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Abstract

The connection between two or more factors plays a key role in many choices in industry where data often lacks clarity or
completeness. Classical correlation coefficients, however, fail to fully capture a complete measure of the delicate balance between
membership and non-membership information in fuzzy data. Existing interval-valued intuitionistic fuzzy measures also show
inconsistency in handling negative relationships, complementary patterns, and structured linguistic variability, and thus underscore
the need for a more generalized and reliable correlation framework to manage uncertainty effectively. In this paper, we propose a
generalized correlation coefficient specifically formulated for interval-valued intuitionistic fuzzy data. It uniquely represents
uncertainty through interval-based membership and non-membership degrees. The proposed coefficient gives a better picture of
unclear relationships. The performance of the coefficient is illustrated through numerical examples and through its application in a
multicriteria group decision-making problem focused on supplier selection. A detailed comparative study with existing methods is
conducted to highlight the superiority of the proposed approach in terms of robustness and reliability. A sensitivity analysis is also
performed to examine the impact of an adjustable parameter in the proposed measure. It reveals that the proposed measure remains
consistent and produces dependable results even under varying decision conditions.

Keywords- Interval-valued intuitionistic fuzzy set, Generalized correlation coefficient, MCGDM, Supplier selection.

1. Introduction

The correlation coefficient is a statistical measure that is most frequently used in research for understanding
how two variables move in relation to each other. It is a significant tool in sciences, where finding the
relationships among variables is essential for predicting the behaviour of the system (Pearson, 1895;
Benesty et al., 2009). The correlation coefficient quantifies the strength and direction of relationships
between variables, if these relationships are positive, negative, or negligible. This makes it especially useful
for researchers who need to simplify complex data interactions into clear, actionable insights. The values
of correlation coefficients, typically range from —1 to +1. A value that is very close to +1 will indicate a
strong positive association, where variables increase together. On the other hand, a value that is very close
to —1 will point to a strong inverse relationship, in which one variable decreases while the other increases
(Chan, 2003). The values close to zero suggest a weak or no linear relationship between the variables.

Zadeh (1965) introduced the concept of fuzzy sets aimed to solve the problem of ambiguity that is inherent
in a system. Atanassov (1986) extended this idea by introducing intuitionistic fuzzy sets (IFSs) with a

148 | https://www.ijmems.in


https://www.ijmems.in/
mailto:anjalikvhgr12@gmail.com
mailto:surender1976@gmail.com

Sharma & Singh: Application of a Novel Interval-Valued Intuitionistic Fuzzy Correlation ...

bipolar treatment of ambiguity/vagueness in a system. Extension of fuzzy sets and IFSs to interval-valued
fuzzy sets (IVFSs) (Zadeh, 1975) and interval-valued intuitionistic fuzzy sets (IVIFSs) (Atanassov and
Gargov, 1989), respectively, represent membership and non-membership as intervals. These changes have
led to an even broader range of options for dealing with imprecise information. The concept of the
correlation coefficient within these contexts has gained significant attention in recent literature. Dumitrescu
(1978) introduced the idea of fuzzy correlation coefficient that is similar to conventional statistical
correlation coefficient. Chiang and Lin (1999) proposed a fuzzy correlation coefficient receiving its value
n [—1,1]. Gerstenkorn and Manko (1991) pioneered the introduction of a correlation measure and
correlation coefficient for IFSs within finite spaces. For more studies on correlation measures based on
intuitionistic fuzzy data (IFD), we can refer to (Hung, 2001; Xu, 2006; Wei et al., 2011b; Liu et al., 2015;
Garg and Kumar, 2018; Thao et al., 2019; Ejegwa, 2020; Ejegwa and Onyeke, 2020; Ejegwa et al., 2024;
Ejegwa et al., 2025). Bustince and Burillo (1995) introduced a correlation measure specifically for IVIFSs.
Hong (1998) extended the study of Bustince and Burillo (1995) for IVIFSs within general probability
spaces. However, a significant drawback of the correlation coefficients developed by Bustince and Burillo
(1995) and Hong (1998) is that they consider only positive correlations and ignore negative correlations.
Hung (2001) further extended the correlation coefficient for IVIFSs to overcome the limitation identified
in Bustince and Burillo (1995) and Hong (1998). Incorporating the element of hesitation, Park et al. (2009a)
and Park et al. (2009b) refined Bustince and Burillo (1995) correlation and investigated multi-attribute
group decision making (MAGDM) problems. Zeng and Wang (2011) also presented a method for
determining the correlation coefficient of IVIFSs. Liu et al. (2015) suggested a new method to assess the
correlation between IFSs. Their work also extended traditional statistical measures, such as deviation,
variance, and covariance for IFSs, and established a correlation coefficient that remains bounded within the
interval [—1,1]. Thao (2018) and Thao et al. (2019) derived correlation coefficients based on the variance
and covariance between two IFSs.

The correlation values are very useful in fuzzy and extended fuzzy contexts and have been used in a wide
range of applications. For example, Huang and Guo (2019) utilized the correlation coefficient of IFSs in
medical diagnosis and clustering analysis. Augustine (2021) used the intuitionistic fuzzy correlation
coefficient to multi-criteria decision-making (MCDM). Numerous other studies (Singh and Lalotra, 2018,
2019; Ganie et al., 2020; Singh et al., 2020; Ejegwa et al., 2023) have explored the use of correlation
coefficients in different disciplines such as clustering, pattern recognition, medical diagnosis, and
MAGDM, in frameworks like IFSs, hesitant fuzzy sets, hesitant fuzzy soft sets, and picture fuzzy sets.
These works highlight the versatility of correlation measures in handling various types of fuzzy information.

As to the use of correlation measures in real-life scenarios, which is very extensive, this study deals with a
supplier selection problem under the IVIF framework. Supplier selection is an important process in which
a company chooses vendors who are trustworthy, affordable, and able to provide good-quality products,
on-time delivery, and proper service. In this case, selection of the right supplier is crucial to build long-term
and mutually beneficial relationships. A significant part of a company’s budget is spent on its suppliers.
Therefore, choosing the appropriate supplier is important for reducing risks, getting good value, and
meeting long-term goals (Taherdoost and Brard, 2019; Nezhad et al., 2024). But the selection process is
not always straightforward because decision-makers often deal with unclear or incomplete information. To
handle this uncertainty, many researchers use fuzzy set theory, which provides a practical way to describe
and analyze vague or imprecise judgments (Naqvi and Amin, 2021; Demir, 2024).

