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Abstract 

The voting-based redundancy mechanism is widely used as a fault-tolerant technique across various engineering and computing 

domains. However, this technique is vulnerable to colluding attacks where multiple malicious resources can collaborate to produce 

identical wrong results to potentially fail a task execution, posing significant threats to system integrity, performance, and 

reliability. This research introduces a heterogeneous multi-agent colluding attack defense system that employs a two-stage spot 

checking strategy within a credibility-based framework designed to detect and mitigate the impact of coordinated adversarial 

behavior within diverse agent environments. The proposed framework employs a dual-role architecture, consisting primarily of 

spotter and resource agents. Spotters are responsible for monitoring and evaluating the credibility of resource agents based on their 

performance and voting patterns. Resource agents that fail the first spot-check cannot participate in the voting process, while a 

second spot check targets a randomly selected agent from the majority vote, revoking the credibility of any colluding participants. 

The system dynamically and optimally allocates these agents under users’ predefined cost constraints, balancing resource utilization 

and defense efficiency. By strategically adjusting the credibility scores of resource agents, the proposed defense mechanism adapts 

to ensure sustained system performance and reliability. Experimental studies are conducted to demonstrate effectiveness of the 

proposed heterogeneous multi-agent system in defending against colluding attacks in voting-based computing environments. The 

impacts of several key model parameters on system performance are also investigated. 

 

Keywords- Colluding attack, Multi-agent system, Reliability, Spot-checking, Voting. 

 

 

 

1. Introduction 
Voting-based mechanisms (VBMs) are commonly used as fault-tolerant techniques in distributed 

computing systems, where each voting unit provides an output, and the collective votes determine the final 

result (Parhami, 1994). Popular strategies include majority voting where more than half the votes decide 

the outcome, plurality voting where the highest vote count determines the output and threshold voting 

requiring a predefined level of agreement to strengthen system integrity. VBMs have been successfully 

applied in numerous domains, such as imprecise data handling (Ivanov et al., 2016), safety monitoring and 

self-testing (Chaisawat and Vorakulpipat, 2020), multi-channel signal processing (Miao et al., 2024), 

pattern recognition (Tasci et al., 2021), target detection (Zhang and Zhou, 2023), image analysis (Iqbal et 

al., 2025; Pilar, 2025), node selection in Internet of Things (Chen et al., 2025), and blockchain consensus 

protocols (Gaur et al., 2025; Lei et al., 2025; Nguyen and Kim, 2018; Verma et al., 2025). More specifically, 

Chen and Avizienis (1978) introduced the idea of N-version programming, in which multiple independently 

designed software versions collectively vote to improve reliability and reduce single points of failure. 

Avizienis et al. (1971) examined a fault-tolerant computing design, the self-testing and repairing (STAR) 

computer, which used weighted voting to favor inputs from more reliable components. Similarly, 

Gogiashvili et al. (2000) addressed threshold-based redundancy in binary communication channels, and 
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Nordmann and Pham (1999) suggested a mathematical model to analyze reliability and cost of a weighted 

dynamic threshold voting system. 

 

Although VBMs enhance system performance and fault tolerance, they remain vulnerable to collusion 

attacks. In these attacks, a subset of malicious voting units collaborates by sharing information or aligning 

their votes to undermine system integrity. When enough dishonest voting units collude, they can sway a 

vote toward incorrect results, amplifying the overall damage. Collusion attacks become more problematic 

when voting-based systems rely on the assumption that a majority or a threshold of votes are honest. 

 

For effective analysis, a VBM-based system can be modeled as a multi-agent system (MAS) by treating 

each voting unit as an agent. An MAS architecture consists of multiple autonomous agents either 

homogeneous or heterogeneous, interacting within a shared environment. In general, MAS enable parallel 

task execution, enhance system resilience in the face of individual agent failures, and extend overall 

coverage across more complex tasks. MAS play a pivotal role in various applications, such as robotics 

(Burgard et al., 2005), grid computing (Wu et al., 2011), and wireless sensor networks (Tham and Renaud, 

2005). Despite the benefits of MAS, integrating the VBM within an MAS poses unique challenges, 

particularly in coordinating agents to ensure accurate and trustworthy outcomes. The security and integrity 

of MAS are vulnerable to malicious agents that collude to manipulate outcomes, disrupt operations 

(Bonjour et al., 2022; Tassa et al., 2019) or obtain unauthorized access of the system. Having the ability to 

respond to colluding attacks in a heterogeneous multi-agent environment plays a significant role to ensure 

the reliability, integrity and effectiveness of these systems (Owoputi and Ray, 2022). 

 

Previous research has explored a number of different strategies to detect and mitigate collusion in MAS. 

