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Abstract 

Accurate automated grading of diabetic retinopathy (DR) significantly depends on the quality of retinal fundus images. Inferior-

quality pictures, resulting from inadequate lighting, motion blur, distortions, or incomplete retinal coverage, may obscure minor 

lesions and diminish the accuracy of model predictions. This study constructs a harmonized multi-source dataset using a multi-

dimensional image quality assessment framework for multi-class DR staging. Retinal images are collected from IDRiD, Messidor-

2, SUSTech-SYSU, APTOS 2019, DeepDRiD-v1.1, and Zenodo DR V03 datasets. The proposed pipeline includes preprocessing, 

image quality assessment using technical quality and medical relevance indicators, dataset-specific statistics, and adaptively 

thresholded using DR severity-aware percentiles derived from stratified samples with weighting to match diagnostic needs. 

Baseline deep learning models were trained for three hierarchical DR classification schemes to validate the dataset. Experimental 

results show that the quality-filtered merging of datasets improves model generalization accuracy by 3-7% compared to the normal 

merging of datasets. This work provides a benchmark dataset and baseline performance results to facilitate future research in DR 

staging and medical image classification. 

 

Keywords- Diabetic retinopathy, Label harmonization, Image quality assessment, Retinal fundus images, Deep learning, Baseline 

validation, Hierarchical classification. 

 

 

 

1. Introduction 

Diabetes mellitus (DM) is a global public health crisis, affecting about 536.6 million people in the year 

2021, and estimated that the number will increase to 783.2 million by 2045 (Sun et al., 2022). DR is a 

serious microvascular complication of DM. It causes vitreous hemorrhage, diabetic macular edema (DME), 
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and vision impairment. DR arises due to cytokine-mediated damage to capillaries. It leads to increased 

vascular permeability, ischemia, and irreversible vision loss (Zhang et al., 2024). It has a global prevalence 

of 34.6%. This includes proliferative DR (PDR) (6.96%), DME (6.81%), and vision-threatening 

complications (10.2%) (Yau et al., 2012). 

 

 
 

Figure 1. The International Clinical Diabetic Retinopathy (ICDR) severity scale and corresponding features. 

(Wilkinson et al., 2003). 

 

 

As shown in Figure 1, DR begins with mild non-proliferative DR (NPDR). The mild NPDR is characterized 

by the presence of microaneurysms. It then progresses to moderate and severe NPDR. This progression is 

indicated by an increase in microaneurysms, intraretinal hemorrhages, hard exudates, and retinal venous 

irregularities. Finally, it tends to PDR. PDR is characterized by neovascularization. PDR can result in visual 

impairment (Rajesh et al., 2023). In the early stages of DR, vascular permeability may go up. Damage to 

the blood vessels in the retina can cause macular edema, or thickening of the retina. This can occur at any 

stage of the disease's progression. 

 

Timely identification and diagnosis of DR can be helpful to prevent vision loss. Research by the National 

Eye Institute (2019) tells that timely intervention for DR decreases the possibility of blindness by 95%. The 

challenge lies in the fact that DR might be asymptomatic during its initial phases and can complicate 

diagnosis.  Blurred vision and floaters indicate that the disease has progressed to an advanced stage. This 

significantly reduces the effectiveness of treatment. Current diagnosis methods can identify advanced DR 

based on clearly defined symptoms. Early-stage DR features are usually overlooked due to their small size 

and difficulty in separating them from normal variations (Abushawish et al., 2024; Almas et al., 2025). 

 

People with diabetes should get an exam once a year so that they can get a correct diagnosis and find out 

their status quickly, which will help avoid problems linked to DR (Kim et al., 2025). Traditional methods 

of diagnosis of DR depend on the manual detection of indicators related to DR by trained ophthalmologists 

in retinal fundus images. This process takes significant time and work. Also, highly trained 

ophthalmologists are needed, which isn't always easy to find in developing countries (Taha et al., 2024). 

Treatment of DR and DME, such as vitrectomy, laser treatment, and intravitreal anti-VEGF injections, is 

continuously in demand and is highly expensive (Mansour et al., 2020). DR management is not easy to do 

effectively due to high tool costs, income disparities, and the need for close monitoring. Delays in diagnosis 

and treatment can also be caused by social, environmental, nutritional, and health issues (Hill-Briggs et al., 
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2020). Medical image analysis through AI has become a powerful tool to solve these issues. AI enables the 

automated extraction of features. It also enhanced the accuracy of diagnosis across various clinical imaging 

modalities (Gulati et al., 2023, 2024, 2025). 

 
Table 1. Detailed distribution of multistage DR datasets. Normalized Shannon Entropy (NSE) and Variance of 

Proportions (VP) are also included to check the dataset class balance. 
 

Dataset name 
No 

DR 
Mild 

NPDR 
Moderate 

NPDR 
Severe 

NPDR 
PDR Total (NSE, VP) Camera Location 

IDRiD 168 25 168 93 62 516 (0.90, 0.012) Kowa VX-10 Alpha India 

Messidor-2 1017 270 347 75 53 1744 (0.72, 0.40) Topcon TRC NW6 + 3CCD France 

Zenodo DR V03 711 6 110 349 261 1437 (0.76, 0.029) Zeiss Visucam 500 Paraguay 

SUSTech-SYSU 631 24 401 87 76 1219 (0.71, 0.037) Topcon TRC-50DX China 

APTOS 2019 1805 370 999 193 295 3662 (0.80, 0.027) Standard fundus cameras India 

DeepDRiD-v1.1 914 222 398 354 112 2000 (0.86, 0.019) Non-mydriatic fundus cameras China 

