
International Journal of Mathematical, Engineering and Management Sciences

Vol. 10, No. 5, 1585-1603, 2025

https://doi.org/10.33889/IJMEMS.2025.10.5.075

1585 | https://www.ijmems.in

Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best

Particle Swarm Optimization for Load Balancing

Tanu Kaistha

Department of Electronics and Communication Engineering,

I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India.

Corresponding author: tanu.etrx@gmail.com

Kiran Ahuja
Department of Electronics and Communication Engineering,

DAV Institute of Engineering and Technology, Jalandhar, Punjab, India.

E-mail: askahuja2002@gmail.com

(Received on December 9, 2024; Revised on February 8, 2025 & April 19, 2025; Accepted on May 19, 2025)

Abstract

Cloud services are growing in popularity and undergoing substantial change. To maximize performance, it is necessary to distribute

the workload efficiently across multiple virtual machines (VMs). Therefore, a new cooperative LB method called Random Spatial

Local Best Particle Swarm Optimization (RSLbestPSO) in cloud computing heterogeneous networks is developed to balance the

workload on all VMs efficiently. Unlike traditional approaches, RSLbestPSO aims to increase performance by decreasing response

time, finding the most efficient VMs, and improving the response time. The RSLbestPSO works by initializing the particles of

which the fitness function will be computed, and the solution with the highest fitness is considered the best solution. The

experiments showed that the proposed work effectively balanced the load on the VMs by finding the optimal solution, reducing the

makespan time, and increasing the response time. The evaluated results show the effectiveness of the proposed RSLbestPSO.

Keywords- Load balancing, Cloud, Heterogenous networks, Random spatial local best particle swarm optimization.

1. Introduction
In the cloud, heterogeneous networks exist in which multiple virtual machines (VMs) work in a distributed

manner to handle the massive amount of tasks from all over the world. Clients request many tasks or

services. The task of cloud computing is to process all the requests made by the client. The functions

requested by the client will include managing the storage, deploying the web applications, and creating the

servers (Rashid & Chaturvedi, 2019). These resources can be accessible to clients freely at any time. As

billions of people are requesting something, providing these resources is a great challenge. During the

allocation of tasks, sometimes more work is allocated to some VMs and less to others, which leads to over-

utilized and under-utilized VMs (Tripathy et al., 2023). This results in a decrease in response time,

throughput time, and an increase in the average load. Therefore, efficient load balancing (LB) techniques

are required for balancing the load.

The distribution of work evenly on the VMs so that resources are provided efficiently is known as load

balancing. Several state-of-the-art methods work on balancing the load, but the performance is inadequate.

It leads to higher response time, higher latency, and higher throughput. To overcome these, efficient LB

techniques are required for decreased response time and throughput. There are two types of LB techniques:

static LB and dynamic LB. The basic algorithms like the first come, first served (FCFS) (Saeed et al., 2019),

Round Robin (RR) (Prassanna & Venkataraman, 2019), and shortest job first (SJF) (Waheed et al., 2019)

comes under the category of static LB. Dynamic LB has two types of algorithms: cooperative and non-

cooperative LB. Cooperative, from the name it is clear, that is cooperation from each in completing the

https://www.ijmems.in/
mailto:tanu.etrx@gmail.com
mailto:askahuja2002@gmail.com

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1586 | Vol. 10, No. 5, 2025

same task. All the processes work together to complete the same task. Non-cooperative on the other side,

make their own decisions. They do not listen to others and complete their tasks alone (Houssein et al.,

2021). The metaheuristic algorithms like particle swarm optimization (PSO) (Ahuja et al., 2018), ant colony

optimization (ACO) (Dam et al., 2014), simulated annealing (SA) (Mondal & Choudhury, 2015), genetic

algorithms (GA) (Dasgupta et al., 2013), Hill climbing, local search (Zahid et al., 2019) and Tabu search

(Téllez et al., 2018) and non-cooperative algorithms include the game theory techniques. The cloud

computing load balancing work started in 1995 (Young, 1995), which was an excellent opportunity for

researchers to work on it. In 2020, research was conducted by Mishra et al. (2020) to balance the load in

cloud computing. The study was performed on the CloudSim simulator (Sundas & Panda, 2020). This study

focuses on the work done by various researchers, which also helps identify future directions in the cloud

network (Gamal et al., 2019). The limitations were also mentioned, which include the decreased response,

turnaround, and latency. The problem of local optima was also discussed. To solve all these challenges,

efficient load-balancing techniques are required to reduce the response time, throughput, and average load

(Upadhyay et al., 2018).

This research proposes a cooperative load-balancing algorithm called random spatial local best particle

swarm optimization to efficiently balance the workload on the VMs. The task will be migrated from the

under-utilized VMs or over-utilized VMs to balanced VMs. In the PSO, the particles get stuck in the local

optima and fail to find the global solution. So, the main aim of the proposed research is to find the best

global solution. The term cooperative means the cooperation between the particles to find the best solution.

The particles cooperate during the velocity equation, where they share information. The experiment is

performed in a CloudSim environment. The performance of the proposed work is evaluated using CPU

utilization, memory utilization, makespan time, turn around time (TAT), response time (RT), and average

load. The main aim of the proposed RLSbestPSO is to reduce the makespan time, TAT time, and RT while

maintaining the workload on the VMs. The presented research plays a vital role as it improves the execution

time, reduces resource utilization, and decreases the completion time of the tasks and execution costs.

1.1 Contribution
(a) A random spatial local best PSO (RSLbestPSO) has been developed to balance the workload on VMs

efficiently.

(b) The system's response time will be decreased by balancing the load on the VMs using the RSLbestPSO.

(c) The performance of the proposed work is evaluated using various parameters, including makespan time,

execution time, average TAT, average RT, and average load.

1.2 Motivation
In heterogeneous cloud networks, load balancing among the VMs is a tedious task as the traditional

algorithms like PSO, Genetic Algorithms (GA), or Ant Colony Optimization (ACO) failed to explore all

possible solutions, which leads to increased response time, makespan time, and imbalanced VMs. This

motivates us to design an algorithm that finds solutions globally instead of sticking to local optima,

decreasing response time, makespan time, and balancing virtual machines.

The rest of the paper is structured as follows: The literature review is given in Section 2. Section 3 describes

the proposed work. The experimental setup and results are shown in Section 4, and Section 5 outlines the

conclusion and future work.

2. Literature Review
Multiple researchers have worked on cooperative LB techniques to balance workloads by scheduling the

task to the optimal VM in cloud computing heterogeneous networks. A novel approach utilizing logarithm-

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1587 | Vol. 10, No. 5, 2025

based PSO(L-PSO) was proposed by Huang et al. (2020) to effectively distribute the workload across VMs

in heterogeneous networks within cloud computing. The logarithmic reduction was used to perform LB

operations. Some comparison techniques, such as Artificial Bee Colony (ABC), Gravitational Search

Algorithm (GSA), and Dragonfly Algorithm (DA), were used. The result showed that L-PSO had effective

performance, and it helped reduce the makespan time by 21.42 %,19.12%, and 15.14%, respectively,

compared to the abovementioned technique. Jena et al. (2022) proposed a hybridized approach called

QMPSO using the pioneering approach for the dynamic workload distribution across virtual machines in a

cloud computing network by combining a modified MPSO learning algorithm. The aim of using

Hybridization is to improve machine efficiency by distributing the workload evenly among VMs. When

the comparative analysis was done, it was found that QMPSO algorithms perform better than its

competitors. Babu & Philip (2016) presented an EBCS-LB algorithm to enhance the Bee colony algorithm

for LB.

