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Abstract

Accurate automated grading of diabetic retinopathy (DR) significantly depends on the quality of retinal fundus images. Inferior-
quality pictures, resulting from inadequate lighting, motion blur, distortions, or incomplete retinal coverage, may obscure minor
lesions and diminish the accuracy of model predictions. This study constructs a harmonized multi-source dataset using a multi-
dimensional image quality assessment framework for multi-class DR staging. Retinal images are collected from IDRiD, Messidor-
2, SUSTech-SYSU, APTOS 2019, DeepDRiD-v1.1, and Zenodo DR V03 datasets. The proposed pipeline includes preprocessing,
image quality assessment using technical quality and medical relevance indicators, dataset-specific statistics, and adaptively
thresholded using DR severity-aware percentiles derived from stratified samples with weighting to match diagnostic needs.
Baseline deep learning models were trained for three hierarchical DR classification schemes to validate the dataset. Experimental
results show that the quality-filtered merging of datasets improves model generalization accuracy by 3-7% compared to the normal
merging of datasets. This work provides a benchmark dataset and baseline performance results to facilitate future research in DR
staging and medical image classification.

Keywords- Diabetic retinopathy, Label harmonization, Image quality assessment, Retinal fundus images, Deep learning, Baseline
validation, Hierarchical classification.

1. Introduction

Diabetes mellitus (DM) is a global public health crisis, affecting about 536.6 million people in the year
2021, and estimated that the number will increase to 783.2 million by 2045 (Sun et al., 2022). DR is a
serious microvascular complication of DM. It causes vitreous hemorrhage, diabetic macular edema (DME),
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and vision impairment. DR arises due to cytokine-mediated damage to capillaries. It leads to increased
vascular permeability, ischemia, and irreversible vision loss (Zhang et al., 2024). It has a global prevalence
of 34.6%. This includes proliferative DR (PDR) (6.96%), DME (6.81%), and vision-threatening
complications (10.2%) (Yau et al., 2012).

Mild NPDR ] [ Moderate NPDR

)

1. Any of the following:
« microaneurysms
« retinal dot or blot
« Microaneurysms only haemorrhages
« hard exudates or
cotton wool spots
2. No signs of severe
NPDR

Figure 1. The International Clinical Diabetic Retinopathy (ICDR) severity scale and corresponding features.
(Wilkinson et al., 2003).

As shown in Figure 1, DR begins with mild non-proliferative DR (NPDR). The mild NPDR is characterized
by the presence of microaneurysms. It then progresses to moderate and severe NPDR. This progression is
indicated by an increase in microaneurysms, intraretinal hemorrhages, hard exudates, and retinal venous
irregularities. Finally, it tends to PDR. PDR is characterized by neovascularization. PDR can result in visual
impairment (Rajesh et al., 2023). In the early stages of DR, vascular permeability may go up. Damage to
the blood vessels in the retina can cause macular edema, or thickening of the retina. This can occur at any
stage of the disease's progression.

Timely identification and diagnosis of DR can be helpful to prevent vision loss. Research by the National
Eye Institute (2019) tells that timely intervention for DR decreases the possibility of blindness by 95%. The
challenge lies in the fact that DR might be asymptomatic during its initial phases and can complicate
diagnosis. Blurred vision and floaters indicate that the disease has progressed to an advanced stage. This
significantly reduces the effectiveness of treatment. Current diagnosis methods can identify advanced DR
based on clearly defined symptoms. Early-stage DR features are usually overlooked due to their small size
and difficulty in separating them from normal variations (Abushawish et al., 2024; Almas et al., 2025).

People with diabetes should get an exam once a year so that they can get a correct diagnosis and find out
their status quickly, which will help avoid problems linked to DR (Kim et al., 2025). Traditional methods
of diagnosis of DR depend on the manual detection of indicators related to DR by trained ophthalmologists
in retinal fundus images. This process takes significant time and work. Also, highly trained
ophthalmologists are needed, which isn't always easy to find in developing countries (Taha et al., 2024).
Treatment of DR and DME, such as vitrectomy, laser treatment, and intravitreal anti-VEGF injections, is
continuously in demand and is highly expensive (Mansour et al., 2020). DR management is not easy to do
effectively due to high tool costs, income disparities, and the need for close monitoring. Delays in diagnosis
and treatment can also be caused by social, environmental, nutritional, and health issues (Hill-Briggs et al.,
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2020). Medical image analysis through Al has become a powerful tool to solve these issues. Al enables the
automated extraction of features. It also enhanced the accuracy of diagnosis across various clinical imaging
modalities (Gulati et al., 2023, 2024, 2025).

Table 1. Detailed distribution of multistage DR datasets. Normalized Shannon Entropy (NSE) and Variance of
Proportions (VP) are also included to check the dataset class balance.