 

 

Deep learning-based methods have shown strong potential for automated DR detection and staging, which 

reduces dependence on manual screening and subjective clinical evaluation (Butt et al., 2022; Kotiyal and 

Pathak, 2022; Mutawa et al., 2023; Raghad and Hamad, 2024; Saproo et al., 2024; Shakibania et al., 2024; 

Almas et al., 2025; Refat et al., 2025; Zafar et al., 2025; Zhang et al., 2025). However, their clinical 

performance depends a lot on the quality, diversity, and balance of the dataset (Rajesh et al., 2023; 

Abushawish et al., 2024; Taha et al., 2024). As shown in Table 1, publicly available dataset classes vary in 

distribution, geographical origin, and imaging devices, causing domain shift and acquisition bias that affect 

generalization in different population groups and clinical conditions (Men et al., 2025). Serious class 

imbalance, especially in advanced stages such as insufficient representation of PDR, deforms the adaptation 

of the model and limits sensitivity to visually impaired cases (Rajesh et al., 2023; Abushawish et al., 2024). 

 

The use of different grading systems, inconsistencies in annotations, and inter-observer variability in the 

dataset decrease the reliability of the model (Riotto et al., 2025). The variety in ages, races, and 

comorbidities makes it harder for models to be valid on the external dataset. Changes in resolution, lighting, 

and field of view of the image can also affect model performance. When models use a single source of data, 

they are more likely to overfit (Kim et al., 2025; Refat et al., 2025). These issues suggest the urgent need 

for standardized, big, multi-center, and well-annotated datasets (Taha et al., 2024). This type of data enables 

the development of clinically robust and generalizable DR classification systems. If the challenges 

mentioned in Figure 2 are not resolved, the deep learning framework will prove weak when transferred 

from research settings to real-world applications. 

 

To resolve these challenges, this study presents a multi-dimensional image quality assessment framework, 

which integrates basic, technical, and medical relevance quality indicators of image through a three-

component scoring structure. Each metric is normalized using dataset-specific statistics and adaptively 

thresholded using DR severity-specific percentiles derived from stratified samples, with severity-specific 

weighting to match diagnostic needs. Strict thresholds for early DR detection and more relaxed criteria for 

advanced stages. For detecting and staging DR, retinal images must be technically, clinically, and 

anatomically easy to understand. The proposed quality filtering pipeline examines retinal images from 

multiple directions. This approach differs from conventional techniques that consider basic quality 

parameters. It shows that medically relevant quality metrics are essential for optimal dataset curation. 

Enhanced imaging is necessary for the identification of early-stage conditions (microaneurysms and minor 

vascular abnormalities). 

 



Delu et al.: A Harmonized Multi-Source Dataset with Baseline Deep Learning Validation … 
 

133 | Vol. 11, No. 1, 2026 

 
 

Figure 2. Overview of key challenges, research gaps, and potential solutions in DR fundus image datasets (Butt et 

al., 2022; Kotiyal and Pathak, 2022; Mutawa et al., 2023; Rajesh et al., 2023; Abushawish et al., 2024; Raghad and 

Hamad, 2024; Saproo et al., 2024; Shakibania et al., 2024; Taha et al., 2024; Almas et al., 2025; Kim et al., 2025; 

Refat et al., 2025; Riotto et al., 2025; Zafar et al., 2025; Zhang et al., 2025). 

 

 

The framework is deployed in constructing the Diabetic Retinopathy Enhanced, Adapted, and Merged 

Retinal Fundus Image (DREAM-RFI) Dataset. This is a harmonized and curated fundus image dataset for 

DR staging. It has low bias and balanced representation of all classes. The DREAM-RFI merges images 

from IDRiD (Porwal et al., 2018), Messidor-2 (Decencière et al., 2014), SUSTech-SYSU (Lin et al., 2020), 

APTOS 2019 (Karthik et al., 2019), DeepDRiD-v1.1 (Liu et al., 2022), and Zenodo DR V03 (Benítez et al., 

2021) datasets. The DREAM-RFI assigns DR grades according to the ICDR severity scale. The DREAM-

RFI dataset immediately solves the fundamental problems of the existing DR dataset. It does this by 

providing high-quality, equally distributed, and diverse data. This dataset can improve the accuracy of deep 

learning models and be useful in more situations. 

 

The key contributions of this study are outlined as follows: 

i. Proposed a multi-dimensional image quality assessment methodology that includes basic, technical, 

and medical relevance indicators to identify low-quality samples and enhance dataset reliability.  

ii. Executed integration of DR datasets based on image quality from several imaging devices and 

populations to augment dataset diversity and cross-population generalizability. Also, the robustness 

was maintained by removing low-quality images and minimizing excessive overfitting on the same 

source dataset. 

iii. Developed and openly released a complete dataset creation pipeline via GitHub, assuring the 

reproducibility, transparency, and accessibility of the DREAM-RFI dataset for future research. 

iv. Established baseline performance benchmarks to allow comparison studies and direct future model 

development by training and evaluating a number of deep learning models on DREAM-RFI.  
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The remaining structure of this article is as follows: Section 2 presents the functioning of the multi-

dimensional image quality assessment framework. Section 3 describes the experimental setup and 

validation results. Finally, in Section 4, the summary of our findings and possible directions for future 

functions are given.  

 

2. Methodology 

This study presents a multi-dimensional framework for assessing image quality in retinal fundus images 

that considers technical excellence and medical significance, as seen in Figure 3. The framework is 

intended to identify and systematically eliminate low-quality retinal pictures that may have a negative 

impact on model training while maintaining clinical diversity for effective DR staging. Each fundus image 

is represented by a set of 10 scalar quality metrics:  

 

 
 

Figure 3. Detailed pipeline for retinal image quality assessment and dataset preparation. 

