
International Journal of Mathematical, Engineering and Management Sciences

Vol. 10, No. 6, 1640-1657, 2025

https://doi.org/10.33889/IJMEMS.2025.10.6.078

1640 | https://www.ijmems.in

A Heterogeneous Multi-Agent Colluding Attack Defense System

Noah Oikarinen

Department of Electrical and Computer Engineering,

University of Massachusetts, Dartmouth, MA, USA.

E-mail: noikarinen@umassd.edu

Liudong Xing
Department of Electrical and Computer Engineering,

University of Massachusetts, Dartmouth, MA, USA.

Corresponding author: lxing@umassd.edu

(Received on June 6, 2025; Revised on July 18, 2025; Accepted on July 28, 2025)

Abstract

The voting-based redundancy mechanism is widely used as a fault-tolerant technique across various engineering and computing

domains. However, this technique is vulnerable to colluding attacks where multiple malicious resources can collaborate to produce

identical wrong results to potentially fail a task execution, posing significant threats to system integrity, performance, and

reliability. This research introduces a heterogeneous multi-agent colluding attack defense system that employs a two-stage spot

checking strategy within a credibility-based framework designed to detect and mitigate the impact of coordinated adversarial

behavior within diverse agent environments. The proposed framework employs a dual-role architecture, consisting primarily of

spotter and resource agents. Spotters are responsible for monitoring and evaluating the credibility of resource agents based on their

performance and voting patterns. Resource agents that fail the first spot-check cannot participate in the voting process, while a

second spot check targets a randomly selected agent from the majority vote, revoking the credibility of any colluding participants.

The system dynamically and optimally allocates these agents under users’ predefined cost constraints, balancing resource utilization

and defense efficiency. By strategically adjusting the credibility scores of resource agents, the proposed defense mechanism adapts

to ensure sustained system performance and reliability. Experimental studies are conducted to demonstrate effectiveness of the

proposed heterogeneous multi-agent system in defending against colluding attacks in voting-based computing environments. The

impacts of several key model parameters on system performance are also investigated.

Keywords- Colluding attack, Multi-agent system, Reliability, Spot-checking, Voting.

1. Introduction
Voting-based mechanisms (VBMs) are commonly used as fault-tolerant techniques in distributed

computing systems, where each voting unit provides an output, and the collective votes determine the final

result (Parhami, 1994). Popular strategies include majority voting where more than half the votes decide

the outcome, plurality voting where the highest vote count determines the output and threshold voting

requiring a predefined level of agreement to strengthen system integrity. VBMs have been successfully

applied in numerous domains, such as imprecise data handling (Ivanov et al., 2016), safety monitoring and

self-testing (Chaisawat and Vorakulpipat, 2020), multi-channel signal processing (Miao et al., 2024),

pattern recognition (Tasci et al., 2021), target detection (Zhang and Zhou, 2023), image analysis (Iqbal et

al., 2025; Pilar, 2025), node selection in Internet of Things (Chen et al., 2025), and blockchain consensus

protocols (Gaur et al., 2025; Lei et al., 2025; Nguyen and Kim, 2018; Verma et al., 2025). More specifically,

Chen and Avizienis (1978) introduced the idea of N-version programming, in which multiple independently

designed software versions collectively vote to improve reliability and reduce single points of failure.

Avizienis et al. (1971) examined a fault-tolerant computing design, the self-testing and repairing (STAR)

computer, which used weighted voting to favor inputs from more reliable components. Similarly,

Gogiashvili et al. (2000) addressed threshold-based redundancy in binary communication channels, and

https://www.ijmems.in/

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1641 | Vol. 10, No. 6, 2025

Nordmann and Pham (1999) suggested a mathematical model to analyze reliability and cost of a weighted

dynamic threshold voting system.

Although VBMs enhance system performance and fault tolerance, they remain vulnerable to collusion

attacks. In these attacks, a subset of malicious voting units collaborates by sharing information or aligning

their votes to undermine system integrity. When enough dishonest voting units collude, they can sway a

vote toward incorrect results, amplifying the overall damage. Collusion attacks become more problematic

when voting-based systems rely on the assumption that a majority or a threshold of votes are honest.

For effective analysis, a VBM-based system can be modeled as a multi-agent system (MAS) by treating

each voting unit as an agent. An MAS architecture consists of multiple autonomous agents either

homogeneous or heterogeneous, interacting within a shared environment. In general, MAS enable parallel

task execution, enhance system resilience in the face of individual agent failures, and extend overall

coverage across more complex tasks. MAS play a pivotal role in various applications, such as robotics

(Burgard et al., 2005), grid computing (Wu et al., 2011), and wireless sensor networks (Tham and Renaud,

2005). Despite the benefits of MAS, integrating the VBM within an MAS poses unique challenges,

particularly in coordinating agents to ensure accurate and trustworthy outcomes. The security and integrity

of MAS are vulnerable to malicious agents that collude to manipulate outcomes, disrupt operations

(Bonjour et al., 2022; Tassa et al., 2019) or obtain unauthorized access of the system. Having the ability to

respond to colluding attacks in a heterogeneous multi-agent environment plays a significant role to ensure

the reliability, integrity and effectiveness of these systems (Owoputi and Ray, 2022).

Previous research has explored a number of different strategies to detect and mitigate collusion in MAS.

For example, Aguiar et al. (2022) introduced a data-driven contract design aimed at incentivizing agents to

exert effort while detecting and disincentivizing collusion through dynamic contracts. Motwani et al. (2024)

examined the potential for secret collusion among generative artificial intelligence (AI) agents, showing

the need for a collusion mitigation countermeasure. Additionally, Bertrand et al. (2023) showed that Q-

learning agents could learn to collude in iterated games, emphasizing the necessity for robust detection

mechanisms. In the context of collusion prevention research for blockchain consensus protocol, Li et al.

