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Abstract 

Cloud services are growing in popularity and undergoing substantial change. To maximize performance, it is necessary to distribute 

the workload efficiently across multiple virtual machines (VMs). Therefore, a new cooperative LB method called Random Spatial 

Local Best Particle Swarm Optimization (RSLbestPSO) in cloud computing heterogeneous networks is developed to balance the 

workload on all VMs efficiently. Unlike traditional approaches, RSLbestPSO aims to increase performance by decreasing response 

time, finding the most efficient VMs, and improving the response time. The RSLbestPSO works by initializing the particles of 

which the fitness function will be computed, and the solution with the highest fitness is considered the best solution. The 

experiments showed that the proposed work effectively balanced the load on the VMs by finding the optimal solution, reducing the 

makespan time, and increasing the response time. The evaluated results show the effectiveness of the proposed RSLbestPSO. 

 

Keywords- Load balancing, Cloud, Heterogenous networks, Random spatial local best particle swarm optimization. 

 

 

 

1. Introduction 
In the cloud, heterogeneous networks exist in which multiple virtual machines (VMs) work in a distributed 

manner to handle the massive amount of tasks from all over the world. Clients request many tasks or 

services. The task of cloud computing is to process all the requests made by the client. The functions 

requested by the client will include managing the storage, deploying the web applications, and creating the 

servers (Rashid & Chaturvedi, 2019). These resources can be accessible to clients freely at any time. As 

billions of people are requesting something, providing these resources is a great challenge. During the 

allocation of tasks, sometimes more work is allocated to some VMs and less to others, which leads to over-

utilized and under-utilized VMs (Tripathy et al., 2023). This results in a decrease in response time, 

throughput time, and an increase in the average load. Therefore, efficient load balancing (LB) techniques 

are required for balancing the load. 

 

The distribution of work evenly on the VMs so that resources are provided efficiently is known as load 

balancing. Several state-of-the-art methods work on balancing the load, but the performance is inadequate. 

It leads to higher response time, higher latency, and higher throughput. To overcome these, efficient LB 

techniques are required for decreased response time and throughput. There are two types of LB techniques: 

static LB and dynamic LB. The basic algorithms like the first come, first served (FCFS) (Saeed et al., 2019), 

Round Robin (RR) (Prassanna & Venkataraman, 2019), and shortest job first (SJF) (Waheed et al., 2019) 

comes under the category of static LB. Dynamic LB has two types of algorithms: cooperative and non-

cooperative LB. Cooperative, from the name it is clear, that is cooperation from each in completing the 
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same task. All the processes work together to complete the same task. Non-cooperative on the other side, 

make their own decisions. They do not listen to others and complete their tasks alone (Houssein et al., 

2021). The metaheuristic algorithms like particle swarm optimization (PSO) (Ahuja et al., 2018), ant colony 

optimization (ACO) (Dam et al., 2014), simulated annealing (SA) (Mondal & Choudhury, 2015), genetic 

algorithms (GA) (Dasgupta et al., 2013), Hill climbing, local search (Zahid et al., 2019) and Tabu search 

(Téllez et al., 2018) and non-cooperative algorithms include the game theory techniques. The cloud 

computing load balancing work started in 1995 (Young, 1995), which was an excellent opportunity for 

researchers to work on it. In 2020, research was conducted by Mishra et al. (2020) to balance the load in 

cloud computing. The study was performed on the CloudSim simulator (Sundas & Panda, 2020). This study 

focuses on the work done by various researchers, which also helps identify future directions in the cloud 

network (Gamal et al., 2019). The limitations were also mentioned, which include the decreased response, 

turnaround, and latency. The problem of local optima was also discussed. To solve all these challenges, 

efficient load-balancing techniques are required to reduce the response time, throughput, and average load 

(Upadhyay et al., 2018). 

 

This research proposes a cooperative load-balancing algorithm called random spatial local best particle 

swarm optimization to efficiently balance the workload on the VMs. The task will be migrated from the 

under-utilized VMs or over-utilized VMs to balanced VMs. In the PSO, the particles get stuck in the local 

optima and fail to find the global solution. So, the main aim of the proposed research is to find the best 

global solution. The term cooperative means the cooperation between the particles to find the best solution. 

The particles cooperate during the velocity equation, where they share information. The experiment is 

performed in a CloudSim environment. The performance of the proposed work is evaluated using CPU 

utilization, memory utilization, makespan time, turn around time (TAT), response time (RT), and average 

load. The main aim of the proposed RLSbestPSO is to reduce the makespan time, TAT time, and RT while 

maintaining the workload on the VMs. The presented research plays a vital role as it improves the execution 

time, reduces resource utilization, and decreases the completion time of the tasks and execution costs. 

 

1.1 Contribution 
(a) A random spatial local best PSO (RSLbestPSO) has been developed to balance the workload on VMs 

efficiently.  

(b) The system's response time will be decreased by balancing the load on the VMs using the RSLbestPSO. 

(c) The performance of the proposed work is evaluated using various parameters, including makespan time, 

execution time, average TAT, average RT, and average load. 

 

1.2 Motivation 
In heterogeneous cloud networks, load balancing among the VMs is a tedious task as the traditional 

algorithms like PSO, Genetic Algorithms (GA), or Ant Colony Optimization (ACO) failed to explore all 

possible solutions, which leads to increased response time, makespan time, and imbalanced VMs. This 

motivates us to design an algorithm that finds solutions globally instead of sticking to local optima, 

decreasing response time, makespan time, and balancing virtual machines. 

 

The rest of the paper is structured as follows: The literature review is given in Section 2. Section 3 describes 

the proposed work. The experimental setup and results are shown in Section 4, and Section 5 outlines the 

conclusion and future work. 