149 | Vol. 11, No. 1, 2026



Sharma & Singh: Application of a Novel Interval-Valued Intuitionistic Fuzzy Correlation ...

1.1 Motivation and Contribution of the Study

Based on the literature review, we have identified the following issues:

e Most of the existing correlation coefficients that assume values in the interval [—1, 1] yield negative
values for dissimilar sets, but these values do not reflect a perfectly negative correlation, even when
sets are dissimilar. (See Example 3.1)

e Existing non-parametric IVIFS correlation coefficients become indecisive in certain situations.
However, a parametric version, by suitable tuning of the parameter, resolves this issue and also
minimizes the error. (See Example 5.1)

e Although correlation coefficients are commonly applied across diverse fields, their use in multi-criteria
group decision-making (MCGDM) for IVIFSs remains largely unexplored.

These limitations serve as the primary motivation for developing a novel, parametric correlation coefficient
for IVIFSs with a range of [—1,1]. The proposed correlation coefficient is able to distinguish positive as
well as negative correlations more efficiently; thus, it is a significant point of the paper that the existing
methods do not reveal this feature. Their usage in decision-making problems is hence extended. To
highlight the necessity and impact of the proposed method, it is essential to check how existing measures
perform with respect to the criteria that characterize the robustness of correlation coefficients for IVIFSs.

The following points provide a logical framework for analyzing the performance of existing measures:
P1: The correlation coefficient is a good measure of negative relationships between IVIFSs.

P2: The correlation coefficient is 1 if and only if the two [VIFSs are identical.

P3: The correlation coefficient between any two IVIFSs is —1 if and only if the two IVIFSs are a perfect
complement of each other.

P4: The correlation coefficient is able to effectively recognize structured linguistic variables.

Table 1 summarizes how existing methods satisfy (or fail to satisfy) these properties and highlights their
strengths and limitations.

Table 1. Analysis of limitations across existing IVIF correlation coefficients.

IVIF correlation coefficient
Kpzp (Bustince and Burillo, 1995)
Ky (Hong, 1998)

Ky, (Hung, 2001)

Ky, (Xu, 2006)

Kp, (Park et al., 2009a)
Ky (Wei et al.,, 2011b)

Kp, (Park et al., 2009b)
K, (Zeng and Wang, 2011)
K;; (Liu et al., 2015)

K7y (Thao, 2018)

Koyr (Thao et al., 2019)

x| %% x|%|%|x]|%|<|x|%[Z
x|%|x|x[|%|%|x|x|x]|%|T

o == x|x|x|<|x|x|=
ANANANANANANANEIANANANS

As there is a need for a novel correlation coefficient to overcome these limitations, it is also important to
justify why a generalized formulation is required.

What is the necessity of a generalized correlation coefficient?

Most of the existing correlation measures do not include any adjustable parameters. Because of this, they
cannot adapt well to different types of data or varying decision-making situations. Introducing a generalized
correlation coefficient with a parameter a helps to overcome this rigidity. The parameter allows the measure
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to adjust its sensitivity depending on the nature of the IVIF information. This flexibility enables the
coefficient to detect both strong and weak relationships more accurately. Thus, making it applicable
practically in all types of fuzzy decision-making problems.

The novel contribution of this paper is as follows:

e We propose a new generalized (parametric) correlation coefficient for IVIFSs. It helps to explore
greater flexibility for assessing correlations within IVIF data.

e The proposed method has been applied to an MCGDM problem.

e A comparative analysis has been made to buttress the credibility of the proposed method.

The content of this paper is organized as follows: Section 2 lays out the basic ideas. Section 3 presents a
newly generalized correlation coefficient for IVIFSs. In Section 4, the focus is on illustrating the application
of the proposed correlation coefficient in MCGDM. This section also presents a comparative evaluation to
emphasize the benefits of the proposed approach. Section 5 presents a comparative analysis based on
structured linguistic variables supported by sensitivity analysis of parameter o and the measure of error.
Finally, Sections 6 and 7, respectively, provide the discussion and conclusion of the study by summarizing
the key findings and recommendations for future research directions. The framework of the study is
illustrated in Figure 1.

‘ Preliminaries [Novel generalized correlation
Introduction | * Basic concepts ——— > coefficient of IVIFSs
‘ ‘ e Existing measures | & Numerical illustration
Comparative analysis concerning | J -

structprgd Iinguist?c variable i
¢ Sensitivity analysis \

® Measure of error

Applications

A

! ‘ MCGDM
Conclusion i: . Supplier selection problem
| Superiority analysis

Figure 1. Framework of the study.

2. Preliminaries

This section recalls fundamental concepts and revisits significant existing correlation coefficients. These
concepts form the basis for the methods discussed in this paper and support the comparative analysis carried
out in the later sections.

2.1 Some Basic Concepts of IVIFSs
Definition 1: (Atanassov, 1986) Let U = {x4, X, ..., X, } be a universal set. Then an intuitionistic fuzzy set
X in U is defined as

X = {(xi,ux(xi),vx(xi)ﬂxi ev,i=1.23, ...,n}
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where, py: U — [0,1] and vyx: U — [0,1] are called the membership and non-membership functions for X,
respectively, and satisfy the condition
0 < pux(x;) +vg(x) < 1.

In addition, mx(x;) = 1 — ux(x;) — vx(x;) is called the hesitancy degree of x; to Vx; € U.

Definition 2: (Atanassov and Gargov, 1989) Let U = {x;, X3, ..., X, } be a universal set. Then an interval-
valued intuitionistic fuzzy set X in U is defined as

X = {(oi 1x (x), vy (x)): x; € U}

where, uyx(x;) = [k (), 14 (x;)] and vy (x) = [vk(x;),v¥(x;)] are interval membership and non-
membership of x; in X, respectively. Furthermore, uy: U — [0,1] and vy: U — [0,1] are membership and
non-membership functions, respectively, which satisfy the conditions 0 < uk(x;) +vi(x;) <1 and
0 < px(x) +vy(x) < 1.

In addition, [k (x;), m¥(x)] = [1 — ul(x)) — v¥(x;), 1 — uk (x;) — vk (x;)] is called the interval-valued
intuitionistic index of x; in X, which is also called the hesitancy degree of x; to X.