(2023) primary relied on smart contracts that forward information through a randomized communication

topology, preventing malicious agents from exploiting predictable communication channels to coordinate

collusion attacks. Wang et al. (2023) used an uncertainty and collusion proof Delegated Proof-of-Stake

consensus mechanism centered around a selection pressure algorithm. This method allows voters to explore

unfamiliar miners adaptively, thereby reducing wrong elections due to limited prior knowledge and uses a

credibility system to penalize dishonest votes. Nevertheless, key challenges remain in designing dynamic,

cost-aware frameworks capable of adaptively allocating resources under varying attack intensities.

Additionally, there has been limited focus on heterogeneous agent roles specifically tailored to detect

collusion and insufficient attention to credibility scoring with iterative reallocation, which is critical for

sustaining a robust defense against collusive adversaries.

An effective method to detect dishonest or colluding agents in distributed environments is spot checking,

in which a fraction of agents is randomly selected for verification to ensure they are honest agents or can

produce correct outputs. Traditional approaches often adopt a single-stage spot check, verifying outputs

once per task (Staab and Engel, 2009). This single-stage approach has been implemented for collusion

tolerance in grid computing (Levitin et al., 2017, 2018), crowd sourcing (Wang et al., 2020), and peer-to-

peer systems (Wang et al., 2018), where checks are performed to identify and isolate malicious or low

credibility nodes. Particularly, Levitin et al. (2017, 2018) respectively modeled static and dynamic single-

stage spot checking methodologies aimed at detecting and excluding colluding agents by determining the

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1642 | Vol. 10, No. 6, 2025

optimal number of spotters and resource agents for the task. However, a limitation of single-stage spot

checking is that colluding agents can still manipulate outcomes if they evade initial detection. Thus, a more

robust defense mechanism is needed to address this vulnerability.

To fill the gap arising from the limitations of the single-stage spot checking, this paper contributes by

proposing a two-stage spot checking approach in a heterogeneous multi-agent collusion attack defense

system. The two-stage spot check introduces an additional verification step after the voting process,

ensuring that even if colluding agents evade the initial spot check, they still face a second layer of scrutiny,

thereby significantly reducing their chances of success. More specifically, during the first checking, each

spotter verifies a single resource agent before the latter can participate in voting. Once a task vote is

complete, the second spot check is performed on a randomly chosen agent from the majority voters. If this

second spot check fails, the entire majority vote is deemed colluding and the credibility score of all agents

in the majority is revoked. The proposed two-stage spot check strengthens collusion detection by verifying

each prospective voting agent pre-task execution and providing a post voting verification step, thereby

reducing the likelihood of undetected collusion influencing task outcomes. Additionally, the proposed

defense system dynamically allocates the number of resource and spotter agents considering cost constraints

and credibility scores, balancing resource usage and defense against collusion. In addition to the

fundamental methodological novelty discussed above, the performance of the proposed framework in

enhancing the resilience of VBM-based systems against collusion attacks is evaluated and validated using

comprehensive experiments.

The rest of the paper is organized as follows. Section 2 describes the proposed collusion attack defense

methodology. Section 3 evaluates performance of the proposed defense system under varying conditions

such as agent reliability, agent costs, the number of colluding agents, credibility score adjustment

combinations, total cost constraint, and initial credibility score. Section 4 concludes with the impact of the

proposed work and future research that can be performed to extend the research.

2. Methodology
This section presents the theory behind the heterogeneous multi-agent colluding attack defense system. The

methodology includes agent allocation, credibility score updating, collusion detection processes and the

iterative operational framework that provides a robust defense against collusion attacks.

2.1 Defense Mechanism
The defense system operates within a multi-agent environment comprising a pool of heterogeneous agents,

each initialized with a uniform credibility score (𝑆𝑖). The credibility scores are updated based on task

outcomes and detection of malicious behavior during the process.

The master agent begins by allocating the number of spotter (𝑁𝑠) and the number of resource agents (𝑁𝑟)

under a specified cost constraint (𝐶∗). This is mathematically represented by:

𝑁𝑟
𝑚𝑎𝑥 = ⌊

𝐶∗−𝑁𝑠∗𝐶𝑠

𝐶𝑟
⌋ (1)

where, 𝐶𝑟 and 𝐶𝑠 are the cost associated with a resource agent and a spotter agent, respectively.

Subsequently, 𝑁𝑟 resource agents are selected from the pool of available agents with a positive credibility

score. The probability (𝑃𝑖) of any agent 𝑖 being selected is proportional to its credibility score (𝑆𝑖):

𝑃𝑖 =
𝑆𝑖

∑ 𝑆𝑗
𝐾
𝑗=1

 (2)

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1643 | Vol. 10, No. 6, 2025

where, 𝐾 is the number of agents in the pool with 𝑆𝑗 > 0. This probabilistic allocation ensures that agents

deemed more credible are more likely to be assigned to participate in the task execution. Spotter agents

have no credibility score because they are assumed to be perfect. Spotter agents are tasked with identifying

colluding resource agents. During the first spotting phase, each spotter evaluates one resource agent by

giving a task with a known correct answer. A resource agent becomes a work agent if its answer matches

the desired correct answer; otherwise, the resource agent is identified as colluding and its credibility score

is set to zero as in Equation (3), making it ineligible for future allocations by the master agent.

𝑆𝑖
𝑛𝑒𝑤 = 0 (3)

Task execution involves the participation of the selected resource agents with non-zero credibility scores.

In other words, only the selected resource agents passing the first spot checking and those that are not

selected for spot checking participate in task execution. These work agents provide votes on task outcome

which are counted by the voting agent. A majority voting mechanism is employed to determine the task

output when the number of working agents is at least 3. In the event of a tie, no output is determined and

there is no credibility score update. If there are fewer than three work agents, the task still proceeds. When

there are two work agents, they must both agree for the task output to be used. When only one work agent

is available, its vote determines the task outcome.

