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Abstract 

A speaker verification system models individual speakers using different speech features to improve their robustness. However, 

redundant features degrade the system's performance. This paper presents Statistically Significant Duration-Independent Mel 

frequency Cepstral Coefficients (SSDI-MFCC) features with the Extreme Gradient Boost classifier for improving the noise-

robustness of speaker models. Eight statistical descriptors are used to generate signal duration-independent features, and a 

statistically significant feature subset is obtained using a t-test. A redeveloped Librispeech database by adding noises from the 

AURORA database to simulate real-world test conditions for speaker verification is used for evaluation. The SSDI-MFCC is 

compared with Principal Component Analysis (PCA) and Genetic Algorithm (GA). The comparative results showed average equal 

error rate improvements by 4.93 % and 3.48 % with the SSDI-MFCC than GA-MFCC and PCA-MFCC in clean and noisy 

conditions, respectively. A significant reduction in verification time is observed using SSDI-MFCC than the complete feature set. 

 

Keywords- Extreme gradient boost, Feature selection, Mel-frequency cepstral coefficients, Speaker verification. 

 

 

 

1. Introduction  
Speaker Verification (SV) is the method of authenticating the claimed identity of a person using speaker-

specific information confined in the speech signal. Speech signals carry a substantial amount of 

information. Mel Frequency Cepstral Coefficient (MFCC) (Furui et al., 1981), Linear Prediction Cepstral 

Coefficient (LPCC) (Yujin et al., 2010), Perceptual Linear Prediction (PLP) (Alam et al., 2013), and vocal 

source representations like residual phase (Murty and Yegnanarayana, 2006) are some of the features 

mentioned in the literature according to the research on SV. 

 

The most popular features for capturing speaker-specific data are MFCC features. However, MFCC features 

also carry redundant information that needs to be removed using feature selection (FS) methods (Jain and 

Zongker, 1997). Feature selection aims to identify and remove redundant and irrelevant features. It helps 

in achieving high system accuracy and low time complexity. 

 

Many speech-related domains have already used feature selection, and the results have been positive 
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(Prasad et al., 2007; Ellis and Bilmes, 2000; Chakraborty and Saha, 2010). As shown in Table 1 variety of 

FS approaches are studied in the literature for SV tasks, including dynamic programming, mutual 

information, and information gain (Pandit and Kittler, 1998; Cohen and Zigel, 2002; Saranya et al., 2017) 

and different metaheuristic algorithms like the Genetic Algorithm (GA) (Raymer et al., 2000; Day and 

Nandi, 2006), Particle Swarm Optimization (Kennedy and Eberhart, 1995; Nemati and Basiri, 2010), Ant 

Colony Optimization (ACO) (Dorigo et al., 2006; Nemati et al., 2008; Arora and Vig, 2020), Crow Search 

Algorithm (CSA) (Askarzadeh, 2016). 

 

Research published by Pandit and Kittler (1998), Cohen and Zigel (2002), and Saranya et al. (2017) 

encouraged investigation and utilizing dynamic feature selection techniques to improve the robustness of 

SV systems. Based on the characteristics of the input data, it adaptively selects features. Dynamic feature 

selection techniques dynamically modify the feature subset during the verification process instead of 

employing a fixed set of features. 

 

Research by Zigel and Cohen (2004), Eriksson et al. (2005), and Ganchev et al. (2006) focuses on an 

information-theoretic view to find features that are highly informative for speaker discrimination. The goal 

of analyzing the amount of information every feature provides about the speaker's identity is to uncover 

highly informative features for speaker discrimination. It involves measuring the discriminatory value of 

characteristics using ideas from information theory, such as entropy and mutual information. It involves 

utilizing concepts from information theory, such as entropy and mutual information, to measure the 

discriminatory power of features. 

 
Table 1. Literature review of different feature selection techniques in SV. 

 

Sr. Feature 

Selection  

Pros Cons Reference 

1. Mutual 
Information 

Captures relevant information and 
can handle continuous and discrete 

features. 

Computationally expensive for large 
feature sets. Sensitive to noise. 

Eriksson et al. (2005) 

2. Information gain Robustness to Variability in speech 

signals.  

Choosing the Recognition Related 

Criterion requires careful 
consideration and domain 

knowledge. 

Zigel and Cohen (2004), Eriksson 

et al. (2005), Ganchev et al. 
(2006) 

3. GA, PSO, ACO, 
CSA algorithms 

Handles large feature spaces. Finds 
globally optimal or near-optimal 

solution. 

Requires algorithm parameters 
tuning. Computationally expensive. 

Raymer et al. (2000), Day and 
Nandi (2006), Nemati and Basiri 

(2010), Nemati et al. (2008), 

Arora and Vig (2020) 

4. Dynamic feature 
switching 

Adaptable to handle different 
recording conditions, speaker 

characteristics, enhanced 

computational efficiency, and 
optimized memory utilization. 