The foraging behavior of honey bees is used to divide the workload among machines equally. An

experimental result showed that EBCA-LB increases the quality of service (QoS) provided to customers.

Inspired by the concept of honey bees, Babu & Krishna (2013) introduced an LB framework. The algorithm

helped effectively manage the task priorities on VMs, aiming to reduce the queue waiting time. Kumar &

Sharma (2020) introduced a dynamic LB algorithm (DLBA) to divide the workload on VMs in a cloud

computing network. Two operations were performed: first, the load on each VM is checked, and then the

task on overloaded VMs is moved to the next underloaded VM. The reduction in makespan time and

improved resource utilization were seen, and DLBA did well.

Pradhan & Bisoy (2022) additionally introduce an improved PSO technique to balance a cloud computing

network's load (LBMPSO). For simulation, CloudSim was used, and the result showed that LBMPSO was

better in reducing the makespan time.

FL-GWO is a fuzzy logic method introduced by Xingjun et al. (2020) using a grey wolf optimizer (GWO)

for LB in a cloud-based IoT environment. The experiment showed that FL-GWO performed way better

than the existing state-of-the-art method. To balance the load on various VMs, Devaraj et al. (2020)

introduced a hybrid of Firefly (FF) and an improved multi-objective PSO (IMPSO) algorithm called

FFIMPSO. The authors used IMPSO to discover the enhanced response required to schedule the task on

multiple VMs and the Firefly to compute the search space. The development was compared with individual

FF, improved PSO(IPSO), and combined FF-IPSO. Among comparison with various algorithms like round

robin (RR), shortest job first (SJF), first come, first served (FCFS), weighted RR (WRR), diffusive LB

(DLB), and LB Bayes and clustering (LB-BC), it was observed that FFIMPSO did well among them and

found more efficient in balancing the load on the VMs.

A hybrid of lateral Wolf (LW) and PSO optimization for LB and shifting tasks from overloaded VMs to

underloaded VMs was introduced by Malik & Suman (2022). It aimed to make the LW algorithm execute

task scheduling simultaneously. The PSO has been used to achieve optimal solutions by leveraging LW,

thereby identifying the most optimized virtual machines (VMs). Similarly, Simaiya et al. (2024) presented

a hybrid framework combining Convolutional Neural Network (CNN) with Long Short-Term Memory

(LSTM) to balance the workload on the VMs. PSO with GA was also used for training. The experiment

that was conducted shows the effectiveness of the proposed work. Ajil & Kumar (2025) presented an

improved deep belief network (IDBN) for predicting and balancing the workload on the VMs. First, the

load was predicted, which was further passed to butterfly optimization, which reduce the response time,

throughput, and makespan time efficiently. Table 1 shows the work done by various researchers on LB

using cooperative LB. These algorithms are widely recognized for their robust exploitation capabilities;

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1588 | Vol. 10, No. 5, 2025

once identified, they can efficiently and effectively converge toward a favorable solution. While dealing

with high dimensional search space and problems related to task scheduling and LB, this algorithm can

pose challenges because of numerous locally optimal solutions. An algorithm aims to search a broader

range of the solution space effectively. A random spatial local best PSO (RSLbestPSO)is introduced to

remove the local optima problem and to balance the load on VMs in heterogeneous cloud computing

networks.

Table 1. Related work on cooperative LB on VMs in cloud computing heterogeneous networks.

Author [Reference] Algorithm Work done Limitations

Huang et al. (2020) L-PSO A logarithm-decreasing strategy is proposed to

find the optimal solution to assign tasks to
heterogeneous VMs.

The results achieved are not optimal. Hence,

optimized algorithms are required to improve the
performance.

Jena et al. (2022) QMPSO QMPSO modifies the velocity of the MPSO by

incorporating the best action derived from the
enhanced Q-learning algorithm into the gbest

and pbest.

The proposed algorithms are static, which limits

their performance. Hence, dynamic load
balancing is required.

Babu & Philip (2016) EBCA-LB The forging behavior of honey bees was used to

distribute the workload of VMs in a cloud
environment.

The presented technique used a simple swarm

algorithm. Hybridization with other algorithms
comprising PSO and GA is required for

enhanced performance.

Babu & Krishna (2013) HBB-LB The highest waiting time is given priority, and
the load is reduced from the overloaded VMs.

QoS parameters were not considered while
measuring the performance, a significant

limitation of the presented work.

Kumar & Sharma (2020) DLBA Task migration is done dynamically for LB on

overloaded VMs.

The task deadline was not considered while

measuring the performance that needs to be done
for better results.

Pradhan & Bisoy (2022) LBMPSO PSO was improved to find the optimal VM for

task allocation and reduce the workload.

The performance achieved is not optimal. QoS

parameters will be considered in the future.

Xingjun et al. (2020) FL-GWO Balanced the workload on VMs by computing
the distance; the least distance was selected.

GWO suffers from the problem of local optima,
which can be improved in future studies.

Devaraj et al. (2020) FFIMPSO FF found search space, and IMPSO obtained

the optimal solution.

Data deduplication was not considered in the

proposed work and needs to be done for better
results.

Malik & Suman (2022) LW-PSO LW calculated fitness, which was passed to

PSO to find the optimal solution.

The present study suffers from the local optima

problem and cannot find the best solution.

Simaiya et al. (2024) CNN-
LSTM with

GA-PSO

CNN+LSTM was used to compute the fitness,
which was passed to GA-PSO for training.

Security and privacy are yet to be addressed, and
this is a significant concern that needs to be

discussed in the future.

Ajil & Kumar (2025) IDBN IDBN efficiently balances the workload,
reducing the makespan, response, and

throughput.

Better prediction models can be used in the
future to balance the workload.

3. Proposed Work
In this research, a Random Spatial Local Best PSO (RSLbestPSO) is proposed to discover the most

optimized VMs and to balance the load on these VMs by migrating the task from an overloading VM to an

under-loading VM. First, the task sequence is created based on user requests and passed to the VM manager.

It is followed by making the VMs into heterogeneous networks, and the tasks are randomly assigned to

active VMs. Afterward, RSLbestPSO is called, which updates the velocity and position to find the global

optimum solution. Then, based on the optimal solution, optimal VMs are selected, and the tasks can be

moved from the overloaded VMs to optimal VMs, thus maintaining the load balance on cloud computing

networks. The optimized performance of the RSLbestPSO is computed using various parameters

comprising makespan time, execution time, average TAT, average RT, average load, CPU utilization, and

Memory Utilization. The complete working of RSLbestPSO is shown in Figure 1.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1589 | Vol. 10, No. 5, 2025

Figure 1. Workflow diagram explaining the working of proposed RSLbestPSO.