Definition 3: (Bustince and Burillo, 1995) Let U = {x, X5, ..., X,} be a universal set such that the
cardinality of U is n < co. Then for each IVIFS X = {(x, [uk (%), u¥ ()], [vk (x), v¥(x)]): x € U}, an
informational energy of an IVIFS is defined as

12 u2 12 u?2
(e+ux (x)+vy (x)+vy (xi)
Ewips(X) = ?:1“ LR va e )

and Ey;rs(X) satisfies the following properties:

Ei: Epyips(X) = 0 if and only if py(x) = vx(x) = 0 forall x € U,
Ey: Eips(X) = Epyrs(Xc) for all X in IVIFSs,

E3: Eyrs(X) < nforall X in IVIFSs,

Ep: IfX <Y, then Epyps(X) < Epyrs(Y).

Definition 4: (Bustince and Burillo, 1995) Let U = {x4, x5, ..., X, } be a universal set. Let X and Y be two
IVIFSs in U, then the correlation of IVIFSs is defined as

Cyips(X,Y) = % =1 (#ﬁ((xi)ﬂﬁ(xi) + i ey () + v (e v () + V)l(l(xi)vllfl(xi)) 2

and Cpyrs(X,Y) satisfies the following properties:
C1: Cyips(X, X) = Epyps(X),
Co: Cyips(X,Y) = Cryyps (Y, X).

Definition 5: (Bustince and Burillo, 1995) Let U = {x4, X5, ..., X,,} be a universal set. Let X and Y be two
IVIFSs in U, then the correlation coefficient of IVIFSs is defined as

Cryirs(X)Y)
K X,Y) = 3
IVIFS( ) \/EIVIFS(X)EIVIFS(Y) ( )

and K;y;rs(X,Y) satisfies the following properties:
CCl: IfX = Y, then KIVIFS(XI Y) = 1,
CCo: Kyyips (X, Y) = Kpyyps (Y, X),
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CC3: 0< KIVIFS(X' Y) <1.

Definition 6: Let IVIFS(U) = {Xl,Xz, ...,Xp} be a collection of IVIFSs. Then generalized correlation
efficiency of any IVIFSs X, (k = 1,2, ..., p) is defined as

14 a
Cps(Xy) = Z—lleI;'_F—f(Xk'X’),k #11=12..,p;a €R @)
Definition 7: Let IVIFS(U) = {Xl,Xz, ...,Xp} be a collection of IVIFSs. Then normalized correlation
efficiency of any IVIFSs X, (k = 1,2, ..., p) is defined as

Clvirs Xi)
N X,) = 5 ESZE o e R 5
wirs(Xk) X C&ps(XD) "’

such that 33 _; Nyyps (X)) = 1.

2.2 Existing Correlation Coefficient

This section provides an overview of the correlation coefficients for IVIFSs introduced by various
researchers.

Let X and Y be two IVIFSs in U = {xq, x5, ..., X, }.

Crvirs(XY) _
VEwirs Ers(Y)
STk Ceouh G +RE G RY e+ Cevh (e +vE v ()

(1) ]KBB(X: Y)=

\/(%Z{;l il G+ vk e+l () ) (BT il e+t G+l (e +0l ()

(Bustince and Burillo, 1995).

(i) Kyo X,Y) =

Ik Gl e+ Cep i e +v (e (e) +v (vt (x) ) ap

(Hong, 1998).

](3f(uéf(xi>+u§2(xi)+v§f<xi>+vy(2(xi)>dp<§f(uéf(xi>+u};2(x,-)+v§f<xi)+u;2<x,-)>dp>
where, P is the probability.

1
(iid) Ky, (X, Y) = 2 (Ko )1 + (Kpo)2) (Hung, 2001).
Yi=1(mx—mx)(my—my) and (Kpp,), = Yi=1(Mx—Mx)(My—7y) ‘
\/Z?:l(mx—mx)z S (my—Tiiy)? \[Z?:l(nx—ﬁx)z S (y=Tiy)?

where, (Kgy)1 =

Here, my, my and nx,ny are middle points of membership and non-membership intervals, respectively and
My, My and 7y, Ny are average membership and non-membership respectively.

l l
(IV) K (X Y) — izn A#min*‘All#nax Al";inin"'Au#lax Avmin"'AU‘;nax Avxlin"'Avynax (Xu 2006)
Xu it an == aptaul o, Apl+ApuTh o Avt+Avh, oy AvP+AVY 4 ’ )

where, Auj = |uk (x;) — 1y ()|, Av] = |vg(x) — vy ()|, Apft = 1 (x) — wy (el
Mt = [v¥ () — v ()|, Aty = miin{|y§((xl-) —wb )|} Apin = miin{lu}é(xl-) — uy (xp)I},
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Atz = max{|us (e — uy (e[}, Atinax = max{l () — py (x)1},

AV = miin{|v)l((xi) - Ull/(xi)“'Av#lin = miin{lv}(‘(xi) — vy ()}

AVingx = miax{|v}((xi) — vy ()|}, Aviax = max{|vy (x;) — vy (x)l}-

7 2 (i Cemly G+ G G +v G v () + v () v G+ (e () + 1 G o))

j@z{;l il e+ e +vk” e+l ey e+ ()

1 2 2 2 2 2 2
Gur, ub” G+l (e +ol” e +v¥ (e +mh” () +s (x)

(v) Kpa(X,Y) =

(Park et al., 2009a).

ST (e G )+ ¥ e () +v Gevh () +vE v ()

(vi) Kwe(X,Y) =2 n 2 > P .
j(;Z?zlué( Ge)+uE e +vh” () +vd (xi))

(G, m” o+l vl e+l () )

(Wei et al., 2011Db).

Vi) Kpg(X,Y) = %((Mpa)1 + (Kpg), + (Kpg)s) (Park et al., 2009b).

where,
(Kpgy); = Yiq (mx (x)—my) (my (x;))-y) (Kpg), = S (nx e =T1x) (y (x)—Ty) and
a - ) a -
[ (mx G =2 Sy (my (=) B G102 i Oy G2
(Kpg)z = T (x () =T x) (ry (%) —Toy)
W)z =

Jz{;l(nx(xi)—ﬁx)z ST (y (x) Ty )2

Here my,my, nx,ny and my,my are middle points of membership, non-membership and hesitation
intervals, respectively and my, my and 7]y, 7]y are average membership and non-membership.

1

Lyn
(viii) Kz (X, V) = 22222

(ke Geoph e+ e e+ eV ) +vE e v e+ el e+ Gedmf () )
\](ﬁ PN #5(2 () +u¥? (xi)+v§(2 () +vls? (xi)+7t§(2 (ep) 47’ (xi))

1 2 2 2 2 2 2
(=2, " G+t (ol e+ e+l Gep +s () )

(Zeng and Wang, 2011).