Requires tuning of algorithm 
parameters. Performance heavily 

depends on the generation of diverse 

and discriminative feature subsets. 

Pandit and Kittler (1998), Cohen 
and Zigel (2002), Saranya et al. 

(2017) 

5. PCA Represents the data with a reduced 

set of features while still maintaining 

a large portion of the original 

variations in the data 

Principal components are 

combinations of the original features, 

making it difficult to relate them to 

the underlying data attributes 

directly. 

Zergat et al. (2012) 

 

 

This paper mainly contributes to the following objectives: 

• Developing a signal duration-independent speaker representation by applying statistical transformations 

on conventional MFCC.  

• Selecting a significant feature subset using the statistical t-test and training a scalable speaker model using 

the XG-Boost classifier. 
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• Redesigning a noisy Librispeech database with various environmental noises from the AURORA 

database to simulate real-world noisy test conditions in SV. 

• Analyzing the proposed feature subsets, conventional MFCC, and state-of-the-art PCA and GA-based 

selection techniques under different Signal-to-Noise Ratios (SNRs) in noisy simulated conditions. 

 

The comparative results generally indicated that the SSDI-MFCC approach outperformed the GA-MFCC 

and PCA-MFCC methods in clean and noisy conditions. The SSDI-MFCC also significantly reduced 

verification time compared to using the complete set of features. 

 

The remaining sections of this paper are organized as follows. Section 2 describes the theoretical 

background of feature extraction, transformation, selection, and classification. The steps of the proposed 

SV system implementation are explained in Section 3. The details of the database formation are provided 

in Section 4. Different experimental settings used during feature extraction, selection, and classification are 

described in Section 5. The results are discussed in Section 6, and the work is concluded in Section 7. 

 

2. Theoretical Background 
This section discusses a brief background on MFCC feature extraction, statistical feature transformation, 

and significant feature subset selection using a t-test, followed by speaker modelling using the XGBoost 

classifier (Chen and Guestrin, 2016; Xu et al., 2018; Parui, 2019). 

 

2.1 MFCC Extraction 
The proposed SV system uses MFCC features to characterize the spectral envelope of a vocal tract with a 

focus on the source filter modelling approach of speech signals. At first, the speech signal is pre-emphasized 

to increase the amplitude of high frequencies that are ignored during speech production. The emphasized 

speech signal is segmented into short frames to obtain time-invariant acoustic characteristics. A 20–30 ms 

frame maintains good spectral and temporal resolution. Then, a Hamming window is applied to minimize 

spectral leakage by narrowing the speech frames at the boundaries. Also, considering the dynamic 

characteristics of different speech frames, 50–75 % overlap is kept in consecutive frames. A magnitude 

spectrum is calculated for each frame using the Fourier Transform. A filter bank with 40 triangular bandpass 

filters spaced uniformly on the mel scale is applied to the frame spectrum. The physical frequency (f) in Hz 

can be converted using Equation (1) to a Mel frequency (mel) as perceived by the human ear. 

𝑚𝑒𝑙 = 2595 log10 (1 +
𝑓

700
)                                                                                                                     (1) 

 
The logarithmic function is applied to the filter-bank outputs for dynamic range compression. The Discrete 

Cosine Transform (DCT) is a fundamental MFCC feature extraction process component. It serves two 

important purposes: compressing the energy of the speech signal by concentrating it into fewer coefficients 

and de-correlating the coefficients to reduce redundancy. Application of DCT to the mel filtered outputs, 

as shown in Equation (2), allows MFCCs to effectively capture the necessary spectrum information for SV 

tasks, enabling robust and discriminative representations of speech characteristics. The DCT's ability to 

compactly represent the spectral content of the speech signal makes it a key factor in the success of MFCC-

based SV systems. The maximum of the speech information is contained in lower-order DCT coefficients. 

For the nth frame, MFCC is calculated as, 

𝑚𝑐(𝑛, 𝑘) = ∑ log10 𝑠(𝑛, 𝑖) . cos (
𝜋𝑘(𝑖−0.5)

𝑁
)𝑁

𝑖=1                                                                                            (2) 

 

where, n ∈ [1, NF], and k ∈ [1, NM], mc(n, k) is the kth cepstral coefficient, NF is the number of frames, NM 

is the number of MFCCs, s(n, i) is the ith output of the mel-filterbank, and N is the number of filters in the 
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mel-filterbank. Thus, the MFCC feature extraction essentially includes windowing, transformation, 

applying the mel-filterbank, and logarithm operation followed by DCT.  

 

As reported in the literature, 13 DCT coefficients are enough to represent vocal tract shape faithfully. The 

dynamic characteristics of MFCC are also reported to be essential for capturing speaker-specific 

information. The temporal derivative of MFCC with a window of two frames on either side of the current 

frame has reported a good correlation to speaker-specific information and is calculated as in Equation (3). 
 