 

2. Literature Review 
Multiple researchers have worked on cooperative LB techniques to balance workloads by scheduling the 

task to the optimal VM in cloud computing heterogeneous networks. A novel approach utilizing logarithm-
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based PSO(L-PSO) was proposed by Huang et al. (2020) to effectively distribute the workload across VMs 

in heterogeneous networks within cloud computing. The logarithmic reduction was used to perform LB 

operations. Some comparison techniques, such as Artificial Bee Colony (ABC), Gravitational Search 

Algorithm (GSA), and Dragonfly Algorithm (DA), were used. The result showed that L-PSO had effective 

performance, and it helped reduce the makespan time by 21.42 %,19.12%, and 15.14%, respectively, 

compared to the abovementioned technique. Jena et al. (2022) proposed a hybridized approach called 

QMPSO using the pioneering approach for the dynamic workload distribution across virtual machines in a 

cloud computing network by combining a modified MPSO learning algorithm. The aim of using 

Hybridization is to improve machine efficiency by distributing the workload evenly among VMs. When 

the comparative analysis was done, it was found that QMPSO algorithms perform better than its 

competitors. Babu & Philip (2016) presented an EBCS-LB algorithm to enhance the Bee colony algorithm 

for LB. 

 

The foraging behavior of honey bees is used to divide the workload among machines equally. An 

experimental result showed that EBCA-LB increases the quality of service (QoS) provided to customers. 

Inspired by the concept of honey bees, Babu & Krishna (2013) introduced an LB framework. The algorithm 

helped effectively manage the task priorities on VMs, aiming to reduce the queue waiting time. Kumar & 

Sharma (2020) introduced a dynamic LB algorithm (DLBA) to divide the workload on VMs in a cloud 

computing network. Two operations were performed: first, the load on each VM is checked, and then the 

task on overloaded VMs is moved to the next underloaded VM. The reduction in makespan time and 

improved resource utilization were seen, and DLBA did well. 

 

Pradhan & Bisoy (2022) additionally introduce an improved PSO technique to balance a cloud computing 

network's load (LBMPSO). For simulation, CloudSim was used, and the result showed that LBMPSO was 

better in reducing the makespan time. 

 

FL-GWO is a fuzzy logic method introduced by Xingjun et al. (2020) using a grey wolf optimizer (GWO) 

for LB in a cloud-based IoT environment. The experiment showed that FL-GWO performed way better 

than the existing state-of-the-art method. To balance the load on various VMs, Devaraj et al. (2020) 

introduced a hybrid of Firefly (FF) and an improved multi-objective PSO (IMPSO) algorithm called 

FFIMPSO. The authors used IMPSO to discover the enhanced response required to schedule the task on 

multiple VMs and the Firefly to compute the search space. The development was compared with individual 

FF, improved PSO(IPSO), and combined FF-IPSO. Among comparison with various algorithms like round 

robin (RR), shortest job first (SJF), first come, first served (FCFS), weighted RR (WRR), diffusive LB 

(DLB), and LB Bayes and clustering (LB-BC), it was observed that FFIMPSO did well among them and 

found more efficient in balancing the load on the VMs. 

 

A hybrid of lateral Wolf (LW) and PSO optimization for LB and shifting tasks from overloaded VMs to 

underloaded VMs was introduced by Malik & Suman (2022). It aimed to make the LW algorithm execute 

task scheduling simultaneously. The PSO has been used to achieve optimal solutions by leveraging LW, 

thereby identifying the most optimized virtual machines (VMs). Similarly, Simaiya et al. (2024) presented 

a hybrid framework combining Convolutional Neural Network (CNN) with Long Short-Term Memory 

(LSTM) to balance the workload on the VMs. PSO with GA was also used for training. The experiment 

that was conducted shows the effectiveness of the proposed work. Ajil & Kumar (2025) presented an 

improved deep belief network (IDBN) for predicting and balancing the workload on the VMs. First, the 

load was predicted, which was further passed to butterfly optimization, which reduce the response time, 

throughput, and makespan time efficiently. Table 1 shows the work done by various researchers on LB 

using cooperative LB. These algorithms are widely recognized for their robust exploitation capabilities; 
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once identified, they can efficiently and effectively converge toward a favorable solution. While dealing 

with high dimensional search space and problems related to task scheduling and LB, this algorithm can 

pose challenges because of numerous locally optimal solutions. An algorithm aims to search a broader 

range of the solution space effectively. A random spatial local best PSO (RSLbestPSO)is introduced to 

remove the local optima problem and to balance the load on VMs in heterogeneous cloud computing 

networks.  

 
Table 1. Related work on cooperative LB on VMs in cloud computing heterogeneous networks. 

 

Author [Reference] Algorithm Work done Limitations 

Huang et al. (2020) L-PSO A logarithm-decreasing strategy is proposed to 

find the optimal solution to assign tasks to 
heterogeneous VMs. 

The results achieved are not optimal. Hence, 

optimized algorithms are required to improve the 
performance. 

Jena et al. (2022) QMPSO QMPSO modifies the velocity of the MPSO by 

incorporating the best action derived from the 
enhanced Q-learning algorithm into the gbest 

and pbest. 

The proposed algorithms are static, which limits 

their performance. Hence, dynamic load 
balancing is required. 

Babu & Philip (2016) EBCA-LB The forging behavior of honey bees was used to 

distribute the workload of VMs in a cloud 
environment. 

The presented technique used a simple swarm 

algorithm. Hybridization with other algorithms 
comprising PSO and GA is required for 

enhanced performance. 

Babu & Krishna (2013) HBB-LB The highest waiting time is given priority, and 
the load is reduced from the overloaded VMs. 

QoS parameters were not considered while 
measuring the performance, a significant 

limitation of the presented work. 