For example, Aguiar et al. (2022) introduced a data-driven contract design aimed at incentivizing agents to 

exert effort while detecting and disincentivizing collusion through dynamic contracts. Motwani et al. (2024) 

examined the potential for secret collusion among generative artificial intelligence (AI) agents, showing 

the need for a collusion mitigation countermeasure. Additionally, Bertrand et al. (2023) showed that Q-

learning agents could learn to collude in iterated games, emphasizing the necessity for robust detection 

mechanisms. In the context of collusion prevention research for blockchain consensus protocol, Li et al. 

(2023) primary relied on smart contracts that forward information through a randomized communication 

topology, preventing malicious agents from exploiting predictable communication channels to coordinate 

collusion attacks. Wang et al. (2023) used an uncertainty and collusion proof Delegated Proof-of-Stake 

consensus mechanism centered around a selection pressure algorithm. This method allows voters to explore 

unfamiliar miners adaptively, thereby reducing wrong elections due to limited prior knowledge and uses a 

credibility system to penalize dishonest votes. Nevertheless, key challenges remain in designing dynamic, 

cost-aware frameworks capable of adaptively allocating resources under varying attack intensities. 

Additionally, there has been limited focus on heterogeneous agent roles specifically tailored to detect 

collusion and insufficient attention to credibility scoring with iterative reallocation, which is critical for 

sustaining a robust defense against collusive adversaries. 

 

An effective method to detect dishonest or colluding agents in distributed environments is spot checking, 

in which a fraction of agents is randomly selected for verification to ensure they are honest agents or can 

produce correct outputs. Traditional approaches often adopt a single-stage spot check, verifying outputs 

once per task (Staab and Engel, 2009). This single-stage approach has been implemented for collusion 

tolerance in grid computing (Levitin et al., 2017, 2018), crowd sourcing (Wang et al., 2020), and peer-to-

peer systems (Wang et al., 2018), where checks are performed to identify and isolate malicious or low 

credibility nodes. Particularly, Levitin et al. (2017, 2018) respectively modeled static and dynamic single-

stage spot checking methodologies aimed at detecting and excluding colluding agents by determining the 



Oikarinen & Xing: A Heterogeneous Multi-Agent Colluding Attack Defense System 
 

 

1642 | Vol. 10, No. 6, 2025 

optimal number of spotters and resource agents for the task. However, a limitation of single-stage spot 

checking is that colluding agents can still manipulate outcomes if they evade initial detection. Thus, a more 

robust defense mechanism is needed to address this vulnerability. 

 

To fill the gap arising from the limitations of the single-stage spot checking, this paper contributes by 

proposing a two-stage spot checking approach in a heterogeneous multi-agent collusion attack defense 

system. The two-stage spot check introduces an additional verification step after the voting process, 

ensuring that even if colluding agents evade the initial spot check, they still face a second layer of scrutiny, 

thereby significantly reducing their chances of success. More specifically, during the first checking, each 

spotter verifies a single resource agent before the latter can participate in voting. Once a task vote is 

complete, the second spot check is performed on a randomly chosen agent from the majority voters. If this 

second spot check fails, the entire majority vote is deemed colluding and the credibility score of all agents 

in the majority is revoked. The proposed two-stage spot check strengthens collusion detection by verifying 

each prospective voting agent pre-task execution and providing a post voting verification step, thereby 

reducing the likelihood of undetected collusion influencing task outcomes. Additionally, the proposed 

defense system dynamically allocates the number of resource and spotter agents considering cost constraints 

and credibility scores, balancing resource usage and defense against collusion. In addition to the 

fundamental methodological novelty discussed above, the performance of the proposed framework in 

enhancing the resilience of VBM-based systems against collusion attacks is evaluated and validated using 

comprehensive experiments. 

 

The rest of the paper is organized as follows. Section 2 describes the proposed collusion attack defense 

methodology. Section 3 evaluates performance of the proposed defense system under varying conditions 

such as agent reliability, agent costs, the number of colluding agents, credibility score adjustment 

combinations, total cost constraint, and initial credibility score. Section 4 concludes with the impact of the 

proposed work and future research that can be performed to extend the research. 

 

2. Methodology 
This section presents the theory behind the heterogeneous multi-agent colluding attack defense system. The 

methodology includes agent allocation, credibility score updating, collusion detection processes and the 

iterative operational framework that provides a robust defense against collusion attacks. 

 

2.1 Defense Mechanism 
The defense system operates within a multi-agent environment comprising a pool of heterogeneous agents, 

each initialized with a uniform credibility score (𝑆𝑖). The credibility scores are updated based on task 

outcomes and detection of malicious behavior during the process. 