3.1 Particle Swarm Optimization (PSO)
PSO is a computational optimization method that draws inspiration from the collective behavior observed

in bird flocking or fish schooling (Marini & Walczak, 2015). The algorithm in question employs a

metaheuristic approach, operating on a population level, to address optimization problems. PSO involves

utilizing a group of potential solutions, referred to as particles, that systematically navigate the search space

to identify the most optimal solution through iterative processes. Every individual particle within the system

is indicative of a prospective solution. Moving in a search space by modifying the position and responsible

for its experience and those adjacent particles. Every particle in the swarm is represented by a point in the

search space, which is also known as a vector of real number position. To update the velocity and positions

if the particle PSO algorithm utilizes an iterative procedure and gradually moves toward an optimal

solution. Using cognitive and social components, PSO effectively searches for the optimal solution by

integrating exploration and exploitation strategies. PSO depends on the exchange of data between particles.

At the same time, the swarm becomes confined to a local optimum. It may require help in effectively

examining the different areas of the search space, and finding the better solution outside of the local optima

may be hampered by the limited scope of this investigation (Dhillon et al., 2023). GA, ACO, and

reinforcement learning can also be applied, but to find the best solution, several generations of crossovers

and mutations are required in GA, which will lead to high computational complexity. There is also a

problem of stagnation in the GA, which will lead to a loss of diversity in the candidate solutions.

On the other hand, ACO is well suited for discrete search spaces like routing paths, and CPU utilization

requires continuous values. Similarly, in reinforcement learning, several training slots are needed in which

the agent has to interact with the environment to compute the reward, which takes a lot of time for execution.

Therefore, to surpass the PSO, GA, and reinforcement learning limitation, a local best solution, a random

spatial, is added to the current PSO described in the sections below.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1590 | Vol. 10, No. 5, 2025

3.2 Random Spatial Local Best PSO (RSLbestPSO)
The improvement of PSO is RSLbestPSO. RSLbestPSO has improved the problem of PSO, which is the

local optima. Due to local optima, the best solution is ignored as it gets stuck in the small space and thus

ignores the benefits of the larger space. The complete mathematical model of the proposed algorithm is

given as follows:

Consider the set of tasks like Tk1, Tk2, …… Tkn, VMs like VM1, VM2….. VMn, and particles like P1, P2….. Pn.

Each of the particle fitness functions is calculated. The objective is to minimize the makespan time.

To enable a particle to explore the search space more comprehensively, we use the RSLbestPSO algorithm,

which includes a random spatial element in the velocity update equation. Including random spatial elements

helps increase exploration, allowing the particle to traverse random trajectories and potentially evade local

optima. By adding a random element, the RSLbestPSO algorithm can explore unknown trajectories, helping

a more extensive exploration and enhancing the chance of identifying the global optimum. Particles are

used to exchange their information with their neighboring particle in the RSLbestPSO algorithm by

considering the local best position. Particles can use the knowledge of their neighboring particle to

exchange information about their best position in their local area, helping them make well-informed

decisions regarding their movement. Sharing local information within a swarm helps spread valuable

information, enabling particles to converge toward improved solutions collectively. The velocity in

RSLbestPSO is given by Equation (1):

𝑉𝑒𝑙𝑛𝑒𝑤 = 𝐼𝑤 ∗ 𝑉𝑒𝑙(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑃𝑒𝑟𝑏𝑒𝑠𝑡 − 𝑃(𝑡)) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑙𝑏𝑙𝑏𝑒𝑠𝑡 − 𝑃(𝑡)) + 𝑐3 ∗ 𝑟3 ∗ (𝑅 − 𝑃(𝑡)) (1)

where, 𝑐3 ∗ 𝑟3 ∗ (𝑅 − 𝑃(𝑡)) denotes the random spatial component c3, the local best accelerator coefficient

and r3 is the random number. The random position in the search space is denoted by R. The inclusion of a

random spatial component introduces a random displacement vector to the particle's velocity, thereby

promoting exploration by enabling particles to traverse arbitrary directions in each iteration. Similarly,

using the velocity update Equation (1), the position of the particle is updated by the given Equation (2):

𝑃𝑛𝑒𝑤 = 𝑃(𝑡) + 𝑉𝑒𝑙𝑛𝑒𝑤 (2)

Harmonious equilibrium between exploration and exploitation is attained by promoting the RSLbestPSO

algorithm, and it is done by utilizing both random spatial exploration and local best information.

Exploration in a random spatial component in the algorithm is done by introducing randomness; it promotes

the particle to find different regions of the search space. One more side of the local best component of the

algorithm is it promotes exploitation by using the information obtained from neighboring particles to allow

the exploitation of hopeful regions within the search space. Embrace an optimized approach in

RSLbestPSO, which enables the algorithm to visit various areas of the search space effectively.

We use this approach to enhance the algorithm's overall performance and help explore diverse areas while

exploiting promising regions and reducing the risk of premature convergence to local optima. Algorithm 1

and Figure 2 best describe the complete working of RSLbestPSO.We start the algorithm by initializing a

particle population with randomly generated position and velocity. The current position and Glblbest do

the assignment of the Perbest position of each particle by selecting the position with the highest fitness

value from all the particles. The algorithm iteration loop continues until it reaches the termination condition,

either reaching a predetermined maximum number of iterations or attaining a desired fitness level. Each

particle is processed by the algorithm independently during each iteration. The objective function is being

used to evaluate the current position of each particle's fitness. If the current position's fitness surpasses the

particle's personal best fitness, the Perbest fitness and position are subsequently updated. If the present

position's fitness exceeds the global best fitness, the Glblbest fitness and position are later revised. The

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1591 | Vol. 10, No. 5, 2025

position and velocity of each particle are given by Equations (1) and (2), respectively. For each particle, a

random subset of neighbors is chosen. To identify the optimal position, the comparative analysis involves

calculating the fitness values of the current particle's personal best position and the positions of its

neighboring particles. The Lbest position of the current particle is updated by incorporating the best position

discovered in the preceding step. For the transition to the subsequent iteration, the iterator is increased by

one. Once it meets the termination condition, the algorithm assigns the particle position with the highest

fitness value (Glblbest) as the optimized solution.

Figure 2. Flowchart of RSLbestPSO.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1592 | Vol. 10, No. 5, 2025

In the current study, the population size used is 100 particles with c1, c2, and c3 values of 10, 10, and 20,

respectively. The parameters c1, c2, and c3 are selected with the random optimization. The random values

have been chosen from the pool of the parameters, and performance is evaluated. The results showed that

the specified value using random optimization performed best, reducing the makespan time of the VMs.

The RSLbestPSO added a stochastic displacement factor in Equation (1), improving the particles' search

capabilities in finding the solution. The displacement factor helps the particles go around in all the random

directions, avoiding early convergence with the local optima problem. The normal PSO worked only on the

personal best and global best problems. Thereby, particles get stuck in the local optima. This problem is

removed by adding 𝑐3 ∗ 𝑟3 ∗ (𝑅 − 𝑃(𝑡)) to increase the exploration process.