(ix) K., (X,Y) = > >
JE (@00 S, (4w, )

(Liu et al., 2015).

l u l u l u .l u
—Ux+ux—v — Uy +vy—v
where,d(X,Y) — Bx Ile2 X“Ux My HYZ Y Y’

S — 1 1 .. =
X = EQ0) = (@ 7x) = (320, ux(x1) , + Ziy vy (x)) ). Similarly, for ¥ and 7.
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1

x) K (X,Y) = Kpy (X, ¥) = n_1Z?:l((#x(xi)—ﬁx)(HY(XL‘)—l_ly)+(Ux(xi)—ﬁx)(vy—ﬁy)+di(X)di(Y))
TH ’ - TH ) -

(e ((ux ) -T)+ (0x () -T2 +d2 (0))}
(T ((ay (=B >+ (y (x)—Ty)?+d2 (1))}

where, d;(X) = (ux(x;) — fix) — (vx — Ux), d;(Y) = (uy (x;) — ity) — (uy (x;) — Uy),

_ 1/1 1 _ 171 1
A =5 (R Zia i )+ T 1 (). 0 = 5 (T2 vk ) + 5 B v () ).

n 2\n

Similarly, for fiy and Dy (Thao, 2018).

ﬁZ?zl((ﬂx(xi)—ﬁx) (py () —y)+Wx () -Tx) (Vy (X)) —Ty))

J{ﬁ2?:1((ux(xi)—ﬁx>2+(vx(xi>—vx>2))}{ﬁ2?:1((uy(xi)—ﬁy)2+(vy(xi)—vy)2))}

(xi) Kryp(X,Y) =

_ 1/1 1 — 1/1 1
where, Ty =3 (2 X1y k() + = By p40x0) ). U = 2 (5 By vk () + 2 By v ().

n

Similarly, for iy and Uy (Thao et al., 2019).

The aforementioned correlation coefficients have contributed to extending traditional correlation ideas into
the IVIF setting. However, many of these measures still fall short of consistently meeting the key
requirements of an ideal correlation coefficient.

Four fundamental properties (P1-P4) outlined in the introduction were used to assess the new correlation
coefficient's effectiveness. These properties define the essential expectations for an effective IVIF
correlation coefficient. A comparative summary of existing approaches with respect to these properties is
presented in Table 1. The analysis shows that most of the existing formulations are unable to characterize
negative dependencies, identify complementary IVIFSs, and interpreting the structured linguistic variables

properly.

These limitations highlight the need for an improved formulation. The next section introduces a new
correlation coefficient designed to overcome these limitations and provide a more stable solution for IVIF
situations.

3. Generalized Correlation Coefficient for IVIFSs

This section introduces a new generalized correlation coefficient for IVIFSs, removing certain pitfalls of
the existing methods.

Let X andY be two IVIFSs in U = {xq, X5, ..., X,,}, then we define the following correlation coefficient
between X and Y.

c xY)
KE(X V) = IVIFS
X, Y) max{Eyrs(X),Ervirs(Y)}
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a
2

e [(uﬁ(m)—ﬁk(xi))E(u’y(xn—ﬁ’y(xi))ﬂ(u}é(xi)—ﬁ}é(xi)) (u&(xo—ﬁ%ci))ﬂ]

240=1 a a a

_ ’ l (vh =75 () ) (v )T () )2 + (v e T3 () ) ? (v Ce) T () )2 J
(;z:; (ke ) "+ (g Co-B3 0x0)+(vk G- ) "+ (v 0 -T%0x0) )
(; (b oo ) "+ (s eo-TE )+ (b e =T (0 "+ (v x0T Cx) )

NG

(6)

. _ 1 _ 1 _ 1
where, & > 0 is a real number, jik(x;) = = X%, pb(x;), f%(x;) = - nud(xy), Ve (x) = gZle}((xi),
_ 1 1 _ 1

V¥ () = - X v G, @y () = —Z 1”Y(xl) @ () = =X uf (), () = 2L, vi(x;) and
_ 1

vy (x) = oy

We now verify that the proposed correlation coefficient satisfies the key properties.

Theorem 3.1 Let X and Y are two IVIFSs. Then

1) IfX =Y then K*(X,Y) = 1.

2) K*(X,Y) = K*(Y, X).

3) -1 <K*(X,Y) <1

Proof:
1) It is trivial.

a _ Crvirs(X.Y)
K*(X,Y) max{Eyrs(X).Ervirs(Y)}

NG
N[R

(H#(xi)—l_#(xi))
(vk -k ) (v e-vh () ) 2+ (vx(xi)—véé(xi))3 V() -TE(x)
( (ux(xl) ik (x)) (u}é(xi)—ﬁ}é(x )“+)>

(v G- vX(xl) “+ (v 7))
( ( i G~y (x7)) (uy(xi)—r#(x ))“+>>

a
(vh G- ) +(vi ) x))
. [(uly(xo—uly(xi))
1

lyn
2l1

(uéf(xi)—néf(xo)( b aeD=mh () 2+ (i e -k ()
%

N[R

|

NIQ
N[R
N[

(Blensiien)

a
2

. @ (xo—ﬁé((xi))ﬂ(u%(xo—r&(xi))
2 2i= a
2

N[

(vk G075 D) (vh e -¥h ()2 (vx(xi)—v}é(xo Vi)V (x))
(1 <#y(xl) My(xl) (uy(xl) uy(xl) ))

i vy(x) vy(xl) (Uy(x) Vi (xi ))a

(1 <ux(xl) Ak () (ux(xl) ux(xl))“+>>

2 UX(xl) Vx(xl) (Ux(xl) Vx(xl )a

= K%(Y, X).
Thus, K*(X, Y) = K%(Y, X).

3) Leta; = (b () — @k (x))’,
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b = (b () — @ (x))*
Using the Cauchy—Schwarz inequality, we have

Siaaibi < [SI,af (B2, .