To reduce the risk of the output being malicious (i.e., the majority of work agents participating in the task

execution are colluding agents), a second spot checking phase is adopted. In this phase, an agent

participating in the majority vote whose output matches the task output is randomly chosen for the spotter

agent to check for colluding. If the selected agent is found to be a colluding agent, the task is deemed to be

unsuccessful, and the credibility score of all winning agents in the majority vote are set to 0. This second

spot checking phase serves as the second layer of defense for the system.

To determine the performance of the system, the task success metric (𝑇𝑆𝑀) is defined as:

v

a

v

Na
if task succeeds

N
TSM

N
if task fails

N





= 
−


 (4)

where, 𝑁𝑎 is the number of agents whose votes agree with the correct output and 𝑁𝑣 is the total number of

votes.

In the case of the task being deemed successful (i.e., passing the second spot checking), the credibility score

of each agent participating in the majority voting is updated using Equation (5) or Equation (6). Specifically,

when a work agent's output is correct (i.e., matching the voted output), its credibility score is incremented

by a fixed value (∆𝑆) as in Equation (5):

𝑆𝑖
𝑛𝑒𝑤 = 𝑆𝑖

𝑜𝑙𝑑 + ∆𝑆 (5)

Conversely, if a work agent's output is incorrect (i.e., not matching the voted output, which is the ground

truth), its credibility score is decremented by a fixed value (∆𝑆′) as in Equation (6):

𝑆𝑖
𝑛𝑒𝑤 = 𝑆𝑖

𝑜𝑙𝑑 − ∆𝑆′ (6)

These updates ensure that agents contributing positively towards the task success are rewarded, while the

colluding agents are systematically excluded from influencing future tasks.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1644 | Vol. 10, No. 6, 2025

The flowchart in Figure 1 summarizes the defense process, which is listed as the following steps.

Figure 1. Flow chart of the proposed defense process.

1) The user provides the cost constraint (𝐶∗) to the master agent.

2) The master agent determines the number of spotter agents (𝑁𝑠) and resource agents (𝑁𝑟) to allocate

from the agent pool, constrained by the cost constraint (𝐶∗).

3) The master agent selects (𝑁𝑠) spotter agents from the agent pool.

4) The master agent selects (𝑁𝑟) resource agents from the agent pool, each agent with a credibility score-

dependent probability of being picked.

5) Each spotter agent performs the first spot checking task on a random resource agent.

6) Resource agents that are selected for the first spot check and pass the check are promoted to work

agents. Resource agents that are not selected for the check are also promoted to work agents. Those that

are selected but fail the check are excluded from participating in the task execution by having their

credibility score set to zero.

7) Work agents participate in task execution and generate their task outputs.

8) A vote agent performs the majority voting of the task outputs from work agents and determines the

final task output.

9) A randomly selected agent from the majority voting winning group is chosen for a second-stage spot

check to validate the task output. If the selected agent fails the second spot check, all winning agents in

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1645 | Vol. 10, No. 6, 2025

the majority voting group have their credibility score set to 0 and the task is considered failed. If the

selected agent passes the check, the task is considered successful, and the credibility scores of all the

winning work agents are increased by ∆𝑆 while the credibility scores of all the work agents whose

output does not match the voted output are decreased by ∆𝑆′.
10) All participating agents are returned to the agent pool for potential reallocation in the next episode.

2.2 𝑻𝑺𝑴 Optimization Solution
The aim of the defense system is to maximize 𝑇𝑆𝑀 subject to the total cost meeting the cost constraint, i.e.,

𝐶𝑇𝑜𝑡𝑎𝑙 ≤ 𝐶∗. In addition, the following constraints should be satisfied: 𝑁𝑠 ≥ 1, 𝑁𝑟 ≥ 1 and 𝑁𝑟 ≥ 𝑁𝑠.

To solve the 𝑇𝑆𝑀 maximization problem, we implement the process in Figure 1 iteratively over multiple

episodes. Each episode begins with the user giving the cost constraint 𝐶∗ to the master agent. As detailed

in Section 2.1, following the agent’s allocation, spot checking, task execution and voting, credibility scores

are updated and colluding agents are possibly detected and isolated. The number of spotter agents is

dynamically adjusted by the master agent in correlation to the task execution status. If the task is

unsuccessful, the number of spotter agents to be allocated in the next episode is increased. Contrarily, if the

task is successful, the number of spotter agents is decreased with a minimum number of spotter agents of

one. This adaptive approach enables continuous refinement of the defense and maintaining a high success

rate and robust detection capabilities across diverse and evolving multi-agent environments.

In addition to 𝑇𝑆𝑀, we measure the performance of the proposed defense system using reliability (R), as

formulated as in Equation (7).

𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠
 (7)

3. Experiments and Evaluations
This section evaluates the performance of the proposed heterogeneous multi-agent colluding attack defense

system and investigates the impact of several key parameters on the system performance, particularly on

the system's ability to successfully detect and mitigate colluding agents. The task used for this experiment

is a pattern recognition task where the agents vote on the classification for the task output. Two system

performance metrics are evaluated, including 𝑇𝑆𝑀 that quantifies the system's ability to correctly execute

the task and 𝑅 that provides an overall measure of the system's consistency in achieving successful

outcomes across multiple episodes.