Kumar & Sharma (2020) DLBA Task migration is done dynamically for LB on 

overloaded VMs. 

The task deadline was not considered while 

measuring the performance that needs to be done 
for better results. 

Pradhan & Bisoy (2022) LBMPSO PSO was improved to find the optimal VM for 

task allocation and reduce the workload. 

The performance achieved is not optimal. QoS 

parameters will be considered in the future. 

Xingjun et al. (2020) FL-GWO Balanced the workload on VMs by computing 
the distance; the least distance was selected. 

GWO suffers from the problem of local optima, 
which can be improved in future studies. 

Devaraj et al. (2020) FFIMPSO FF found search space, and IMPSO obtained 

the optimal solution. 

Data deduplication was not considered in the 

proposed work and needs to be done for better 
results. 

Malik & Suman (2022) LW-PSO LW calculated fitness, which was passed to 

PSO to find the optimal solution. 

The present study suffers from the local optima 

problem and cannot find the best solution. 

Simaiya et al. (2024) CNN-
LSTM with 

GA-PSO 

CNN+LSTM was used to compute the fitness, 
which was passed to GA-PSO for training. 

Security and privacy are yet to be addressed, and 
this is a significant concern that needs to be 

discussed in the future. 

Ajil & Kumar (2025) IDBN IDBN efficiently balances the workload, 
reducing the makespan, response, and 

throughput. 

Better prediction models can be used in the 
future to balance the workload. 

 

 

3. Proposed Work 
In this research, a Random Spatial Local Best PSO (RSLbestPSO) is proposed to discover the most 

optimized VMs and to balance the load on these VMs by migrating the task from an overloading VM to an 

under-loading VM. First, the task sequence is created based on user requests and passed to the VM manager. 

It is followed by making the VMs into heterogeneous networks, and the tasks are randomly assigned to 

active VMs. Afterward, RSLbestPSO is called, which updates the velocity and position to find the global 

optimum solution. Then, based on the optimal solution, optimal VMs are selected, and the tasks can be 

moved from the overloaded VMs to optimal VMs, thus maintaining the load balance on cloud computing 

networks. The optimized performance of the RSLbestPSO is computed using various parameters 

comprising makespan time, execution time, average TAT, average RT, average load, CPU utilization, and 

Memory Utilization. The complete working of RSLbestPSO is shown in Figure 1. 
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Figure 1. Workflow diagram explaining the working of proposed RSLbestPSO. 

 

 

3.1 Particle Swarm Optimization (PSO) 
PSO is a computational optimization method that draws inspiration from the collective behavior observed 

in bird flocking or fish schooling (Marini & Walczak, 2015). The algorithm in question employs a 

metaheuristic approach, operating on a population level, to address optimization problems. PSO involves 

utilizing a group of potential solutions, referred to as particles, that systematically navigate the search space 

to identify the most optimal solution through iterative processes. Every individual particle within the system 

is indicative of a prospective solution. Moving in a search space by modifying the position and responsible 

for its experience and those adjacent particles. Every particle in the swarm is represented by a point in the 

search space, which is also known as a vector of real number position. To update the velocity and positions 

if the particle PSO algorithm utilizes an iterative procedure and gradually moves toward an optimal 

solution. Using cognitive and social components, PSO effectively searches for the optimal solution by 

integrating exploration and exploitation strategies. PSO depends on the exchange of data between particles. 

At the same time, the swarm becomes confined to a local optimum. It may require help in effectively 

examining the different areas of the search space, and finding the better solution outside of the local optima 

may be hampered by the limited scope of this investigation (Dhillon et al., 2023). GA, ACO, and 

reinforcement learning can also be applied, but to find the best solution, several generations of crossovers 

and mutations are required in GA, which will lead to high computational complexity. There is also a 

problem of stagnation in the GA, which will lead to a loss of diversity in the candidate solutions. 

 

On the other hand, ACO is well suited for discrete search spaces like routing paths, and CPU utilization 

requires continuous values. Similarly, in reinforcement learning, several training slots are needed in which 

the agent has to interact with the environment to compute the reward, which takes a lot of time for execution. 

Therefore, to surpass the PSO, GA, and reinforcement learning limitation, a local best solution, a random 

spatial, is added to the current PSO described in the sections below. 
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3.2 Random Spatial Local Best PSO (RSLbestPSO) 
The improvement of PSO is RSLbestPSO. RSLbestPSO has improved the problem of PSO, which is the 

local optima. Due to local optima, the best solution is ignored as it gets stuck in the small space and thus 

ignores the benefits of the larger space. The complete mathematical model of the proposed algorithm is 

given as follows: 

 

Consider the set of tasks like Tk1, Tk2, …… Tkn, VMs like VM1, VM2….. VMn, and particles like P1, P2….. Pn. 

Each of the particle fitness functions is calculated. The objective is to minimize the makespan time. 

 

To enable a particle to explore the search space more comprehensively, we use the RSLbestPSO algorithm, 

which includes a random spatial element in the velocity update equation. Including random spatial elements 

helps increase exploration, allowing the particle to traverse random trajectories and potentially evade local 

optima. By adding a random element, the RSLbestPSO algorithm can explore unknown trajectories, helping 

a more extensive exploration and enhancing the chance of identifying the global optimum. Particles are 

used to exchange their information with their neighboring particle in the RSLbestPSO algorithm by 

considering the local best position. Particles can use the knowledge of their neighboring particle to 

exchange information about their best position in their local area, helping them make well-informed 

decisions regarding their movement. Sharing local information within a swarm helps spread valuable 

information, enabling particles to converge toward improved solutions collectively. The velocity in 

RSLbestPSO is given by Equation (1): 