Dataset name ]I;I;){ 1\11\;[,]]1)(;( M;g;:)rﬁte ;elrﬁl; PDR | Total (NSE, VP) Camera Location
IDRiD 168 25 168 93 62 516 (0.90, 0.012) Kowa VX-10 Alpha India
Messidor-2 1017 270 347 75 53 1744 (0.72, 0.40) Topcon TRC NW6 + 3CCD France
Zenodo DR VO3 | 711 6 110 349 261 1437 | (0.76, 0.029) Zeiss Visucam 500 Paraguay
SUSTech-SYSU | 631 24 401 87 76 1219 | (0.71,0.037) Topcon TRC-50DX China
APTOS 2019 1805 370 999 193 295 3662 | (0.80,0.027) Standard fundus cameras India
DeepDRiD-v1.1 914 222 398 354 112 2000 | (0.86,0.019) | Non-mydriatic fundus cameras China

Deep learning-based methods have shown strong potential for automated DR detection and staging, which
reduces dependence on manual screening and subjective clinical evaluation (Butt et al., 2022; Kotiyal and
Pathak, 2022; Mutawa et al., 2023; Raghad and Hamad, 2024; Saproo et al., 2024; Shakibania et al., 2024;
Almas et al., 2025; Refat et al., 2025; Zafar et al., 2025; Zhang et al., 2025). However, their clinical
performance depends a lot on the quality, diversity, and balance of the dataset (Rajesh et al., 2023;
Abushawish et al., 2024; Taha et al., 2024). As shown in Table 1, publicly available dataset classes vary in
distribution, geographical origin, and imaging devices, causing domain shift and acquisition bias that affect
generalization in different population groups and clinical conditions (Men et al., 2025). Serious class
imbalance, especially in advanced stages such as insufficient representation of PDR, deforms the adaptation
of the model and limits sensitivity to visually impaired cases (Rajesh et al., 2023; Abushawish et al., 2024).

The use of different grading systems, inconsistencies in annotations, and inter-observer variability in the
dataset decrease the reliability of the model (Riotto et al., 2025). The variety in ages, races, and
comorbidities makes it harder for models to be valid on the external dataset. Changes in resolution, lighting,
and field of view of the image can also affect model performance. When models use a single source of data,
they are more likely to overfit (Kim et al., 2025; Refat et al., 2025). These issues suggest the urgent need
for standardized, big, multi-center, and well-annotated datasets (Taha et al., 2024). This type of data enables
the development of clinically robust and generalizable DR classification systems. If the challenges
mentioned in Figure 2 are not resolved, the deep learning framework will prove weak when transferred
from research settings to real-world applications.

To resolve these challenges, this study presents a multi-dimensional image quality assessment framework,
which integrates basic, technical, and medical relevance quality indicators of image through a three-
component scoring structure. Each metric is normalized using dataset-specific statistics and adaptively
thresholded using DR severity-specific percentiles derived from stratified samples, with severity-specific
weighting to match diagnostic needs. Strict thresholds for early DR detection and more relaxed criteria for
advanced stages. For detecting and staging DR, retinal images must be technically, clinically, and
anatomically easy to understand. The proposed quality filtering pipeline examines retinal images from
multiple directions. This approach differs from conventional techniques that consider basic quality
parameters. It shows that medically relevant quality metrics are essential for optimal dataset curation.
Enhanced imaging is necessary for the identification of early-stage conditions (microaneurysms and minor
vascular abnormalities).
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Figure 2. Overview of key challenges, research gaps, and potential solutions in DR fundus image datasets (Butt et
al., 2022; Kotiyal and Pathak, 2022; Mutawa et al., 2023; Rajesh et al., 2023; Abushawish et al., 2024; Raghad and
Hamad, 2024; Saproo et al., 2024; Shakibania et al., 2024; Taha et al., 2024; Almas et al., 2025; Kim et al., 2025;
Refat et al., 2025; Riotto et al., 2025; Zafar et al., 2025; Zhang et al., 2025).

The framework is deployed in constructing the Diabetic Retinopathy Enhanced, Adapted, and Merged
Retinal Fundus Image (DREAM-RFT) Dataset. This is a harmonized and curated fundus image dataset for
DR staging. It has low bias and balanced representation of all classes. The DREAM-RFI merges images
from IDRiD (Porwal et al., 2018), Messidor-2 (Decenciere et al., 2014), SUSTech-SYSU (Lin et al., 2020),
APTOS 2019 (Karthik et al., 2019), DeepDRiD-v1.1 (Liu et al., 2022), and Zenodo DR V03 (Benitez et al.,
2021) datasets. The DREAM-RFI assigns DR grades according to the ICDR severity scale. The DREAM-
RFI dataset immediately solves the fundamental problems of the existing DR dataset. It does this by
providing high-quality, equally distributed, and diverse data. This dataset can improve the accuracy of deep
learning models and be useful in more situations.