 

The master agent begins by allocating the number of spotter (𝑁𝑠) and the number of resource agents (𝑁𝑟) 

under a specified cost constraint (𝐶∗). This is mathematically represented by: 

𝑁𝑟
𝑚𝑎𝑥 = ⌊

𝐶∗−𝑁𝑠∗𝐶𝑠

𝐶𝑟
⌋                                                                                                                                      (1) 

 

where, 𝐶𝑟  and 𝐶𝑠  are the cost associated with a resource agent and a spotter agent, respectively. 

Subsequently, 𝑁𝑟 resource agents are selected from the pool of available agents with a positive credibility 

score. The probability (𝑃𝑖) of any agent 𝑖 being selected is proportional to its credibility score (𝑆𝑖): 

𝑃𝑖 =
𝑆𝑖

∑ 𝑆𝑗
𝐾
𝑗=1

                                                                                                                                                  (2) 
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where, 𝐾 is the number of agents in the pool with 𝑆𝑗 > 0. This probabilistic allocation ensures that agents 

deemed more credible are more likely to be assigned to participate in the task execution. Spotter agents 

have no credibility score because they are assumed to be perfect. Spotter agents are tasked with identifying 

colluding resource agents. During the first spotting phase, each spotter evaluates one resource agent by 

giving a task with a known correct answer. A resource agent becomes a work agent if its answer matches 

the desired correct answer; otherwise, the resource agent is identified as colluding and its credibility score 

is set to zero as in Equation (3), making it ineligible for future allocations by the master agent. 

𝑆𝑖
𝑛𝑒𝑤 = 0                                                                                                                                                     (3) 

 

Task execution involves the participation of the selected resource agents with non-zero credibility scores. 

In other words, only the selected resource agents passing the first spot checking and those that are not 

selected for spot checking participate in task execution. These work agents provide votes on task outcome 

which are counted by the voting agent. A majority voting mechanism is employed to determine the task 

output when the number of working agents is at least 3. In the event of a tie, no output is determined and 

there is no credibility score update. If there are fewer than three work agents, the task still proceeds. When 

there are two work agents, they must both agree for the task output to be used. When only one work agent 

is available, its vote determines the task outcome. 

 

To reduce the risk of the output being malicious (i.e., the majority of work agents participating in the task 

execution are colluding agents), a second spot checking phase is adopted. In this phase, an agent 

participating in the majority vote whose output matches the task output is randomly chosen for the spotter 

agent to check for colluding. If the selected agent is found to be a colluding agent, the task is deemed to be 

unsuccessful, and the credibility score of all winning agents in the majority vote are set to 0. This second 

spot checking phase serves as the second layer of defense for the system. 

 

To determine the performance of the system, the task success metric (𝑇𝑆𝑀) is defined as: 

v

a

v

Na
if task succeeds

N
TSM

N
if task fails

N





= 
−


                                                                                                              (4) 

 

where, 𝑁𝑎 is the number of agents whose votes agree with the correct output and 𝑁𝑣 is the total number of 

votes. 

 

In the case of the task being deemed successful (i.e., passing the second spot checking), the credibility score 

of each agent participating in the majority voting is updated using Equation (5) or Equation (6). Specifically, 

when a work agent's output is correct (i.e., matching the voted output), its credibility score is incremented 

by a fixed value (∆𝑆) as in Equation (5): 

𝑆𝑖
𝑛𝑒𝑤 = 𝑆𝑖

𝑜𝑙𝑑 + ∆𝑆                                                                                                                                       (5) 

 

Conversely, if a work agent's output is incorrect (i.e., not matching the voted output, which is the ground 

truth), its credibility score is decremented by a fixed value (∆𝑆′) as in Equation (6): 

𝑆𝑖
𝑛𝑒𝑤 = 𝑆𝑖

𝑜𝑙𝑑 − ∆𝑆′                                                                                                                                      (6) 

 

These updates ensure that agents contributing positively towards the task success are rewarded, while the 

colluding agents are systematically excluded from influencing future tasks. 
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The flowchart in Figure 1 summarizes the defense process, which is listed as the following steps. 

 

 
 

Figure 1. Flow chart of the proposed defense process. 

 

 

1) The user provides the cost constraint (𝐶∗) to the master agent. 

2) The master agent determines the number of spotter agents (𝑁𝑠) and resource agents (𝑁𝑟) to allocate 

from the agent pool, constrained by the cost constraint (𝐶∗). 

3) The master agent selects (𝑁𝑠) spotter agents from the agent pool. 

4) The master agent selects (𝑁𝑟) resource agents from the agent pool, each agent with a credibility score-

dependent probability of being picked. 

5) Each spotter agent performs the first spot checking task on a random resource agent. 

6) Resource agents that are selected for the first spot check and pass the check are promoted to work 

agents. Resource agents that are not selected for the check are also promoted to work agents. Those that 

are selected but fail the check are excluded from participating in the task execution by having their 

credibility score set to zero. 

7) Work agents participate in task execution and generate their task outputs. 

