
International Journal of Mathematical, Engineering and Management Sciences

Vol. 6, No. 5, 1297-1314, 2021

https://doi.org/10.33889/IJMEMS.2021.6.5.078

1297 | https://www.ijmems.in

Fine-Tuned Pre-Trained Model for Script Recognition

Mamta Bisht

Department of Electronics and Communication Engineering,

Jaypee Institute of Information Technology, Noida, India.

Corresponding author: bishtmamta29@gmail.com

Richa Gupta
Department of Electronics and Communication Engineering,

Jaypee Institute of Information Technology, Noida, India.

E-mail: richa.gupta@jiit.ac.in

(Received on April 11, 2021; Accepted on July 25, 2021)

Abstract

Script recognition is the first necessary preliminary step for text recognition. In the deep learning era, for this task two

essential requirements are the availability of a large labeled dataset for training and computational resources to train

models. But if we have limitations on these requirements then we need to think of alternative methods. This provides

an impetus to explore the field of transfer learning, in which the previously trained model knowledge established in the

benchmark dataset can be reused in another smaller dataset for another task, thus saving computational power as it

requires to train only less number of parameters from the total parameters in the model. Here we study two pre-trained

models and fine-tune them for script classification tasks. Firstly, the VGG-16 pre-trained model is fine-tuned for

publically available CVSI-15 and MLe2e datasets for script recognition. Secondly, a well-performed model on

Devanagari handwritten characters dataset has been adopted and fine-tuned for the Kaggle Devanagari numeral dataset

for numeral recognition. The performance of proposed fine-tune models is related to the nature of the target dataset as

similar or dissimilar from the original dataset and it has been analyzed with widely used optimizers.

Keywords- Transfer learning, Fine-tuning, Deep learning, CNN, VGG-16 model, Script classification.

1. Introduction
Script identification in documents and scene images is an essential starting point for text

recognition under multi-lingual scenarios. It is basically a classification task and has potential

applications in documents and scene understanding (Yuan et al., 2016), mobile phone navigation

and mobile product search (He et al., 2012), text detection for videos (Khare et al., 2015), and

machine translation (Alabau et al., 2014) etc. This research area consists of lots of challenges

such as low image quality, complex background, and different text styles etc., which makes script

identification a difficult task in natural scene images (Ghosh et al., 2010). Various scripts have

similar formations of characters thus make script identification even more difficult. English,

Greek, Russian, Chinese, and Japanese are some examples that have similar shapes of characters.

Recently, convolutional neural network (CNN) proves its excellent performance for the

classification tasks. In the network, the earlier CNN layers learn low-level features; the middle

CNN layers learn complex features and the CNN layers closer to the output part of the network

interprets the learned features into the context of a classification task. But the network requires

lots of input data in lakhs or millions for its successful deployment in the real world. To solve this

small dataset problem, the model weights established for standard datasets can be reused.

Transfer learning often comprises taking the pre-trained weights in the first layers and initializing

the last layers randomly and training them for the classification tasks. Thus, in the transfer

mailto:richa.gupta@jiit.ac.in

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1298 | Vol. 6, No. 5, 2021

learning approach, learning or back-propagation occurs only at the last layers initialized with

random weights.

This paper focuses on identifying the pre-segmented text in natural scene images and pre-

segmented Devanagari numerals using a transfer learning approach with small trainable

parameters. Transfer learning is particularly useful with a limited computing resource. A lot of

state of the art models take several days and weeks in some cases to train even when trained on

highly powerful GPU machines. Thus, in order not to repeat the same process over a long period

of time, transfer learning allows us to make use of pre-trained weights as a beginning point. After

using transfer learning we can take three advantages, firstly, we can overcome the problem of the

limited dataset, secondly, we can avoid the requirement of powerful GPU machines, and thirdly,

we can save computation time. Fine-tuning is a methodology for transfer learning and in this

paper; it is used on openly available CVSI-15 and MLe2e datasets for the script classification task

and also used on Kaggle Devanagari numeral dataset for the numeral recognition task with small

trainable parameters. We have selected convolutional neural network model VGG-16 described

by Simonyan and Zisserman (2014) and the model discussed by Bisht and Gupta (2020) for fine-

tuning. The performance of the proposed fine-tune model is also analyzed with widely used

optimizers such as stochastic gradient descent (SGD), root mean square propagation (RMSprop),

and adaptive moment estimation (Adam).