𝑉𝑒𝑙𝑛𝑒𝑤 = 𝐼𝑤 ∗ 𝑉𝑒𝑙(𝑡) +  𝑐1 ∗ 𝑟1 ∗ (𝑃𝑒𝑟𝑏𝑒𝑠𝑡 − 𝑃(𝑡)) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑙𝑏𝑙𝑏𝑒𝑠𝑡 − 𝑃(𝑡)) +  𝑐3 ∗ 𝑟3 ∗ (𝑅 − 𝑃(𝑡))               (1) 

 

where, 𝑐3 ∗ 𝑟3 ∗ (𝑅 −  𝑃(𝑡)) denotes the random spatial component c3, the local best accelerator coefficient 

and r3 is the random number. The random position in the search space is denoted by R. The inclusion of a 

random spatial component introduces a random displacement vector to the particle's velocity, thereby 

promoting exploration by enabling particles to traverse arbitrary directions in each iteration. Similarly, 

using the velocity update Equation (1), the position of the particle is updated by the given Equation (2): 

𝑃𝑛𝑒𝑤 = 𝑃(𝑡) + 𝑉𝑒𝑙𝑛𝑒𝑤                                                                                                                                  (2) 

 

Harmonious equilibrium between exploration and exploitation is attained by promoting the RSLbestPSO 

algorithm, and it is done by utilizing both random spatial exploration and local best information. 

Exploration in a random spatial component in the algorithm is done by introducing randomness; it promotes 

the particle to find different regions of the search space. One more side of the local best component of the 

algorithm is it promotes exploitation by using the information obtained from neighboring particles to allow 

the exploitation of hopeful regions within the search space. Embrace an optimized approach in 

RSLbestPSO, which enables the algorithm to visit various areas of the search space effectively. 

 

We use this approach to enhance the algorithm's overall performance and help explore diverse areas while 

exploiting promising regions and reducing the risk of premature convergence to local optima. Algorithm 1 

and Figure 2 best describe the complete working of RSLbestPSO.We start the algorithm by initializing a 

particle population with randomly generated position and velocity. The current position and Glblbest do 

the assignment of the Perbest position of each particle by selecting the position with the highest fitness 

value from all the particles. The algorithm iteration loop continues until it reaches the termination condition, 

either reaching a predetermined maximum number of iterations or attaining a desired fitness level. Each 

particle is processed by the algorithm independently during each iteration. The objective function is being 

used to evaluate the current position of each particle's fitness. If the current position's fitness surpasses the 

particle's personal best fitness, the Perbest fitness and position are subsequently updated. If the present 

position's fitness exceeds the global best fitness, the Glblbest fitness and position are later revised. The 
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position and velocity of each particle are given by Equations (1) and (2), respectively. For each particle, a 

random subset of neighbors is chosen. To identify the optimal position, the comparative analysis involves 

calculating the fitness values of the current particle's personal best position and the positions of its 

neighboring particles. The Lbest position of the current particle is updated by incorporating the best position 

discovered in the preceding step. For the transition to the subsequent iteration, the iterator is increased by 

one. Once it meets the termination condition, the algorithm assigns the particle position with the highest 

fitness value (Glblbest) as the optimized solution. 

 

 
 

Figure 2. Flowchart of RSLbestPSO. 
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In the current study, the population size used is 100 particles with c1, c2, and c3 values of 10, 10, and 20, 

respectively. The parameters c1, c2, and c3 are selected with the random optimization. The random values 

have been chosen from the pool of the parameters, and performance is evaluated. The results showed that 

the specified value using random optimization performed best, reducing the makespan time of the VMs.  

 

The RSLbestPSO added a stochastic displacement factor in Equation (1), improving the particles' search 

capabilities in finding the solution. The displacement factor helps the particles go around in all the random 

directions, avoiding early convergence with the local optima problem. The normal PSO worked only on the 

personal best and global best problems. Thereby, particles get stuck in the local optima. This problem is 

removed by adding 𝑐3 ∗ 𝑟3 ∗ (𝑅 − 𝑃(𝑡)) to increase the exploration process. 

 
Algorithm 1: Pseudocode explaining the step-by-step working of RSLbestPSO 

Input: Particles (P), inertia weight (Iw), c1, c2, Personal Best (Perbest), Global Best (Glblbest), current fitness 

(cur_fitness), current position (cur_position), local best acceleration coefficient (c3), Local Best (Lbest) 

Output: Best optimized solution 

Begin:  

1. Initialize population  

2. Initialize the Perbest positions of particles with their current positions 

3. Initialize the Glblbest position and fitness 

4. Repeat until the termination condition is met: 

5. For each particle (Pi): 

6.    Compute the fitness of the current position 

7.    If (cur_fitness>Perbest_fitness): 

8.             Set Perbest_fitness = cur_fitness 

9.             Set Perbest_position = cur_position 

10.    If (cur_fitness>Glblbest_fitness) 

11.             Set Glblbest_fitness = cur_fitness 

12.             Set Glblbest_position = cur_position 

13.     Compute the new velocity of the particle with Equation (1) 

14.     Compute the new position of the particle with Equation (2) 

15.     For each particle (Pi): 

16.             Select a random subset of neighbors 

17.             Identify the best position among Perbest positions and its neighboring particle positions 

18.             Update the Lbest position by the best position found 

19. i=i+1 

20. Return the Gbest as the optimized solution 

End 

 

 

In the current research, the task sequence is first created and passed to the VM manager. The next step 

involves the creation of virtual machines. Once the machines are created, tasks are assigned to VMs 

randomly. Then, the check for overloaded VMs is done, which is then passed to the RSLbestPSO algorithm. 

The algorithm selects the most optimal VMs and assigns tasks based on the best global solution it found. 