3.1 Parameter Setup
Each run involves 60 episodes. Each of the evaluation metrics is based off the average value over 1000

different runs. The default configuration is as follows:

• Honest Agent Reliability = 99.99%

• Initial Credibility Score = 5

• Cost of a Resource Agent (𝐶𝑟) versus Cost of a Spotter Agent (𝐶𝑠) = 2:1

• Number of Colluding Agents versus Number of Resource Agents = 5:15

• Credibility Score Updates ∆𝑆 = 3, ∆𝑆′ = 2

• Cost Constraint (𝐶∗) = 10

Under the initial default configuration listed, the average 𝑇𝑆𝑀 and 𝑅 over 1000 runs can be obtained as

0.9870 and 0.9935, respectively.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1646 | Vol. 10, No. 6, 2025

In general, to achieve high 𝑇𝑆𝑀 and 𝑅 several parameters are found to be the most impactful (as detailed

in the following subsections). High honest agent reliability is essential as it ensures that honest agents

consistently produce correct outputs minimizing the influence of colluding agents. Assigning a lower initial

credibility score allows the system to quickly identify and suppress colluding agents by limiting their early

impact on task execution. Using harsher penalties (larger values of ∆𝑆′) for incorrect outputs could improve

the system's ability to eliminate colluding agents and accelerate convergence. Regarding costs, better

outcomes could be achieved when the master agent can afford enough spotters to effectively detect

collusion while still maintaining a sufficient number of resource agents to accomplish tasks.

3.2 Impact of Honest Agent Reliability
The reliability of honest agents is varied from 5% to 99.99% in increments of 5%. This parameter gives the

likelihood of honest agents providing the correct vote for the task execution. Figure 2 and Table 1 show

that both 𝑇𝑆𝑀 and 𝑅 improve monotonically as honest agent reliability increases. When honest agent

reliability is very low, below around 45%, 𝑇𝑆𝑀 values are negative, indicating that colluding or unreliable

agents frequently sway votes to incorrect results. As honest agent reliability crosses roughly 45%, 𝑇𝑆𝑀

transitions into being positive, reflecting the system’s growing ability to align the majority vote with the

correct outcome. In parallel, 𝑅 starts off low but also climbs progressively, surpassing 0.9 once honest agent

reliability exceeds 80%. The trend highlights how even small increases in honest agent reliability can

improve voting outcomes and increase system resilience against colluding attacks.

Table 1 also shows the results of 𝑇𝑆𝑀 and 𝑅 under both one-stage and two-stage spot checks. The two-

stage procedure yields higher 𝑇𝑆𝑀 and 𝑅 in majority of cases. These increments imply that verifying a

randomly chosen voter after the majority vote helps catch additional colluding agents, thereby raising 𝑇𝑆𝑀

and 𝑅.

Table 1. 𝑇𝑆𝑀 and 𝑅 under different honest agent reliability.

Honest agent reliability 𝑻𝑺𝑴 𝑹

One-stage Two-stage One-stage Two-stage

5.00% -0.0663 -0.0667 0.0024 0.0025

10.00% -0.0640 -0.0626 0.0059 0.0061

15.00% -0.0569 -0.0577 0.0115 0.0105

20.00% -0.0524 -0.0510 0.0172 0.0176

25.00% -0.0465 -0.0471 0.0251 0.0239

30.00% -0.0368 -0.0382 0.0349 0.0377

35.00% -0.0280 -0.0266 0.0517 0.0535

40.00% -0.0084 -0.0094 0.0849 0.0822

45.00% 0.0204 0.0220 0.1311 0.1340

50.00% 0.0204 0.0732 0.2268 0.2131

55.00% 0.1834 0.1944 0.3646 0.3827

60.00% 0.3257 0.3233 0.5438 0.5393

65.00% 0.4475 0.4564 0.6756 0.6856

70.00% 0.5689 0.5708 0.7926 0.7931

75.00% 0.6533 0.6553 0.8557 0.8592

80.00% 0.7263 0.7305 0.9028 0.9052

85.00% 0.7949 0.7970 0.9383 0.9407

90.00% 0.8596 0.8613 0.9668 0.9675

95.00% 0.9157 0.9181 0.9833 0.9843

99.99% 0.9675 0.9680 0.9898 0.9898

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1647 | Vol. 10, No. 6, 2025

Figure 2. Impact of honest agent reliability.

3.3 Impact of Cost of Agents
Table 2 and Figures 3 to 6 demonstrate how different 𝐶𝑠 ∶ 𝐶𝑟 combinations influence both 𝑇𝑆𝑀 and 𝑅,

also comparing single-stage and two-stage spot checks. Overall, the system maintains high performance at

combinations with low agent costs, such as 1:1 or 2:1 or 1:2, where the master agent can afford enough

spotters to effectively detect colluders while still maintaining sufficient resource agents to accomplish tasks

and tolerate wrong outputs from any remaining colluders. Combinations with more expensive spotters like

3:1 experience a noticeable boost moving from one-stage spot check (𝑇𝑆𝑀 = 0.9284) to two-stage spot

check (𝑇𝑆𝑀 = 0.9427) while balanced high spotter and resource agent costs like 3:3 remain the weakest

performer in both 𝑇𝑆𝑀 and 𝑅. Comparing one-stage to two-stage spot checks, improvements take place in

both 𝑇𝑆𝑀 and 𝑅 for most cases. Overall, the results illustrate that the two-stage spot checking mechanism

can refine the defense system's performance in general.

Table 2. 𝑇𝑆𝑀 and 𝑅 under different cost combinations.

𝑪𝒔 ∶ 𝑪𝒓
𝑻𝑺𝑴 𝑹

One-stage Two-stage One-stage Two-stage

1 : 1 0.9839 0.9840 0.9991 0.9991

2 : 1 0.9813 0.9814 0.9978 0.9979

1 : 2 0.9678 0.9679 0.9898 0.9900

3 : 1 0.9284 0.9427 0.9456 0.9603

2 : 2 0.9634 0.9650 0.9846 0.9862

1 : 3 0.9644 0.9653 0.9873 0.9874

3 : 2 0.8519 0.8589 0.8728 0.8800

2 : 3 0.9071 0.9150 0.9123 0.9201

3 : 3 0.3582 0.3591 0.3626 0.3635

Figure 3. 𝑇𝑆𝑀 under different cost combinations and single-stage spot check.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1648 | Vol. 10, No. 6, 2025

Figure 4. 𝑅 under different cost combinations and single-stage spot check.

Figure 5. 𝑇𝑆𝑀 under different cost combinations and dual-stage spot check.