Δ𝑚𝑐(𝑛, 𝑘) = ∑ 0.5 × 𝑡(𝑚𝑐(𝑛 + 𝑡, 𝑘) − 𝑚𝑐(𝑛 − 𝑡, 𝑘))2
𝑡=1  ∑ 𝑡22

𝑡=1⁄                                                          (3) 

 

A second-order temporal derivative using a similar mathematical construct and input replaced by a first-

order derivative is calculated to represent high-order feature dynamics. A feature matrix F is generated by 

concatenating the MFCC matrix (MC) and its first derivative (∆MC) and second derivative (∆∆MC), as 

shown in Equation (4). It represents the spectral characteristic of each utterance. 
 

F = [MC | ∆MC | ∆∆MC]                                                                                                                          (4) 

 

2.2 Duration-Independent Feature Transformation 
The extracted feature matrix varies in size according to the signal's duration. Hence, it cannot be applied to 

build machine learning-based speaker models. Appending or truncating the signal to a fixed dimension 

could solve this issue, but these modifications may change the signal characteristics. Thus, the SV system's 

performance will depend on signal duration. Also, empirically fixed signal duration may not result in robust 

speaker models. This work computes eight statistical descriptors (Ayyub and McCuen, 2016) for each 

utterance's feature matrix to generate duration-independent (DI) features. The descriptors comprise 

minimum, maximum, mean, median, variance, kurtosis, skewness, and interquartile range. A summary of 

statistical descriptors used in the proposed SV system is as follows: 

 

• Mean is the sum of all the data points divided by the total number of data points. As shown in Equation 

(5), the mean of the ith coefficient is obtained as, 

𝑀𝑒𝑛(𝑘) =
1

𝑁𝐹
∑ 𝐹(𝑛, 𝑘)𝑁𝐹

𝑛=1                                                                                                                          (5) 

 

where, k ∈ [1, NT], NF is the number of frames or rows of the feature matrix, and NT is the total number of 

features, i.e., three times NM. 

 

• Median is the middle value of a set of data containing an odd number of observations, whereas it is the 

average of the two middle observations of a set of data containing an even number of observations. The 

kth column of the feature matrix should be ordered in ascending order, considering all NF frames before 

calculating the median, as shown in Equation (6): 

𝑀𝑒𝑑(𝑘) = {
𝐹 (

𝑁𝐹

2
, 𝑘)                                         if NF is odd

1

2
(𝐹 (

𝑁𝐹

2
, 𝑘) + 𝐹 (

𝑁𝐹

2
+ 1, 𝑘))    if NF is even

                                                                       (6) 

 

• Variance measures how data varies in its mean value. It is the ratio of the sum of squared differences 

between observations and their means and the total number of observations. The variance of the kth 

feature is computed below in Equation (7). 

𝑉𝑎𝑟(𝑘) =
1

𝑁𝐹
∑ (𝐹(𝑛, 𝑘) − 𝑀𝑒𝑛(𝑘))

2𝑁𝐹
𝑛=1                                                                                                    (7) 
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• Skewness measures the asymmetry of the input data around the sample mean. As shown in Equation (8), 

it is calculated as, 

𝑆𝑘𝑒(𝑘) = ∑ (𝐹(𝑛, 𝑘) − 𝑀𝑒𝑛(𝑘))
3𝑁𝐹

𝑛=1 (𝑁𝐹 − 1) .  𝑉𝑎𝑟(𝑘)1.5⁄                                                                   (8) 

 

• Kurtosis describes whether the distribution is heavy-tailed or light-tailed. Therefore, a sharply peaked 

distribution has low kurtosis, and the distribution with a lower peak has high kurtosis. As shown in 

Equation (9), it is calculated as, 

𝐾𝑢𝑟(𝑘) = ∑ (𝐹(𝑛, 𝑘) − 𝑀𝑒𝑛(𝑘))
4𝑁𝐹

𝑛=1 𝑉𝑎𝑟(𝑘)2⁄                                                                                        (9) 

 

• Inter-Quartile Range (IQR) measures the spread of feature values. Quartiles arrange feature values in 

ascending order in equal parts. It includes features from the second and third quartiles, which includes 

the middle half of feature values and is computed as in Equation (10). 

𝐼𝑄𝑅(𝑘) = 𝐹 (⌊
3(𝑁𝐹+1)

4
⌋ , 𝑘) − 𝐹 (⌊

(𝑁𝐹+1)

4
⌋ , 𝑘)                                                                                         (10) 

 

IQR depends on the middle half of the data, so outliers do not affect it. 

 

2.3 Feature Selection Using Statistical Significance 
The easiest way of feature selection is to check the model's performance for all possible combinations of 

features and select the feature subset that causes the best model performance. However, it would be an 

inefficient way of doing FS. Therefore, each feature is tested independently using a statistical t-test to decide 

if a significant difference exists between the mean of the two groups. More specifically, the aim of a 

statistical t-test while selecting a feature is to decide whether it is following the null hypothesis or alternate 

hypothesis. In our proposed work, the features are from two groups of speech utterances: the target group 

and the imposter group. Therefore, the hypothesis will be: Null Hypothesis: There is no significant 

difference between the mean of features representing the target and imposter groups. Here, the alternative 

hypothesis signifies that the imposter and target groups represented by a feature vector are significantly 

different. Firstly, the t-value is calculated as shown in Equation (11) to select salient features. The output 

of the t-test is to be compared with the p-value. If the t-value is larger than the p-value, the null hypothesis 

will be accepted; else, reject it.  