The key contributions of this study are outlined as follows:

i. Proposed a multi-dimensional image quality assessment methodology that includes basic, technical,
and medical relevance indicators to identify low-quality samples and enhance dataset reliability.

ii. Executed integration of DR datasets based on image quality from several imaging devices and
populations to augment dataset diversity and cross-population generalizability. Also, the robustness
was maintained by removing low-quality images and minimizing excessive overfitting on the same
source dataset.

iii. Developed and openly released a complete dataset creation pipeline via GitHub, assuring the
reproducibility, transparency, and accessibility of the DREAM-RFTI dataset for future research.

iv. Established baseline performance benchmarks to allow comparison studies and direct future model
development by training and evaluating a number of deep learning models on DREAM-RFI.
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The remaining structure of this article is as follows: Section 2 presents the functioning of the multi-
dimensional image quality assessment framework. Section 3 describes the experimental setup and
validation results. Finally, in Section 4, the summary of our findings and possible directions for future

functions are given.

2. Methodology

This study presents a multi-dimensional framework for assessing image quality in retinal fundus images
that considers technical excellence and medical significance, as seen in Figure 3. The framework is
intended to identify and systematically eliminate low-quality retinal pictures that may have a negative
impact on model training while maintaining clinical diversity for effective DR staging. Each fundus image

is represented by a set of 10 scalar quality metrics:
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Figure 3. Detailed pipeline for retinal image quality assessment and dataset preparation.

Table 2. Components of the retinal image quality assessment vector Q.

Category Metrics Interpretation
Brightness (B) Measures overall illumination uniformity across the retinal field.
. . . Contrast (C) Captures intensity spread and distinguishes vessel vs. background regions.
Basic quality metrics Sharpness (S) Reflects clarity of structural boundaries, such as vessels and lesions.
Entropy (H) Quantifies the richness of visual information and textural variability.

Medical quality metrics

[llumination Uniformity (U)

Assesses smoothness and absence of artifacts in the fundus background.

Vessel Visibility (V)

Reflects clarity and delineation of vascular structures critical for diagnosis.

Optic Disc Visibility (OD)

Ensures optic disc is well-defined for reliable anatomical localization.

Technical quality metrics

Extreme Pixel Detection (EP)

Validates proper exposure of retinal image without under/over saturation.

Motion Blur Assessment (MB)

Indicates presence of motion-related degradation.

Color Balance (CB)

Ensures natural color tone necessary for clinical interpretation.
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Q=|B,C,S,H,UV,0D, EP,MB,CB (1)

Basic Medical Technical

where, each component corresponds to a scalar quality metric described in Table 2.

2.1. Data Preparation

Retinal fundus images were gathered from six public DR datasets (IDRiD (Porwal et al., 2018), Messidor-
2 (Decenciére et al., 2014), SUSTech-SYSU (Lin et al., 2020), APTOS 2019 (Karthik et al., 2019),
DeepDRiD-v1.1 (Liu et al., 2022), and Zenodo DR V03 (Benitez et al., 2021)) and mapped to the standard
ICDR scale (0 - 4). Non-standard labels were converted accordingly. All images were uniformly resized
and center-cropped to 1024 X 1024 X 3 as seen in Figure 4. Image cropping is the initial preprocessing
step to eliminate the irrelevant background surrounding the fundus images, which typically includes a large
black border. This black area does not give any clinical information and can make learning algorithms work
worse. Therefore, only the region containing the eye is preserved using a bounding-box-based cropping
method, followed by resizing the result to a standard resolution.

-. | ..

Figure 4. Visual results for data preparation step: (a - e) original images and (f - j) center-cropped and resized
versions.

(h)

Each image is first converted to grayscale, followed by applying a low threshold of 10 to separate the dark
background from the eye region, as seen in Equation (2).
.~ (2, ifI(i,))>10
Ty = {O, otherwise @)
where, I(i, j) is the grayscale intensity at pixel (i, j), and T (i, j) is the binarized image. This transformation
shows the eye as a white region on a dark background. The binary mask is used to identify related regions,
and the largest contour is assumed to include the eye. To calculate the area (A) of each contour, use the
shoelace formula:

1an_1 rs - . . , . ..
A= EZ?=01 (i1 ji+1 — U1 J0), where (i, Jn) = (lo, Jjo) (3)
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Once the largest contour is identified, a bounding box is drawn around it, which returns the bounding box
coordinates (i, j) and dimensions (w, h). i goes from top to bottom and j goes from left to right:
(i,j,w, h) = (row, column, width, height) 4)

By getting rid of the black background, this method successfully separates the Region of Interest in the
retinal image. This method gets the input ready for jobs like quality filtering and diagnosis.

2.2 Image Quality Indicators
The quality of the retinal image plays a crucial role in accurate DR diagnosis. This section describes the
image quality parameters used.