Algorithm 1: Pseudocode explaining the step-by-step working of RSLbestPSO

Input: Particles (P), inertia weight (Iw), c1, c2, Personal Best (Perbest), Global Best (Glblbest), current fitness

(cur_fitness), current position (cur_position), local best acceleration coefficient (c3), Local Best (Lbest)

Output: Best optimized solution

Begin:

1. Initialize population

2. Initialize the Perbest positions of particles with their current positions

3. Initialize the Glblbest position and fitness

4. Repeat until the termination condition is met:

5. For each particle (Pi):

6. Compute the fitness of the current position

7. If (cur_fitness>Perbest_fitness):

8. Set Perbest_fitness = cur_fitness

9. Set Perbest_position = cur_position

10. If (cur_fitness>Glblbest_fitness)

11. Set Glblbest_fitness = cur_fitness

12. Set Glblbest_position = cur_position

13. Compute the new velocity of the particle with Equation (1)

14. Compute the new position of the particle with Equation (2)

15. For each particle (Pi):

16. Select a random subset of neighbors

17. Identify the best position among Perbest positions and its neighboring particle positions

18. Update the Lbest position by the best position found

19. i=i+1

20. Return the Gbest as the optimized solution

End

In the current research, the task sequence is first created and passed to the VM manager. The next step

involves the creation of virtual machines. Once the machines are created, tasks are assigned to VMs

randomly. Then, the check for overloaded VMs is done, which is then passed to the RSLbestPSO algorithm.

The algorithm selects the most optimal VMs and assigns tasks based on the best global solution it found.

Then, the loads on the VM are computed, and the VM with the fewest loads is selected. Assigning tasks

from overloaded VMs to the least-loaded or under-loaded VMs balances the load. Finally, the optimized

performance is computed using makespan time, execution time, average TAT, average RT, average load,

CPU utilization, and memory utilization.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1593 | Vol. 10, No. 5, 2025

4. Experimental Setup and Results
The minimum hardware requirement to perform the work is 8 GB of RAM and an i5 processor. In the

current research, a population size of 100 is used. This value is selected because the more significant the

search space is, the better the exploration is. When the search space is ample, diversity is improved, and the

early convergence to the solutions is also prevented. The coefficients c1, and c2are 10 and 20 respectively.

c1 and c2 are selected based on the literature. A higher value of c2 will lead to better results for the global

best, which will help the swarms find solutions effectively. The software required is Netbeans and

CloudSim, where Netbeans is used to implement the RSLbestPSO, and CloudSim-3.0.3 is used to create

the virtual nodes and tasks. The datasets used for experimenting are synthetic and generated by the

CloudSim tool. A comparison is also made with the works that performed experiments on the synthetic

data.

4.1 Implementation Details
The experiment is performed in several ways, completing each possible outcome. In the first case,

RSLbestPSO computes the makespan time for a network of six different types of VMs comprising VM5,

VM6, VM7, VM8, VM9, and VM10, and other numbers of tasks comprising 100, 150, 200, 250, 300, and

400 are allocated to each type of VM. Table 2 below provides information on the VM and task properties

for the first case.

Table 2. Different types of tasks and their sizes.

Task/ VM Properties

Task range 100-400

Task size 30000-50000

VM range 5-10

Processing speed (MIPS) 100000

Bandwidth 1000000

Type of VMM XEN

The second scenario computes the average TAT, average RT, and average load, and compares them with

the existing work. In the last scenario, a different number of tasks, varying in size and comprising small,

medium, large, and extra-large, are created for which CPU utilization and memory utilization are created.

Table 3 below provides the total number of small, medium, large, and extra-large tasks.

Table 3. Different types of tasks and their sizes.

Task type Number of tasks Tasks size

Small 100-200 30000-50000

Medium 400-500 50000-70000

Large 600-700 70000-100000

Extra-large 800-100 100000-200000

4.2 Results
In the first scenario, different numbers of VMs are created, and different numbers of tasks are assigned to

them, i.e., for 5 VMs, 6 VMs, 7 VMs, 8 VMs, 9 VMS, and 10 VMs, 100, 150, 200, 250, 300, and 400 tasks

are allocated, respectively. RSLbestPSO calculates the makespan time for each set of VMs and tasks,

observing a decrease in the makespan time as the number of VMs and tasks increases. The total makespan

time for 100, 150, 200, 250, 400, and 400 tasks assigned to 5 VMs, 6 VMs, 7 VMs, 8 VMs, 9 VMS, and 10

VMs is 189.16s, 143.1s, 111.42s, 87.53s, 83.38s, and 66.32s, respectively. Table 4 shows the makespan

time results for different VMs and tasks.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1594 | Vol. 10, No. 5, 2025

Table 4. Makespan time for different no. of VMs and tasks.

VMs Tasks Makespan time (s)

5 100 161.65

6 150 143.1

7 200 111.42

8 250 87.53

9 300 83.38

10 400 66.32

RSLbestPSO has created various combinations, assigning each set of tasks to a different number of VMs

and computing the corresponding makespan time. First, 100 tasks are assigned to 5, 6, 7, 8, 9, and 10 VMs,

followed by 150, 200, 250, 300, and 400 tasks assigned to different VMs, and it has been found that as the

VMs are increasing, the makespan time is decreasing. Table 5 below displays the computed makespan time

results for each variation. The RSLbestPSO used a structured way to analyze all the combinations. First,

100 tasks are assigned to various VMs, and makespan time is computed. This is followed by taking a

different set of tasks on the same varying number of VMs. The makespan time decreases as the VMs

increase, thus showing effective parallel processing and lower response time. The makespan time produced

by QMPSO (Babu & Philip, 2016) is 43.85 ms on 10 VMs when 100 tasks have been given. Similarly, the

makespan time of an LMBPSO (Pradhan & Bisoy, 2022) on 5VMs is 108ms. The proposed RSLbestPSO

algorithm achieves a makespan of approximately 35.91 ms, demonstrating a noticeable enhancement in

performance when compared to both QMPSO and LMBPSO.

Table 5. Makespan time for different combinations of tasks and VMs.

Tasks 5 VMs 6VMs 7 VMs 8 VMs 9 VMs 10 VMs

100 161.65 137.98 87.36 64.5 55.78 35.91

150 168.91 143.1 104.83 70.21 62.85 39.12

200 175.7 152.21 111.42 81.66 69.02 45.88

250 187.71 158.83 117.86 87.53 77.42 52.78

300 199.74 165.88 125.28 94.28 83.38 58.21

400 227.26 178.94 138.16 114.36 98.99 66.32

(a) Different no. of tasks and VMs. (b) Different combinations of tasks and VMs.

Figure 3. Makespan time plots computed by RSLbestPSO for different tasks and VMs.