The major outcomes of this paper are as: (1) Study of two pre-trained models, VGG-16 and

model trained on Devanagari handwritten characters dataset (DHCD). (2) Fine-tune these pre-

trained models for another datasets as CVSI, MLe2e and Kaggle Devanagari handwritten numeral

dataset. (3) Analyze the performances of described fine-tune models with different optimizers as

sgd, RMSprop, and Adam. The paper is presented in the following sections: In Section 2, we

discuss the importance of transfer learning and script classification-related work that exists in the

literature. In Section 3, we discuss the proposed VGG-16 fine-tune network and fine-tune

network trained on Devanagari handwritten characters dataset (DHCD) (Bisht and Gupta, 2020).

In Section 4, we analyze the obtained results of the proposed fine-tune networks with different

optimizers. In Section 5, we conclude the study.

2. Literature Review
The deep learning model requires large training data for training and at testing time the trained

model expects identical feature spaces in test data as it learned during training from the training

dataset. But in reality, the test data may not always hold this property and this leads to the

requirement to rebuild a new model from scratch. It is sometimes difficult to collect new large

training data and rebuild the model. In this situation, the transfer learning method is helpful.

Nowadays, transfer learning method has been explored in many research areas like military object

recognition (Yang et al., 2019), plant disease identification (Chen et al., 2020), human action

recognition (Wang et al., 2017), character classification (Pramanik and Bag, 2020), medical

image analysis (Khan et al., 2019) and many more. Today, many popular models exist for image

recognition tasks which are trained on benchmark datasets like VGG-16, Inception V3, and

Resnet-50 etc. The knowledge of these pre-trained models can be reused for another task.

Earlier script identification work started with texts in documents (Ghosh et al., 2010; Ubul et al.,

2017) and videos (Sharma et al., 2013; Sharma et al., 2014) where the method mainly focused on

the property of shape and visibility of data. Various hand-crafted features have been extracted in

literature and used to train classifiers for the script classification tasks. The commonly used

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1299 | Vol. 6, No. 5, 2021

classifier included support vector machines, k-nearest neighbor’s algorithm and random forest

etc. With the time the convolutional neural network (CNN) popularity increases as it is able to

automatically extract effective attributes from the input data which is difficult and time taking

process in traditional machine learning approach (Li and Tang, 2015; Li et al., 2015; Li et al.,

2017) and it is proved in the ICDAR competition on video script identification (CVSI) in 2015 as

all the CNN based methods performed well over hand-crafted features based methods (Gomez et

al., 2017).

Mei et al. (2016) focused on the spatial dependencies within text line and bring together a CNN

and an RNN (Recurrent Neural Network) into one end-to-end trainable network. To work with

random dimensions input images, they also integrated an average pooling structure in their model

for the script classification tasks. Shi et al. (2015) adopted multi-stage pooling in their CNN

network which has capability to handle exceptionally randomize aspect ratios of scene text

images. They further worked on the mid-level representations and combined them into a CNN for

script classification (Shi et al., 2016). Gomez and Karatzas (2016) and Bhunia et al. (2019)

worked on CNN features and then integrate Naive-Bayes nearest neighbor classifier and attention

mechanism respectively in their work. Lu et al. (2019) integrated Local and Global CNN together

and used well known ResNet-20 architecture for script identification. An effective method

focusing on two key components feature extraction and classification is adopted by Ma et al.

(2021), the first component is based on hierarchical feature fusion while the second one is a

convolutional classifier. Tounsi et al. (2017) worked on script classification using transfer

learning on a small dataset.

As deep learning model requires high computational power and a very large dataset for training

and if we have less computational power (or fewer resources) and less dataset for training then

the performance of trained model is affected by low performance on real world test data. To

overcome this issue we may try to use weights of well-trained model on very large benchmark

dataset such as ImageNet which consists millions of images for classification task. This gives the

motivation to explore transfer learning area where knowledge of pre-trained model can be used

on another dataset for another task and this saves computational power and requirement of very

large dataset. In this work, we explore the VGG-16 pre-trained model and use it as a feature

extractor after removing its top layer on the script identification dataset. We add two dense layers

and an output layer at its top and train these newly added layers only and hold all weights of pre-

trained VGG-16 network. We also select a pre-trained model trained on DHCD dataset (Bisht and

Gupta, 2020) and check its performance for Kaggle Devanagari handwritten numeral dataset for

recognition task. We perform training with SGD, RMSprop, and Adam optimizers and analyzed

their performance.