 

 

Table 2. Components of the retinal image quality assessment vector 𝑄. 
 

Category Metrics Interpretation 

Basic quality metrics 

Brightness (B) Measures overall illumination uniformity across the retinal field. 

Contrast (C) Captures intensity spread and distinguishes vessel vs. background regions. 

Sharpness (S) Reflects clarity of structural boundaries, such as vessels and lesions. 

Entropy (H) Quantifies the richness of visual information and textural variability. 

Medical quality metrics 

Illumination Uniformity (U) Assesses smoothness and absence of artifacts in the fundus background. 

Vessel Visibility (V) Reflects clarity and delineation of vascular structures critical for diagnosis. 

Optic Disc Visibility (OD) Ensures optic disc is well-defined for reliable anatomical localization. 

Technical quality metrics 

Extreme Pixel Detection (EP) Validates proper exposure of retinal image without under/over saturation. 

 Motion Blur Assessment (MB) Indicates presence of motion-related degradation. 

Color Balance (CB) Ensures natural color tone necessary for clinical interpretation. 
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𝑸 = [𝐵, 𝐶, 𝑆, 𝐻⏟      
Basic

, 𝑈, 𝑉, 𝑂𝐷⏟    
Medical

, 𝐸𝑃,𝑀𝐵, 𝐶𝐵⏟      
Technical

]                                                                                                     (1) 

 

where, each component corresponds to a scalar quality metric described in Table 2.  

 

2.1. Data Preparation 
Retinal fundus images were gathered from six public DR datasets (IDRiD (Porwal et al., 2018), Messidor-

2 (Decencière et al., 2014), SUSTech-SYSU (Lin et al., 2020), APTOS 2019 (Karthik et al., 2019), 

DeepDRiD-v1.1 (Liu et al., 2022), and Zenodo DR V03 (Benítez et al., 2021)) and mapped to the standard 

ICDR scale (0 - 4). Non-standard labels were converted accordingly. All images were uniformly resized 

and center‑cropped to 1024 × 1024 × 3 as seen in Figure 4. Image cropping is the initial preprocessing 

step to eliminate the irrelevant background surrounding the fundus images, which typically includes a large 

black border. This black area does not give any clinical information and can make learning algorithms work 

worse. Therefore, only the region containing the eye is preserved using a bounding-box-based cropping 

method, followed by resizing the result to a standard resolution. 

 

 
 

Figure 4. Visual results for data preparation step: (a - e) original images and (f - j) center-cropped and resized 

versions. 

 

Each image is first converted to grayscale, followed by applying a low threshold of 10 to separate the dark 

background from the eye region, as seen in Equation (2).  

𝑇(𝑖, 𝑗) = {
2, if 𝐼(𝑖, 𝑗) > 10
0, otherwise

                                                                                                                       (2) 

 

where, 𝐼(𝑖, 𝑗) is the grayscale intensity at pixel (𝑖, 𝑗), and 𝑇(𝑖, 𝑗) is the binarized image. This transformation 

shows the eye as a white region on a dark background. The binary mask is used to identify related regions, 

and the largest contour is assumed to include the eye. To calculate the area (𝐴) of each contour, use the 

shoelace formula:  

𝐴 =
1

2
∑𝑛−1𝑙=0 (𝑖𝑙  𝑗𝑙+1 − 𝑖𝑙+1 𝑗𝑙), 𝑤ℎ𝑒𝑟𝑒 (𝑖𝑛 , 𝑗𝑛) = (𝑖0, 𝑗0)                                                                       (3) 
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Once the largest contour is identified, a bounding box is drawn around it, which returns the bounding box 

coordinates (𝑖, 𝑗) and dimensions (𝑤, ℎ).  𝑖 goes from top to bottom and 𝑗 goes from left to right:  

(𝑖, 𝑗, 𝑤, ℎ) = (row, column,width, height)                                                                                                (4) 

 

By getting rid of the black background, this method successfully separates the Region of Interest in the 

retinal image. This method gets the input ready for jobs like quality filtering and diagnosis. 

 

2.2 Image Quality Indicators 
The quality of the retinal image plays a crucial role in accurate DR diagnosis. This section describes the 

image quality parameters used.  

 

2.2.1 Basic Quality Indicators 
This study used four basic quality parameters that have a direct effect on how easy it is to read an image: 

 

i.  Brightness checks for images that are too or too little exposed by looking at their global exposure 

(Gonzalez and Woods, 2018). It gives a global intensity indicator to define the visual differences seen 

in fundus pictures. Brightness imbalance can conceal small DR lesions by either washing them out or 

hiding them in the background. It is defined by 

𝐵 =
1

1024×1024
∑1024𝑖=1 ∑1024𝑗=1 𝐼(𝑖, 𝑗)                                                                                                              (5) 

 

ii.  Contrast locates local variations in image intensity. It is not based on edge gradients, which are not 

stable in low-light or noisy areas. A high value of contrast indicates better separation of retinal 

structures (Gonzalez and Woods, 2018). It is determined as the standard deviation of pixel intensities:  

𝐶 = √
1

1024×1024
∑1024𝑖=1 ∑1024𝑗=1 (𝐼(𝑖, 𝑗) − 𝐵)2                                                                                             (6) 

 

iii.  Sharpness is used in measuring the structural clarity of vessels and micro-lesions. This is a good 

measure to maintain fine vascular boundaries (Gonzalez and Woods, 2018). The Laplacian operator is 

equal to: 

𝐿(𝑖, 𝑗) = ∇2𝐼(𝑖, 𝑗) =
𝜕2𝐼

𝜕𝑥2
+
𝜕2𝐼

𝜕𝑦2
                                                                                                                    (7) 

 

The sharpness is estimated by:  

𝑆 =
1

1024×1024
∑1024𝑖=1 ∑1024𝑗=1 (𝐿(𝑖, 𝑗) − 𝐿)

2
                                                                                                 (8) 

 

where, 𝐿 denotes the mean value of 𝐿(𝑖, 𝑗) across the entire image. Sharper images result from higher 𝑆 

values. Blurrier images result from lower 𝑆 values. Sharpness is crucial in fundus image quality filtering, 

as blurry pictures might mask small vascular structures and minor DR lesions, which can lead to 

misdiagnosis. 