2.2.1 Basic Quality Indicators
This study used four basic quality parameters that have a direct effect on how easy it is to read an image:

i. Brightness checks for images that are too or too little exposed by looking at their global exposure
(Gonzalez and Woods, 2018). It gives a global intensity indicator to define the visual differences seen
in fundus pictures. Brightness imbalance can conceal small DR lesions by either washing them out or
hiding them in the background. It is defined by

1024 1024-
1024-><1024-Z I(l ]) (5)

ii. Contrast locates local variations in image intensity. It is not based on edge gradients, which are not
stable in low-light or noisy areas. A high value of contrast indicates better separation of retinal
structures (Gonzalez and Woods, 2018). It is determined as the standard deviation of pixel intensities:

€= \/1024><102421024 X5t AN - By? (6)

iii. Sharpness is used in measuring the structural clarity of vessels and micro-lesions. This is a good
measure to maintain fine vascular boundaries (Gonzalez and Woods, 2018). The Laplacian operator is

equal to:
aZ
L@, j) = VAI(i,)) = 5= +5— 357 ™

The sharpness is estimated by:
S — 21024 1024- (L(l ]) L) (8)

1024X1024

where, L denotes the mean value of L(i, j) across the entire image. Sharper images result from higher S
values. Blurrier images result from lower S values. Sharpness is crucial in fundus image quality filtering,
as blurry pictures might mask small vascular structures and minor DR lesions, which can lead to
misdiagnosis.

iv. Shannon Entropy is a quantification of visual information in the image. It reflects textural and

structural complexity essential for DR stage differentiation. It is defined by

233 Pqlogapg 9)

where, p, denotes the normalized histogram probability of the intensity level q. Lower value of H reduces
intensity variation (Gonzalez and Woods, 2018) and causes DR signs (microaneurysms and fine vascular
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changes) to remain hidden.

2.2.2 Medical Relevance Indicators
Three medical relevance indicators essential in the diagnosis of DR have been included in this work:
i. INlumination Uniformity measures the uniformity of the lighting throughout the image (Gonzalez and
Woods, 2018). The image is divided into a 3 X 3 grid of 9 regions {R,;}2,=;. The mean brightness in
each region is:

1 ..
By = mZ(l’,j)ERm I1(6,)) (10)

where, |R,,| is the number of pixels in R,. [llumination uniformity is then defined as
o(By,...Bg)

where, o(.) the standard deviation and B the mean of By, B, ..., and By. A higher value of U indicates

evenly distributed illumination. A lower value of U shows uneven illumination, which can hide DR signs
or create false pathological patterns.

ii. Vessel Visibility quantifies how clearly blood vessels appear in the retinal image. The green channel
Igreen 1s enhanced using multi-directional filters (Kp, Ky, Kq1, Kq2) to capture horizontal, vertical, and
diagonal vessel structures (Gonzalez and Woods, 2018):

VS(@,j) = ke{h,mv%,dz]ﬁlteFZD(Igreen' Ky) (12)

The vessel visibility score is defined by:

V — #{V(l'])>P95(VS)} (13)
1024x1024

where, # denotes the number of pixels satisfying the condition. Py (VS) is the 95th percentile of VS. A
high value of V means that the vessel is easier to see. A low value of V value indicates poor picture quality.
Images that aren't clear can hide vessel narrowing, tortuosity, and new blood vessel growth.

iii. Optic Disc Detectability evaluates the visibility of the optic disc, typically the brightest region in a
retinal image. It is defined as the fraction of pixels with intensity above the 95th percentile:
OD — #{1(1,])>P95(1)} (14)
1024x1024

A high value of OD shows a clearly visible optic disc. A low value of OD gives a poor image quality, which
hinders the distinction between normal bright regions and exudates.

2.2.3 Technical Quality Indicators
In this study, three technical quality parameters that determine the clarity of the retinal image are assessed:

i. Extreme Pixel Detection is used to determine the percentage of very dark (I(i,j) < 10) or very bright

(I(i,j) > 245) pixels, which can reflect improper exposure (Gonzalez and Woods, 2018):
_B(1L)<10}+#{I(i,])>245)
- 1024x1024

EP

(15)

A large EP value means that brightness has high variations. These variations can hide small retinal lesions.
They may also produce false artifacts that may reduce the interpretation of an image.
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ii. Motion Blur Assessment uses the gradient magnitude to find image sharpness (Gonzalez and Woods,
2018):

MB = 1024><102421024 1024 \/( (l])) (:—;(i,j))z 16

High values of MB will imply stronger edges and less motion blur. Low values of MB reflect blurring
caused by eye movement or camera shake. Images with Low M B value may mask fine vascular structures
and small lesions in DR.

iii. Color Balance helps in evaluating the continuity of color channels. It is defined by:
CB = o([Rmeans Gmean, Bmean]) (17)

where, Rieans Gmean»> ad Bean are the mean intensities of the red, green, and blue channels, respectively.
A low CB shows balanced colors. A high CB is associated with color cast issues, such as overly reddish or
bluish tones. These color issues may alter the severity of the lesions.