Then, the loads on the VM are computed, and the VM with the fewest loads is selected. Assigning tasks 

from overloaded VMs to the least-loaded or under-loaded VMs balances the load. Finally, the optimized 

performance is computed using makespan time, execution time, average TAT, average RT, average load, 

CPU utilization, and memory utilization. 
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4. Experimental Setup and Results 
The minimum hardware requirement to perform the work is 8 GB of RAM and an i5 processor. In the 

current research, a population size of 100 is used. This value is selected because the more significant the 

search space is, the better the exploration is. When the search space is ample, diversity is improved, and the 

early convergence to the solutions is also prevented. The coefficients c1, and c2are 10 and 20 respectively. 

c1 and c2 are selected based on the literature. A higher value of c2 will lead to better results for the global 

best, which will help the swarms find solutions effectively. The software required is Netbeans and 

CloudSim, where Netbeans is used to implement the RSLbestPSO, and CloudSim-3.0.3 is used to create 

the virtual nodes and tasks. The datasets used for experimenting are synthetic and generated by the 

CloudSim tool. A comparison is also made with the works that performed experiments on the synthetic 

data.  

 

4.1 Implementation Details 
The experiment is performed in several ways, completing each possible outcome. In the first case, 

RSLbestPSO computes the makespan time for a network of six different types of VMs comprising VM5, 

VM6, VM7, VM8, VM9, and VM10, and other numbers of tasks comprising 100, 150, 200, 250, 300, and 

400 are allocated to each type of VM. Table 2 below provides information on the VM and task properties 

for the first case. 

 
Table 2. Different types of tasks and their sizes. 

 

Task/ VM Properties 

Task range 100-400 

Task size 30000-50000 

VM range 5-10 

Processing speed (MIPS) 100000 

Bandwidth 1000000 

Type of VMM XEN 

 

 

The second scenario computes the average TAT, average RT, and average load, and compares them with 

the existing work. In the last scenario, a different number of tasks, varying in size and comprising small, 

medium, large, and extra-large, are created for which CPU utilization and memory utilization are created. 

Table 3 below provides the total number of small, medium, large, and extra-large tasks. 

 
Table 3. Different types of tasks and their sizes. 

 

Task type Number of tasks Tasks size 

Small 100-200 30000-50000 

Medium 400-500 50000-70000 

Large 600-700 70000-100000 

Extra-large 800-100 100000-200000 

 

 

4.2 Results 
In the first scenario, different numbers of VMs are created, and different numbers of tasks are assigned to 

them, i.e., for 5 VMs, 6 VMs, 7 VMs, 8 VMs, 9 VMS, and 10 VMs, 100, 150, 200, 250, 300, and 400 tasks 

are allocated, respectively. RSLbestPSO calculates the makespan time for each set of VMs and tasks, 

observing a decrease in the makespan time as the number of VMs and tasks increases. The total makespan 

time for 100, 150, 200, 250, 400, and 400 tasks assigned to 5 VMs, 6 VMs, 7 VMs, 8 VMs, 9 VMS, and 10 

VMs is 189.16s, 143.1s, 111.42s, 87.53s, 83.38s, and 66.32s, respectively. Table 4 shows the makespan 

time results for different VMs and tasks. 
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Table 4. Makespan time for different no. of VMs and tasks. 
 

VMs Tasks Makespan time (s) 

5 100 161.65 

6 150 143.1 

7 200 111.42 

8 250 87.53 

9 300 83.38 

10 400 66.32 

 

 

RSLbestPSO has created various combinations, assigning each set of tasks to a different number of VMs 

and computing the corresponding makespan time. First, 100 tasks are assigned to 5, 6, 7, 8, 9, and 10 VMs, 

followed by 150, 200, 250, 300, and 400 tasks assigned to different VMs, and it has been found that as the 

VMs are increasing, the makespan time is decreasing. Table 5 below displays the computed makespan time 

results for each variation. The RSLbestPSO used a structured way to analyze all the combinations. First, 

100 tasks are assigned to various VMs, and makespan time is computed. This is followed by taking a 

different set of tasks on the same varying number of VMs. The makespan time decreases as the VMs 

increase, thus showing effective parallel processing and lower response time. The makespan time produced 

by QMPSO (Babu & Philip, 2016) is 43.85 ms on 10 VMs when 100 tasks have been given. Similarly, the 

makespan time of an LMBPSO (Pradhan & Bisoy, 2022) on 5VMs is 108ms. The proposed RSLbestPSO 

algorithm achieves a makespan of approximately 35.91 ms, demonstrating a noticeable enhancement in 

performance when compared to both QMPSO and LMBPSO. 

 
Table 5. Makespan time for different combinations of tasks and VMs. 

 

Tasks 5 VMs 6VMs 7 VMs 8 VMs 9 VMs 10 VMs 

100 161.65 137.98 87.36 64.5 55.78 35.91 

150 168.91 143.1 104.83 70.21 62.85 39.12 

200 175.7 152.21 111.42 81.66 69.02 45.88 

250 187.71 158.83 117.86 87.53 77.42 52.78 

300 199.74 165.88 125.28 94.28 83.38 58.21 

400 227.26 178.94 138.16 114.36 98.99 66.32 

 

 

 
 

  

(a) Different no. of tasks and VMs. (b) Different combinations of tasks and VMs. 
 

Figure 3. Makespan time plots computed by RSLbestPSO for different tasks and VMs. 

 

 

Additionally, displays the scatter plot, which illustrates the variations in Makespan time. The decreasing 

trend in the different numbers of tasks and VMs shows that the makespan time increases as the tasks 

increase per VM. Conversely, the makespan time increases as the number of tasks increases for a particular 
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set of VMs. For a total of 5 VMs, at 100 tasks, the makespan time is 161.65s, and at 150 tasks, it rises to 

168.91s. Therefore, the makespan time increases as the load on a particular set of VMs increases. 