Additionally, displays the scatter plot, which illustrates the variations in Makespan time. The decreasing

trend in the different numbers of tasks and VMs shows that the makespan time increases as the tasks

increase per VM. Conversely, the makespan time increases as the number of tasks increases for a particular

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1595 | Vol. 10, No. 5, 2025

set of VMs. For a total of 5 VMs, at 100 tasks, the makespan time is 161.65s, and at 150 tasks, it rises to

168.91s. Therefore, the makespan time increases as the load on a particular set of VMs increases.

Alternatively, when the number of tasks is fixed, and the corresponding number of VMs increases, the

makespan time decreases.

Furthermore, the execution time of RSLbestPSO for different numbers of tasks assigned to 5 VMs is also

computed and compared with several existing works comprising EBCA-LB (Babu & Philip, 2016), HBB-

LB (Babu & Krishna, 2013), FL-GWO (Xingjun et al., 2020), LW-PSO (Malik & Suman, 2022), ICBEA

(Ajil & Kumar, 2025), and DQL (Haris & Zubair, 2025), respectively, and is shown in Table 6. The results

demonstrate the excellent performance of RSLbestPSO, balancing the load with execution times of 10.56s,

20.76s, 28.21s, 40.29s, 48.83s, and 60.32s for 100, 150, 200, 250, 300, and 400 tasks, respectively.

Table 6. Execution time computed by RSLbestPSO for different number of tasks.

Number of tasks 100 150 200 250 300 400

EBCA-LB (Babu & Philip, 2016) 77.8 98.55 61.75 165.5 192.25 221

HBB-LB (Babu & Krishna, 2013) 28.5 61.5 72.5 85.5 95 110

FL-GWO (Xingjun et al., 2020) 23.5 51 61.75 76.9 86.25 96.5

LW-PSO (Malik & Suman, 2022) 20.25 46.89 57.16 70.65 76.39 89.57

ICBEA (Ajil & Kumar, 2025) 72.14 - 90.32 - 149.6 216

DQL (Haris & Zubair, 2025) 47.81 - 59.71 - 99.28 133.87

RSLbestPSO 10.56 20.76 28.21 40.29 48.83 60.32

The computational cost is also evaluated. The EBCA, HBB-LB, FL-GWO, and LW_PSO have a cost of

O(MDN), where M is the no. of particles, D is the distance covered in finding the solution, and N is the

number of iterations. However, the computation complexity of RSLbestPSO is slightly higher due to adding

extra randomness. The randomness is denoted by k. The complexity of RSLbestPSO will be O(MN(D+k)).

So, if k is 0.2, the RSLbestPSO increases by 20% compared to normal PSO. However, this high

computational cost is justifiable, leading to better exploration and faster convergence. Moreover, the bar

plot of the comparison of RSLbestPSO with existing works is also plotted for execution time and shown in

Figure 4. The comparison indicates that the RSLbestPSO takes less time when different numbers of tasks

are assigned to 5 VMs. It is clear from the plot that RSLbestPSO outperformed existing techniques and

showed an improvement of approximately 9.69%, 26.13%, 28.95%, 30.36%, 27.56%, and 29.25% for 100,

150, 200, 250, 300, and 400 tasks when compared with the second-best-performing technique.

Figure 4. Bar plots for execution time for different numbers of tasks assigned to 5 VMs.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1596 | Vol. 10, No. 5, 2025

In the second-case scenario, we compute the average TAT, RT, and load for 1000 tasks assigned to 5 virtual

machines. In terms of average TAT, RT, and load, RSLbestPSOLB is also compared with some static LB

techniques such as RR (Devaraj et al., 2020), SJF (Devaraj et al., 2020), and FCFS (Devaraj et al., 2020),

as well as some dynamic LB techniques such as Firefly (Devaraj et al., 2020), IPSO (Devaraj et al., 2020),

FF-IPSO (Devaraj et al., 2020), FFIMPSO (Devaraj et al., 2020), and LW-PSO (Malik & Suman, 2022).

Table 7 shows the comparison results for TAT, RT, and load, and it is found that RSLbestPSO performed

best with an average TAT of 17.57 ms, an average RT of 9.82 ms, and an average load of 0.19 ms,

respectively. It takes less TAT, RT, and load than existing work.

Table 7. Comparison results of RLBestPSO in terms of Average TAT, RT, and load.

Work Average TAT (ms) Average RT (ms) Average load (ms)

RR (Devaraj et al., 2020) 41.98 30.5 0.43

SJF (Devaraj et al., 2020) 41.56 30.24 0.495

FCFS (Devaraj et al., 2020) 41.87 30.84 0.46

Firefly (Devaraj et al., 2020) 55.54 48.87 0.47

IPSO (Devaraj et al., 2020) 57.74 49.23 0.457

FF-IPSO (Devaraj et al., 2020) 22.13 15.21 0.25

FFIMPSO (Devaraj et al., 2020) 21.09 13.58 0.24

LW-PSO (Malik & Suman, 2022) 20.56 12.96 0.23

RSLbestPSO 17.57 9.82 0.19

(a) Average TAT (ms). (b) Average RT (ms).

(c) Average Load (ms).

Figure 5. Line plot of average TAT, RT, and load for RSLbestPSO and existing works.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1597 | Vol. 10, No. 5, 2025

The RSLbestPSO showed varied improvement when compared to existing work. RSLbestPSO reduced the

response time by 60% compared to RR (Devaraj et al., 2020) and SJF (Devaraj et al., 2020). It shows an

improvement of approximately 80% compared with Firefly (Devaraj et al., 2020) and IPSO (Devaraj et al.,

2020). Similarly, RSLbestPSO improved the results by 60% in terms of load compared to existing works

(Devaraj et al., 2020). In the case of TAT, RSLbestPSO improved the results by 15% and 58% compared

with Devaraj et al. (2020) and Malik & Suman (2022). Furthermore, the line plots for average TAT, RT,

and load have been plotted to compare RSLbestPSO with existing works. Figure 5 displays the line plots,

clearly demonstrating that RSLbestPSO performed effectively by taking less time. When compared with

LW-PSO (Malik & Suman, 2022), it takes approximately 2.99 ms, 3.14 ms, and 0.04 ms less for TAT, RT,

and load, respectively, and 3.52 ms, 3.76 ms, and 0.05 ms less for FFIMPSO (Devaraj et al., 2020).

Next is the third-case scenario, where the tasks are divided into four subtypes: small, medium, large, and

extra-large, and their corresponding CPU and memory utilization are computed. Table 8 shows the CPU

and memory utilization results for RSLbestPSO and existing works (Devaraj et al., 2020). The comparison

shows that the RSLbestPSO utilized more CPU, with 75% for small sets of tasks, 83% for medium tasks,

97% for large tasks, and 99% for extra-large tasks. Similarly, RSLbestPSO uses 64%, 77%, 89%, and 98%

of the memory for small, medium, large, and extra-large tasks, respectively.

Table 8. Comparison of RSLbestPSO’s CPU and memory utilization results with existing works.