2.3 Adaptive Thresholding Strategy

Different imaging protocols, equipment, and demographics produce varying baseline quality characteristics.
To avoid bias from uniform quality standards, the proposed method generates dataset-specific thresholds.
A stratified sample of approximately 300 images proportionally sampled across available DR severity
classes is analyzed to compute mean, standard deviation, and percentile distributions for each metric. These
statistics define normalization constants and initial thresholds. Different DR severities require different
quality standards for reliable diagnosis. The proposed adaptive approach uses a severity-specific percentile
threshold obtained from dataset calibration, as shown in Table 3. This shows that clinical reality that high-
quality images are required to detect micro lesions in early DR stages, while in advanced stages, where
major lesions are present, comparatively low technical quality is also acceptable.

Table 3. Adaptive percentile thresholds for image quality across DR severity levels.

DR severity Class label Percentile threshold
No DR 0 15th percentile (strictest)
Mild NPDR 12th percentile

1
Moderate NPDR 2 10th percentile
Severe NPDR 3 8th percentile
PDR 4 Sth percentile (most relaxed)

2.4 Adaptive Threshold Customization

This framework allows users to adapt the quality threshold according to their requirements. After the
preliminary adaptive threshold assessment, this system prepares the flagging image sample and all quality
metrics, so that users can review the filtering results and make the necessary amendments. This manual
customization capacity allows researchers to adjust the individual metric threshold up or down, so that the
characteristics and quality requirements of the dataset are consistent. Users can assess whether the
thresholds automatically match their expectations and clinical requirements by looking at the flagged
samples. The manual threshold section provides an interface that allows the threshold to be replaced for
any of the ten quality metrics. Their impact on the removal image can be reviewed, and the norms can be
sophisticated sequentially before creating the final quality-filtered dataset. This method keeps the structural
rigor of a multidimensional evaluation framework while making it adaptable to different research needs.
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2.5 Dataset-Adaptive Normalization and Composite Quality Scoring

This system uses a two-tier normalization method to make sure that datasets with different imaging
properties can be fairly compared. To account for differences in equipment and acquisition, basic quality
metrics are normalized with a z-score:

Qknorm = Max (O, min (1, %)) (18)
where, Zg.pre = Q"U_“k, with y;, and oy, are the mean and standard deviation for the metric k. This z-score
k

transformation with clipping ensures that normalized values to [0,1]. It preserves relative quality
differences within each dataset.

Medical relevance indicators are normalized using direct scaling with validated bounds:

Unorm = max(0, min(1,U)) (19)
Viorm = max(0, min(1,V x 100)) (20)
0Dy, orm = max(0,min(1, 0D x 50)) 21
Technical quality metrics are normalized considering their specific characteristics:

EP,prm = max(0, min(1,1 — (EP X 2))) (22)
MB,,0rm = max(0, min(1, MB/50)) (23)
CByorm = max(0, min(1,1 — (CB/50))) (24)

A composite score integrates normalized quality metrics using a weighted combination of three quality
components:

CQ = 0.25 X BasicQuality + 0.55 X MedicalQuality + 0.20 X TechnicalQuality (25)
where:

BaSICQuallty = mean([Bnorm' Cnorm' Snorm' Hnorm]) (26)
MedicalQuality = mean([Uporm Yaorm: O Pnorm)) 27)
TechnicalQuality = mean([E Byorm» M Bnorm, CBnorm]) (28)

An image is accepted if its composite quality score exceeds the severity-specific threshold determined
during dataset calibration.

2.6 Quality Assessment Results

For each dataset, about 300 stratified samples were looked at to find the normalization factors and percentile
distributions that were unique to that dataset. There was an equal number of these samples in each of the
DR classes. The computed percentile values for each DR stage were utilized to establish quality benchmarks.
This ensured that adaptive filtering was applied appropriately to the unique characteristics of each dataset.
To make the most use of the computer's resources, progress reports had to be generated every 500
photographs, and trash had to be removed every 100 photos for large-scale processing.

2.7 DREAM-RFI Dataset

This process produces the DREAM-RFI dataset. It contains 3461 retinal images of five DR stages: No DR
(1256 images), Mild NPDR (493 images), Moderate NPDR (779 images), Severe NPDR (396 images), and
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PDR (537 images). The DREAM-RFI dataset provides a more balanced class distribution than other
datasets mentioned in Table 1. It has a high normalized Shannon entropy (0.94) and a very low variance of
proportions (0.008), indicating a well-distributed representation of all five DR severity levels. All these
images were obtained from several public datasets and standardized through preprocessing, quality
evaluation, and label harmonization. This ensures balanced class distribution and representation of various
populations and reduces dataset bias. The DREAM-RFI dataset supports the image quality assessment,
domain adaptation, explainable Al, and preprosecuting research. This pipeline allows reuse, expansion, and
application in other medical imaging collections. This technique provides reproducibility of the dataset,
transparency, and traceability. Any researcher having the required source material can recreate the
DREAM-RFI dataset using the code available on https://doi.org/10.5281/zenodo.17587015.

Table 4. Description of the Hierarchical classification schemes for DR staging used in this study.