𝑡(𝑘) = (𝑚𝑖𝑝𝑡(𝑘) − 𝑚𝑡𝑔𝑡(𝑘)) (
𝑆𝐷𝑖𝑝𝑡(𝑘)2

𝑁𝑖𝑝𝑡
+

𝑆𝐷𝑡𝑔𝑡(𝑘)2

𝑁𝑡𝑔𝑡
)

−1 2⁄

               𝑘 ∈ [1, 𝑁𝑇]                                       (11) 

 

where, (mipt , SDipt , Nipt) and (mtgt , SDtgt , Ntgt) are the mean, standard deviation, and total examples of 

imposter (ipt) and target (tgt) features, respectively. In this work, the number of imposters and target 

utterances is assumed to be equal to avoid imbalance class problems. If the t-test results in a high p-value, 

the difference between the two groups' means is insignificant. Features with low p-values are retained, and 

features with a p-value greater than 0.05 are discarded. 

 

2.4 Speaker Modeling using XGBoost 
The main objective of the Machine Learning (ML) algorithm is to find the function that maps input features 

to the output class. In this work, the mapping function represents the relationship between the input feature 

vector extracted from a speech utterance and the type of utterance class, which can be either a target class 

or an imposter class. The word boosting in the XGBoost algorithm signifies that in the boosting category 

of the ensemble learning algorithm. Instead of training models together, XGBoost trains decision trees 

representing different training models one after the other. After each iteration, the algorithm mainly focuses 

on training examples that are wrongly classified. Each iteration obtains a new model to classify the wrongly 
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classified examples to the correct class. For doing so, after every iteration, the correctly classified outputs 

are given a lower weight than the ones that were misclassified in the previous iteration; with this process, 

after each iteration, residuals keep on decreasing, which in turn optimizes the loss function, as shown in 

Equation (12). The training process starts with an initial assumption of prediction and a loss function. 

XGBoost uses the following loss function:  

ℒ = ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖)𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑘)𝑇

𝑘=1                                                                                                                (12) 

 

The loss function keeps on checking whether the prediction is correct or not. The term 𝑙(ŷi, yi) is residuals 

of ith training example amongst n training examples. Residues are calculated using the actual value yi and 

predicted value ŷi. The second term is the complexity of the tree Ω( f), computed as shown in Equation (13).  

Ω(f) = γT +
1

2
λ ∑ wj

2T
j=1                                                                                                                             (13) 

 

The tree f(x) and score, w on its corresponding leaf, are related, as shown below in Equation (14). 

𝑓(𝑥) = 𝑤𝑞(𝑥),            𝑞: 𝑅𝑑 → {1,2, … . . . , 𝑇}                                                                                             (14) 

 

where, w ∈ RT, x ∈ Rd, q is a function that allocates every input feature vector x to the corresponding jth leaf, T 

is the total number of leaves of tree f, and wj is the output score at the jth leaf. The parameter λ is related to 

regularization that helps to avoid tree over-fitting. It should be chosen carefully as the high λ value lowers 

the similarity score, resulting in lower gain, which will cause more tree pruning. The parameter γ controls 

tree pruning and is set in the initial step. If the gain is higher than γ, further tree splitting will occur; 

otherwise, it will not. Thus, a high γ value causes more tree pruning. The goal is to find an optimized output 

value for the leaf to minimize the loss function. The aim is to set the model's hyperparameters and use the 

feature vectors capturing speaker-specific information to perform a verification task using the XGBoost 

algorithm for a binary classification task. 

 

3. Proposed Methodology 
This section details all the stages used in the proposed SV system. A framework shown in Figure 1 

illustrates the various steps involved in the SV system. First, speaker utterances are collected from the 

redeveloped noisy Librispeech database. Then, after going through pre-processing stages such as framing 

and windowing, MFCC features are extracted from all the collected speaker files. Eight different feature 

transformations are applied to convert variable-size MFCC feature matrices to fixed-size DI features for each 

speaker utterance. Then, a statistical test-based feature selection strategy is applied to reduce the 

dimensionality and remove the irrelevant features. Then, the final feature sets obtained through FS are 

labeled as target and imposter sets and applied as input to an XGBoost classifier to form a speaker-specific 

model. Lastly, the performance of trained speaker models is checked for a different subset of features. 

Furthermore, speaker models are trained under different noisy conditions to check their robustness.  

 

The main problem is the variable size of the MFCC feature matrix F due to a variable number of frames. 