Applying this inequality to all terms, we get

a -

(k) = e ) (1) = ) ) +

(e — A Ce))? (K () — B )7 +

(i) — )
(2 Cx) — @(x)" +

—+

1

z =1 > a = 2 i=1 : » a X
(vh () - vf((xl))z(v;(xl) 7)) + (vhGr) - 7)) +
| (o) — )2 (o ()~ ()2 \ (03 Ce) — ¥ (%)
(Hly(xi)—ﬁly(xi)) A\ )
1vn (ﬂg(xi)—li?(xi))a+ >
2 &i=1 ! N ' a .
(UY(xl) Vy(xl)) +
\ (¥ — ()
( (i Gy - ﬁﬁg(xi))a +
Now, { || 25n, (u%(xi)—ﬁ%(xi)):+
(U)l((xi)—ﬁ;l((xi)) +
\ (Wi () — 7 (x))"

Iix(x) Iix(xl)
(.Ux(x) Iix(xl)) +

l1gn
§l=1

&

\6

wy () — iy (xl)

_|_

y () — iy (xl)) +

vy (x;) —

VX(xl)

(xl))

Uy(xl) - Vy(x )

¥ (x) = )"

\
\|\| r < max <

)

#y(xz) #Y(xz)
My(xz) #Y(xz)) +

Ux(x ) —
;zr_l(
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Combining all these above results, we have

157 | Vol. 11, No. 1, 2026

VY(xL)

VY (xl))

\

J)

_|_

a




Sharma & Singh: Application of a Novel Interval-Valued Intuitionistic Fuzzy Correlation ...

N[R

(b e~ (o)) 2 + (i e -TR ()
(vh G-k (x))? (v} (e~ () ) >+ (v e 7 () ) (v ) T (x0) ) J <1
(1 Gro-R 0e) "+ (g 0~ D) +(vk G0 @)+ (g0 -T5@0) )| T
)

(o))

NG

[(uk(xn—ﬁé((xi)) (u#(xi)—ﬁ;‘(xa)7+]

max{(iz:jll(

(251 ((wh o= Gx0) "+ (s ro-mE )+ (v =T Gx)

e

IK“(X, V)| ==

Thus, —1 < K¥(X,Y) < 1.

3.1 Numerical Illustration
We provide an example with different [VIFSs to show how the proposed generalized correlation coefficient
outperforms existing approaches.

Example 3.1 Suppose A and B are IVIFSs in X = {xq, x5, ..., X, }, where
0.3,0.35],0.6,0.65 0.4,0.45],[0.5,0.55 0.2,0.25],[0.7,0.75
A= {({[ Ll ]}>' ({[ LI ]}>’ <{[ LI ]})} and

X1 X X3

B =

0.7,0.751,[0.2,0.25 0.6,0.65,[0.3,0.35 0.8,0.85],[0.1,0.15
{<{[ Ll ]}) ' <{[ Ll ]}>’ <{[ Ll ]}>}.

X1 X2 X3
Clearly, A and B is perfectly negative since A # B, A L Band B & A.

Table 2. Correlation coefficient values between A and B.

Methods | Kgzp (Bustince and Burillo, | Kp, (Park et al, | Kp, (Park et | K;; (Liu et | Kyy (Thao, | Kpyr Proposed
1995), Ko (Hong, 1998), | 2009a), K, (Zeng | al.,2009b) al., 2015) 2018) (Thao etal., | method
Ky (Wei et al., 2011b) and Wang, 2011) 2019) (a=2)

Values 0.6629 0.6659 —0.9699 0 —0.3086 0.2177 -1

0.8 0.6629 0.6659
g 06 | oo
= 0.6629 0.6629 0.6659
s 04
> 0.2177
02 /\
=
2]
£ ) 0
s -02
=]
.E -0.4 -0.3086
= -06
5
E -08
S
©

-0.9699 -1
-1.2
KBB KHO KPa KWE KPA KZW KLI KTH KTMF Proposed
Methods

Figure 2. Graphical representation of correlation coefficient values for Example 3.1.

From Table 2 and Figure 2, we see that the proposed method is the only one to give a correlation value of
—1, indicating that A and B are perfectly negative correlated. This result aligns with their evident
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dissimilarity and shows that the proposed generalized correlation coefficient is capable of capturing
negative dependence between [VIFSs. Hence, it can be concluded that the proposed method demonstrates
greater reliability and accuracy than most of the existing methods. So, the proposed method established its
superiority in evaluating correlations among IVIFSs.

The next section demonstrates the practical usefulness of the proposed coefficient by applying it to an
MCGDM problem.

4. Application of the Proposed Generalized Correlation Coefficient in MCGDM

MCGDM is a widely used approach for addressing complex decision-making scenarios where several
criteria must be considered at the same time and different decision-makers contribute their views. The
proposed correlation coefficient helps in this process by measuring how criteria or alternatives relate to
each other when the available data are given as IVIF values.

To formalize the MCGDM framework, let us define ¢ as the set of alternatives, represented as ¢ =
{d1, P2, ..., by} and € as the set of criteria, represented as & = {&1,&,, ..., &, }. Each criterion is associated
with a weight wj, where, 0 < w; <1 and Z}lzl w; = 1. Suppose D = {Dy, D, ..., D} represent the set of
domain experts where each domain expert Dy; k = 1,2, ..., p provides their respecting rating. The flowchart
for the MCGDM method is as shown in Figure 3.

Algorithm

Step 1: Formation of decision matrices

A group of decision-makers Dy; k = 1,2, ..., p provide their evaluations on the alternatives using [VIFSs
aﬁ"j = {[,u%j,u}j-], [vilj,v}‘j]}, k=12,..,p;i=12,..,m; j =1,2,..,n and each decision-maker assigns
interval-valued intuitionistic fuzzy values (IVIFVs) to indicate the relative importance of each criterion
with respect to the alternative values. Based on these values, p-decision matrices (Dl,DZ, ...,Dp) are
constructed.

Step 2: Computation of the correlation coefficient of decision matrices

The correlation coefficient Kf,;zs(Dy, D;); k, 1 = 1,2, ..., p as defined in Definition 5 is computed for each
pair of IVIFVs. This correlation coefficient quantifies the degree of association between the evaluations
provided by different decision-makers using their respective [IVIFSs.

Step 3: Computation of correlation efficiency and normalized correlation efficiency

Using Definition 6 and Definition 7, correlation efficiency Cf;rs(Dy) and normalized correlation
efficiency N{,;zs(Dy) for each pair of IVIFVs Dy, are calculated. The normalized correlation efficiency
values are used as weight vector § = {51, 82, «e) 510}, where each §;, corresponds to the weight assigned to
decision-maker Dj,.