8) A vote agent performs the majority voting of the task outputs from work agents and determines the 

final task output. 

9) A randomly selected agent from the majority voting winning group is chosen for a second-stage spot 

check to validate the task output. If the selected agent fails the second spot check, all winning agents in 
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the majority voting group have their credibility score set to 0 and the task is considered failed. If the 

selected agent passes the check, the task is considered successful, and the credibility scores of all the 

winning work agents are increased by ∆𝑆 while the credibility scores of all the work agents whose 

output does not match the voted output are decreased by ∆𝑆′. 
10) All participating agents are returned to the agent pool for potential reallocation in the next episode. 

 

2.2 𝑻𝑺𝑴 Optimization Solution 
The aim of the defense system is to maximize 𝑇𝑆𝑀 subject to the total cost meeting the cost constraint, i.e., 

𝐶𝑇𝑜𝑡𝑎𝑙 ≤ 𝐶∗. In addition, the following constraints should be satisfied: 𝑁𝑠 ≥ 1, 𝑁𝑟 ≥ 1 and 𝑁𝑟 ≥ 𝑁𝑠. 

 

To solve the 𝑇𝑆𝑀 maximization problem, we implement the process in Figure 1 iteratively over multiple 

episodes. Each episode begins with the user giving the cost constraint 𝐶∗ to the master agent. As detailed 

in Section 2.1, following the agent’s allocation, spot checking, task execution and voting, credibility scores 

are updated and colluding agents are possibly detected and isolated. The number of spotter agents is 

dynamically adjusted by the master agent in correlation to the task execution status. If the task is 

unsuccessful, the number of spotter agents to be allocated in the next episode is increased. Contrarily, if the 

task is successful, the number of spotter agents is decreased with a minimum number of spotter agents of 

one. This adaptive approach enables continuous refinement of the defense and maintaining a high success 

rate and robust detection capabilities across diverse and evolving multi-agent environments. 

 

In addition to 𝑇𝑆𝑀, we measure the performance of the proposed defense system using reliability (R), as 

formulated as in Equation (7). 

𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠
                                                                                                     (7) 

 

3. Experiments and Evaluations 
This section evaluates the performance of the proposed heterogeneous multi-agent colluding attack defense 

system and investigates the impact of several key parameters on the system performance, particularly on 

the system's ability to successfully detect and mitigate colluding agents. The task used for this experiment 

is a pattern recognition task where the agents vote on the classification for the task output. Two system 

performance metrics are evaluated, including 𝑇𝑆𝑀 that quantifies the system's ability to correctly execute 

the task and 𝑅  that provides an overall measure of the system's consistency in achieving successful 

outcomes across multiple episodes.  

 

3.1 Parameter Setup 
Each run involves 60 episodes. Each of the evaluation metrics is based off the average value over 1000 

different runs. The default configuration is as follows: 

• Honest Agent Reliability = 99.99% 

• Initial Credibility Score = 5 

• Cost of a Resource Agent (𝐶𝑟) versus Cost of a Spotter Agent (𝐶𝑠) = 2:1 

• Number of Colluding Agents versus Number of Resource Agents = 5:15 

• Credibility Score Updates ∆𝑆 = 3, ∆𝑆′ = 2 

• Cost Constraint (𝐶∗) = 10 

 

Under the initial default configuration listed, the average 𝑇𝑆𝑀 and 𝑅 over 1000 runs can be obtained as 

0.9870 and 0.9935, respectively. 
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In general, to achieve high 𝑇𝑆𝑀 and 𝑅 several parameters are found to be the most impactful (as detailed 

in the following subsections). High honest agent reliability is essential as it ensures that honest agents 

consistently produce correct outputs minimizing the influence of colluding agents. Assigning a lower initial 

credibility score allows the system to quickly identify and suppress colluding agents by limiting their early 

impact on task execution. Using harsher penalties (larger values of ∆𝑆′) for incorrect outputs could improve 

the system's ability to eliminate colluding agents and accelerate convergence. Regarding costs, better 

outcomes could be achieved when the master agent can afford enough spotters to effectively detect 

collusion while still maintaining a sufficient number of resource agents to accomplish tasks. 

 

3.2 Impact of Honest Agent Reliability 
The reliability of honest agents is varied from 5% to 99.99% in increments of 5%. This parameter gives the 

likelihood of honest agents providing the correct vote for the task execution. Figure 2 and Table 1 show 

that both 𝑇𝑆𝑀 and 𝑅  improve monotonically as honest agent reliability increases. When honest agent 

reliability is very low, below around 45%, 𝑇𝑆𝑀 values are negative, indicating that colluding or unreliable 

agents frequently sway votes to incorrect results. As honest agent reliability crosses roughly 45%, 𝑇𝑆𝑀 

transitions into being positive, reflecting the system’s growing ability to align the majority vote with the 

correct outcome. In parallel, 𝑅 starts off low but also climbs progressively, surpassing 0.9 once honest agent 

reliability exceeds 80%. The trend highlights how even small increases in honest agent reliability can 

improve voting outcomes and increase system resilience against colluding attacks. 