The structure of the matrix is shown in Figure 2. It can be seen that the rows of the original cepstral 

coefficient matrix F indicate frames of a speech utterance, and columns indicate cepstral coefficients, 

including delta and delta-delta coefficients. 

 

Algorithm 1 shows the steps to convert the original cepstral feature matrix F to a DI feature vector FT. 

Here, variables NF and NT represent the number of rows and columns of matrix F. As explained in Algorithm 

1, total NS statistical descriptors are derived for each matrix column to make the features invariant to the 

length of the speech utterance. The 'feature transform' function returns transformed coefficients represented 

by the vector FT. The framework of FT is shown in Figure 2. The output FT vector has a size (1 × NFT ), 
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where NFT = NF × NT = NF × 3 × NM. Hence, the size of the transformed vector depends on the number 

of MFCC coefficients and the number of statistical descriptors computed from each cepstral representation. 

 

 
 

Figure 1. Proposed speaker verification system using statically significant duration-independent MFCC features and 

XGBoost classifier. 

 

FT is computed for all the speaker utterances of clean and noisy databases. After calculating the DI feature 

matrix for all utterances, the next task is to select statistically significant (SS) features. A structure of target 

and imposter files is formed for selecting significant features, as shown in Figure 3. Here each element 

FTspkr(i, j) the matrix represents the jth transformed feature of ith speaker utterance where spkr ∈ {tgt, ipt}. 

 
Algorithm 1. Steps for duration-independent feature transformation. 

 

Input: 

F = Original cepstral coefficient feature matrix, 

NF = Number of rows of F, 

NT = Number of columns of F, 
NS = Number of statistical features 

 

Output: 

FT = Duration-independent feature vector  

 
Procedure: 

feature_ transform (F, NF, NT , NS ) 

for k = 1 to NT do 

FT (k, 1) = minimum(F(:, k)) 
FT (2NT +k, 1) = maximum(F(:, k)) 

FT (3NT +k, 1) = mean(F(:, k)) 

FT (4NT +k, 1) = median(F(:, k)) 
FT (5NT +k, 1) = variance(F(:, k)) 

FT (6NT +k, 1) = skewness(F(:, k)) 

FT (7NT +k, 1) = kurtosis(F(:, k)) 
FT (Nstats*NT +k, 1) = iqr(F(:, k)) 

endfor 
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Figure 2. Transformation of variable-sized MFCC matrix to fixed-size DI feature vector. 

 

 

Each row of the matrix shown in Figure 3 belongs to a transformed feature vector of target or imposter 

utterances obtained using the procedure shown in Figure 2. The set of utterances labelled as 𝐹𝑇𝑡𝑔𝑡(𝑖, 𝑗) and 

𝐹𝑇𝑖𝑝𝑡(𝑖, 𝑗) indicates the jth DI feature of ith target and imposter utterances. Both sets should include an equal 

number of utterances to avoid class imbalance. The first column from both DI feature matrices is selected 

at the start. The statistical t-test is performed, as discussed in Section 2.3. If the p-value of the current feature 

is less than 0.05, then retain the column else, remove the feature from the subset. Repeat the process for all 

remaining features in FT. Ultimately, the subset comprising the retained features is returned as Statistically 

Significant DI (SSDI) features. It must be noted that the current work applied the SSDI procedure on the 

MFCC matrix and is hence called SSDI-MFCC, but it can be easily adapted for any short-time feature 

representation of the speech utterance. 
 

4. Database Formation 
Choosing a suitable dataset is one of the critical tasks while developing an SV system. The speaker 

models are commonly formed under clean conditions. Merely using clean speech utterances will not give 

any idea about the robustness capability of our system in noisy conditions. Therefore, a noisy version of the  
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Figure 3. Selection of statistically significant DI feature using statistical t-test. 

 

 

original clean speech recordings from the original Librispeech database (Panayotov et al., 2015) are 

developed. 

 

This work uses the Librispeech database comprising 125 female and 126 male English sentence recordings, 

each of around 25 minutes and sampled at 16 kHz. A subset of 100 hours duration with balanced female 

and male speakers is selected for all experiments. However, there can be noisy conditions during the actual 

deployment of the SV system in real-life applications. Various noises from the AURORA database (Hirsch 

and Pearce, 2000) are added to original clean utterances to make the system robust and deployable in a real-

life environment. 