3. Methodology
Transfer learning refers to a neural network model trained on one dataset that can be used for

another small dataset by fine-tuning the earlier network. In transfer learning, the training dataset

(Ὀ) and the test dataset (Ὀ) come from a different distribution i.e. Ὀ Ὀ. Its aim is to use the

knowledge of learning task (Ὕ) in training dataset to help improve the target learning task (Ὕ) in

the test dataset where Ὕ Ὕ. The fine-tuning of the model depends on the size and similarity of

the new dataset to the original dataset. Here we discuss the two cases of transfer learning when

the new dataset is different and similar to the original dataset. If the new dataset is different, we

need to fine-tune the network somewhere earlier in the network instead, trains only the classifier

part at the top of the network. Here VGG-16, one of the popular pre-trained models is used to

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1300 | Vol. 6, No. 5, 2021

classify images of the script datasets, CVSI-15 and MLe2e. If the new dataset is similar to

original dataset then we assume higher-level features in the pre-trained network to be appropriate

to the new dataset as well and therefore, we train only the classifier part at the top of the network.

The description of pre-trained models used are as follows:

Figure 1. VGG-16 fine tuning.

3.1 Pre-Trained VGG-16 Model
The VGG-16 model, configured to input as 224×224×3 is trained on ImageNet photo

classification dataset. The feature extractor part of this model consists of 13 convolutional layers

in a group, known as VGG block that includes small filters of size 3×3 followed by a max-

VGG block 2 (freeze)

freeze)

VGG block 3 (freeze)

VGG block 4 (freeze)

VGG block 1 (freeze)

VGG block 5 (freeze)

New classifier (train)

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1301 | Vol. 6, No. 5, 2021

pooling layer. It consists of fully connected layers and the output layer in its classifier part. Here,

we design fine-tune VGG-16 model. The feature extraction part of this model is loaded from

Keras keeping include top as false and then we add two fully connected layers of node 128 on it.

Then the output layer is set to the number of unique classes present in datasets as 10 in CVSI-15

dataset and 4 in MLe2e dataset. In chosen fine-tune model only new fully connected and output

layers have trainable weights. The training of designed fine-tune model is done for 25 epochs

with batch size 64 and learning rate as 0.001. The proposed fine tune model is shown in Figure 1.

3.2 Pre-Trained Model on DHCH
The model is configured to input as 32×32×3 is trained on large dataset DHCD of size 78,200 for

training and 13,800 for testing. It contains 36 Devanagari handwritten character classes and 10

Devanagari handwritten digit classes. The model consists of four convolutional layers mixed with

nonlinearity (RELU) and max pooling layers with kernel size as 3x3 and stride value as 1. The

model also added dropout of 0.2 to avoid overfitting condition. Then flattening is done and

further the model uses two dense layers of shape 128, 64. The last dense layer is connected to the

output layer of size 46 with softmax activation function. We fine-tune the model for recognition

of Kaggle Devanagari numeral dataset (Pant et al., 2012). Since the new dataset is similar to the

original dataset i.e. DHCD, we assume that the extracted features from the earlier model are

relevant to the new dataset and therefore we only fine-tune the classifier part and hence the model

consists of very small trainable parameters. The model is trained for 50 epochs with batch size 32

and learning rate as 0.001 respectively.

The above described pre-trained models consist of a series of layers as convolutional, pooling,

flattening, and fully connected layers. The input samples are passed through these layers and the

generated output is used to categorize samples. The main parts of the convolutional neural

network are as follows:

Convolutional Layer – In the convolutional layer, the convolutional product takes place between

the input sample and the kernel, which passes over the input sample. Mathematically, for a given

input image ‘Img’ with dimension as (ὲȟὲ ȟὲ) and kernel ‘K’, we have convolution as:

ὧέὲὺὍάὫȟὑ ȟ ὑȟȟ ὍάὫȟ ȟ

where ὲ is the height, ὲ is the width and ὲ is the number of channels in the input sample.