 

iv.  Shannon Entropy is a quantification of visual information in the image. It reflects textural and 

structural complexity essential for DR stage differentiation. It is defined by 

𝐻 = −∑255𝑞=0 𝑝𝑞log2𝑝𝑞                                                                                                                                (9) 

 

where, 𝑝𝑞 denotes the normalized histogram probability of the intensity level 𝑞. Lower value of 𝐻 reduces 

intensity variation (Gonzalez and Woods, 2018) and causes DR signs (microaneurysms and fine vascular 
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changes) to remain hidden. 

 

2.2.2 Medical Relevance Indicators 
Three medical relevance indicators essential in the diagnosis of DR have been included in this work: 

i.  Illumination Uniformity measures the uniformity of the lighting throughout the image (Gonzalez and 

Woods, 2018). The image is divided into a 3 × 3 grid of 9 regions {𝑅𝑚}𝑚=1
9 .  The mean brightness in 

each region is: 

𝐵𝑚 =
1

|𝑅𝑚|
∑(𝑖,𝑗)∈𝑅𝑚 𝐼(𝑖, 𝑗)                                                                                                                        (10) 

 

where, |𝑅𝑚| is the number of pixels in 𝑅𝑚. Illumination uniformity is then defined as 

𝑈 = 1 −
𝜎(𝐵1,…,𝐵9)

𝐵
                                                                                                                                      (11) 

 

where, 𝜎(. ) the standard deviation and 𝐵 the mean of 𝐵1, 𝐵2, … , and 𝐵9. A higher value of 𝑈 indicates 

evenly distributed illumination. A lower value of 𝑈 shows uneven illumination, which can hide DR signs 

or create false pathological patterns. 

 

ii.  Vessel Visibility quantifies how clearly blood vessels appear in the retinal image. The green channel 

𝐼green is enhanced using multi-directional filters (𝐾ℎ, 𝐾𝑣, 𝐾𝑑1, 𝐾𝑑2) to capture horizontal, vertical, and 

diagonal vessel structures (Gonzalez and Woods, 2018): 

𝑉𝑆(𝑖, 𝑗) = max
𝑘∈{ℎ,𝑣,𝑑1,𝑑2}

filter2D(𝐼green, 𝐾𝑘)                                                                                               (12) 

 

The vessel visibility score is defined by: 

𝑉 =
#{𝑉(𝑖,𝑗)>𝑃95(𝑉𝑆)}

1024×1024
                                                                                                                                   (13) 

 

where, # denotes the number of pixels satisfying the condition. 𝑃95(𝑉𝑆) is the 95th percentile of 𝑉𝑆. A 

high value of 𝑉 means that the vessel is easier to see. A low value of 𝑉 value indicates poor picture quality. 

Images that aren't clear can hide vessel narrowing, tortuosity, and new blood vessel growth. 

 

iii.  Optic Disc Detectability evaluates the visibility of the optic disc, typically the brightest region in a 

retinal image. It is defined as the fraction of pixels with intensity above the 95th percentile: 

𝑂𝐷 =
#{𝐼(𝑖,𝑗)>𝑃95(𝐼)}

1024×1024
                                                                                                                                   (14) 

 

A high value of 𝑂𝐷 shows a clearly visible optic disc. A low value of 𝑂𝐷 gives a poor image quality, which 

hinders the distinction between normal bright regions and exudates. 

 

2.2.3 Technical Quality Indicators 
In this study, three technical quality parameters that determine the clarity of the retinal image are assessed: 

 

i.  Extreme Pixel Detection is used to determine the percentage of very dark (𝐼(𝑖, 𝑗) < 10) or very bright 

(𝐼(𝑖, 𝑗) > 245) pixels, which can reflect improper exposure (Gonzalez and Woods, 2018): 

𝐸𝑃 =
#{𝐼(𝑖,𝑗)<10}+#{𝐼(𝑖,𝑗)>245}

1024×1024
                                                                                                                    (15) 

 

A large 𝐸𝑃 value means that brightness has high variations. These variations can hide small retinal lesions. 

They may also produce false artifacts that may reduce the interpretation of an image. 
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ii.  Motion Blur Assessment uses the gradient magnitude to find image sharpness (Gonzalez and Woods, 

2018): 

𝑀𝐵 =
1

1024×1024
∑1024𝑖=1 ∑1024𝑗=1 √(

𝜕𝐼

𝜕𝑥
(𝑖, 𝑗))

2
+ (

𝜕𝐼

𝜕𝑦
(𝑖, 𝑗))

2
                                                                      (16) 

 

High values of  𝑀𝐵 will imply stronger edges and less motion blur. Low values of 𝑀𝐵 reflect blurring 

caused by eye movement or camera shake. Images with Low 𝑀𝐵 value may mask fine vascular structures 

and small lesions in DR. 