Alternatively, when the number of tasks is fixed, and the corresponding number of VMs increases, the 

makespan time decreases. 

 

Furthermore, the execution time of RSLbestPSO for different numbers of tasks assigned to 5 VMs is also 

computed and compared with several existing works comprising EBCA-LB (Babu & Philip, 2016), HBB-

LB (Babu & Krishna, 2013), FL-GWO (Xingjun et al., 2020), LW-PSO (Malik & Suman, 2022), ICBEA 

(Ajil & Kumar, 2025), and DQL (Haris & Zubair, 2025), respectively, and is shown in Table 6. The results 

demonstrate the excellent performance of RSLbestPSO, balancing the load with execution times of 10.56s, 

20.76s, 28.21s, 40.29s, 48.83s, and 60.32s for 100, 150, 200, 250, 300, and 400 tasks, respectively. 

 
Table 6. Execution time computed by RSLbestPSO for different number of tasks. 

 

Number of tasks 100 150 200 250 300 400 

EBCA-LB (Babu & Philip, 2016) 77.8 98.55 61.75 165.5 192.25 221 

HBB-LB (Babu & Krishna, 2013) 28.5 61.5 72.5 85.5 95 110 

FL-GWO (Xingjun et al., 2020) 23.5 51 61.75 76.9 86.25 96.5 

LW-PSO (Malik & Suman, 2022) 20.25 46.89 57.16 70.65 76.39 89.57 

ICBEA (Ajil & Kumar, 2025) 72.14 - 90.32 - 149.6 216 

DQL (Haris & Zubair, 2025) 47.81 - 59.71 - 99.28 133.87 

RSLbestPSO 10.56 20.76 28.21 40.29 48.83 60.32 

 
 

The computational cost is also evaluated. The EBCA, HBB-LB, FL-GWO, and LW_PSO have a cost of 

O(MDN), where M is the no. of particles, D is the distance covered in finding the solution, and N is the 

number of iterations. However, the computation complexity of RSLbestPSO is slightly higher due to adding 

extra randomness. The randomness is denoted by k. The complexity of RSLbestPSO will be O(MN(D+k)). 

So, if k is 0.2, the RSLbestPSO increases by 20% compared to normal PSO. However, this high 

computational cost is justifiable, leading to better exploration and faster convergence. Moreover, the bar 

plot of the comparison of RSLbestPSO with existing works is also plotted for execution time and shown in 

Figure 4. The comparison indicates that the RSLbestPSO takes less time when different numbers of tasks 

are assigned to 5 VMs. It is clear from the plot that RSLbestPSO outperformed existing techniques and 

showed an improvement of approximately 9.69%, 26.13%, 28.95%, 30.36%, 27.56%, and 29.25% for 100, 

150, 200, 250, 300, and 400 tasks when compared with the second-best-performing technique. 

 

 
 

Figure 4. Bar plots for execution time for different numbers of tasks assigned to 5 VMs. 
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In the second-case scenario, we compute the average TAT, RT, and load for 1000 tasks assigned to 5 virtual 

machines. In terms of average TAT, RT, and load, RSLbestPSOLB is also compared with some static LB 

techniques such as RR (Devaraj et al., 2020), SJF (Devaraj et al., 2020), and FCFS (Devaraj et al., 2020), 

as well as some dynamic LB techniques such as Firefly (Devaraj et al., 2020), IPSO (Devaraj et al., 2020), 

FF-IPSO (Devaraj et al., 2020), FFIMPSO (Devaraj et al., 2020), and LW-PSO (Malik & Suman, 2022). 

Table 7 shows the comparison results for TAT, RT, and load, and it is found that RSLbestPSO performed 

best with an average TAT of 17.57 ms, an average RT of 9.82 ms, and an average load of 0.19 ms, 

respectively. It takes less TAT, RT, and load than existing work. 

 
Table 7. Comparison results of RLBestPSO in terms of Average TAT, RT, and load. 

 

Work Average TAT (ms) Average RT (ms) Average load (ms) 

RR (Devaraj et al., 2020) 41.98 30.5 0.43 

SJF (Devaraj et al., 2020) 41.56 30.24 0.495 

FCFS (Devaraj et al., 2020) 41.87 30.84 0.46 

Firefly (Devaraj et al., 2020) 55.54 48.87 0.47 

IPSO (Devaraj et al., 2020) 57.74 49.23 0.457 

FF-IPSO (Devaraj et al., 2020) 22.13 15.21 0.25 

FFIMPSO (Devaraj et al., 2020) 21.09 13.58 0.24 

LW-PSO (Malik & Suman, 2022) 20.56 12.96 0.23 

RSLbestPSO 17.57 9.82 0.19 

 

 

 
 

  
(a) Average TAT (ms). (b) Average RT (ms). 

 

 
(c) Average Load (ms). 

 

Figure 5. Line plot of average TAT, RT, and load for RSLbestPSO and existing works. 
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The RSLbestPSO showed varied improvement when compared to existing work. RSLbestPSO reduced the 

response time by 60% compared to RR (Devaraj et al., 2020) and SJF (Devaraj et al., 2020). It shows an 

improvement of approximately 80% compared with Firefly (Devaraj et al., 2020) and IPSO (Devaraj et al., 

2020). Similarly, RSLbestPSO improved the results by 60% in terms of load compared to existing works 

(Devaraj et al., 2020). In the case of TAT, RSLbestPSO improved the results by 15% and 58% compared 

with Devaraj et al. (2020) and Malik & Suman (2022). Furthermore, the line plots for average TAT, RT, 

and load have been plotted to compare RSLbestPSO with existing works. Figure 5 displays the line plots, 

clearly demonstrating that RSLbestPSO performed effectively by taking less time. When compared with 

LW-PSO (Malik & Suman, 2022), it takes approximately 2.99 ms, 3.14 ms, and 0.04 ms less for TAT, RT, 

and load, respectively, and 3.52 ms, 3.76 ms, and 0.05 ms less for FFIMPSO (Devaraj et al., 2020). 