Figure 6. 𝑅 under different cost combinations and dual-stage spot check.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1649 | Vol. 10, No. 6, 2025

3.4 Impact of Number of Collusion Agents
Assuming there are 15 resource agents in the pool. We evaluate the system's resilience against varying

levels of collusion attacks by considering the number of colluding agents from 1 to 15. Table 3 summarizes

the values of 𝑇𝑆𝑀 and 𝑅 under both one-stage and two-stage spot checking mechanisms. Figure 7 shows

these results graphically, with a zoomed-in view presented in Figure 8.

Table 3. 𝑇𝑆𝑀 and 𝑅 under different numbers of colluding agents.

Number of colluding

agents

𝑻𝑺𝑴 𝑹

One-stage Two-stage One-stage Two-stage

1 0.9953 0.9955 1.0000 1.0000

2 0.9897 0.9898 0.9990 0.9991

3 0.9838 0.9842 0.9974 0.9978

4 0.9756 0.9769 0.9937 0.9945

5 0.9678 0.9691 0.9900 0.9904

6 0.9594 0.9603 0.9849 0.9851

7 0.9504 0.9539 0.9794 0.9815

8 0.9418 0.9472 0.9734 0.9765

9 0.9340 0.9399 0.9678 0.9703

10 0.9272 0.9354 0.9622 0.9660

11 0.9220 0.9330 0.9563 0.9626

12 0.9201 0.9315 0.9515 0.9583

13 0.9170 0.9287 0.9426 0.9508

14 0.8683 0.9177 0.8876 0.9360

15 -0.0167 -0.0167 0.0000 0.0000

It can be observed that, regardless of whether one-stage or two-stage spot checking is used, both 𝑇𝑆𝑀 and

𝑅 remain high when the number of colluding agents is relatively low compared to the number of honest

agents. As the number of colluding agents increases, both metrics decrease. However, incorporating a

second spot check provides a moderate improvement in 𝑇𝑆𝑀 and 𝑅 with especially pronounced gains at

higher collusion levels. In particular, with 14 colluding agents, 𝑇𝑆𝑀 improves from 0.8683 to 0.9177 and

𝑅 from 0.8876 to 0.9360 when the second spot check is implemented. The reason 𝑇𝑆𝑀 and 𝑅 remain high

even with a large number of colluding agents is due to the rapid elimination of these agents in early episodes.

After the first few episodes, most or all colluding agents are identified and assigned a credibility score of

zero through the spot checking processes, making them ineligible for future allocation. As a result, a single

honest agent is sufficient to maintain correct task outcomes in later episodes. This leads to a high number

of successful episodes, which gives high values of 𝑇𝑆𝑀 and 𝑅. With 15 colluding agents, both one-stage

and two-stage cases collapse to 𝑇𝑆𝑀 = -0.0167 and 𝑅 = 0, indicating a tipping point at which malicious

agents completely dominate. Overall, the data shows that dual spot checks consistently yield higher 𝑇𝑆𝑀

and 𝑅 than a single spot check.

Figure 7. 𝑇𝑆𝑀 and 𝑅 under different numbers of colluding agents.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1650 | Vol. 10, No. 6, 2025

Figure 8. 𝑇𝑆𝑀 and 𝑅 under different numbers of colluding agents (zoomed-in view).

3.5 Impact of Credibility Score Adjustment
Table 4 summarizes the values of 𝑇𝑆𝑀 and 𝑅 under both one-stage and two-stage spot checking

mechanisms, showing that both metrics remain high across all credibility score update combinations.

Table 4. 𝑇𝑆𝑀 and 𝑅 under different credibility score adjustment combinations.

+∆𝑺/−∆𝑺′
𝑻𝑺𝑴 𝑹

One-stage Two-stage One-stage Two-stage

+1/-1 0.9500 0.9530 0.9841 0.9849

+1/-2 0.9588 0.9611 0.9864 0.9875

+1/-3 0.9658 0.9668 0.9889 0.9890

+1/-4 0.9684 0.9692 0.9903 0.9902

+1/-5 0.9786 0.9784 0.9922 0.9922

+2/-1 0.9544 0.9567 0.9863 0.9870

+2/-2 0.9626 0.9638 0.9882 0.9889

+2/-3 0.9678 0.9688 0.9898 0.9902

+2/-4 0.9710 0.9715 0.9913 0.9913

+2/-5 0.9790 0.9790 0.9930 0.9929

+3/-1 0.9595 0.9604 0.9888 0.9886

+3/-2 0.9659 0.9657 0.9905 0.9899

+3/-3 0.9701 0.9702 0.9910 0.9911

+3/-4 0.9735 0.9729 0.9924 0.9919

+3/-5 0.9790 0.9791 0.9927 0.9931

+4/-1 0.9613 0.9628 0.9899 0.9895

+4/-2 0.9669 0.9679 0.9905 0.9908

+4/-3 0.9710 0.9716 0.9915 0.9918

+4/-4 0.9740 0.9747 0.9923 0.9927

+4/-5 0.9798 0.9798 0.9937 0.9936

+5/-1 0.9640 0.9652 0.9899 0.9906

+5/-2 0.9687 0.9696 0.9910 0.9915

+5/-3 0.9722 0.9730 0.9920 0.9923

+5/-4 0.9757 0.9757 0.9932 0.9931

+5/-5 0.9799 0.9802 0.9936 0.9939

Figures 9 to 12 demonstrate how different credibility score adjustment combinations influence 𝑇𝑆𝑀 and

𝑅 in bar graphs, also comparing one-stage (Figures 9 and 10) and two-stage (Figures 11 to 12) spot

checking. There are some fluctuations ranging from about 0.95 to 0.98 in 𝑇𝑆𝑀 and around 0.98 to 0.99 for

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1651 | Vol. 10, No. 6, 2025

𝑅. Larger negative increments like -5 do appear to penalize colluding agents more effectively, boosting

overall performance. The difference between one-stage and two-stage spot check is a gain of a fraction of

a percentage point in both metrics. For instance, +1/-1 moves from 𝑇𝑆𝑀 = 0.9500 to 0.9530 and 𝑅 = 0.9841

to 0.9849. While under the +5/-5 combination, changes are minimal. These improvements do demonstrate

that the second spot check can further tighten defense against colluding agents, especially when being

coupled with harsh penalties for incorrect outputs.