 

iii.  Color Balance helps in evaluating the continuity of color channels. It is defined by: 

𝐶𝐵 = 𝜎([𝑅mean, 𝐺mean, 𝐵mean])                                                                                                              (17) 

 

where, 𝑅mean, 𝐺mean, and 𝐵mean are the mean intensities of the red, green, and blue channels, respectively. 

A low 𝐶𝐵 shows balanced colors. A high 𝐶𝐵 is associated with color cast issues, such as overly reddish or 

bluish tones. These color issues may alter the severity of the lesions. 

 

2.3 Adaptive Thresholding Strategy  
Different imaging protocols, equipment, and demographics produce varying baseline quality characteristics. 

To avoid bias from uniform quality standards, the proposed method generates dataset-specific thresholds. 

A stratified sample of approximately 300 images proportionally sampled across available DR severity 

classes is analyzed to compute mean, standard deviation, and percentile distributions for each metric. These 

statistics define normalization constants and initial thresholds. Different DR severities require different 

quality standards for reliable diagnosis. The proposed adaptive approach uses a severity-specific percentile 

threshold obtained from dataset calibration, as shown in Table 3. This shows that clinical reality that high-

quality images are required to detect micro lesions in early DR stages, while in advanced stages, where 

major lesions are present, comparatively low technical quality is also acceptable. 

 
Table 3. Adaptive percentile thresholds for image quality across DR severity levels. 

 

DR severity Class label Percentile threshold 

No DR 0 15th percentile (strictest) 

Mild NPDR 1 12th percentile 

Moderate NPDR 2 10th percentile 

Severe NPDR 3 8th percentile 

PDR 4 5th percentile (most relaxed) 

 

 

 

2.4 Adaptive Threshold Customization 
This framework allows users to adapt the quality threshold according to their requirements. After the 

preliminary adaptive threshold assessment, this system prepares the flagging image sample and all quality 

metrics, so that users can review the filtering results and make the necessary amendments. This manual 

customization capacity allows researchers to adjust the individual metric threshold up or down, so that the 

characteristics and quality requirements of the dataset are consistent. Users can assess whether the 

thresholds automatically match their expectations and clinical requirements by looking at the flagged 

samples. The manual threshold section provides an interface that allows the threshold to be replaced for 

any of the ten quality metrics. Their impact on the removal image can be reviewed, and the norms can be 

sophisticated sequentially before creating the final quality-filtered dataset. This method keeps the structural 

rigor of a multidimensional evaluation framework while making it adaptable to different research needs. 
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2.5 Dataset-Adaptive Normalization and Composite Quality Scoring 
This system uses a two-tier normalization method to make sure that datasets with different imaging 

properties can be fairly compared. To account for differences in equipment and acquisition, basic quality 

metrics are normalized with a z-score: 

𝑄𝑘,𝑛𝑜𝑟𝑚 = max(0,min(1,
𝑧𝑠𝑐𝑜𝑟𝑒+3

6
))                                                                                                      (18) 

 

where, 𝑧𝑠𝑐𝑜𝑟𝑒 =
𝑄𝑘−𝜇𝑘

𝜎𝑘
, with 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviation for the metric 𝑘. This z-score 

transformation with clipping ensures that normalized values to [0,1] . It preserves relative quality 

differences within each dataset. 

 

Medical relevance indicators are normalized using direct scaling with validated bounds:  

𝑈𝑛𝑜𝑟𝑚 = max(0,min(1,𝑈))                                                                                                                     (19) 

𝑉𝑛𝑜𝑟𝑚 = max(0,min(1, 𝑉 × 100))                                                                                                           (20) 

𝑂𝐷𝑛𝑜𝑟𝑚 = max(0,min(1, 𝑂𝐷 × 50))                                                                                                      (21) 

 

Technical quality metrics are normalized considering their specific characteristics:  

𝐸𝑃𝑛𝑜𝑟𝑚 = max(0,min(1,1 − (𝐸𝑃 × 2)))                                                                                                 (22) 

𝑀𝐵𝑛𝑜𝑟𝑚 = max(0,min(1,𝑀𝐵/50))                                                                                                        (23) 

𝐶𝐵𝑛𝑜𝑟𝑚 = max(0,min(1,1 − (𝐶𝐵/50)))                                                                                                (24) 

 

A composite score integrates normalized quality metrics using a weighted combination of three quality 

components:  

𝐶𝑄 = 0.25 × BasicQuality + 0.55 ×MedicalQuality + 0.20 × TechnicalQuality                               (25) 

 

where:  

BasicQuality = mean([𝐵norm, 𝐶norm, 𝑆norm, 𝐻norm])                                                                             (26) 

MedicalQuality = mean([𝑈norm, 𝑉norm, 𝑂𝐷norm])                                                                                  (27) 

TechnicalQuality = mean([𝐸𝑃norm,𝑀𝐵norm, 𝐶𝐵norm])                                                                         (28) 

 

An image is accepted if its composite quality score exceeds the severity-specific threshold determined 

during dataset calibration. 

 

2.6 Quality Assessment Results 
For each dataset, about 300 stratified samples were looked at to find the normalization factors and percentile 

distributions that were unique to that dataset. There was an equal number of these samples in each of the 

DR classes. The computed percentile values for each DR stage were utilized to establish quality benchmarks. 

This ensured that adaptive filtering was applied appropriately to the unique characteristics of each dataset. 

To make the most use of the computer's resources, progress reports had to be generated every 500 

photographs, and trash had to be removed every 100 photos for large-scale processing.  