Step 4: Computation of the aggregated interval-valued intuitionistic fuzzy decision matrix

The aggregation of the fuzzy rating a;; of alternatives ¢; with respect to criteria ¢; is done using the
symmetric interval-valued intuitionistic fuzzy weighted averaging (SIVIFWA) operator (Liao et al., 2014).
This operator combines the individual ratings given by the decision-makers into one aggregated value while
taking into consideration their weights. The aggregated value can be expressed as follows:
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(7

The aggregated interval-valued intuitionistic fuzzy decision matrix is

/6‘11 '6’12 '6’111
=t o )
{"ml ’B’mz {"mn

where, &;; {[ul],ul}‘] [VU, ]“]},l =12,...m;j=1.2,..,n

Step 5: Determine objective weights for criteria using the entropy method

In order to find the objective weights of attributes, the entropy value €; is calculated for each criterion using

the data from the aggregated decision matrix B. The entropy value (€;) of matrix B can be computed as

follows (Gao and Wei, 2012):

¢ = e(g) = TOBoA At
P mad{si (2-md-ui ) St (2-vi Vi)

After entropy is calculated, the degree of divergence (DD); for each criterion is calculated using the

following formula:
(Dp)j =1-¢; 9)

®)

The final objective weight w; for each criterion is calculated using the degree of divergence values (DD);

as follows:
(Dp)j
W =—2—,j=12,..,n 10
Iy (Dp); (10)
These objective weights obtained from the entropy and divergence measures reflect the significance of each
criterion in the decision-making process.
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Figure 3. Flowchart of the proposed algorithm for solving the MCGDM problem.

Step 6: Construction of interval-valued intuitionistic fuzzy score values

Once the aggregated interval-valued intuitionistic fuzzy decision matrix has been constructed and the
criterion weights are known, the interval-valued intuitionistic fuzzy score values corresponding to each
alternative are calculated. These values are represented as

Vi = {[("), G (), 0]}

for each alternative ¢; (i = 1,2,...,m). To compute these values, the generalized interval-valued
intuitionistic fuzzy interactive weighted averaging (GIVIFIWA) (Garg, 2016) operator is used. The
interval-valued intuitionistic fuzzy score values are calculated as:

V; = GIVIFIWA(b1, b1z, .., bi) = {[(1f'Y), ™) [, 0]} an
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where,

) = (1107 (1= (1= 0+ (1= () + ) )+ (1 () +
) ) M (1 (0 + 0)”) |
W ={1-Tr | 1 (1 - (v )A+<1—<(ME}*)+(V{}‘ U))A J+H’,?=1(1—((M£}‘)+

1/)l

)] - (- () + o)),
0 =1 (1= (1= (- 09) o+ (1 () + ) )+ 10 (1 ) +

1

N
e)™) " and
y) A\WJ
(v{’“)=1—<1— 7=1<1—(1—(V£}‘) +(1- (G + o)) ) + T (1= (i) +
Y
o))"

where, A > 0 is a real number.

Step 7: Computation of score values
The score values for each alternative ¢; (i = 1,2, ..., m) are computed using the following formula (Garg,
2016):

s = (ef'D)+ (™) + (D (1= ()= + (™) (1= (") -(vi™))
L 2

(12)

Step 8: Ranking the alternatives

After score values S; for each alternative ¢; have been calculated, the alternatives are arranged in decreasing
order of their score values. The alternative with the highest score is considered the most preferable
alternative while those with lower scores follow in decreasing order of preference. The ranking of
alternatives thus facilitates the selection of the optimal alternative that best matches the specified criteria
and the decision-makers' evaluations.

4.1 Supplier Selection Problem

In order to demonstrate how the proposed method can be practically applied, we have taken a supplier
selection problem to explain as our case study. A worldwide company is deciding which supplier will be
best to supply their new manufacturing plant and has narrowed down its options to five potential suppliers.
There are five suppliers for the company to choose from. Supplier A (¢;), Supplier B (¢,), Supplier C
(¢3), Supplier D (¢,), and Supplier E (¢bs) are the five suppliers. The decision-makers will assess these
suppliers based on four key criteria: Cost of acquisition (&;), Proximity to existing supply chains and
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customers (§,), Availability of skilled workforce (&3), Environmental impact and Compliance with
regulations (&,).

A panel of three experts from different domains - finance (D;), logistics (D,), and environmental
sustainability (D3) will contribute to their assessments to ensure a thorough evaluation. Each expert will
evaluate the suppliers using [VIFSs to reflect the uncertainty and fuzziness that are natural to the decision-
making process.

The data used in this study is created artificially for experimental purposes. It allows for a controlled
verification of the suggested method without the need for a real industry dataset. This ensures that the focus
remains on demonstrating the methodology’s applicability and robustness.

Figure 4 presents various elements of a supplier selection problem.

We address this problem through the proposed MCGDM approach (Step 1 to Step 8).

Step 1: Formation of decision matrices

The ratings given by three decision makers (DMs) (D, k = 1,2,3) for the five suppliers based on the

specified criteria are shown in Tables 3, 4 and 5.

Table 3. The ratings assigned by decision maker 1 to the suppliers.

Alternatives

/Criteria § & & §a
ol {[0.3,0.4],[0.2,0.3]} {[0.4,0.5],[0.2,0.4]} {[0.5,0.6],[0.1,0.2]} {[0.2,0.3],[0.1,0.2]}
b, {[0.4,0.6],[0.1,0.2]} {[0.3,0.7],[0.1,0.2]} {[0.3,0.6],[0.2,0.3]} {[0.2,0.3],[0.1,0.2]}
o {[0.4,0.5],[0.3,0.4]} {[0.2,0.6],[0.1,0.3]} {[0.4,0.5],[0.3,0.4]} {[0.2,0.6],[0.1,0.3]}
b, {[0.6,0.8],0.1,0.2]} {[0.5,0.6],[0.1,0.2]} £[0.4,0.6], [0.1,0.2]} £[0.3,0.4],[0.2,0.3]}
b {[0.6,0.7],[0.2,0.3]} {[0.2,0.6],0.1,0.3]} £[0.3,0.7],[0.1,0.2]} £[0.4,0.8],{0.1,0.2]}

Table 4. The ratings assigned by decision maker 2 to the suppliers.
Alternatives

/Criteria & & & §a
b, £[0.6,0.7],10.2,0.3]} {[0.2,0.6],[0.1,0.3]} £[0.3,0.6],[0.2,0.3]} {[0.3,0.4],{0.2,0.3]}
b, {[0.3,0.4],10.2,0.3]} {[0.5,0.6],[0.1,0.2]} {[0.2,0.6],[0.1,0.3]} {[0.4,0.8],[0.1,0.2]}
b5 {[0.4,0.5],[0.3,0.4]} {[0.4,0.5],[0.2,0.4]} {[0.4,0.6],[0.1,0.2]} {[0.5,0.6],[0.1,0.2]}
(A {[0.4,0.6],[0.1,0.2]} {[0.2,0.6],10.1,0.3]} {[0.5,0.6],[0.1,0.2]} {[0.2,0.3],[0.1,0.2]}
b £[0.6,0.8],[0.1,0.2]} {[0.3,0.7],[0.1,0.2]} £[0.4,0.5],[0.3,0.4]} {[0.2,0.3],[0.1,0.2]}