 

Next is the third-case scenario, where the tasks are divided into four subtypes: small, medium, large, and 

extra-large, and their corresponding CPU and memory utilization are computed. Table 8 shows the CPU 

and memory utilization results for RSLbestPSO and existing works (Devaraj et al., 2020). The comparison 

shows that the RSLbestPSO utilized more CPU, with 75% for small sets of tasks, 83% for medium tasks, 

97% for large tasks, and 99% for extra-large tasks. Similarly, RSLbestPSO uses 64%, 77%, 89%, and 98% 

of the memory for small, medium, large, and extra-large tasks, respectively. 

 
Table 8. Comparison of RSLbestPSO’s CPU and memory utilization results with existing works. 

 

Work 
CPU utilization (%) Memory utilization (%) 

Small  Medium Large  Extra-large Small  Medium Large  Extra-large 

RD (Devaraj et al., 2020) 45 50 64 70 40 48 59 70 

WRR (Devaraj et al., 2020) 48 58 67 75 44 53 63 75 

DLB (Devaraj et al., 2020) 50 63 70 80 48 58 66 77 

LB_BC (Devaraj et al., 2020) 57 68 75 85 54 62 70 80 

FF-IPSO (Devaraj et al., 2020) 67 77 89 90 57 70 80 86 

FFIMPSO (Devaraj et al., 2020) 70 79 95 97 60 72 83 89 

RSLbestPSO 75 83 97 99 64 77 89 98 

 

 

The improved performance is due to the random selection of neighbors in the proposed RSLbestPSO. This 

random selection will help in a better search, thereby resulting in better results. The personal best and global 

best positions are updated iteratively, and the resources are allocated efficiently, leading to lower resource 

utilization, execution, TAT, RT, and load. As the task is distributed and balanced, the CPU and Memory 

utilization will automatically be enhanced, leading to good results. 

 

Additionally, Figure 6 shows a bar plot for CPU and memory utilization that compares existing works with 

RSLbestPSO. RSLbestPSO performed effectively, showing improvements of 5%, 4%, 2%, and 2% in CPU 

utilization and 4%, 5%, 6%, and 9% in memory utilization, respectively. 

 
Table 9. RSLbestPSO results before and after parameter optimization. 

 

Performance parameter Result before optimization Result after optimization 

Makespan time 189.11s 161.65s 

Execution time 15.78s 10.56s 

Average TAT 19.88ms 17.57ms 

Average RT 10.43ms 9.82ms 

Average load 0.21ms 0.19ms 

CPU utilization 72% 75% 

Memory utilization 61% 64% 
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To show the superiority of the proposed RSLbestPSO, the results before and after optimization of 

performance parameters are also computed and shown in Table 9. The results are calculated for 100 tasks 

assigned to 5 VMs. The findings show that the RSLbestPSO shows effective performance with an 

improvement of 27.46s, 5.22s, 2.31ms, 0.61ms, 0.02ms, 3%, and 4% for makespan time, execution time, 

average TAT, RT, load, CPU utilization, and memory utilization, respectively. 

 

 
 

(a) CPU utilization 
 
 

 
 

(b) Memory utilization 
 

Figure 6. Comparison of RSLbestPSO with existing works in terms of (a) CPU and (b) memory utilization. 

 

 

The results showed a lower TAT, RT, and load. If the TAT is less in cloud based applications, it means that 

the requests made by the user have been executed efficiently with any delays, thereby improving the 

performance and responsiveness. Similarly, if the response time is low in gaming applications, there will 

be no lags in the game. Users will play the game without any disruption to achieve user satisfaction. If the 

load is low, the system will perform the task quickly, and zero fault tolerance will be achieved with less 

infrastructure cost.  
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The results are compared with the traditional PSO, genetic algorithm (GA), and ant colony optimization 

(ACO) and are shown in Table 10. The findings showed that RSLbestPSO performed best among the GA, 

ACO, and PSO in terms of makespan time, execution time, average TAT, average RT, average load, CPU 

utilization, and Memory utilization.  

 
Table 10. Comparison of RSLbestPSO with GA, ACO, and PSO. 

 

Parameter GA ACO PSO RSLbestPSO 

Makespan time 195ms 189ms 170ms 161.65s 

Execution time 18.14s 16.43s 14.10s 10.56s 

Average TAT 27.98s 22.34s 19.46s 17.57ms 

Average RT 13.89s 12.28s 10.55s 9.82ms 

Average load 0.4ms 0.35ms 0.2ms 0.19ms 

CPU utilization 68% 70% 74% 75% 

Memory utilization 75% 69% 63% 64% 

 

 

Different scenarios have been designed to test the efficiency of the proposed work. One scenario is that 

various tasks like 100, 150, 200, 250, 300, and 400 have been considered and allocated to different VM 

numbers of VMs, including 5, 6, 7, 8, 9, and 10, respectively. The makespan time is computed for all and 

it has been found that the proposed RSLbestPSO performed effectively. The other scenario is that the tasks 

are divided into small, medium, large, and extra-large sizes, and their corresponding CPU and Memory 

utilization is computed. The performance is evaluated for RSLbestPSO and the existing work, and 

RSLbestPSO outperformed, increasing CPU utilization. 