 

2.7 DREAM-RFI Dataset 
This process produces the DREAM-RFI dataset. It contains 3461 retinal images of five DR stages: No DR 

(1256 images), Mild NPDR (493 images), Moderate NPDR (779 images), Severe NPDR (396 images), and 
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PDR (537 images). The DREAM-RFI dataset provides a more balanced class distribution than other 

datasets mentioned in Table 1. It has a high normalized Shannon entropy (0.94) and a very low variance of 

proportions (0.008), indicating a well-distributed representation of all five DR severity levels. All these 

images were obtained from several public datasets and standardized through preprocessing, quality 

evaluation, and label harmonization. This ensures balanced class distribution and representation of various 

populations and reduces dataset bias. The DREAM-RFI dataset supports the image quality assessment, 

domain adaptation, explainable AI, and preprosecuting research. This pipeline allows reuse, expansion, and 

application in other medical imaging collections. This technique provides reproducibility of the dataset, 

transparency, and traceability. Any researcher having the required source material can recreate the 

DREAM-RFI dataset using the code available on https://doi.org/10.5281/zenodo.17587015. 

 
Table 4. Description of the Hierarchical classification schemes for DR staging used in this study. 

 

Type Description Clinical purpose Classes – image count 

Two-class scheme Offers a clinically relevant screening 
framework that enables rapid disease 

detection and is well-suited for large-

scale population screening. 

Screening: Identify the presence 
vs. absence of DR for diagnosis. 

i. No DR (0) – 1256 
DR (1 to 4) – 2205 

Three-class scheme Balance diagnostic precision with 

robustness; address the need to identify 

patients requiring closer follow-up or 
referral without overburdening healthcare 

resources; mitigate class imbalance. 

Referral Prioritization: Identify 

patients needing routine 

monitoring vs. urgent ophthalmic 
evaluation. 

i. No DR (0) – 1256 

ii.Early DR (1 and 2) – 1272 

Advanced DR (3 and 4) – 933 

Five-class scheme 

(ICDR Severity 
Scale) 

Follows the ICDR severity scale; 

provides detailed stratification of DR; 
captures disease progression; supports 

clinical decision-making, enables 

comparison with expert annotations; 

benchmark for advanced diagnostic 

models. 

Treatment Planning: Enables 

stage-wise assessment and 
comparison with expert 

diagnosis. 

i. No DR (0) – 1256 

ii.Mild NPDR (1) – 493 
iii. Moderate NPDR (2) – 779 

iv.Severe NPDR (3) – 396 

PDR (4) – 537 

 
 

3. Experimental Validation 

A comprehensive experimental research was conducted to create reliable baselines and validate the utility 

of the DREAM-RFI dataset.  

 

3.1 Classification Schemes 

As indicated in Table 4, three classification schemes were used for experimental verification and evaluation 

of the DREAM-RFI dataset. Multiple classification methods can serve unique and complementary functions 

in DR staging. The hierarchical structure of these schemes makes them adaptable to different clinical and 

technical settings, facilitating rapid automated screening and sophisticated decision support in specialized 

care.  

 

3.2 Experimental Setup 

Figure 5 illustrates the pipeline for the experimental authentication of the DREAM-RFI dataset. For the 

backbone model, VGG-16, ResNet-50, Inception-V3, DenseNet-121, and MobileNet-V2 were chosen for 

their strong representational capability and complementary architectural qualities to construct accurate 

benchmarks on the DREAM-RFI dataset. All models were trained under standardized conditions using the 

AdamW optimizer with an initial learning rate of 1 × 10−4, a batch size of 128, and 50 epochs with early 

stopping based on validation loss. Identical data partitioning criteria preserving a 70:10:20 train-validation-

test data split ratio were utilized for facilitating a fair comparison with prior DR classification 

methodologies. The fundus photos were resized to 384 × 384 × 3 pixels. To preserve anatomical validity 

of the augmented retinal image, medically relevant image augmentation techniques: rescaling, rotation of 

https://doi.org/10.5281/zenodo.17587015
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small angles (maximum ± 12), width and height shifts, slight zooms, brightness adjustment, and the green 

channel enhancement through the CLAHE were used. Horizontal flips were excluded as they generate 

anatomically impossible retinal orientation, which is not found in clinical behavior and can affect the 

capacity of the model’s generalization on real clinical data. All experiments were run on an NVIDIA 

GeForce RTX 3090 GPU using Keras with a TensorFlow backend. 

 

 
 

Figure 5. The pipeline for experimental validation of the DREAM-RFI dataset. 

 

Accuracy (acc), precision (prec), recall, F1-score (F1), and AUC were used to evaluate the DREAM-RFI 

dataset. The accuracy of the model reflects the proportion of correctly identified samples of the total 

samples, which indicates the effectiveness of the model. The precision measures the percentage of correct 

predictions in positive predictions and helps in reducing false positives. The recall evaluates the ability to 

identify the real positives of the model and aids in reducing false negatives. F1-score is the harmonic mean 

of precision and recall, and balances both standards and is useful for uneven data. Additionally, AUC 

assesses the discriminatory ability of the model on various classification thresholds, where high values 

reflect better performance. This method assesses the effect of each class and reduces bias towards large or 

small classes. This makes the model assessment of DR and grading more accurate. These criteria ensure 

intensive and rigorous evaluation of the effectiveness of the model in important applications such as DR 

diagnosis. 