Table 5. The ratings assigned by decision maker 3 to the suppliers.
Alternatives

/Criteria & & & §a
&, £[0.3,0.4],{0.2,0.3]} £[0.6,0.8],10.1,0.2]} {10.3,0.6],[0.2,0.3]} £[0.2,0.3],[0.1,0.2]}
&, £[0.5,0.8],[0.1,0.2]} £[0.2,0.6],[0.1,0.3]} £[0.4,0.8],[0.1,0.2]} £[0.2,0.6], [0.1,0.3]}
o {[0.4,0.8],[0.1,0.2]} {[0.2,0.3],[0.1,0.2]} {[0.4,0.5],[0.1,0.4]} {[0.6,0.7],[0.2,0.3]}
b, {[0.2,0.6],[0.1,0.3]} {[0.3,0.7],[0.1,0.2]} {[0.5,0.6],[0.1,0.2]} {[0.6,0.8],[0.1,0.2]}
¢s {[0.5,0.8],[0.1,0.2]} {[0.6,0.7],[0.2,0.3]} {[0.5,0.8],[0.1,0.2]} {[0.3,0.6],[0.2,0.3]}
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Figure 4. A schematic illustration of the framework addressing the supplier selection problem.

Step 2: Computation of correlation coefficients of decision matrices

Using Definition 5, the correlation coefficient K, rg(Dy, D;); k, I = 1,2,3 for each pair of IVIFVs is shown
in Table 6.

Table 6. Correlation coefficients of decision matrices.

DM, DM, DM;
DM, 1 0.0085 —0.3000
DM, 0.0085 1 0.1695
DM; —0.3000 0.1695 1

Step 3: Computation of correlation efficiency and normalized correlation efficiency
Using Definition 6 and Definition 7, the correlation efficiency Cf;rs(Dy) and normalized correlation
efficiency N{i,;rs(Dy) for each pair of IVIFVs Dy is as shown in Table 7.
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Table 7. Generalized correlation efficiency and normalized correlation efficiency of IVIFVs.

Generalized correlation efficiency Normalized correlation efficiency
DM, —0.1458 1.1947
DM, 0.0890 —0.7295
DM; —0.0653 0.5348

Remark: The normalized correlation efficiency of IVIFSs represents the degree of linear association
between two IVIFSs. In contrast to standard correlation measures, this efficiency can take on negative
values, signifying an inverse correlation between the sets. A negative value indicates that as one IVIFS
increases, the other tends to decrease, and vice versa. This ability to express both directions of association
is essential when the interaction between sets is not always positive, allowing the measure to represent a
wider range of real-world relationships.

An important point to note is that the sum of the normalized correlation efficiency values for any pair of
IVIFSs should always equal to 1. This property ensures that the total degree of correlation, whether positive
or negative, is properly balanced, reflecting the complete relationship between the sets being analyzed.

Step 4: Computation of aggregated interval-valued intuitionistic fuzzy decision matrix
Using Equation (7), the aggregated interval-valued intuitionistic fuzzy decision matrix is obtained in Table
8.

Table 8. Aggregated interval-valued intuitionistic fuzzy decision matrix.

Alternatives
/Criteria & & & £
ol {[0.15,0.21],[0.20,0.30]} {[0.68,0.61],[0.23,0.35]} {[0.54,0.6],[0.09,0.18]} {[0.14,0.24],0.06,0.14]}
b, {[0.53,0.82],[0.06,0.14]} {[0.15,0.72],10.10,0.25]} {[0.45,0.72],10.23,0.24]} {[0.11,0.14],{0.10,0.25]}
b {[0.40,0.68],[0.17,0.28]} {[0.11,0.51],[0.06,0.19]} {[0.40,0.43],[0.36,0.58]} {[0.19,0.66],[0.15,0.39]}
b4 {[0.51,0.83],[0.10,0.25]} {[0.64,0.66],[0.10,0.14]} {[0.38,0.60], [0.10,0.20]} {[0.55,0.71],[0.23,0.32]}
b {[0.55,0.68], [0.23,0.32]} {[0.31,0.58],[0.15,0.39]} {[0.33,0.85], [0.04,0.11]} {[0.52,0.92],[0.15,0.25]}

Step 5: Determine objective weights for attributes using the entropy method
Using the data from Table 8, compute the entropy values first using Equation (8). Next, calculate (Dp);
and w; by applying Equation (9) and Equation (10). The results of these calculations are presented in Table

9.

Table 9. Objective weights.

31 $2 $a $a
& 0.5851 0.6283 0.5977 0.7305
(Dp); 0.4149 0.5640 0.4904 0.6409
w; 0.2845 0.2549 0.2758 0.1848

Step 6: Construction of interval-valued intuitionistic fuzzy score values
Using Equation (11), the interval-valued intuitionistic fuzzy score values are obtained as
V; = {[0.4383,0.6689],[0.2055,0.3310]},

V, = {[0.3548,0.7552], [0.1354,0.2448]},
v, = {[0.2973,0.5780],[0.2315,0.4220]},
v, = {[0.5236,0.7245],[0.1326,0.2755]},
V. = {[0.4300,0.7868], [0.1647,0.2132]}.
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Step 7: Calculation of score values
The score values for each alternative ¢; (i = 1,2, ...,5) are computed using Equation (12) and are given as

S, = 0.6317,
S, = 0.6455,
S5 = 0.5077,
S, = 0.7141,
Ss = 0.6955.

Step 8: Ranking the Alternatives
After computing the score function §; (i = 1,2, ...,6) for each alternative ; (i = 1,2, ...,6), ranking is as
follows:

by > Ps > Py > 1 > @3

Thus, ¢, is the best alternative. So, Supplier D is the best supplier for a new manufacturing plant.

0.8

0.7

0.6

Score values
°© o o o
N w B (7]

e
a

o

Al A2 A3 A4 A5
Alternatives

mKBB m KHO KHU KPA mKWE mKPa ®Proposed

Figure 5. Comparison of score values obtained from different methods.

The score values obtained from the different methods are shown in Figure 5. A closer look at the figure
shows that, for most of the alternatives, the proposed measure produces noticeably higher scores than the
others. This pattern suggests that the proposed approach performs more reliably and gives stronger
outcomes in comparison with the existing methods, demonstrating its overall advantage in a wide range of
cases.