 

Table 1 also shows the results of 𝑇𝑆𝑀 and 𝑅 under both one-stage and two-stage spot checks. The two-

stage procedure yields higher 𝑇𝑆𝑀 and 𝑅 in majority of cases. These increments imply that verifying a 

randomly chosen voter after the majority vote helps catch additional colluding agents, thereby raising 𝑇𝑆𝑀 

and 𝑅. 

 

 
Table 1. 𝑇𝑆𝑀 and 𝑅 under different honest agent reliability. 

 

Honest agent reliability 𝑻𝑺𝑴 𝑹 

One-stage Two-stage One-stage Two-stage 

5.00% -0.0663 -0.0667 0.0024 0.0025 

10.00% -0.0640 -0.0626 0.0059 0.0061 

15.00% -0.0569 -0.0577 0.0115 0.0105 

20.00% -0.0524 -0.0510 0.0172 0.0176 

25.00% -0.0465 -0.0471 0.0251 0.0239 

30.00% -0.0368 -0.0382 0.0349 0.0377 

35.00% -0.0280 -0.0266 0.0517 0.0535 

40.00% -0.0084 -0.0094 0.0849 0.0822 

45.00% 0.0204 0.0220 0.1311 0.1340 

50.00% 0.0204 0.0732 0.2268 0.2131 

55.00% 0.1834 0.1944 0.3646 0.3827 

60.00% 0.3257 0.3233 0.5438 0.5393 

65.00% 0.4475 0.4564 0.6756 0.6856 

70.00% 0.5689 0.5708 0.7926 0.7931 

75.00% 0.6533 0.6553 0.8557 0.8592 

80.00% 0.7263 0.7305 0.9028 0.9052 

85.00% 0.7949 0.7970 0.9383 0.9407 

90.00% 0.8596 0.8613 0.9668 0.9675 

95.00% 0.9157 0.9181 0.9833 0.9843 

99.99% 0.9675 0.9680 0.9898 0.9898 
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Figure 2. Impact of honest agent reliability. 

 

 

3.3 Impact of Cost of Agents 
Table 2 and Figures 3 to 6 demonstrate how different 𝐶𝑠 ∶  𝐶𝑟 combinations influence both 𝑇𝑆𝑀 and 𝑅, 

also comparing single-stage and two-stage spot checks. Overall, the system maintains high performance at 

combinations with low agent costs, such as 1:1 or 2:1 or 1:2, where the master agent can afford enough 

spotters to effectively detect colluders while still maintaining sufficient resource agents to accomplish tasks 

and tolerate wrong outputs from any remaining colluders. Combinations with more expensive spotters like 

3:1 experience a noticeable boost moving from one-stage spot check (𝑇𝑆𝑀 = 0.9284) to two-stage spot 

check (𝑇𝑆𝑀 = 0.9427) while balanced high spotter and resource agent costs like 3:3 remain the weakest 

performer in both 𝑇𝑆𝑀 and 𝑅. Comparing one-stage to two-stage spot checks, improvements take place in 

both 𝑇𝑆𝑀 and 𝑅 for most cases. Overall, the results illustrate that the two-stage spot checking mechanism 

can refine the defense system's performance in general. 

 
Table 2. 𝑇𝑆𝑀 and 𝑅 under different cost combinations. 

 

𝑪𝒔 ∶  𝑪𝒓 
𝑻𝑺𝑴 𝑹 

One-stage Two-stage One-stage Two-stage 

1 : 1 0.9839 0.9840 0.9991 0.9991 

2 : 1 0.9813 0.9814 0.9978 0.9979 

1 : 2 0.9678 0.9679 0.9898 0.9900 

3 : 1 0.9284 0.9427 0.9456 0.9603 

2 : 2 0.9634 0.9650 0.9846 0.9862 

1 : 3 0.9644 0.9653 0.9873 0.9874 

3 : 2 0.8519 0.8589 0.8728 0.8800 

2 : 3 0.9071 0.9150 0.9123 0.9201 

3 : 3 0.3582 0.3591 0.3626 0.3635 

 
 

 
 

Figure 3. 𝑇𝑆𝑀 under different cost combinations and single-stage spot check. 
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Figure 4. 𝑅 under different cost combinations and single-stage spot check. 
 

 

 

 
 

Figure 5. 𝑇𝑆𝑀 under different cost combinations and dual-stage spot check. 
 