Type

Description

Clinical purpose

Classes — image count

Two-class scheme

Offers a clinically relevant screening
framework that enables rapid disease

Screening: Identify the presence
vs. absence of DR for diagnosis.

i.No DR (0) — 1256
DR (1 to 4) — 2205

detection and is well-suited for large-
scale population screening.
Balance diagnostic  precision

Three-class scheme with | Referral Prioritization: Identify i.No DR (0) - 1256

robustness; address the need to identify | patients needing routine | ii.Early DR (1 and 2)— 1272
patients requiring closer follow-up or | monitoring vs. urgent ophthalmic Advanced DR (3 and 4) — 933
referral without overburdening healthcare | evaluation.

resources; mitigate class imbalance.
Follows the ICDR severity

Five-class scheme scale; | Treatment Planning: Enables i.No DR (0) — 1256

(ICDR Severity provides detailed stratification of DR; | stage-wise  assessment and | ii.Mild NPDR (1) —493
Scale) captures disease progression; supports | comparison with expert | iii.Moderate NPDR (2) — 779
clinical decision-making, enables | diagnosis. iv.Severe NPDR (3) — 396

comparison with expert annotations;
benchmark for advanced diagnostic
models.

PDR (4) - 537

3. Experimental Validation
A comprehensive experimental research was conducted to create reliable baselines and validate the utility
of the DREAM-RFI dataset.

3.1 Classification Schemes

As indicated in Table 4, three classification schemes were used for experimental verification and evaluation
of the DREAM-RFI dataset. Multiple classification methods can serve unique and complementary functions
in DR staging. The hierarchical structure of these schemes makes them adaptable to different clinical and
technical settings, facilitating rapid automated screening and sophisticated decision support in specialized
care.

3.2 Experimental Setup

Figure 5 illustrates the pipeline for the experimental authentication of the DREAM-RFI dataset. For the
backbone model, VGG-16, ResNet-50, Inception-V3, DenseNet-121, and MobileNet-V2 were chosen for
their strong representational capability and complementary architectural qualities to construct accurate
benchmarks on the DREAM-RFI dataset. All models were trained under standardized conditions using the
AdamW optimizer with an initial learning rate of 1 X 10™*%, a batch size of 128, and 50 epochs with early
stopping based on validation loss. Identical data partitioning criteria preserving a 70:10:20 train-validation-
test data split ratio were utilized for facilitating a fair comparison with prior DR classification
methodologies. The fundus photos were resized to 384 X 384 X 3 pixels. To preserve anatomical validity
of the augmented retinal image, medically relevant image augmentation techniques: rescaling, rotation of
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small angles (maximum =+ 12), width and height shifts, slight zooms, brightness adjustment, and the green
channel enhancement through the CLAHE were used. Horizontal flips were excluded as they generate
anatomically impossible retinal orientation, which is not found in clinical behavior and can affect the
capacity of the model’s generalization on real clinical data. All experiments were run on an NVIDIA
GeForce RTX 3090 GPU using Keras with a TensorFlow backend.

((70% ) )
Train
e
RGB Fundus Lk Backbone =
— ——P | @
Image Dataset Validation Network b
(3)
No DR 20%
Test No DR u
Mild NPDR For T |
or Two-class
NoDR R Scheme .
Moderate NPDR
; Early DR
“;?\k' \ y
S <> For Three-class
Severe NPDR Scheme
‘? | Advanced DR

O For Five-class -

Scheme

Figure 5. The pipeline for experimental validation of the DREAM-RFI dataset.

Accuracy (acc), precision (prec), recall, F1-score (F1), and AUC were used to evaluate the DREAM-RFI
dataset. The accuracy of the model reflects the proportion of correctly identified samples of the total
samples, which indicates the effectiveness of the model. The precision measures the percentage of correct
predictions in positive predictions and helps in reducing false positives. The recall evaluates the ability to
identify the real positives of the model and aids in reducing false negatives. F1-score is the harmonic mean
of precision and recall, and balances both standards and is useful for uneven data. Additionally, AUC
assesses the discriminatory ability of the model on various classification thresholds, where high values
reflect better performance. This method assesses the effect of each class and reduces bias towards large or
small classes. This makes the model assessment of DR and grading more accurate. These criteria ensure
intensive and rigorous evaluation of the effectiveness of the model in important applications such as DR
diagnosis.

3.3 Results

Table 5 compares five widely used CNN backbones, including VGG-16, ResNet-50, Inception-V3,
MobileNet-V2, and DenseNet-121, trained on (i) the combined dataset without quality filtering and (ii) the
proposed DREAM-RFI dataset. DREAM-RFI consistently outperforms all architectures across all three DR
classification schemes (two-class, three-class, and five-class), proving the efficacy of the quality-filtered
merging procedure. The results indicate that DenseNet-121 consistently outperforms other architectures in
all tasks. DenseNet-121 gained the highest classification accuracy: 95.20% for two-class, 92.84% for three-
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class, and 85.12% for five-class classification. VGG-16 and MobileNet-V2 provided relatively low
accuracies. ResNet-50 and Inception-V3 performed moderately.