Work
CPU utilization (%) Memory utilization (%)

Small Medium Large Extra-large Small Medium Large Extra-large

RD (Devaraj et al., 2020) 45 50 64 70 40 48 59 70

WRR (Devaraj et al., 2020) 48 58 67 75 44 53 63 75

DLB (Devaraj et al., 2020) 50 63 70 80 48 58 66 77

LB_BC (Devaraj et al., 2020) 57 68 75 85 54 62 70 80

FF-IPSO (Devaraj et al., 2020) 67 77 89 90 57 70 80 86

FFIMPSO (Devaraj et al., 2020) 70 79 95 97 60 72 83 89

RSLbestPSO 75 83 97 99 64 77 89 98

The improved performance is due to the random selection of neighbors in the proposed RSLbestPSO. This

random selection will help in a better search, thereby resulting in better results. The personal best and global

best positions are updated iteratively, and the resources are allocated efficiently, leading to lower resource

utilization, execution, TAT, RT, and load. As the task is distributed and balanced, the CPU and Memory

utilization will automatically be enhanced, leading to good results.

Additionally, Figure 6 shows a bar plot for CPU and memory utilization that compares existing works with

RSLbestPSO. RSLbestPSO performed effectively, showing improvements of 5%, 4%, 2%, and 2% in CPU

utilization and 4%, 5%, 6%, and 9% in memory utilization, respectively.

Table 9. RSLbestPSO results before and after parameter optimization.

Performance parameter Result before optimization Result after optimization

Makespan time 189.11s 161.65s

Execution time 15.78s 10.56s

Average TAT 19.88ms 17.57ms

Average RT 10.43ms 9.82ms

Average load 0.21ms 0.19ms

CPU utilization 72% 75%

Memory utilization 61% 64%

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1598 | Vol. 10, No. 5, 2025

To show the superiority of the proposed RSLbestPSO, the results before and after optimization of

performance parameters are also computed and shown in Table 9. The results are calculated for 100 tasks

assigned to 5 VMs. The findings show that the RSLbestPSO shows effective performance with an

improvement of 27.46s, 5.22s, 2.31ms, 0.61ms, 0.02ms, 3%, and 4% for makespan time, execution time,

average TAT, RT, load, CPU utilization, and memory utilization, respectively.

(a) CPU utilization

(b) Memory utilization

Figure 6. Comparison of RSLbestPSO with existing works in terms of (a) CPU and (b) memory utilization.

The results showed a lower TAT, RT, and load. If the TAT is less in cloud based applications, it means that

the requests made by the user have been executed efficiently with any delays, thereby improving the

performance and responsiveness. Similarly, if the response time is low in gaming applications, there will

be no lags in the game. Users will play the game without any disruption to achieve user satisfaction. If the

load is low, the system will perform the task quickly, and zero fault tolerance will be achieved with less

infrastructure cost.

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1599 | Vol. 10, No. 5, 2025

The results are compared with the traditional PSO, genetic algorithm (GA), and ant colony optimization

(ACO) and are shown in Table 10. The findings showed that RSLbestPSO performed best among the GA,

ACO, and PSO in terms of makespan time, execution time, average TAT, average RT, average load, CPU

utilization, and Memory utilization.

Table 10. Comparison of RSLbestPSO with GA, ACO, and PSO.

Parameter GA ACO PSO RSLbestPSO

Makespan time 195ms 189ms 170ms 161.65s

Execution time 18.14s 16.43s 14.10s 10.56s

Average TAT 27.98s 22.34s 19.46s 17.57ms

Average RT 13.89s 12.28s 10.55s 9.82ms

Average load 0.4ms 0.35ms 0.2ms 0.19ms

CPU utilization 68% 70% 74% 75%

Memory utilization 75% 69% 63% 64%

Different scenarios have been designed to test the efficiency of the proposed work. One scenario is that

various tasks like 100, 150, 200, 250, 300, and 400 have been considered and allocated to different VM

numbers of VMs, including 5, 6, 7, 8, 9, and 10, respectively. The makespan time is computed for all and

it has been found that the proposed RSLbestPSO performed effectively. The other scenario is that the tasks

are divided into small, medium, large, and extra-large sizes, and their corresponding CPU and Memory

utilization is computed. The performance is evaluated for RSLbestPSO and the existing work, and

RSLbestPSO outperformed, increasing CPU utilization.

The statistical analysis of RSLbestPSO is also done to show that statistical significance. The statistical

significance shows whether the results are actual or achieved by chance. The Wilcoxon signed-rank test (p-

value) is done in which the p-value is calculated. The model is statistically significant if the p-value is less

than 0.05. The test was done, and it was found that one case was there where RSLbestPSO was not

statistically significant as the value went beyond 0.05. In the rest of the cases, i.e., in RSLbestPSO vs. GA

and RSLbestPSO vs. PSO, the p-value achieved is less than 0.05, which shows that the proposed model

RSLbestPSO is statistically significant. The results are shown in Table 11.

Table 11. Statistical analysis of RSLbestPSO with ACO, GA, and PSO.

Model Wilcoxon signed-rank test (p-value)

RSLbestPSO vs ACO 0.1484

RSLbestPSO vs. GA 0.0391

RSLbestPSO vs PSO 0.049

Moreover, we have increased the dataset size from 400 to 2000 tasks distributed on 100 VMs to check the

performance of the proposed RSLbestPSO. We have computed the throughput, standard deviation, and

efficiency to consider the other statistical and performance parameters. The results are compared with

standard PSO, GA, and ACO and are shown in Table 12. The results showed that RSLbestPSO performed

well with 14.67, 0.4, and 0.085 throughput values, standard deviation, and efficiency, respectively. The

results show that increasing the scalability in terms of tasks does not affect the performance of the proposed

RSLbestPSO. Therefore, the proposed RSLbestPSO is scalable and has increasing tasks and VMs.

Furthermore, energy consumption while implementing the proposed work is also computed based on the

different resources (CPU, memory, and network) and power consumed. The energy consumption is given

by the following Equation (3).

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑃𝑜𝑤𝑒𝑟𝑖 ∗ 𝑇𝑖𝑚𝑒𝑖
𝑛
𝑖=0 (3)

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1600 | Vol. 10, No. 5, 2025

where, n are the different resources. The energy consumption is given in Table 12, and it has been found

that RSLbestPSO consumed a total of 1400 Joules (J) to perform the experiment.

Table 12. Comparison of RSLbestPSO in terms of increased data size.

Model Throughput Standard deviation Efficiency Energy consumption (J)

GA 11.32 0.42 0.21 1200

ACO 12.65 0.5 0.18 1300

PSO 12.33 0.43 0.15 1250

RSLbestPSO 14.67 0.4 0.085 1400

4.3 Technological Constraints
Although RSLbestPSO performed best in makespan time, throughput, RT, CPU utilization, memory

utilization, and average load, there are some real-world applications where RSLbestPSO performs sub-

optimally. As the computational complexity of RSLbestPSO is high, it may take a lot of time for tasks like

video surveillance and IoT-driven healthcare services. In these applications, the RSLbestPSO takes a longer

convergence time to find the best solution. Also, the current RSLbestPSO is static; we are initially

predefining the number of tasks and VMs. So, if the VMs fail or the task size increases, RSLbestPSO may

not be able to adapt to the changes.