Figure 9. 𝑇𝑆𝑀 under different credibility score adjustment combinations and single-stage spot check.

Figure 10. 𝑅 under different credibility score adjustment combinations and single-stage spot check.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1652 | Vol. 10, No. 6, 2025

Figure 11. 𝑇𝑆𝑀 under different credibility score adjustment combinations and dual-stage spot check.

Figure 12. 𝑅 under different credibility score adjustment combinations and dual-stage spot check.

3.6 Impact of Cost Constraint
The cost constraint is varied from 1 to 15 to evaluate the system's performance under different levels of

budget restraints. This parameter dictates the total resource available for allocating spotter and resource

agents in each episode.

Figure 13 shows the values of 𝑇𝑆𝑀 and 𝑅 under varying cost constraints for the dual spot checking

mechanism. Table 5 presents the values of 𝑇𝑆𝑀 and 𝑅 for both single and dual spot checking mechanisms.

Under both mechanisms, the system fails entirely with 𝑇𝑆𝑀 = 0 and 𝑅 = 0 when the cost constraint 𝐶∗ is 3

or below, as there is not enough resource to allocate the minimal combination of spotters and resource

agents. At 𝐶∗ = 4, both 𝑇𝑆𝑀 and 𝑅 jump to about 0.35, signaling that the master agent can now deploy

enough agents to detect some collusion and achieve moderate task success. Above that budget constraint,

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1653 | Vol. 10, No. 6, 2025

the metrics rise sharply by 𝐶∗ = 6, at which 𝑇𝑆𝑀 surpasses 0.93, and 𝑅 climbs above 0.94. From 𝐶∗ = 7

onward, both 𝑇𝑆𝑀 and 𝑅 stabilize near or above 0.96. Comparing the single and dual spot checks, there is

not much of a difference between the two methods. After 𝐶∗ = 6 with most of the time the single spot check

preforms better than the dual spot check. These results show a lower bound on the total resource cost for

effective spotter and resource agent allocation and show the near optimal performance of the system when

𝐶∗ is above 6.

Figure 13. 𝑇𝑆𝑀 and 𝑅 under varying cost constraints.

3.7 Impact of Initial Credibility Score
The initial value of 𝑆𝑖 is varied from 1 to 20 to evaluate the system's performance under different levels of

initial trust of each agent.

Figure 14 and Table 6 demonstrate that both 𝑇𝑆𝑀 and 𝑅 begin at relatively high levels for low initial 𝑆𝑖

then steadily decrease as 𝑆𝑖 increases. For instance, at initial 𝑆𝑖 = 1, 𝑇𝑆𝑀 is around 0.98 and 𝑅 is around

0.995. For 𝑆𝑖 = 20, 𝑇𝑆𝑀 falls to about 0.945 and 𝑅 drops towards to around 0.981. This pattern suggests

that assigning higher initial 𝑆𝑖 makes it slightly harder to distinguish honest agents from potential colluding

agents, leading to a gradual degradation in system performance. Comparing single and dual spot checks

reveals that while both have the same downward trend, the dual spot check consistently maintains a small

increase of performance. For example, at 𝑆𝑖 = 7, 𝑇𝑆𝑀 improves from 0.9626 to 0.9633 and 𝑅 climbs from

0.9881 to 0.9884. Overall, these findings highlight that while increasing initial credibility score slightly

impacts performance by making it harder to distinguish between colluding and honest agents, the use of a

second spot check consistently improves 𝑇𝑆𝑀 and 𝑅 across varied settings, emphasizing the value of a dual

spot check.

Figure 14. 𝑇𝑆𝑀 and 𝑅 under varying initial credibility score.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1654 | Vol. 10, No. 6, 2025

Table 5. 𝑇𝑆𝑀 and 𝑅 under varying cost constraints.

𝑪∗ 𝑻𝑺𝑴 𝑹

One-stage Two-stage One-stage Two-stage

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000

4 0.3490 0.3456 0.3490 0.3456

5 0.7414 0.7504 0.7467 0.7556

6 0.9394 0.9362 0.9448 0.9419

7 0.9662 0.9651 0.9882 0.9876

8 0.9638 0.9651 0.9870 0.9874

9 0.9676 0.9677 0.9885 0.9886

10 0.9678 0.9678 0.9898 0.9899

11 0.9739 0.9744 0.9954 0.9957

12 0.9750 0.9749 0.9961 0.9958

13 0.9770 0.9766 0.9961 0.9960

14 0.9780 0.9776 0.9969 0.9969

15 0.9799 0.9800 0.9977 0.9976

Table 6. 𝑇𝑆𝑀 and 𝑅 under varying initial credibility score.