Technically, the improvement in accuracy is consistent rather than model-specific. There are gains of 3—-5%
in two-class classification, 4-7% in three-class classification, and 4-6% in five-class classification. This
shows that DREAM-RFI increases inter-class separability, especially in more difficult multi-class cases
where label noise and low-quality images regularly propagate errors into deeper network layers. The
merged dataset without quality filtering provides lower and more variable performance. This happens due
to irregular illumination, motion blur, occlusions, and device-specific abnormalities. These distortions
significantly reduce the performance in three-class and five-class settings. This impairs the ability to
differentiate between small lesions (microaneurysms, IRMA, and neovascularization). Severity-aware
thresholding and adaptable quality filtering of the DREAM-RFI reduce noise within classes. This helps
models to identify patterns that are diagnostically important.

Table 5. Comparison of baseline backbone models on the DREAM-RFI dataset and the merged dataset without
quality filtering.

Backbone Merged dataset without quality filtering DREAM-RFI Dataset

Two-class Three-class Five-class Two-class Three-class Five-class
VGG-16 85.24% 80.12% 72.30% 89.10% 84.32% 76.45%
ResNet-50 87.60% 82.40% 74.85% 91.05% 87.22% 79.20%
Inception-V3 89.45% 84.65% 76.95% 92.80% 89.35% 81.60%
MobileNet-V2 86.15% 81.05% 73.10% 90.20% 85.10% 77.80%
DenseNet-121 91.42% 86.56% 80.24% 95.20% 92.82% 85.12%

Additional assessments were conducted using precision, recall, F1-score, and AUC metrics. Table 6 details
the performance of DenseNet-121. Nearly complete discrimination was achieved in the two-class setting
by yielding an AUC of 0.9973. The three-class configuration achieved an AUC of 0.9947. DenseNet-121
achieved an AUC of 0.9409 in the challenging five-class scenarios. To ensure class balance and reliability
of the results, experiments were verified by using a number of data divisions through many training and
evaluation stages, ensuring class balance and reliability of the results. Figure 6 displays the confusion
matrix and ROC curves. This verification demonstrates the capabilities of DenseNet-121 and the DREAM-
RFI dataset at different classification levels. This can serve as a benchmark dataset for assessing DR
severity.

Table 6. Performance of DenseNet-121 for different classification settings on the DREAM-RFI dataset.

Classification Type Accuracy Precision Recall F1-score AUC
Two-class 95.20% 95.95% 94.53% 95.23% 0.9973
Three-class 92.82% 94.96% 91.61% 93.29% 0.9947
Five-class 85.12% 85.20% 85.12% 85.14% 0.9409

Table 7 provides a comparative review of the recent studies. This table shows the datasets, functions, and
different classification strategies that are adopted in the literature. The suggested DREAM-RFI dataset with
DenseNet-121 achieved competitive performance. It recivied 95.20%, 92.82%, and 85.12% accuracy in
two-class, three-class, and five-class settings, respectively. These findings confirm that the DREAM-RFI
data is a competitive multi-level DR classification benchmark. Find out also that simple architectures can
also perform reliably on this dataset. At this point, we are concerned with basic certification with CNN
backbones. In the future, it will be upgraded to incorporate more complex architectures. Special training
techniques will continue to facilitate performance improvements.
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Figure 6. Visual results of DenseNet-121 for five-class settings on the DREAM-RFI dataset. (a) Confusion matrix.

(b) ROC curves.

Table 7. A summary of recent studies on DR detection.

encoders

Study Dataset combinations | Methodology tCyl;l:mﬁcatlon Performance
Kotiyal and Pathak . Inception-V3, Xception, and ) Acc: Inception-V3 (95%), Xception
(2022) IDRID VGG-19 Two-class (92.50%), and VGG-19 (89.94%).
Hybrid GoogleNet + Two-class and Acc: Two-class (97.80%) and Three-

Butt et al. (2022) APTOS 2019 ResNet-18 with SVM Three-class class (89.29%).
Mutawa et al. EyePACS + APTOS Two-class . o
(2023) 2019 + ODIR DenseNet-121 8059663067 Acc: Two-class (98.97%).
Raghad and Hamad . . VGG-19, DenseNet-121, . Acc: VGG-19 (80%), DenseNet-121
(2024) IDRID + Messidor-2 |, § EfficientNet B6 Five-class (88%), and EfficientNet B6 (90%).
Saproo et al. (2024) DRD-EyePACS + VGG-19, ResNet-101, and Two-class Acc: VGG-19 (96.22%), ResNet-101

P ) IDRiD + APTOS 2019 | ShuffleNet (97.33%), and ShuffleNet (96.66%).
Shakibania et al. APTOS 2019 + IDRID &fﬁt‘?gﬂmdel Two-class and Ace: Two-class (98.50%) and Five-

. _ s - 0,
(2024) + Messidor-2 EfficientNetB0) Five-class class (89.60%).
- . 0,

Almas et al. (2025) EyePACS and Kaggle Enhanced Stacked auto Five-class Acc: EyePACS (88%) and Kaggle