5. Conclusion and Future Scope
The present research addresses task scheduling issues in cloud systems by introducing RSLbestPSO, a

cooperative AI-LB approach. This method seeks to maximize cloud computing's heterogeneous network

performance metrics and virtual machine selection. The study considers optimized factors such as

makespan time, execution time, average TAT, average RT, average load, CPU usage, and memory

utilization. The results show that the RSLbestPSO outperforms current state-of-the-art methods in terms of

efficiency. Improvements in CPU and memory usage, along with decreases in makespan time, execution

time, average load, RT, and TAT, demonstrate this. We compute the findings using three alternative

scenarios, assigning different amounts of jobs to varying numbers of virtual machines to determine the

makespan time. By analyzing every possible combination, the program determines the makespan time. With

the previous research (Devaraj et al., 2020; Malik & Suman, 2022), we calculate and compare the second

case's average system load, reaction time, and turnaround time. According to the results, the RSLbestPSO

algorithm minimizes average reaction time, load, and turnaround time by 3.52 ms, 3.76 ms, and 0.05 ms,

respectively. In the third hypothetical scenario, the jobs fall into one of four sizes: short, medium, big, or

extra-large. We will use five VMs to divide the jobs by using the RSLbestPSO method. RSLbestPSO's CPU

and memory use calculation is compared with current methods (Malik & Suman, 2022). Going with the

results, RSLbestPSO performs well, showing improvement in the usage of CPU 5%, 4%, 2%, and 2% and

in memory consumption of 4%, 5%, 6%, and 9% for small, medium, big, and extra-large workloads,

respectively. To show the effectiveness of RSLbestPSO, the outcome of parameter optimization before and

after is also calculated. The job is assigned to virtual machines (VMs) using the RSLbestPSO method while

avoiding overloading and underloading, showing effective results in a small amount of time. This research

aims to make it easy for VMs to attain minimum LB, which will reduce the difficulties in task scheduling.

The proposed RSLBestPSO is also effective for routing or energy-aware VM scheduling. Although the

proposed work is practical, various deep learning algorithms like CNN and LSTM algorithms are still

required for irregular task patterns. Reinforcement learning is expected to divide the workload across

diverse cloud networks effectively. For efficient load balancing in a heterogeneous cloud network, the

multi-agent independent Deep-Q network algorithm, a non-cooperative load balancing technique, is

supposed to be proposed. Although the proposed RSLbestPSO performed effectively, there are some real-

world fluctuations like video surveillance, and the performance may be hindered. In those cases,

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1601 | Vol. 10, No. 5, 2025

reinforcement learning performed better in which agents dynamically learned the adaptive task allocation.

Moreover, new algorithms like sine cosine optimization will be hybridized with evolutionary or swarm

optimization for better load balancing.

Conflict of Interest

The authors declare that they have no competing interests.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The

authors would like to thank the editor and anonymous reviewers for their comments that helped improve the quality of this work.

AI Disclosure

The author(s) declare that no assistance is taken from generative AI to write this article.

References

Ahuja, K., Singh, B., & Khanna, R. (2018). Network selection in wireless heterogeneous environment by CPF hybrid

algorithm. Wireless Personal Communications, 98(3), 2733-2751. https://doi.org/10.1007/s11277-017-4998-1.

Ajil, A., & Kumar, E.S. (2025). IDBNWP: improved deep belief network for workload prediction: hybrid optimization

for load balancing in cloud system. Multimedia Tools and Applications, 84(16), 15715-15733.

https://doi.org/10.1007/s11042-024-19495-z.

Babu, K.R.R., & Philip, S. (2016). Enhanced bee colony algorithm for efficient load balancing and scheduling in

cloud. In: Snášel, V., Abraham, A., Krömer, P., Pant, M., Muda, A. (eds) Innovations in Bio-Inspired Computing

and Applications. Springer International Publishing, Cham, pp. 67-78. ISBN: 978-3-319-28031-8.

https://doi.org/10.1007/978-3-319-28031-8_6.

Babu, L.D.D., & Krishna, P.V. (2013). Honey bee behavior inspired load balancing of tasks in cloud computing

environments. Applied Soft Computing Journal, 13(5), 2292-2303. https://doi.org/10.1016/j.asoc.2013.01.025.

Dam, S., Mandal, G., Dasgupta, K., & Dutta, P. (2014). An ant colony based load balancing strategy in cloud

computing. In: Kundu, M.K., Mohapatra, D.P., Konar, A., Chakraborty, A. (eds) Advanced Computing,

Networking and Informatics (Vol. 2, pp. 403-413). Springer International Publishing, Cham. ISBN: 978-3-319-

07350-7. https://doi.org/10.1007/978-3-319-07350-7_45.

Dasgupta, K., Mandal, B., Dutta, P., Mandal, J.K., & Dam, S. (2013). A genetic algorithm (GA) based load balancing

strategy for cloud computing. Procedia Technology, 10, 340-347. https://doi.org/10.1016/j.protcy.2013.12.369.

Devaraj, A.F.S., Elhoseny, M., Dhanasekaran, S., Lydia, E.L., & Shankar, K. (2020). Hybridization of firefly and

improved multi-objective particle swarm optimization algorithm for energy efficient load balancing in cloud

computing environments. Journal of Parallel and Distributed Computing, 142, 36-45.

https://doi.org/10.1016/j.jpdc.2020.03.022.

Dhillon, A., Singh, A., & Bhalla, V.K. (2023). Biomarker identification and cancer survival prediction using random

spatial local best cat swarm and Bayesian optimized DNN. Applied Soft Computing, 146, 110649.

Gamal, M., Rizk, R., Mahdi, H., & Elnaghi, B.E. (2019). Osmotic bio-inspired load balancing algorithm in cloud

computing. IEEE Access, 7, 42735-42744. https://doi.org/10.1109/access.2019.2907615.

Haris, M., & Zubair, S. (2025). Battle royale deep reinforcement learning algorithm for effective load balancing in

cloud computing. Cluster Computing, 28(1), 19. https://doi.org/10.1007/s10586-024-04718-7.

Houssein, E.H., Gad, A.G., Wazery, Y.M., & Suganthan, P.N. (2021). Task scheduling in cloud computing based on

meta-heuristics: review, taxonomy, open challenges, and future trends. Swarm and Evolutionary Computation,

62, 100841. https://doi.org/10.1016/j.swevo.2021.100841.

https://doi.org/10.1007/s11042-024-19495-z
https://doi.org/10.1007/978-3-319-28031-8_6
https://doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1016/j.protcy.2013.12.369
https://doi.org/10.1016/j.jpdc.2020.03.022
https://doi.org/10.1109/ACCESS.2019.2907615
https://doi.org/10.1007/s10586-024-04718-7
https://doi.org/10.1016/j.swevo.2021.100841

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1602 | Vol. 10, No. 5, 2025

Huang, X., Li, C., Chen, H., & An, D. (2020). Task scheduling in cloud computing using particle swarm optimization

with time varying inertia weight strategies. Cluster Computing, 23(2), 1137-1147.

https://doi.org/10.1007/s10586-019-02983-5.