Activation Function - It is commonly used after convolutional layers to add element-wise non-

linearity over the input sample. Out of the available activation functions, sigmoid, tanh, and

rectified linear unit (ReLU), the ReLU activation function is most popular and defined as:

ὙὉὒὟὼ π ὭὪ ὼ π ὥὲὨ ὙὉὒὟὼ ὼ ὭὪ ὼ π.

Pooling - It is a stage of down-sampling of the image’s features through summing up the

information. The most common pooling function is the max-pooling. If 7ÉÎÄÏ×ὲȟὲ is a

window function to the patch of the convolution layer, and Á is the maximum value in the

neighborhood then it is defined as:

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1302 | Vol. 6, No. 5, 2021

ὥ άὥὼὥ ὡὭὲὨέύὲȟὲ Ȣ

For a kernel ‘K’ of dimension ὲ ὲ with stride ‘▼’ which is a value of moving steps in the

convolutional product, the dimension of this layer is defines as:

ὨὭάὩὲίὭέὲὴέέὰὭὲὫὍάὫȟ ȟ

ὲ ςὴ ὲ

ί
ρ ȟ
ὲ ςὴ ὲ

ί
ρȟὲ Ȣ

Where ‘ὴ’ is the number of elements added on every side of input sample to note the edge

information and called padding.

Fully Connected Layer – The output of the final convolutional neural network is connected to

the one or more fully connected layers where every Ὧth node in the previous layer is connected to

every Ὦth node in the next layer as:

ώ ύ ὼ ὦ

where, × is the weight value between the Ὧth node of the previous layer and the Ὦth node of the

current layer, ὦ is the bias value of the Ὦth node of the current layer.

4. Analysis
Firstly, we have performed fine-tuning with VGG-16 on CVSI -15 and MLe2e dataset with

different optimizers for script classification. The CVSI-15 (Sharma et al., 2015) contain 6,412,

1,069 and 3,207 scene text images for training, validation and testing respectively of ten script

classes. The MLe2e dataset (Gomez et al., 2017) is comparatively small with 1,178 and 643 word

images for training and testing respectively of four different scripts.

We used the feature extraction part of the pre-trained VGG-16 model and add a two new dense

layers and output layer in classifier part to the model for the script identification task. We freeze

all the weights of the convolutional layers in pre-trained VGG-16 during training as shown in

Figure 1 and only train newly added layers in classifier part. We add two fully connected layers

of node 128 in fine-tune model. Then we add an output layer of nodes equal to a number of the

unique labels in each dataset. We check the performance of this chosen fine-tune network on

different optimizer parameters which helps in updating weights and minimizing the loss function.

We also add image augmentation in the fine-tune model.

The experimental results are tabulated in Table 1. It is observed that the VGG-16 fine-tune model

performs well using Adam optimizer for CVSI-15 dataset and gives approximately 89.64% test

accuracy. For MLe2e, fine-tune model performs well using SGD and RMSprop optimizers with

best test accuracy approximately as 80.68%.

Secondly, we have performed fine-tuning with the model described in section 3.2 on Kaggle

Devanagari numeral dataset (Pant et al., 2012) with different optimizers for numeral

classification. We freeze all the weights of the convolutional layers in a pre-trained model during

training and only train newly added classifier part with nodes equal to a number of the unique

labels in the Devanagari numerals i.e. 10. The experimental results are tabulated in Table 2. It is

observed that the DHCD fine-tune model performs well using SGD, RMSprop, and Adam

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1303 | Vol. 6, No. 5, 2021

optimizers for Kaggle Devanagari numeral dataset.

Table 1. VGG-16 fine-tuning on CVSI-15 and MLe2e dataset.

Dataset (Training/ validation/ test)

Input: (224*224*3)
Optimizer

Accuracy (%)

Training Val Test

CVSI-15 (6412 / 1069/3207)

Total parameters: 17,943,882
Trainable parameters: 3,229,194

SGD(lr=0.001, momentum=0.9) 88.83 83.25 82.28

RMSprop(lr=0.001) 91.96 88.58 87.99

Adam(lr=0.001) 96.29 90.45 89.64

MLe2e (1174/-/642)

Total parameters: 17,943,108

Trainable parameters: 3,228,420

SGD(lr=0.001, momentum=0.9) 83.60 80.68

RMSprop(lr=0.001) 84.68 - 80.21

Adam(lr=0.001) 41.17 - 24.92

Table 2. Fine tuning on Kaggle Devanagari numeral dataset.