(79.50%).

class

APTOS 2019 + DDR lightweight 37-layer CNN Two-class and Acc: Two-class (99.06%) and Four-
Zafar etal. (2025) + FairVision model Four-class class (90.75%).
APTOS 2019 + DDR
. . VR-FuseNet (VGG19 + . Acc:91.82%, Prec: 92.61%, Recall:
Refat et al. (2025) : %%?\16 Messidor-2 ResNet50 fusion) Five-class 92.23%. F1: 92.39%.
Zhang etal. 2025) | 2Y¢7 ACS+APTOS | NN, VAT, Hybrid Models | Five-class Acc:72.93%, AUC: 0.93.
Acc: Two-class (95.20%), Three-
Two-class. Three- class (92.82%), and Five-class
. DREAM-RFI i (85.12%).
This Study (Proposed) DenseNet-121 class, and Five- AUC: Two-class (0.9973), Three-

class (0.9947), and Five-class
(0.9409).

3.4 Discussion

The Dream-RFI dataset improves the applicability of deep learning models. It does this by unifying
heterogeneous sources into a standardized format with quality control. Such a combination can be used to
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neutralize biases in datasets. It also enables the trained models to be more transferable to unknown clinical
settings so that they can be substantially used in real DR screening as well. This baseline evaluation provides
the necessary standard for future research by using different backbone architectures. These standards
validate the DREAM-RFI dataset as an appropriate testing platform. It also has performance benchmarks
for comparison with advanced models.

Research experiments on the DREAM-RFI dataset were performed in three classification systems: (i) two-
class scheme, (ii) three-class scheme, and (iii) Five-Class scheme. In this method, the model was tested
based on the levels of different clinical complications, and it showed the adaptability of the backbone. The
best performance was recorded with a two-class scheme based on the highest accuracy of 95.20% and AUC
of 0.9973. This makes it effective in the first screening tasks. The three-class system had good results with
an accuracy of 92.82% and an AUC of 0.9947. This shows that this data can be used to do intermediate
grading. It effectively indicates the worsening of the sickness. The five-class classification is more difficult
and useful clinically because it gives 85.12% accuracy and 0.9409 AUC. The findings indicate that
DenseNet-121 is effective in all levels of classification. It can be utilized as a benchmark for the DREAM-
RFI multi-level DR classification workload.

This paper demonstrates that the use of quality-filtered merging of datasets improves the accuracy of model
generalization by 3-7% over the standard merging of datasets. This is empirical evidence that the systematic
quality evaluation of the data set is the key to improving the clinical utility of automated systems of DR
screening. Extensions to the future will be based on a hierarchical three-step classification framework,
which is sequential in nature. Such a hierarchical approach is likely to enhance interpretability. It would be
more compatible with clinical decision-making procedures. This also offers an in-depth understanding of
the reinforcement of the DREAM-RFI data in clinical environments with stages of clinical challenges. Also,
the installation of fractional activation beans in lightweight models will enable the preservation of
comparative efficiency due to enhanced performance. The use of other public datasets to expand the
DREAM-RFI dataset will add more diversity as well as capacity to the dataset and increase its clinical
relevance.

4. Conclusion

This paper has presented a DREAM-RFI dataset and gives a full pipeline for constructing, assessing, and
benchmarking this dataset. The proposed pipeline was created due to a deep examination where both
technical and medically applicable indicators were taken into consideration. The DREAM-RFI data set
solves an issue of low-quality images, which interferes with the proper identification and staging of DRS.
It was found that the simple evaluation of the three-class and five-class configurations based on two-class
and DenseNet-121 demonstrated that they reached competitive accuracies of 95.20%, 92.82%, and 85.12%,
respectively. The findings can offer a strong background to the usefulness of the DREAM-RFI dataset. To
provide a better structure of improvement in the explanation and better coordination with clinical decision-
making, the three-step hierarchical classification structure will be used in the future. Besides, the light
models will be aimed at incorporating the functions of fractional activation and extension of DREAM-RFI
to other open datasets in such a way that their variety, growth, and clinical applicability can be further
reinforced.
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Appendix: Metrics for evaluating dataset balance
Medical diagnosis require a balanced dataset, as misclassifying rare illnesses can lead to delayed therapy.
An imbalanced dataset may cause models to favor the majority class, resulting in a missing diagnosis for
rare but clinically relevant illnesses. Balance enables the model to learn from all classes equally, enhancing
its sensitivity and accuracy for reliable and prompt medical decision-making. We have utilized Normalized
Shannon Entropy and Variance of Proportions to evaluate the class balance of datasets. These measures are
detailed in Table 8.

Table 8. Metrics for evaluating dataset balance in an n-class dataset. Here p; is the proportion of samples in the i*"
class and p is the mean class proportion.

Metrics Formula Best value
Normalized Shannon Entropy (NSE) NSE= — % 1
vA
n
1
Variance of Proportions (VP) VP = - Z (p; —D)? 0
=1
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