Initial 𝑺𝒊 𝑻𝑺𝑴 𝑹

One-stage Two-stage One-stage Two-stage

1 0.9824 0.9827 0.9953 0.9956

2 0.9804 0.9803 0.9940 0.9939

3 0.9793 0.9791 0.9931 0.9929

4 0.9720 0.9719 0.9922 0.9913

5 0.9681 0.9685 0.9898 0.9902

6 0.9672 0.9672 0.9896 0.9892

7 0.9626 0.9633 0.9881 0.9884

8 0.9601 0.9607 0.9876 0.9873

9 0.9583 0.9604 0.9865 0.9871

10 0.9561 0.9583 0.9859 0.9866

11 0.9525 0.9561 0.9848 0.9858

12 0.9521 0.9544 0.9840 0.9849

13 0.9490 0.9537 0.9829 0.9850

14 0.9492 0.9521 0.9832 0.9844

15 0.9479 0.9527 0.9830 0.9844

16 0.9475 0.9509 0.9829 0.9843

17 0.9470 0.9506 0.9825 0.9837

18 0.9448 0.9487 0.9818 0.9829

19 0.9447 0.9485 0.9813 0.9829

20 0.9424 0.9474 0.9809 0.9825

4. Conclusion and Future Work
This paper presents a novel heterogeneous multi-agent collusion defense system that integrates a two-stage

spot checking mechanism and a dynamic credibility score-based allocation scheme. Experimental results

indicate that the two-stage spot checking approach consistently outperforms the single-stage spot checking,

achieving higher performance across a range of collusion scenarios. Impacts of parameters including the

honest agent reliability, resource and spotter agent costs, the number of colluding agents, credibility score

adjustment combinations, cost constraint, and initial credibility score are examined.

The experimental studies on a pattern recognition VBM-based system reveal that system performance can

benefit from high honest agent reliability, low initial credibility scores, large penalties for incorrect outputs,

and a large cost constraint. While the cost ratio between spotter agents and resource agents has a moderate

impact, better performance is observed when spotters are affordable to allow enough spot checks to

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1655 | Vol. 10, No. 6, 2025

minimize the risk of collusion without limiting task execution. The number of colluding agents highly

influences system performance especially when it is high enough to overwhelm the system. Overall, the

two-stage spot checking approach consistently outperforms the one-stage approach, particularly as the

number of colluding agents and initial credibility scores increase.

The proposed model assumes that spotter agents are perfectly reliable. This limitation will be addressed in

future research by modeling spotter agents with both false negative and false positive detections. Future

research also includes exploring the utilization of different trust models and voting techniques to understand

their impact on the defense system. Future research would also include scaling the system to include a larger

number of agents. Another area of research would be to incorporate AI methods such as reinforcement

learning for the master agent to actively and adaptively learn to optimize the parameters of the system.

These advancements could enhance further the system’s reliability, security, and resilience against diverse

adversarial threats.

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The

authors would like to thank the editor and anonymous reviewers for their comments that help improve the quality of this work.

AI Disclosure

The authors declare that no assistance is taken from generative AI to write this article.

References

Aguiar, N., Venkitasubramaniam, P., & Gupta, V. (2022). Data-driven contract design for multi-agent systems with

collusion detection. IEEE Signal Processing Letters, 29, 1002-1006. https://doi.org/10.1109/lsp.2022.3163691.

Avizienis, A., Gilley, G.C., Mathur, F.P., Rennels, D.A., Rohr, J.A., & Rubin, D.K. (1971). The STAR (self-testing

and repairing) computer: an investigation of the theory and practice of fault-tolerant computer design. IEEE

Transactions on Computers, C-20(11), 1312-1321. https://doi.org/10.1109/t-c.1971.223133.

Bertrand, Q., Duque, J., Calvano, E., & Gidel, G. (2023). Q-learners can provably collude in the iterated prisoner's

dilemma. https://doi.org/10.48550/arXiv.2312.08484.

Bonjour, T., Aggarwal, V., & Bhargava, B. (2022). Information theoretic approach to detect collusion in multi-agent

games. In Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (pp. 223-232). PMLR.

https://proceedings.mlr.press/v180/bonjour22a.html.

Burgard, W., Moors, M., Stachniss, C., & Schneider, F.E. (2005). Coordinated multi-robot exploration. IEEE

Transactions on robotics, 21(3), 376-386. https://doi.org/10.1109/tro.2004.839232.

Chaisawat, S., & Vorakulpipat, C. (2020). Fault-tolerant architecture design for blockchain-based electronics voting

system. In 2020 17th International Joint Conference on Computer Science and Software Engineering (pp. 116-

121). IEEE. Bangkok, Thailand. https://doi.org/10.1109/jcsse49651.2020.9268264.

Chen, L., & Avizienis, A. (1978). N-version programming: a fault-tolerance approach to reliability of software

operation. In Proceedings of 8th IEEE International Symposium on Fault-Tolerant Computing (Vol. 1, pp. 3-9).

IEEE Computer Society.

Chen, Y., Wang, Z., Min, Y., & Liu, Z. (2025). Decentralized voting-based federated learning framework for

lightweight node selection in edge collaborative IoT. IEEE Internet of Things Journal, 12(12), 20272-20287.

https://doi.org/10.48550/arXiv.2312.08484
https://proceedings.mlr.press/v180/bonjour22a.html
https://doi.org/10.1109/tro.2004.839232
https://doi.org/10.1109/jcsse49651.2020.9268264

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1656 | Vol. 10, No. 6, 2025

Gaur, D., Bali, S., Gunasekaran, A., Joshi, N., Chaudhary, K., & Bali, V. (2025). A multi-criteria decision-making

framework for blockchain technology adoption in smart healthcare. International Journal of Mathematical,

Engineering and Management Sciences, 10(5), 1476-1496.

Gogiashvili, J.G., Namicheishvili, O., & Shonia, G. (2000). Optimization of weights for threshold redundancy of

binary channels by the method of (Mahalanobis’) generalized distance. In Second International Conference on

Mathematical Methods in Reliability: Methodology, Practice and Interference (pp. 4-7).

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4mromi8aaaaj&citation_for_view=4

mromi8aaaaj:_fxgofyzp5qc.

Iqbal, S., Qureshi, A.N., Alhussein, M., Aurangzeb, K., Mahmood, A., & Azzuhri, S.R.B. (2025). Dynamic selectout

and voting-based federated learning for enhanced medical image analysis. Machine Learning: Science and

Technology, 6(1), 015010. https://doi.org/10.1088/2632-2153/ada0a6.

Ivanov, R., Pajic, M., & Lee, I. (2016). Attack-resilient sensor fusion for safety-critical cyber-physical systems. ACM

Transactions on Embedded Computing Systems, 15(1), 1-24. https://doi.org/10.1145/2847418.