 

 

 
 

Figure 6. 𝑅 under different cost combinations and dual-stage spot check. 
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3.4 Impact of Number of Collusion Agents 
Assuming there are 15 resource agents in the pool. We evaluate the system's resilience against varying 

levels of collusion attacks by considering the number of colluding agents from 1 to 15. Table 3 summarizes 

the values of 𝑇𝑆𝑀 and 𝑅 under both one-stage and two-stage spot checking mechanisms. Figure 7 shows 

these results graphically, with a zoomed-in view presented in Figure 8.  

 
Table 3. 𝑇𝑆𝑀 and 𝑅 under different numbers of colluding agents. 

 

Number of colluding  

agents 

𝑻𝑺𝑴 𝑹 

One-stage Two-stage One-stage Two-stage 

1 0.9953 0.9955 1.0000 1.0000 

2 0.9897 0.9898 0.9990 0.9991 

3 0.9838 0.9842 0.9974 0.9978 

4 0.9756 0.9769 0.9937 0.9945 

5 0.9678 0.9691 0.9900 0.9904 

6 0.9594 0.9603 0.9849 0.9851 

7 0.9504 0.9539 0.9794 0.9815 

8 0.9418 0.9472 0.9734 0.9765 

9 0.9340 0.9399 0.9678 0.9703 

10 0.9272 0.9354 0.9622 0.9660 

11 0.9220 0.9330 0.9563 0.9626 

12 0.9201 0.9315 0.9515 0.9583 

13 0.9170 0.9287 0.9426 0.9508 

14 0.8683 0.9177 0.8876 0.9360 

15 -0.0167 -0.0167 0.0000 0.0000 

 

It can be observed that, regardless of whether one-stage or two-stage spot checking is used, both 𝑇𝑆𝑀 and 

𝑅 remain high when the number of colluding agents is relatively low compared to the number of honest 

agents. As the number of colluding agents increases, both metrics decrease. However, incorporating a 

second spot check provides a moderate improvement in 𝑇𝑆𝑀 and 𝑅 with especially pronounced gains at 

higher collusion levels. In particular, with 14 colluding agents, 𝑇𝑆𝑀 improves from 0.8683 to 0.9177 and 

𝑅 from 0.8876 to 0.9360 when the second spot check is implemented. The reason 𝑇𝑆𝑀 and 𝑅 remain high 

even with a large number of colluding agents is due to the rapid elimination of these agents in early episodes. 

After the first few episodes, most or all colluding agents are identified and assigned a credibility score of 

zero through the spot checking processes, making them ineligible for future allocation. As a result, a single 

honest agent is sufficient to maintain correct task outcomes in later episodes. This leads to a high number 

of successful episodes, which gives high values of 𝑇𝑆𝑀 and 𝑅. With 15 colluding agents, both one-stage 

and two-stage cases collapse to 𝑇𝑆𝑀 = -0.0167 and 𝑅 = 0, indicating a tipping point at which malicious 

agents completely dominate. Overall, the data shows that dual spot checks consistently yield higher 𝑇𝑆𝑀 

and 𝑅 than a single spot check. 

 

 
 

Figure 7. 𝑇𝑆𝑀 and 𝑅 under different numbers of colluding agents. 
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Figure 8. 𝑇𝑆𝑀 and 𝑅 under different numbers of colluding agents (zoomed-in view). 

 

 

3.5 Impact of Credibility Score Adjustment 
Table 4 summarizes the values of 𝑇𝑆𝑀  and 𝑅  under both one-stage and two-stage spot checking 

mechanisms, showing that both metrics remain high across all credibility score update combinations.  

 
Table 4. 𝑇𝑆𝑀 and 𝑅 under different credibility score adjustment combinations. 

 