Dataset (Training/ validation/ test)

Input: (32*32*3)
Optimizer

Accuracy (%)

Training Val Test

Kaggle Devanagari numeral dataset

(2304/-/576)
Total parameters: 307,082

Trainable parameters: 650

SGD (lr=0.001, momentum=0.9) 96.27 - 96.52

RMSprop (lr=0.001) 97.18 - 96.70

Adam (lr=0.001) 96.48 - 98.09

During training, we use optimizer to find the optimized weights and to minimize the loss function

which tells the optimizer if it is moving in the correct way to reach the bottom of the valley, the

global minimum. These multiple iterations on complete training dataset update the weights and

bias known as Gradient descent. Since it works on the whole training dataset, it becomes slow

and computationally expensive if the training dataset is very big. One of the advance selections

for the Gradient descent method is SGD which is used for only partial data to train every time,

called mini-batch size. But it requires forward and backward propagation for every entry and

makes the process noisy and slow too. If we add momentum in SGD, it supports gradients vectors

to speed up in the correct way, thus leading to faster convergence. This algorithm uses

exponentially weighted averages which deal with sequences of numbers to compute gradient and

use this gradient to update parameters. For a new sequence V, exponentially weighted averages

define as:

ὠ ‍ὠ ρ ‍Ὓ .

where ‍ is a hyper-parameter, ‍ Ό πȟρ, for this study we have selected ‍ πȢω and Ὓ is a

noisy sequence at instant ὸ.

The second optimizer used is Root Mean Square Propagation and abbreviated as RMSprop

optimizer. It restricts the oscillations in the vertical direction and it takes bigger step-size in the

horizontal direction for converging faster. The third optimizer used is Adaptive Moment

Estimation and abbreviated as Adam optimizer. It combines the properties of SGD with

momentum and RMSprop.

The performance of first proposed VGG-16 fine-tune model for CVSI-15 and MLe2e dataset with

SGD with momentum is shown in Figure 2 and Figure 3, with RMSprop it is shown in Figure 4

and Figure 5, and with Adam it is shown in Figure 6 and Figure 7 with a learning rate of 0.001.

These figures show the loss and accuracy curves for 25 epochs. Figure 8 and Figure 9 present

their confusion matrixes for dataset used by proposed VGG-16 fine-tune model.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1304 | Vol. 6, No. 5, 2021

The performance of second proposed fine-tune model on Kaggle Devanagari numeral dataset

with SGD, RMSprop, and Adam optimizers is presented in Figure 10, Figure 11 and Figure 12.

These figures show the loss and accuracy curves for 50 epochs. Figure 13 present a confusion

matrix with Adam optimizer.

It is observed that if the dataset used in transfer learning is different from the original dataset then

it requires fine tuning with some layers prior to classification. Here, firstly the VGG-16 pre-

trained model is used as a feature extractor and then fine-tuned by adding new layers to the

model. These freshly added new layers were trained for publically available CVSI-15 and MLe2e

datasets for script recognition. This proposed fine-tune model has a total 17,943,882 parameters

and 3,229,194 trainable parameters for CVSI-15 dataset. Similarly, it consists of total 17,943,108

parameters and 3,228,420 trainable parameters for the MLe2e dataset as presented in Table 1. A

well-performed model on Devanagari handwritten characters dataset has also been adopted and

fine-tuned for Kaggle Devanagari numeral dataset for recognition. This proposed fine-tune model

has a total 307,082 parameters and 650 trainable parameters as presented in Table 2. This

proposed fine-tune model for the Kaggle Devanagari numeral dataset performs very well with

very small trainable parameters. All experiments are performed on a computer with i5 - 9300H

CPU (2.40 GHz), 8 GB RAM and NVIDIA GeFORCE GTX 1650.

Our analysis of the results on CVSI-15 and MLe2e datasets using the proposed fine-tune VGG-16

model relates to its distinct nature from the original dataset. On the other hand, the results on the

Kaggle Devanagari numeral dataset using proposed fine-tune DHCD model relates to its similar

nature from the original dataset. Few samples of above datasets are shown in Figure 14, Figure 15

and Figure 16. In CVSI-15 dataset many samples are identical in font style and background

because they are cropped word images from long sentences but in MLe2e dataset, samples consist

of large variation in font style and background.