Jena, U.K., Das, P.K., & Kabat, M.R. (2022). Hybridization of meta-heuristic algorithm for load balancing in cloud

computing environment. Journal of King Saud University - Computer and Information Sciences, 34(6), 2332-

2342. https://doi.org/10.1016/j.jksuci.2020.01.012.

Kumar, M., & Sharma, S.C. (2020). Dynamic load balancing algorithm to minimize the makespan time and utilize the

resources effectively in cloud environment. International Journal of Computers and Applications, 42(1), 108-

117. https://doi.org/10.1080/1206212x.2017.1404823.

Malik, M., & Suman. (2022). Lateral wolf based particle swarm optimization (LW-PSO) for load balancing on cloud

computing. Wireless Personal Communications, 125(2), 1125-1144. https://doi.org/10.1007/s11277-022-09592-

3.

Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). a tutorial. Chemometrics and Intelligent

Laboratory Systems, 149(part B), 153-165. https://doi.org/10.1016/j.chemolab.2015.08.020.

Mishra, S.K., Sahoo, B., & Parida, P.P. (2020). Load balancing in cloud computing: a big picture. Journal of King

Saud University - Computer and Information Sciences, 32(2), 149-158.

https://doi.org/10.1016/j.jksuci.2018.01.003.

Mondal, B., & Choudhury, A. (2015). Simulated annealing (SA) based load balancing strategy for cloud computing.

International Journal of Computer Science and Information Technologies, 6(4), 3307-3312.

Pradhan, A., & Bisoy, S.K. (2022). A novel load balancing technique for cloud computing platform based on PSO.

Journal of King Saud University - Computer and Information Sciences, 34(7), 3988-3995.

https://doi.org/10.1016/j.jksuci.2020.10.016.

Prassanna, J., & Venkataraman, N. (2019). Threshold based multi-objective memetic optimized round robin

scheduling for resource efficient load balancing in cloud. Mobile Networks and Applications, 24(4), 1214-1225.

https://doi.org/10.1007/s11036-019-01259-x.

Rashid, A., & Chaturvedi, A. (2019). Cloud computing characteristics and services a brief review. International

Journal of Computer Sciences and Engineering, 7(2), 421-426. https://doi.org/10.26438/ijcse/v7i2.421426.

Saeed, F., Javaid, N., Zubair, M., Ismail, M., Zakria, M., Ashraf, M.H., & Kamal, M.B. (2019). Load balancing on

cloud analyst using first come first serve scheduling algorithm. In: Xhafa, F., Barolli, L., Greguš, M. (eds)

Advances in Intelligent Networking and Collaborative Systems. Springer International Publishing, Cham, pp. 463-

472. https://doi.org/10.1007/978-3-319-98557-2_42.

Simaiya, S., Lilhore, U.K., Sharma, Y.K., Rao, K.B.V.B., Maheswara Rao, V.V.R., Baliyan, A., Bijalwan, A., &

Alroobaea, R. (2024). A hybrid cloud load balancing and host utilization prediction method using deep learning

and optimization techniques. Scientific Reports, 14(1), 1337. https://doi.org/10.1038/s41598-024-51466-0.

Sundas, A., & Panda, S.N. (2020). An introduction of cloudsim simulation tool for modelling and scheduling. In 2020

International Conference on Emerging Smart Computing and Informatics (pp. 263-268). IEEE. Pune, India.

https://doi.org/10.1109/esci48226.2020.9167549.

Téllez, N., Jimeno, M., Salazar, A., & Nino-Ruiz, E.D. (2018). A tabu search method for load balancing in fog

computing. International Journal of Artificial Intelligence, 16(2), 1-30.

Tripathy, S.S., Mishra, K., Roy, D.S., Yadav, K., Alferaidi, A., Viriyasitavat, W., Sharmila, J., Dhiman, G., & Barik,

R.K. (2023). State-of-the-art load balancing algorithms for mist-fog-cloud assisted paradigm: a review and future

directions. Archives of Computational Methods in Engineering, 30(4), 2725-2760.

https://doi.org/10.1007/s11831-023-09885-1.

Upadhyay, S.K., Bhattacharya, A., Arya, S., & Singh, T. (2018). Load optimization in cloud computing using

clustering: a survey. International Research Journal of Engineering and Technology, 5(4), 2455-2459.

https://doi.org/10.1007/s10586-019-02983-5
https://doi.org/10.1016/j.jksuci.2020.01.012
https://doi.org/10.1080/1206212x.2017.1404823
https://doi.org/10.1007/s11277-022-09592-3
https://doi.org/10.1007/s11277-022-09592-3
https://doi.org/10.1016/j.chemolab.2015.08.020
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/https:/doi.org/10.1016/j.jksuci.2020.10.016
https://doi.org/10.1007/s11036-019-01259-x
https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/10.1007/978-3-319-98557-2_42
https://doi.org/10.1038/s41598-024-51466-0
https://doi.org/10.1109/esci48226.2020.9167549
https://doi.org/10.1007/s11831-023-09885-1

Kaistha & Ahuja: Cloud Heterogeneous Networks: Cooperative Random Spatial Local Best …

1603 | Vol. 10, No. 5, 2025

Waheed, M., Javaid, N., Fatima, A., Nazar, T., Tehreem, K., & Ansar, K. (2019). Shortest job first load balancing

algorithm for efficient resource management in cloud. In: Barolli, L., Leu, F.Y., Enokido, T., Chen, H.C. (eds)

Advances on Broadband and Wireless Computing, Communication and Applications. Springer International

Publishing, Cham, pp. 49-62. https://doi.org/10.1007/978-3-030-02613-4_5.

Xingjun, L., Zhiwei, S., Hongping, C., & Mohammed, B.O. (2020). A new fuzzy‐based method for load balancing in

the cloud‐based internet of things using a grey wolf optimization algorithm. International Journal of

Communication Systems, 33(8), e4370. https://doi.org/10.1002/dac.4370.

Young, A.L. (1995). Issues and challenges [biotechnology for bioengineers]. IEEE Engineering in Medicine and

Biology Magazine, 14(2), 204-206. https://doi.org/10.1109/51.376762.

Zahid, M., Javaid, N., Ansar, K., Hassan, K., Khan, M.K., & Waqas, M. (2019). Hill climbing load balancing algorithm

on fog computing. In: Xhafa, F., Leu, F.Y., Ficco, M., Yang, C.T. (eds) Advances on P2P, Parallel, Grid, Cloud

and Internet Computing. Springer International Publishing, Cham, pp. 238-251. ISBN: 978-3-030-02607-3.

https://doi.org/10.1007/978-3-030-02607-3_22.

Original content of this work is copyright © Ram Arti Publishers. Uses under the Creative Commons Attribution 4.0 International (CC BY 4.0)

license at https://creativecommons.org/licenses/by/4.0/

Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps

and institutional affiliations.

https://doi.org/10.1007/978-3-030-02613-4_5
https://doi.org/10.1002/dac.4370