+∆𝑺/−∆𝑺′ 
𝑻𝑺𝑴 𝑹 

One-stage Two-stage One-stage Two-stage 

+1/-1 0.9500 0.9530 0.9841 0.9849 

+1/-2 0.9588 0.9611 0.9864 0.9875 

+1/-3 0.9658 0.9668 0.9889 0.9890 

+1/-4 0.9684 0.9692 0.9903 0.9902 

+1/-5 0.9786 0.9784 0.9922 0.9922 

+2/-1 0.9544 0.9567 0.9863 0.9870 

+2/-2 0.9626 0.9638 0.9882 0.9889 

+2/-3 0.9678 0.9688 0.9898 0.9902 

+2/-4 0.9710 0.9715 0.9913 0.9913 

+2/-5 0.9790 0.9790 0.9930 0.9929 

+3/-1 0.9595 0.9604 0.9888 0.9886 

+3/-2 0.9659 0.9657 0.9905 0.9899 

+3/-3 0.9701 0.9702 0.9910 0.9911 

+3/-4 0.9735 0.9729 0.9924 0.9919 

+3/-5 0.9790 0.9791 0.9927 0.9931 

+4/-1 0.9613 0.9628 0.9899 0.9895 

+4/-2 0.9669 0.9679 0.9905 0.9908 

+4/-3 0.9710 0.9716 0.9915 0.9918 

+4/-4 0.9740 0.9747 0.9923 0.9927 

+4/-5 0.9798 0.9798 0.9937 0.9936 

+5/-1 0.9640 0.9652 0.9899 0.9906 

+5/-2 0.9687 0.9696 0.9910 0.9915 

+5/-3 0.9722 0.9730 0.9920 0.9923 

+5/-4 0.9757 0.9757 0.9932 0.9931 

+5/-5 0.9799 0.9802 0.9936 0.9939 

 

 

Figures 9 to 12 demonstrate how different credibility score adjustment combinations influence 𝑇𝑆𝑀 and 

𝑅 in bar graphs, also comparing one-stage (Figures 9 and 10) and two-stage (Figures 11 to 12) spot 

checking. There are some fluctuations ranging from about 0.95 to 0.98 in 𝑇𝑆𝑀 and around 0.98 to 0.99 for 
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𝑅. Larger negative increments like -5 do appear to penalize colluding agents more effectively, boosting 

overall performance. The difference between one-stage and two-stage spot check is a gain of a fraction of 

a percentage point in both metrics. For instance, +1/-1 moves from 𝑇𝑆𝑀 = 0.9500 to 0.9530 and 𝑅 = 0.9841 

to 0.9849. While under the +5/-5 combination, changes are minimal. These improvements do demonstrate 

that the second spot check can further tighten defense against colluding agents, especially when being 

coupled with harsh penalties for incorrect outputs. 

 

 
 

Figure 9. 𝑇𝑆𝑀 under different credibility score adjustment combinations and single-stage spot check. 

 

 

 

 
 

Figure 10. 𝑅 under different credibility score adjustment combinations and single-stage spot check. 
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Figure 11. 𝑇𝑆𝑀 under different credibility score adjustment combinations and dual-stage spot check. 

 

 

 
 

Figure 12. 𝑅 under different credibility score adjustment combinations and dual-stage spot check. 

 

 

3.6 Impact of Cost Constraint 
The cost constraint is varied from 1 to 15 to evaluate the system's performance under different levels of 

budget restraints. This parameter dictates the total resource available for allocating spotter and resource 

agents in each episode. 

 

Figure 13 shows the values of 𝑇𝑆𝑀 and 𝑅  under varying cost constraints for the dual spot checking 

mechanism. Table 5 presents the values of 𝑇𝑆𝑀 and 𝑅 for both single and dual spot checking mechanisms. 

Under both mechanisms, the system fails entirely with 𝑇𝑆𝑀 = 0 and 𝑅 = 0 when the cost constraint 𝐶∗ is 3 

or below, as there is not enough resource to allocate the minimal combination of spotters and resource 

agents. At 𝐶∗ = 4, both 𝑇𝑆𝑀 and 𝑅 jump to about 0.35, signaling that the master agent can now deploy 

enough agents to detect some collusion and achieve moderate task success. Above that budget constraint, 
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the metrics rise sharply by 𝐶∗ = 6, at which 𝑇𝑆𝑀 surpasses 0.93, and 𝑅 climbs above 0.94. From 𝐶∗ = 7 

onward, both 𝑇𝑆𝑀 and 𝑅 stabilize near or above 0.96. Comparing the single and dual spot checks, there is 

not much of a difference between the two methods. After 𝐶∗ = 6 with most of the time the single spot check 

preforms better than the dual spot check. These results show a lower bound on the total resource cost for 

effective spotter and resource agent allocation and show the near optimal performance of the system when 

𝐶∗ is above 6. 

 

 
 

Figure 13. 𝑇𝑆𝑀 and 𝑅 under varying cost constraints. 

 

 

3.7 Impact of Initial Credibility Score 
The initial value of 𝑆𝑖 is varied from 1 to 20 to evaluate the system's performance under different levels of 

initial trust of each agent. 

 

Figure 14 and Table 6 demonstrate that both 𝑇𝑆𝑀 and 𝑅 begin at relatively high levels for low initial 𝑆𝑖 

then steadily decrease as 𝑆𝑖 increases. For instance, at initial 𝑆𝑖 = 1, 𝑇𝑆𝑀 is around 0.98 and 𝑅 is around 

0.995. For 𝑆𝑖 = 20, 𝑇𝑆𝑀 falls to about 0.945 and 𝑅 drops towards to around 0.981. This pattern suggests 

that assigning higher initial 𝑆𝑖 makes it slightly harder to distinguish honest agents from potential colluding 

agents, leading to a gradual degradation in system performance. Comparing single and dual spot checks 

reveals that while both have the same downward trend, the dual spot check consistently maintains a small 

increase of performance. For example, at 𝑆𝑖 = 7, 𝑇𝑆𝑀 improves from 0.9626 to 0.9633 and 𝑅 climbs from 

0.9881 to 0.9884. Overall, these findings highlight that while increasing initial credibility score slightly 

impacts performance by making it harder to distinguish between colluding and honest agents, the use of a 

second spot check consistently improves 𝑇𝑆𝑀 and 𝑅 across varied settings, emphasizing the value of a dual 

spot check. 