Although the highest accuracy of 98.91% is achieved by Google using deep convolutional

network with data-augmentation (Sharma et al., 2015) on CVSI-15, our proposed fine-tuned pre-

trained VGG-16 model is a shallower network that involves a faster training procedure. The

highest accuracy of 97.20% is achieved by Ma et al. (2021) using Residual attention-based model

but our proposed fine-tuned pre-trained VGG-16 model has limited performance due to huge

variability in dataset and distinct nature from the original dataset. The proposed fine-tuned pre-

trained DHCD model performs well on Kaggle Devanagari numeral dataset because of huge

similarity in source and target dataset in transfer learning. The comparison of the proposed fine-

tune models with few other methods is presented in Table 3.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1305 | Vol. 6, No. 5, 2021

Figure 2. VGG-16 fine tune model on CVSI-15 using SGD optimizer.

Figure 3. VGG-16 fine tune model on MLe2e using SGD optimizer.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1306 | Vol. 6, No. 5, 2021

Figure 4. VGG-16 fine tune model on CVSI-15 using RMSprop optimizer.

Figure 5. VGG-16 fine tune model on MLe2e using RMSprop optimizer.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1307 | Vol. 6, No. 5, 2021

Figure 6. VGG-16 fine tune model on CVSI-15 using Adam optimizer.

Figure 7. VGG-16 fine tune model on MLe2e using Adam optimizer.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1308 | Vol. 6, No. 5, 2021

Figure 8. Confusion matrix on CVSI-15 dataset using VGG-16 fine-tune model with Adam optimizer.

Figure 9. Confusion matrix on MLe2e dataset using VGG-16 fine-tune model with SGD with momentum

optimizer.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1309 | Vol. 6, No. 5, 2021

Figure 10. Fine tune DHCD model on Kaggle Devanagari numeral dataset using SGD optimizer.

Figure 11. Fine tune DHCD model on Kaggle Devanagari numeral dataset using RMSprop optimizer.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1310 | Vol. 6, No. 5, 2021

Figure 12. Fine tune DHCD model on Kaggle Devanagari numeral dataset using Adam optimizer.

Figure 13. Confusion matrix on Kaggle Devanagari numeral dataset using fine-tune DHCD model with

Adam optimizer.

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1311 | Vol. 6, No. 5, 2021

Figure 14. Example of samples shares exactly the same font and background in CVSI-15 dataset.

Figure.15. Variability in MLe2e dataset.

Figure 16. Samples of Kaggle Devanagari numeral dataset.

Table 3. Overall classification performance comparison with some other methods in three different

datasets: CVSI-15, MLe2e, and Kaggle Devanagari numeral dataset.

Method CVSI-15 MLe2e
Kaggle Devanagari

numeral dataset

C-DAC (Sharma et al., 2015) 84.66 - -

CUK (Sharma et al., 2015) 74.06 - -

Baseline SIFT + Bag of Words + SVM (Gomez et al., 2017) 84.38 86.45 -

SRS-LBP + KNN (Gomez et al., 2017) - 82.71 -

Multilayer Perceptron (MLP) (Pant et al., 2012) - - 87.50

Radial Basis Function (RBF) (Pant et al., 2012) - - 94.44

Proposed fine-tuned pre-trained VGG-16 model with Adam(lr=0.001) 89.64 - -

Proposed fine-tuned pre-trained VGG-16 model with SGD (lr=0.001,

momentum=0.9)
- 80.68 -

Proposed fine-tuned pre-trained DHCD model with Adam (lr=0.001) - - 98.09

5. Conclusions and Future Work
In this article we worked on a script recognition task using transfer learning where the feature

extraction part is chosen from an existing pre-trained model. Here, two pre-trained models are

taken, first pre-trained model is VGG-16 trained on ImageNet dataset and second pre-trained

model is trained on DHCD. First model is fine-tuned for CVSI-15 and MLe2e datasets which is

different from the original dataset for script classification tasks. Second pre-trained model is fine

tuned for the Kaggle Devanagari numeral dataset which is similar to the original dataset for

numeral classification. Both fine tune models are tested on SGD, RMSprop and Adam optimizers

and their performance has been analyzed. The advantage of this transfer learning is that we can