 

The statistical analysis of RSLbestPSO is also done to show that statistical significance. The statistical 

significance shows whether the results are actual or achieved by chance. The Wilcoxon signed-rank test (p-

value) is done in which the p-value is calculated. The model is statistically significant if the p-value is less 

than 0.05. The test was done, and it was found that one case was there where RSLbestPSO was not 

statistically significant as the value went beyond 0.05. In the rest of the cases, i.e., in RSLbestPSO vs. GA 

and RSLbestPSO vs. PSO, the p-value achieved is less than 0.05, which shows that the proposed model 

RSLbestPSO is statistically significant. The results are shown in Table 11. 

 
Table 11. Statistical analysis of RSLbestPSO with ACO, GA, and PSO. 

 

Model Wilcoxon signed-rank test (p-value) 

RSLbestPSO vs ACO 0.1484 

RSLbestPSO vs. GA 0.0391 

RSLbestPSO vs PSO 0.049 

 
 

Moreover, we have increased the dataset size from 400 to 2000 tasks distributed on 100 VMs to check the 

performance of the proposed RSLbestPSO. We have computed the throughput, standard deviation, and 

efficiency to consider the other statistical and performance parameters. The results are compared with 

standard PSO, GA, and ACO and are shown in Table 12. The results showed that RSLbestPSO performed 

well with 14.67, 0.4, and 0.085 throughput values, standard deviation, and efficiency, respectively. The 

results show that increasing the scalability in terms of tasks does not affect the performance of the proposed 

RSLbestPSO. Therefore, the proposed RSLbestPSO is scalable and has increasing tasks and VMs. 

Furthermore, energy consumption while implementing the proposed work is also computed based on the 

different resources (CPU, memory, and network) and power consumed. The energy consumption is given 

by the following Equation (3). 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝑃𝑜𝑤𝑒𝑟𝑖 ∗ 𝑇𝑖𝑚𝑒𝑖
𝑛
𝑖=0                                                                                                             (3) 
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where, n are the different resources. The energy consumption is given in Table 12, and it has been found 

that RSLbestPSO consumed a total of 1400 Joules (J) to perform the experiment. 

 
Table 12. Comparison of RSLbestPSO in terms of increased data size. 

 

Model Throughput Standard deviation Efficiency Energy consumption (J) 

GA 11.32 0.42 0.21 1200 

ACO 12.65 0.5 0.18 1300 

PSO 12.33 0.43 0.15 1250 

RSLbestPSO 14.67 0.4 0.085 1400 

 
 

4.3 Technological Constraints  
Although RSLbestPSO performed best in makespan time, throughput, RT, CPU utilization, memory 

utilization, and average load, there are some real-world applications where RSLbestPSO performs sub-

optimally. As the computational complexity of RSLbestPSO is high, it may take a lot of time for tasks like 

video surveillance and IoT-driven healthcare services. In these applications, the RSLbestPSO takes a longer 

convergence time to find the best solution. Also, the current RSLbestPSO is static; we are initially 

predefining the number of tasks and VMs. So, if the VMs fail or the task size increases, RSLbestPSO may 

not be able to adapt to the changes. 

 

5. Conclusion and Future Scope 
The present research addresses task scheduling issues in cloud systems by introducing RSLbestPSO, a 

cooperative AI-LB approach. This method seeks to maximize cloud computing's heterogeneous network 

performance metrics and virtual machine selection. The study considers optimized factors such as 

makespan time, execution time, average TAT, average RT, average load, CPU usage, and memory 

utilization. The results show that the RSLbestPSO outperforms current state-of-the-art methods in terms of 

efficiency. Improvements in CPU and memory usage, along with decreases in makespan time, execution 

time, average load, RT, and TAT, demonstrate this. We compute the findings using three alternative 

scenarios, assigning different amounts of jobs to varying numbers of virtual machines to determine the 

makespan time. By analyzing every possible combination, the program determines the makespan time. With 

the previous research (Devaraj et al., 2020; Malik & Suman, 2022), we calculate and compare the second 

case's average system load, reaction time, and turnaround time. According to the results, the RSLbestPSO 

algorithm minimizes average reaction time, load, and turnaround time by 3.52 ms, 3.76 ms, and 0.05 ms, 

respectively. In the third hypothetical scenario, the jobs fall into one of four sizes: short, medium, big, or 

extra-large. We will use five VMs to divide the jobs by using the RSLbestPSO method. RSLbestPSO's CPU 

and memory use calculation is compared with current methods (Malik & Suman, 2022). Going with the 

results, RSLbestPSO performs well, showing improvement in the usage of CPU 5%, 4%, 2%, and 2% and 

in memory consumption of 4%, 5%, 6%, and 9% for small, medium, big, and extra-large workloads, 

respectively. To show the effectiveness of RSLbestPSO, the outcome of parameter optimization before and 

after is also calculated. The job is assigned to virtual machines (VMs) using the RSLbestPSO method while 

avoiding overloading and underloading, showing effective results in a small amount of time. This research 

aims to make it easy for VMs to attain minimum LB, which will reduce the difficulties in task scheduling. 

The proposed RSLBestPSO is also effective for routing or energy-aware VM scheduling. Although the 

proposed work is practical, various deep learning algorithms like CNN and LSTM algorithms are still 

required for irregular task patterns. Reinforcement learning is expected to divide the workload across 

diverse cloud networks effectively. For efficient load balancing in a heterogeneous cloud network, the 

multi-agent independent Deep-Q network algorithm, a non-cooperative load balancing technique, is 

supposed to be proposed. Although the proposed RSLbestPSO performed effectively, there are some real-

world fluctuations like video surveillance, and the performance may be hindered. In those cases, 
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reinforcement learning performed better in which agents dynamically learned the adaptive task allocation. 

Moreover, new algorithms like sine cosine optimization will be hybridized with evolutionary or swarm 

optimization for better load balancing. 
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