 

 
 

Figure 14. 𝑇𝑆𝑀 and 𝑅 under varying initial credibility score. 
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Table 5. 𝑇𝑆𝑀 and 𝑅 under varying cost constraints. 
 

𝑪∗ 𝑻𝑺𝑴 𝑹 

One-stage Two-stage One-stage Two-stage 

1 0.0000 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000 0.0000 

3 0.0000 0.0000 0.0000 0.0000 

4 0.3490 0.3456 0.3490 0.3456 

5 0.7414 0.7504 0.7467 0.7556 

6 0.9394 0.9362 0.9448 0.9419 

7 0.9662 0.9651 0.9882 0.9876 

8 0.9638 0.9651 0.9870 0.9874 

9 0.9676 0.9677 0.9885 0.9886 

10 0.9678 0.9678 0.9898 0.9899 

11 0.9739 0.9744 0.9954 0.9957 

12 0.9750 0.9749 0.9961 0.9958 

13 0.9770 0.9766 0.9961 0.9960 

14 0.9780 0.9776 0.9969 0.9969 

15 0.9799 0.9800 0.9977 0.9976 

 
 

Table 6. 𝑇𝑆𝑀 and 𝑅 under varying initial credibility score. 
 

Initial 𝑺𝒊 𝑻𝑺𝑴 𝑹 

One-stage Two-stage One-stage Two-stage 

1 0.9824 0.9827 0.9953 0.9956 

2 0.9804 0.9803 0.9940 0.9939 

3 0.9793 0.9791 0.9931 0.9929 

4 0.9720 0.9719 0.9922 0.9913 

5 0.9681 0.9685 0.9898 0.9902 

6 0.9672 0.9672 0.9896 0.9892 

7 0.9626 0.9633 0.9881 0.9884 

8 0.9601 0.9607 0.9876 0.9873 

9 0.9583 0.9604 0.9865 0.9871 

10 0.9561 0.9583 0.9859 0.9866 

11 0.9525 0.9561 0.9848 0.9858 

12 0.9521 0.9544 0.9840 0.9849 

13 0.9490 0.9537 0.9829 0.9850 

14 0.9492 0.9521 0.9832 0.9844 

15 0.9479 0.9527 0.9830 0.9844 

16 0.9475 0.9509 0.9829 0.9843 

17 0.9470 0.9506 0.9825 0.9837 

18 0.9448 0.9487 0.9818 0.9829 

19 0.9447 0.9485 0.9813 0.9829 

20 0.9424 0.9474 0.9809 0.9825 

 

 

4. Conclusion and Future Work 
This paper presents a novel heterogeneous multi-agent collusion defense system that integrates a two-stage 

spot checking mechanism and a dynamic credibility score-based allocation scheme. Experimental results 

indicate that the two-stage spot checking approach consistently outperforms the single-stage spot checking, 

achieving higher performance across a range of collusion scenarios. Impacts of parameters including the 

honest agent reliability, resource and spotter agent costs, the number of colluding agents, credibility score 

adjustment combinations, cost constraint, and initial credibility score are examined. 

 

The experimental studies on a pattern recognition VBM-based system reveal that system performance can 

benefit from high honest agent reliability, low initial credibility scores, large penalties for incorrect outputs, 

and a large cost constraint. While the cost ratio between spotter agents and resource agents has a moderate 

impact, better performance is observed when spotters are affordable to allow enough spot checks to 
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minimize the risk of collusion without limiting task execution. The number of colluding agents highly 

influences system performance especially when it is high enough to overwhelm the system. Overall, the 

two-stage spot checking approach consistently outperforms the one-stage approach, particularly as the 

number of colluding agents and initial credibility scores increase. 

 

The proposed model assumes that spotter agents are perfectly reliable. This limitation will be addressed in 

future research by modeling spotter agents with both false negative and false positive detections. Future 

research also includes exploring the utilization of different trust models and voting techniques to understand 

their impact on the defense system. Future research would also include scaling the system to include a larger 

number of agents. Another area of research would be to incorporate AI methods such as reinforcement 

learning for the master agent to actively and adaptively learn to optimize the parameters of the system. 

These advancements could enhance further the system’s reliability, security, and resilience against diverse 

adversarial threats. 
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