Lei, T., Zhang, Q., Qiu, W., Zheng, H., Miao, S., Jie, W., Zhu, J., Dong, J., & Zheng, Z. (2025). An enhanced DPoS

consensus mechanism using quadratic voting in Web 3.0 ecosystem. Blockchain, 3(1), 1-14.

https://doi.org/10.55092/blockchain20250001.

Levitin, G., Xing, L., & Dai, Y. (2017). Optimal spot-checking for collusion tolerance in computer grids. IEEE

Transactions on Dependable and Secure Computing, 16(2), 301-312. https://doi.org/10.1109/tdsc.2017.2690293.

Levitin, G., Xing, L., Johnson, B.W., & Dai, Y. (2018). Optimization of dynamic spot-checking for collusion tolerance

in grid computing. Future Generation Computer Systems, 86, 30-38. https://doi.org/10.1016/j.future.2018.01.049.

Li, H., Hui, H., & Zhang, H. (2023). Decentralized energy management of microgrid based on blockchain-empowered

consensus algorithm with collusion prevention. IEEE Transactions on Sustainable Energy, 14(4), 2260-2273.

https://doi.org/10.1109/tste.2023.3258452.

Miao, B., Xu, Y., Wang, J., & Zhang, Y. (2024). Dc-bvm: dual-channel information fusion network based on voting

mechanism. Biomedical Signal Processing and Control, 94, 106248. https://doi.org/10.1016/j.bspc.2024.106248.

Motwani, S.R., Baranchuk, M., Strohmeier, M., Bolina, V., Torr, P.H.S., Hammond, L., & de Witt, C.S. (2024). Secret

collusion among ai agents: multi-agent deception via steganography. Advances in Neural Information Processing

Systems, 37, 73439-73486.

https://proceedings.neurips.cc/paper_files/paper/2024/file/861f7dad098aec1c3560fb7add468d41-Paper-

Conference.pdf.

Nguyen, G.T., & Kim, K. (2018). A survey about consensus algorithms used in blockchain. Journal of Information

Processing Systems, 14(1), 101-128. https://doi.org/10.3745/jips.01.0024.

Nordmann, L., & Pham, H. (1999). Weighted voting systems. IEEE Transactions on Reliability, 48(1), 42-49.

https://doi.org/10.1109/24.765926.

Owoputi, R., & Ray, S. (2022). Security of multi-agent cyber-physical systems: a survey. IEEE Access, 10, 121465-

121479. https://doi.org/10.1109/access.2022.3223362.

Parhami, B. (1994). Voting algorithms. IEEE Transactions on Reliability, 43(4), 617-629.

https://doi.org/10.1109/24.370218.

Pilar, B. (2025). InceptionV3-driven multiclassifier voting system for watermark classification. In 2025 International

Conference on Computational, Communication and Information Technology (pp. 471-476). IEEE. Indore, India.

https://doi.org/10.1109/icccit62592.2025.10928146.

Staab, E., & Engel, T. (2009). Collusion detection for grid computing. In 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid (pp. 412-419). IEEE. Shanghai, China.

https://doi.org/10.1109/ccgrid.2009.12.

Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System

1657 | Vol. 10, No. 6, 2025

Tasci, E., Uluturk, C., & Ugur, A. (2021). A voting-based ensemble deep learning method focusing on image

augmentation and preprocessing variations for tuberculosis detection. Neural Computing and

Applications, 33(22), 15541-15555. https://doi.org/10.1007/s00521-021-06177-2.

Tassa, T., Grinshpoun, T., & Yanai, A. (2019). A privacy preserving collusion secure DCOP algorithm. Cryptography

and Security. https://doi.org/10.48550/arXiv.1905.09013.

Tham, C.K., & Renaud, J.C. (2005). Multi-agent systems on sensor networks: a distributed reinforcement learning

approach. In 2005 International Conference on Intelligent Sensors, Sensor Networks and Information

Processing (pp. 423-429). IEEE. Melbourne, VIC, Australia. https://doi.org/10.1109/issnip.2005.1595616.

Verma, S., Chandra, G., & Yadav, D. (2025). LVCA: an efficient voting-based consensus algorithm in private

blockchain for enhancing data security. Peer-to-Peer Networking and Applications, 18(2), 88.

https://doi.org/10.1007/s12083-024-01808-6.

Wang, S., Qu, X., Hu, Q., Wang, X., & Cheng, X. (2023). An uncertainty-and collusion-proof voting consensus

mechanism in blockchain. IEEE/ACM Transactions on Networking, 31(5), 2376-2388.

https://doi.org/10.1109/tnet.2023.3249206.

Wang, W., An, B., & Jiang, Y. (2018). Optimal spot-checking for improving evaluation accuracy of peer grading

systems. In Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 833-840.

https://doi.org/10.1609/aaai.v32i1.11336.

Wang, W., An, B., & Jiang, Y. (2020). Optimal spot-checking for improving the evaluation quality of crowdsourcing:

application to peer grading systems. IEEE Transactions on Computational Social Systems, 7(4), 940-955.

https://doi.org/10.1109/tcss.2020.2998732.

Wu, J., Xu, X., Zhang, P., & Liu, C. (2011). A novel multi-agent reinforcement learning approach for job scheduling

in grid computing. Future Generation Computer Systems, 27(5), 430-439.

https://doi.org/10.1016/j.future.2010.10.009.

Zhang, H., & Zhou, Y. (2023). A neural network-based weighted voting algorithm for multi-target classification in

WSN. Sensors, 24(1), 123. https://doi.org/10.3390/s24010123.

Original content of this work is copyright © Ram Arti Publishers. Uses under the Creative Commons Attribution 4.0 International (CC BY 4.0)

license at https://creativecommons.org/licenses/by/4.0/

Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps

and institutional affiliations.

https://doi.org/10.48550/arXiv.1905.09013