 

All the possible noise conditions during real-life deployment cannot be simulated. Hence, eight different 

noise conditions from the AURORA database are used as references. The available noise conditions are 

train, babble, car, restaurant, street, subway, airport, and exhibition hall. Each noise recording is 10 seconds 

and sampled at 8 kHz. The noise samples are up-sampled by a factor of two, and the International 

Telecommunication Union Telecommunication algorithm (ITU, 2011) is used to add noise to the clean 

speech utterances. The SNR is the ratio of the power of active speech level in a clean signal and the power 

of the noise signal. The active speech level estimation uses an envelope value at every sampling instant and 

compares it with a set of threshold values. A noisy speech signal of the desired SNR level is computed as, 
𝑦(𝑛) = 𝑥(𝑛) + 𝛼 . 𝑑(𝑛)                                                                                                                            (15) 

 

where, x(n) and d(n) are the original clean speech signal and noise speech signal, respectively. The scale 

factor α in Equation (15) controls the amount of the noise signal to be added to the clean speech to obtain 

a noisy speech signal of the desired SNR level. The power of the clean signal Equation (16) and that of the 

noise signal Equation (17) is computed as follows (Oppenheim, 1999):  

𝑃𝑥 = ∑ 𝑥(𝑛)2 𝑁𝑥⁄𝑁𝑥
𝑛=1

                                                                                                                                (16) 
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𝑃𝑑 = ∑ 𝑑(𝑛)2 𝑁𝑥⁄𝑁𝑥
𝑛=1

                                                                                                                                (17) 

 

The scale factor 𝛼 is computed as shown below in Equation (18), 

𝛼 = √
1

𝑆𝑁𝑅𝑦
.

𝑃𝑥

𝑃𝑑
                                                                                                                                           (18) 

 

where SNRy is the desired SNR level of noisy signal y(n). 

 

5. Experimental Settings 
As the proposed methodology explains, various steps are carried out during our system implementation. It 

includes pre-processing, feature extraction and transformation, and feature selection, followed by the 

formation of classifiers. During our experimentations, performance measures such as accuracy and Area 

Under Curve (AUC), precision, recall, F1-score, and an Equal Error Rate (EER) and Detection Error Trade-

off (DET) curve (Martin et al., 1997) are used to evaluate our SV system. 

 

5.1 Feature Selection Settings 
In the pre-processing step, the pre-emphasized speech utterance is segmented into short frames of 20 ms 

with 10 ms overlap. A magnitude spectrum of Hamming windowed frames is calculated using the Fast 

Fourier Transform (FFT). Finally, the DCT of the log of magnitude spectrum is computed, and the first 13 

coefficients are used as MFCC features. A 39-dimensional feature vector for each speech frame is obtained 

by concatenating 13 MFCCs, 13 delta coefficients, and 13 delta-delta coefficients. Next, eight different 

statistical descriptors: minimum (Min), maximum (Max), median (Med), mean (Mea), variance (Var), 

kurtosis (Kur), skewness (Ske), and interquartile range (IQR) are applied to transform the feature matrix F 

of variable size into a fixed-size DI feature vector of length 312 (39 ×  8), as in Table 1 and Figure 2. 

 

The relative importance of 312 features using the FS method described in Section 2.3 is investigated. Two 

subsets of features are investigated. The first subset selects a feature if it is found significant at all SNR 

levels (AND strategy). The second subset selects a feature if it is found significant at any SNR level (OR 

strategy). The primary motivation behind these two strategies is that the AND strategy is more restrictive 

regarding the number of selected features, while the OR strategy is all-inclusive with a more significant 

number of features. For low-resource application implementation, the AND strategy is the best, with a 

considerable reduction in performance, while if memory is not a concern, the OR strategy can be 

implemented. A more fortunate situation will be when performance degradation using the AND strategy is 

not high. Hence, an SV system with few features and high performance can be implemented. 

 

Table 2 describes the SSDI-MFCC features selected using both strategies. An entry 'M' indicates MFCC, 

'V' indicates delta coefficients, and 'A' indicates delta-delta coefficients. The subset using the AND strategy 

𝑆𝑆𝐷𝐼𝐴𝑁𝐷 selects only 19 features, emphasized with bold and italics: the minimum of the 1st, 3rd, 4th, 5th, 6th, 

7th, 9th, 10th, and 11th MFCC, the median of 1st, 4th,5th, 6th, 7th, 8th, and 10th MFCC and standard deviation of 

9th MFCC. The subset using OR strategy 𝑆𝑆𝐷𝐼𝑂𝑅  selects 154 features as des described in Table 2. It 

contains all the features with p-values less than 0.05 for at least one of the SNR levels. A feature with a high 

p-value for one SNR level might have a low p-value for some other SNR level carrying a different level of 

speaker information. Hence, it must be noted that 𝑆𝑆𝐷𝐼𝑂𝑅 is a proper subset of 𝑆𝑆𝐷𝐼𝐴𝑁𝐷. 

 

The performance of proposed SSDI features is compared with GA and PCA-based FS approaches on the 

Librispeech database. GA uses a population comprising 30 chromosomes, each of size 312, and each 

chromosome is encoded as a binary bit string. The best chromosome to reproduce offspring out of 30 
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chromosomes is selected using a fitness function. The fitness of a chromosome is checked using the state-

of-the-art 5-nearest neighbour classifier. A uniform crossover is used where every bit is selected from one 

or the other parent with equal probability. A few bits in the candidate solution are flipped using mutation 

to maintain diversity among the population and avoid early convergence. This process is done until there is 

no progress in the fitness value after going through 100 iterations. GA-MFCC reduces 312 features to a 

feature subset of 152 features. 

