Data of time series A, B, C & D. 
 

Time order of data A B C D 

1 3 6 34 18 

2 2 4 27 14 

3 4 6 13 8 

4 5 7 15 9 

5 14 28 16 10 

6 12 24 17 11 

7 13 26 14 9 

8 5 10 12 8 

9 6 12 18 13 

10 5 10 17 12 

11 3 6 14 9 

12 6 12 13 8 

13 5 10 9 5 

14 3 6 12 7 

15 3 6 13 8 

16 4 8 10 6 

17 5 10 13 9 

18 15 30 18 10 

19 16 32 24 17 

20 17 34 32 25 
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Figure 1. Time series A&B. Figure 2. Time series C&D. 
 
 

6.3 Examples 1 and 2 (Indices μ) 
For the case of Example 1 introduced before notice in Table 2 that the values of the indices 

𝛭𝛫𝛮(𝛢\𝛣) are equal to the indices 𝛭𝛫𝛮(𝛢\𝛢) as well as the indices 𝛭𝛫𝛮(𝛣\𝛢) are equal to the 

indices 𝛭𝛫𝛮(𝛣\𝛣) for each value of the parameter K considered, a result which shows that the time 

series A and B display their maximum values at the same time points for all K = 1, 2, 3, 4.  We 

arrive at the same conclusion as with the direct method and the measure 𝑉[𝑀𝛫𝛮]. Also observe that 

as the value of the parameter K increases the value of the MKN indices decreases since the 

numerator of the index tends to the value of the denominator. 

 
Table 2. MKN indices for time series A & B. 

 

 𝜧𝜥𝜨(𝜜\𝜝)=𝜧𝜥𝜨(𝜜\𝜜) 𝜧𝜥𝜨(𝜝\𝜜) = 𝜧𝜥𝜨(𝜝\𝜝) 

Κ=1 2.33 2.37 

Κ=2 2.26 2.30 

Κ=3 2.19 2.23 

Κ=4 2.12 2.16 

 

For the case of Example 2 we notice in Table 3 that the values of the indices 𝛭𝛫𝛮(𝐶\𝐷) are equal 

to the indices 𝛭𝛫𝛮(𝐶\𝐶) and the values of the indices 𝛭𝛫𝛮(𝐷\𝐶) are equal to the indices 𝛭𝛫𝛮(𝐷\𝐷) 

for the values of the parameter K=2 and K=4, a result which shows that the time series C and D 

display their K larger values in alternating order in terms of time. This index gives better results 

than the direct method while the measure 𝑉[𝛭𝛫𝛮] between C and D gave extremely high values.  

 
Table 3. MKN indices for time series C & D. 

 

 𝜧𝜥𝜨(𝑪\𝑫) 𝜧𝜥𝜨(𝑪\𝑪) 𝜧𝜥𝜨(𝑫\𝑪) 𝜧𝜥𝜨(𝑫\𝑫) 

Κ=1 1.88 1.99 1.67 2.32 

Κ=2 1.94 1.94 1.99 1.99 

Κ=3 1.76 1.82 1.76 1.85 

Κ=4 1.72 1.72 1.71 1.71 

 

One of the advantages of the MKN indices is that they provide more information, that is, in addition 

to recognizing the possible common placement of the maximum values between the time series, 

they also provide through their value a new measure of the similarity between the time series. 

 

7. Conclusions 

In this work an indirect method of data analysis based on the indices 𝜇[𝛭𝛫𝛮] as well as a direct 
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method based on the measure 𝑉[𝛭𝛫𝛮] were presented. The first method is defined in terms of 

coupling of maximum or minimum values of the time series considered while the second method 

is defined in terms of the time instances of occurrence of the maximum or minimum values. The 

index 𝜇[𝛭𝛫𝛮] method has an advantage over the direct method, since besides the information about 

the similarity of the time series, as far as the times of occurrence of the maximum and minimum 

values are concerned, it also provides information about statistical characteristics of the data such 

as the Average. This work is part of an ongoing research and further exploration of the capabilities 

of the 𝜇[𝛭𝛫𝛮] indices will be performed. 
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