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1312 | Vol. 6, No. 5, 2021

take pre-trained model weights, trained on benchmark datasets and only train the last added few

layers for fine tuning. This saves time and reduces the requirement of a highly configured

machine for training. This also overcomes the need for a very large dataset and is useful in

solving real-world problems. In future more fine-tuning work can be explored for better

performance of described pre-trained models for script classification tasks.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Acknowledgements

The authors are grateful to the editor and reviewers for their helpful suggestions.

References

Alabau, V., Sanchis, A., & Casacuberta, F. (2014). Improving on-line handwritten recognition in

interactive machine translation. Pattern Recognition, 47(3), 1217–1228. Doi:

10.1016/j.patcog.2013.09.035.

Bhunia, A.K., Konwer, A., Bhunia, A.K., Bhowmick, A., Roy, P.P., & Pal, U. (2019). Script identification

in natural scene image and video frames using an attention based convolutional-LSTM network.

Pattern Recognition, 85, 172–184. Doi: 10.1016/j.patcog.2018.07.034.

Bisht, M., & Gupta, R. (2020). Multiclass recognition of offline handwritten Devanagari characters using

CNN. International Journal of Mathematical, Engineering and Management Sciences, 5(6), 1429–

1439.

Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran, Y.A. (2020). Using deep transfer learning for image-

based plant disease identification. Computers and Electronics in Agriculture, 173, 105393.

Ghosh, D., Dube, T., & Shivaprasad, A. (2010). Script recognition—a review. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 32(12), 2142–2161. Doi:10.1109/TPAMI.2010.30.

Gomez, L., & Karatzas, D. (2016). A fine-grained approach to scene text script identification. In 2016 12th

IAPR Workshop on Document Analysis Systems (pp. 192–197). IEEE. Santorini, Greece.

Gomez, L., Nicolaou, A., & Karatzas, D. (2017). Improving patch-based scene text script identification

with ensembles of conjoined networks. Pattern Recognition, 67(1), 85–96.

He, J., Feng, J., Liu, X., Cheng, T., Lin, T.H., Chung, H., & Chang, S.F. (2012). Mobile product search

with bag of hash bits and boundary reranking. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition (pp. 3005–3012). IEEE. Providence, Rhode Island, USA. Doi:

10.1109/CVPR.2012.6248030.

Khan, S., Islam, N., Jan, Z., Ud Din, I., & Rodrigues, J.J.P.C. (2019). A novel deep learning based

framework for the detection and classification of breast cancer using transfer learning. Pattern

Recognition Letters, 125, 1–6. Doi: 10.1016/j.patrec.2019.03.022.

Khare, V., Shivakumara, P., & Raveendran, P. (2015). A new histogram oriented moments descriptor for

multi-oriented moving text detection in video. Expert Systems with Applications, 42(21), 7627–7640.

Li, Z., & Tang, J. (2015). Unsupervised feature selection via nonnegative spectral analysis and redundancy

control. IEEE Transactions on Image Processing, 24(12), 5343–5355. Doi:

10.1109/TIP.2015.2479560.

https://doi.org/10.1016/j.patcog.2013.09.035
https://doi.org/10.1016/j.patcog.2013.09.035
https://doi.org/10.1016/j.patcog.2018.07.034
https://doi.org/10.1109/TPAMI.2010.30
https://doi.org/10.1016/j.patrec.2019.03.022

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1313 | Vol. 6, No. 5, 2021

Li, Z., Liu, J., Tang, J., & Lu, H. (2015). Robust structured subspace learning for data representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 37(10), 2085–2098.

Li, Z., Tang, J., & He, X. (2017). Robust structured nonnegative matrix factorization for image

representation. IEEE Transactions on Neural Networks and Learning Systems, 29(5), 1947–1960.

Lu, L., Yi, Y., Huang, F., Wang, K., & Wang, Q. (2019). Integrating local CNN and global CNN for script

identification in natural scene images. IEEE Access, 7, 52669–52679. Doi:

10.1109/ACCESS.2019.2911964.