 
Table 2. SSDI-MFCC features for speaker verification using AND -OR strategies. 

 

 Min Max Men Med Var Kur Ske IQR # Coefs. 

mc-0 M,V,A M,V,A M M M,V,A  M M,A 7M+3V+4A 

mc-1 M,V,A M,V,A M M M,V,A M M M,V,A 8M+4V+4A 

mc-2 M,V,A M,V,A M M M,V,A M M M,V,A 8M+4V+4A 

mc-3 M,V,A M M M M,V,A  M M,V,A 7M+3V+3A 

mc-4 M,A M M M M,V,A M M M,V,A 8M+2V+3A 

mc-5 M M M M M,V,A   M,V,A 6M+2V+2A 

mc-6 M M M M M,V,A M,  M 7M+1V+1A 

mc-7 M,V M,A M M M,V,A  M  6M+2V+2A 

mc-8 M M,V M M M,V  M M 7M+2V+0A 

mc-9 M,A M,V,A M M M,V,A  M M,V,A 7M+3V+4A 

mc-10 M,A M M M M,V,A   M,V 6M+2V+2A 

mc-11 M M M M M,V,A   M,A 6M+1V+2A 

mc-12 M M,A M M M,V,A   M,V,A 6M+2V+3A 

#Desc. 25 24 13 13 38 4 8 29 154 

 
 

Furthermore, the PCA-based feature selection is used for comparative analysis. The aim of using PCA as a 

tool for feature selection is to de-correlate features. In a nutshell, PCA finds the direction of maximum 

variance in high-dimensional data and projects it onto a subspace with fewer dimensions than the original 

one. The relation between Eigen space's dimension and the Eigen information percentage is used to select 

the optimum dimension. PCA-MFCC reduces the dimension from 312 to 195 (maintains 95% variance). 

 

5.2 Classifier Settings 
The performance of the proposed SSDI features is evaluated using the XGBoost classifier. While forming 

a speaker model, feature files are grouped into target and imposter classes. The imposters for a speaker are 

randomly chosen from the speaker's utterances other than the target speaker's utterances. In addition, care 

is taken that the number of target imposter utterances is the same to avoid class imbalance issues. The data 

is divided into 70-30 % as training and testing. Four hyper-parameters are optimized. The learning rate is 

set to 0.01, controls the step size to allow the feature weights to follow the boosting process, and improves 

generalization. The sub-sample is set to 0.7. It randomly selects 70 % of training data for each new tree and 

avoids over-fitting. The number of boosted trees is set to 1200 and the maximum depth of trees is set at 3. 

 

6. Results and Discussions 
While investigating the use of different feature subsets as input to a speaker model, getting its output is 

insufficient to evaluate the verification system performance. The model's accuracy, precision, recall, and 

DET are evaluation metrics.  

 

The performance of the XGBoost classifier is first compared using a complete feature set FTMFCC, AND 

strategy SSDIAND, and OR strategy SSDIOR, as shown in Figure 4. Different feature subsets at different SNR 

levels are compared to different performance measures. As expected, it can be seen in Figure 4 that EER 

increases as noise conditions worsen. Thus, the system with a low EER value will have a low False. 
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Figure 4. Effects of different subsets on SV system performance EER, verification time, and precision, recall, and 

F1. 

 

Acceptance Rate (FAR) and False Rejection Rate (FRR). Besides system verification time, precision, recall, 

and F1-score also degrade as SNR degrades from clean to 0 dB. However, the EER values obtained from 

SSDIOR feature subsets are improved by 1.057 % and 0.56 % compared to FTMFCC and SSDIAND feature 

subsets, respectively. It means SSDIAND does not guarantee that the features that do not capture information 

at one SNR level also do not capture the information at other SNR levels. Therefore, it may discard relevant 

features unnecessarily. The 𝑆𝑆𝐷𝐼𝑂𝑅  provides the best performance, followed by 𝑆𝑆𝐷𝐼𝐴𝑁𝐷  and FTMFCC 

feature subsets.  

 
This paper also aims to check whether the features selected under two settings would perform satisfactorily 

with minimum verification time. It can be observed in Figure 4 that the feature subset 𝑆𝑆𝐷𝐼𝐴𝑁𝐷  not only 

provides average EER improvement over the entire set FTMFCC but also reduces the verification time by 

49.14 %, which is 11.83 % higher than 𝑆𝑆𝐷𝐼𝑂𝑅 . 
 