 

3.3 Results 

Table 5 compares five widely used CNN backbones, including VGG-16, ResNet-50, Inception-V3, 

MobileNet-V2, and DenseNet-121, trained on (i) the combined dataset without quality filtering and (ii) the 

proposed DREAM-RFI dataset. DREAM-RFI consistently outperforms all architectures across all three DR 

classification schemes (two-class, three-class, and five-class), proving the efficacy of the quality-filtered 

merging procedure. The results indicate that DenseNet-121 consistently outperforms other architectures in 

all tasks. DenseNet-121 gained the highest classification accuracy: 95.20% for two-class, 92.84% for three-
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class, and 85.12% for five-class classification. VGG-16 and MobileNet-V2 provided relatively low 

accuracies. ResNet-50 and Inception-V3 performed moderately.  

 

Technically, the improvement in accuracy is consistent rather than model-specific. There are gains of 3–5% 

in two-class classification, 4–7% in three-class classification, and 4–6% in five-class classification. This 

shows that DREAM-RFI increases inter-class separability, especially in more difficult multi-class cases 

where label noise and low-quality images regularly propagate errors into deeper network layers. The 

merged dataset without quality filtering provides lower and more variable performance. This happens due 

to irregular illumination, motion blur, occlusions, and device-specific abnormalities. These distortions 

significantly reduce the performance in three-class and five-class settings. This impairs the ability to 

differentiate between small lesions (microaneurysms, IRMA, and neovascularization). Severity-aware 

thresholding and adaptable quality filtering of the DREAM-RFI reduce noise within classes. This helps 

models to identify patterns that are diagnostically important. 

 
Table 5. Comparison of baseline backbone models on the DREAM-RFI dataset and the merged dataset without 

quality filtering. 
 

Backbone 
Merged dataset without quality filtering DREAM-RFI Dataset 

Two-class Three-class Five-class Two-class Three-class Five-class 

VGG-16 85.24% 80.12% 72.30% 89.10% 84.32% 76.45% 

ResNet-50 87.60% 82.40% 74.85% 91.05% 87.22% 79.20% 

Inception-V3 89.45% 84.65% 76.95% 92.80% 89.35% 81.60% 

MobileNet-V2 86.15% 81.05% 73.10% 90.20% 85.10% 77.80% 

DenseNet-121 91.42% 86.56% 80.24% 95.20% 92.82% 85.12% 

 
 

Additional assessments were conducted using precision, recall, F1-score, and AUC metrics. Table 6  details 

the performance of DenseNet-121. Nearly complete discrimination was achieved in the two-class setting 

by yielding an AUC of 0.9973. The three-class configuration achieved an AUC of 0.9947. DenseNet-121 

achieved an AUC of 0.9409 in the challenging five-class scenarios. To ensure class balance and reliability 

of the results, experiments were verified by using a number of data divisions through many training and 

evaluation stages, ensuring class balance and reliability of the results. Figure 6 displays the confusion 

matrix and ROC curves. This verification demonstrates the capabilities of DenseNet-121 and the DREAM-

RFI dataset at different classification levels. This can serve as a benchmark dataset for assessing DR 

severity. 
 

Table 6. Performance of DenseNet-121 for different classification settings on the DREAM-RFI dataset. 
 

Classification Type Accuracy Precision Recall F1-score AUC 

Two-class 95.20% 95.95% 94.53% 95.23% 0.9973 

Three-class 92.82% 94.96% 91.61% 93.29% 0.9947 

Five-class 85.12% 85.20% 85.12% 85.14% 0.9409 

 

 

Table 7 provides a comparative review of the recent studies. This table shows the datasets, functions, and 

different classification strategies that are adopted in the literature. The suggested DREAM-RFI dataset with 

DenseNet-121 achieved competitive performance. It recivied 95.20%, 92.82%, and 85.12% accuracy in 

two-class, three-class, and five-class settings, respectively. These findings confirm that the DREAM-RFI 

data is a competitive multi-level DR classification benchmark. Find out also that simple architectures can 

also perform reliably on this dataset. At this point, we are concerned with basic certification with CNN 

backbones. In the future, it will be upgraded to incorporate more complex architectures. Special training 

techniques will continue to facilitate performance improvements. 
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Figure 6. Visual results of DenseNet-121 for five-class settings on the DREAM-RFI dataset. (a) Confusion matrix. 

(b) ROC curves. 

 

 

Table 7. A summary of recent studies on DR detection. 
 

Study Dataset combinations Methodology 
Classification 
type 

Performance 

Kotiyal and Pathak 

(2022) 
IDRiD 

Inception-V3, Xception, and 

VGG-19 
Two-class 

Acc: Inception-V3 (95%), Xception 

(92.50%), and VGG-19 (89.94%). 

Butt et al. (2022) APTOS 2019 
Hybrid GoogleNet + 

ResNet-18 with SVM 

Two-class and 

Three-class 

Acc: Two-class (97.80%) and Three-

class (89.29%). 

Mutawa et al. 

(2023) 

EyePACS + APTOS 

2019 + ODIR 
DenseNet-121 

Two-class 

8059663067 
Acc: Two-class (98.97%). 

Raghad and Hamad 

(2024) 
IDRiD + Messidor-2 

VGG-19, DenseNet-121, 

and EfficientNet B6 
Five-class 

Acc: VGG-19 (80%), DenseNet-121 

(88%), and EfficientNet B6 (90%). 

Saproo et al. (2024) 
DRD-EyePACS + 

IDRiD + APTOS 2019 

VGG-19, ResNet-101, and 

ShuffleNet 
Two-class 

Acc: VGG-19 (96.22%), ResNet-101 

(97.33%), and ShuffleNet (96.66%). 

Shakibania et al. 
(2024) 

APTOS 2019 + IDRiD 
+ Messidor-2 

Dual Branch Model 

(ResNet-50 + 

EfficientNetB0) 

Two-class and 
Five-class 

Acc: Two-class (98.50%) and Five-
class (89.60%). 