Ma, M., Wang, Q.F., Huang, S., Huang, S., Goulermas, Y., & Huang, K. (2021). Residual attention-based

multi-scale script identification in scene text images. Neurocomputing, 421, 222–233.

Mei, J., Dai, L., Shi, B., & Bai, X. (2016). Scene text script identification with convolutional recurrent

neural networks. In 2016 23rd International Conference on Pattern Recognition (pp. 4053–4058).

Cancun, Mexico. Doi: 10.1109/ICPR.2016.7900268.

Pant, A.K., Panday, S.P., & Joshi, S.R. (2012, November). Off-line Nepali handwritten character

recognition using multilayer perceptron and radial basis function neural networks. In 2012 Third Asian

Himalayas International Conference on Internet (pp. 1-5). IEEE. Kathmundu, Nepal.

Pramanik, R., & Bag, S. (2020). Segmentation-based recognition system for handwritten Bangla and

Devanagari words using conventional classification and transfer learning. IET Image Processing,

14(5), 959–972. DOI:10.1049/iet-ipr.2019.0208.

Sharma, N., Chanda, S., Pal, U., & Blumenstein, M. (2013). Word-wise script identification from video

frames. In 2013 12th International Conference on Document Analysis and Recognition (pp. 867–871).

IEEE. Washington, DC, USA. Doi: 10.1109/ICDAR.2013.177.

Sharma, N., Mandal, R., Sharma, R., Pal, U., & Blumenstein, M. (2015). ICDAR2015 competition on

video script identification (CVSI 2015). In 2015 13th International Conference on Document Analysis

and Recognition (pp. 1196–1200). IEEE. Tunis, Tunisia. Doi: 10.1109/ICDAR.2015.7333950.

Sharma, N., Pal, U., & Blumenstein, M. (2014). A study on word-level multi-script identification from

video frames. In 2014 International Joint Conference on Neural Networks (pp. 1827–1833). IEEE.

Beijing, China. Doi: 10.1109/IJCNN.2014.6889906.

Shi, B., Bai, X., & Yao, C. (2016). Script identification in the wild via discriminative convolutional neural

network. Pattern Recognition, 52, 448–458. Doi: 10.1016/j.patcog.2015.11.005.

Shi, B., Yao, C., Zhang, C., Guo, X., Huang, F., & Bai, X. (2015). Automatic script identification in the

wild. In 2015 13th International Conference on Document Analysis and Recognition (pp. 531–535).

IEEE. Tunis, Tunisia. Doi: 10.1109/ICDAR.2015.7333818.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. ArXiv Preprint ArXiv:1409.1556.

Tounsi, M., Moalla, I., Lebourgeois, F., & Alimi, A.M. (2017). CNN based transfer learning for scene

script identification. In International Conference on Neural Information Processing (pp. 702–711),

Springer, Cham. Guangzhou, China. https://doi.org/10.1007/978-3-319-70136-3_74.

Ubul, K., Tursun, G., Aysa, A., Impedovo, D., Pirlo, G., & Yibulayin, T. (2017). Script identification of

multi-script documents: a survey. IEEE Access, 5, 6546–6559. Doi: 10.1109/ACCESS.2017.2689159.

Wang, T., Chen, Y., Zhang, M., Chen, J., & Snoussi, H. (2017). Internal transfer learning for improving

performance in human action recognition for small datasets. IEEE Access, 5, 17627–17633.

Yang, Z., Yu, W., Liang, P., Guo, H., Xia, L., Zhang, F., Ma, Y., & Ma, J. (2019). Deep transfer learning

for military object recognition under small training set condition. Neural Computing and Applications,

31(10), 6469–6478. Doi: 10.1007/s00521-018-3468-3.

http://dx.doi.org/10.1049/iet-ipr.2019.0208
https://doi.org/10.1016/j.patcog.2015.11.005

Bisht & Gupta: Fine-Tuned Pre-Trained Model for Script Recognition

1314 | Vol. 6, No. 5, 2021

Yuan, Z., Wang, H., Wang, L., Lu, T., Palaiahnakote, S., & Tan, C.L. (2016). Modeling spatial layout for

scene image understanding via a novel multiscale sum-product network. Expert Systems with

Applications, 63, 231–240. Doi: 10.1016/j.eswa.2016.07.015.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1016/j.eswa.2016.07.015