Moreover, to confirm the consistency of the results, other performance measures are also computed during 

experimentation, such as precision, recall, and F1-score. Precision to check the frequency with which our 

model correctly predicts the target speaker and imposter. Recall to specify out of all target speakers how 

many speakers are correctly classified by the speaker model and the F1-score is computed as a weighted 

average of precision and recall. Figure 4 depicts precision, recall, and F1-score for SNR levels from 15–0 

dB. The values are obtained by averaging the performance measures of individual speakers across different 

noise types. It is seen that although performance degrades in noisy conditions for all competing, 𝑆𝑆𝐷𝐼𝑂𝑅 

performs better than other methods. 
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Currently, the SV system is not implemented using low-resource hardware. Hence, 𝑆𝑆𝐷𝐼𝑂𝑅 is selected as 

the final subset SSDI-MFCC for comparison with state-of-the-art systems. The EER values in Table 3 

demonstrate that the proposed SSDI-MFCC method outperformed GA-MFCC and PCA-MFCC when 

dealing with clean and noisy conditions. The SSDI-MFCC with 154 features has the best EER of 3.41 % in 

clean speech conditions, degrading to 16.83 % in 0 dB SNR. In GA-MFCC, the dimension is reduced to 

150, but EER is degraded to 7.62 % in a clean environment. However, the proposed SSDI-MFCC resulted 

in a lower EER using 154 features, slightly more than GA-MFCC. The GA-MFCC performed second best 

at high SNR compared to the proposed SSDI-MFCC at low SNR. The PCA-MFCC with 195 features 

performs worst among the three FS methods. At 10 dB SNR, the feature subsets obtained from PCA-MFCC 

resulted in better performance than GA-MFCC, possibly due to some inherent noise compensation in linear 

transformation. However, using linear transformation in PCA is more costly as it usually increases the 

dimensionality of the selected feature subset. 

 
Table 3. Comparative EER (%) analysis for different FS methods in real-world noises at different SNR levels. 

 

 

 

 

SNR= 15 dB 

 

SNR= 10 dB 

 

 

SNR= 5 dB 

 

 

SNR= 0 dB 

 
 

Figure 5. Comparative DET curve analysis for SV system using SSDI-MFCC, GA-MFCC, and PCA-MFCC at 

different SNR levels. 

Method Clean 15 dB 10 dB 5 dB 0 dB 

SSDI-MFCC 3.41 4.62 9.06 11.94 16.83 

GA-MFCC 7.62 8.15 9.56 12.62 16.81 

PCA-MFCC 9.06 10.31 9.53 22.34 23.41 
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The SV system may make errors in detecting some of the target or imposter speaker test utterances. Using 

FAR and FRR pairs of different target speakers to plot the DET curve would be inappropriate for the system. 

The SV system may make errors in detecting some of the target or imposter speaker test utterances. Using 

FAR and FRR pairs of different target speakers to plot the DET curve would be inappropriate as the system 

includes many targets. Therefore, DET curves for individual target speakers are averaged across different 

speakers and noise types instead of combining the error rates, as shown in Figure 5. As anticipated, the 

noticeable trend is that as the signal-to-noise ratio (SNR) decreases, the DET curve steadily ascends 

diagonally. Notably, this progression is particularly evident in the DET curves corresponding to 5 dB and 

0 dB SNR levels. These curves shift upward, underscoring a notable escalation in the FPR and FNR. The 

underlying cause for this shift is the heightened prominence of noise relative to the diminishing signal 

quality, a consequence of the reduced SNR compared to the 15 dB scenario. 
 

In instances characterized by either 0 dB or 5 dB noise conditions, the performance of the GA-MFCC 

feature extraction method is notably suboptimal. The observed decline in its effectiveness can be attributed 

to the elevated noise levels, potentially causing the search agents within the genetic algorithm to become 

trapped in local minima. This indicates the challenges posed by increased noise in converging toward 

optimal solutions. An alternative approach that holds promise for achieving robust performance in the 

presence of noise involves using SSDI-MFCC features coupled with the XGBoost classifier. This 

combination appears to counteract the adverse effects of noise, enhancing noise tolerance and classification 

accuracy. The fusion of SSDI-MFCC features, adept at preserving essential information amidst noise, with 

the adaptable learning capabilities of XGBoost presents a viable strategy for cultivating noise-robust 

performance. 

 

7. Conclusion 
This paper develops a statistically significant duration-independent MFCC feature subset to improve the 

speaker verification system in real-world noisy conditions. MFCC and its first and second derivatives were 

transformed using eight statistical descriptors to generate duration-independent features. Two subsets of 

statistically significant features were selected based on a t-test using AND (significant in all cases) and OR 

(significant in at least one case) strategies. A classifier based on the XGBoost algorithm was also introduced 

for speaker modelling. The performance of the proposed system was evaluated using a redeveloped 

Librispeech database by adding different noises at different SNRs. A subset of 154 features based on OR 

strategy reduced the average EER to 1.27 % from 2.33 % for the complete set of 312 features and 

verification time is reduced by 49.14 %. Although the AND strategy provided smaller set of significant 

features with higher performance than the complete set, performance improvement was not greater than 

OR strategy. The best performance of the proposed feature subset is consistent for all noise conditions. 

Comparative analysis showed higher performance of the proposed selection than the state-of-the-art PCA 

and GA-based feature selection methods. The duration independence and statistical selection were applied 

to state-of-the-art MFCC-based features, and its effect on other short-time features needs to be investigated. 
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