Almas et al. (2025) EyePACS and Kaggle 
Enhanced Stacked auto-
encoders 

Five-class 
Acc: EyePACS (88%) and Kaggle 
(79.50%). 

Zafar et al. (2025) 
APTOS 2019 + DDR 

+ FairVision 

lightweight 37-layer CNN 

model 

Two-class and 

Four-class 

Acc: Two-class (99.06%) and Four-

class (90.75%). 

Refat et al. (2025) 
APTOS 2019 + DDR 
+ IDRiD + Messidor-2 

+ RETINO 

VR-FuseNet (VGG19 + 

ResNet50 fusion) 
Five-class 

Acc:91.82%, Prec: 92.61%, Recall: 

92.23%, F1: 92.39%. 

Zhang et al. (2025) 
EyePACS + APTOS 
2019 

CNN, ViT, Hybrid Models Five-class Acc:72.93%, AUC: 0.93. 

This Study 
DREAM-RFI 
(Proposed) 

DenseNet-121 

Two-class, Three-

class, and Five-

class 

Acc: Two-class (95.20%), Three-

class (92.82%), and Five-class 

(85.12%). 
AUC: Two-class (0.9973), Three-

class (0.9947), and Five-class 

(0.9409). 

 

 

3.4 Discussion  
The Dream-RFI dataset improves the applicability of deep learning models. It does this by unifying 

heterogeneous sources into a standardized format with quality control. Such a combination can be used to 
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neutralize biases in datasets. It also enables the trained models to be more transferable to unknown clinical 

settings so that they can be substantially used in real DR screening as well. This baseline evaluation provides 

the necessary standard for future research by using different backbone architectures. These standards 

validate the DREAM-RFI dataset as an appropriate testing platform. It also has performance benchmarks 

for comparison with advanced models. 

 

Research experiments on the DREAM-RFI dataset were performed in three classification systems: (i) two-

class scheme, (ii) three-class scheme, and (iii) Five-Class scheme. In this method, the model was tested 

based on the levels of different clinical complications, and it showed the adaptability of the backbone. The 

best performance was recorded with a two-class scheme based on the highest accuracy of 95.20% and AUC 

of 0.9973. This makes it effective in the first screening tasks. The three-class system had good results with 

an accuracy of 92.82% and an AUC of 0.9947. This shows that this data can be used to do intermediate 

grading. It effectively indicates the worsening of the sickness. The five-class classification is more difficult 

and useful clinically because it gives 85.12% accuracy and 0.9409 AUC. The findings indicate that 

DenseNet-121 is effective in all levels of classification. It can be utilized as a benchmark for the DREAM-

RFI multi-level DR classification workload. 

 

This paper demonstrates that the use of quality-filtered merging of datasets improves the accuracy of model 

generalization by 3-7% over the standard merging of datasets. This is empirical evidence that the systematic 

quality evaluation of the data set is the key to improving the clinical utility of automated systems of DR 

screening. Extensions to the future will be based on a hierarchical three-step classification framework, 

which is sequential in nature. Such a hierarchical approach is likely to enhance interpretability. It would be 

more compatible with clinical decision-making procedures. This also offers an in-depth understanding of 

the reinforcement of the DREAM-RFI data in clinical environments with stages of clinical challenges. Also, 

the installation of fractional activation beans in lightweight models will enable the preservation of 

comparative efficiency due to enhanced performance. The use of other public datasets to expand the 

DREAM-RFI dataset will add more diversity as well as capacity to the dataset and increase its clinical 

relevance. 

 

4. Conclusion 
This paper has presented a DREAM-RFI dataset and gives a full pipeline for constructing, assessing, and 

benchmarking this dataset. The proposed pipeline was created due to a deep examination where both 

technical and medically applicable indicators were taken into consideration. The DREAM-RFI data set 

solves an issue of low-quality images, which interferes with the proper identification and staging of DRS. 

It was found that the simple evaluation of the three-class and five-class configurations based on two-class 

and DenseNet-121 demonstrated that they reached competitive accuracies of 95.20%, 92.82%, and 85.12%, 

respectively. The findings can offer a strong background to the usefulness of the DREAM-RFI dataset. To 

provide a better structure of improvement in the explanation and better coordination with clinical decision-

making, the three-step hierarchical classification structure will be used in the future. Besides, the light 

models will be aimed at incorporating the functions of fractional activation and extension of DREAM-RFI 

to other open datasets in such a way that their variety, growth, and clinical applicability can be further 

reinforced. 
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Appendix: Metrics for evaluating dataset balance 

Medical diagnosis require a balanced dataset, as misclassifying rare illnesses can lead to delayed therapy. 

An imbalanced dataset may cause models to favor the majority class, resulting in a missing diagnosis for 

rare but clinically relevant illnesses. Balance enables the model to learn from all classes equally, enhancing 

its sensitivity and accuracy for reliable and prompt medical decision-making. We have utilized Normalized 

Shannon Entropy and Variance of Proportions to evaluate the class balance of datasets. These measures are 

detailed in Table 8. 

 
Table 8. Metrics for evaluating dataset balance in an n-class dataset. Here  𝑝𝑖 is the proportion of samples in the 𝑖𝑡ℎ 

class and 𝑝 is the mean class proportion. 
 

Metrics Formula Best value 

Normalized Shannon Entropy (NSE) NSE= −
∑𝑛i=0𝑝𝑖log2(𝑝𝑖)

log2(𝑛)
 1 

Variance of Proportions (VP) VP =
1

𝑛
  ∑

𝑛

𝑖=1

(𝑝𝑖 − 𝑝)
2 0 
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