4.2 Superiority Analysis
To demonstrate the strength of the proposed methodology, a comparative evaluation is carried out using

the concept of the degree of confidence (Luo and Zhang, 2024).

The degree of confidence is defined as
DoC =1y iz, |Si — Si | (13)

where, S is the score of the best alternative.
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An approach that shows a greater level of confidence is considered superior. It delivers more reliable and
stable outcomes compared to the alternative approaches.

The comparative results for Example 4.1 are summarized in Table 10 and shown in Figure 6.

Table 10. Comparison of the result rankings obtained through various methods.

Method Ranking Best alternative Degree of confidence
Kpzp(Bustince and Burillo, 1995) Gy > s > Py > s > Py [N 0.2026
Ky (Hong, 1998) Gy > s > Py > s > Py [ 0.2026
Ky, (Hung, 2001) Gy > s > Py >y > s oA 0.2838
Kp, (Park et al., 2009a) Gy > s > Py > s > Py [N 0.2048
Ky z (Wei et al., 2011b) Gy > Ps > Py > s > Py oA 0.2026
K, (Zeng and Wang, 2011) Dy > P > Py > h3 > Py [ 0.2048
Proposed method Dy > P >y >y > s [N 0.3760
0.4 0.376

<
w

(=]
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=]
(39

0.35
0.2838

0.25

0.2026 0.2026 0.2048 0.2026 0.2048
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Figure 6. Comparison of degree of confidence obtained from different measures.

It is very clear from Table 10 and Figure 6 that the proposed method is the one that attained the greatest
degree of confidence by most of the existing methods. Therefore, it indicates its comparative superiority
and shows its potential to separate and evaluate different alternatives to a higher degree of accuracy and
consistency.

5. Comparative Analysis Concerning Structured Linguistic Variables

Zadeh (1972) introduced the idea of the structured linguistic variables, which are generally called linguistic
hedges. The idea has become a primary tool in finding the answer to countless problems in the real world.
These linguistic variables make it possible to inculcate human-like reasoning into computational
frameworks by capturing terms such as “very similar”, “somewhat similar”, or “not very similar”. What
they do is to provide a very efficient way for human beings to go from their subjective judgment to an

objective numerical analysis, thus complex information becomes easily accessible.

Along with correlation coefficients, linguistic variables significantly influence both the clarity and the
accuracy of relationship analysis. Correlation coefficients, that indicate how strong and in which direction
the relationships between variables are, benefit from the addition of linguistic hedges by more accurately
representing subtle human perceptions of similarity or dissimilarity.
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Linguistic variables can be described with the help of modifiers as those defined in Equation (14) (Dymova

and Sevastjanov, 2016). These modifiers represent varying degrees of magnitude or intensity for linguistic

terms including High (H), Very High (VH), Very-Very High (VVH) and More or Less High (MLH). We
1

can consider A as (H), Az as (MLH), A% as (VH) and A* as (VVH).
The generalized modifier is presented as follows:
A yl A 2 .
A ={ (o) ()] [1- (1 -vieo) 1 - - we) || wexi=123,.0) a4
where, 1 > 0.

The linguistic variable (MLH) demonstrates greater similarity to the linguistic variable (H) compared to
(VH) and (VVH) (Singh and Singh, 2025). Using mathematical language, this concept can be elaborated to
formally define the expressions corresponding to inequalities (15) to (18), (19) to (22) and (23) to (26).

The intended hierarchy for the correlation measure is given by the set of inequalities (15) to (18).

K(MLH,H) > K(MLH,VH) > K(MLH,VVH) (15)
K(H,MLH) > K(H,VH) > K(H,VVH) (16)
K(VH,H) > K(VH,VVH) > K(VH, MLH) (17)
K(VVH,VH) > K(VVH,H) > K(VVH, MLH) (18)
The intended hierarchy for the similarity measure is given by the set of inequalities (19) to (22).

S(MLH,H) > S(MLH,VH) > S(MLH,VVH) (19)
S(H,MLH) > S(H,VH) > S(H,VVH) (20)
S(VH,H) > S(VH,VVH) > S(VH,MLH) (21)
S(VVH,VH) > S(VVH,H) > S(VVH,MLH) (22)

The set of inequalities (23) to (26) establishes the intended hierarchy for the distance/dissimilarity measure.

D(MLH,H) < D(MLH,VH) < D(MLH,VVH) (23)
D(H,MLH) < D(H,VH) < D(H,VVH) (24)
D(VH,H) < D(VH,VVH) < D(VH, MLH) (25)
D(VVH,VH) < D(VVH,H) < D(VVH, MLH) (26)

Now, a numerical example is presented to assess the performance and effectiveness of the proposed
measures in comparison with the existing approaches.

Example 5.1 Consider an IVIFS A in the universal set X = {xq, x5, ..., X, } given as:
(x4,{[0.2,0.5],[0.1,0.3]}),
A =< (x,,{[0.3,0.6],[0.2,0.35]}), ¢,
(x3,{[0.4,0.7],[0.15,0.2]})

Using the fuzzy set modifier defined in Equation (14), we calculate the IVIFSs A% , A% and A* as follows
) (x1,{[0.45,0.71],[0.05,0.16]}),

Az =< (x,,{[0.55,0.81],[0.13,0.19]}), (27)
(x3,{[0.67,0.84],[0.08,0.13]})
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(x,,{[0.04,0.25],[0.19,0.51]}),
(x,,{[0.09,0.42], [0.44,0.58]}), (28)
(x3,{[0.20,0.49], [0.28,0.44]})

(x {[0.0016,0.0625],})
11[0.3439,0.7599]

2t = (xz {[0.0081,0.1785],})

’([0.6836,0.8215]

(x {[0.0410,0.2401],})
31[0.4780,0.6836]

AZ

)
)

(29)

We apply both the proposed and existing measures to calculate the correlation/similarity/distance values
between various pairs of linguistic variables H, VH, VVH and MLH. The results obtained using these
measures are summarized in Table 11.

Table 11. Calculated values for pairs of linguistic variables utilizing different comparison methods.

Correlation/Similarity/Distance methods Computed values between different pairs of linguistic variables

Kpzp (Bustince and Burillo, 1995), K, (Hong, 1998) MLH H VH VVH
MLH 1 0.9529 0.6788 0.3410
H 0.9529 1 0.8645 0.5871
VH 0.6788 0.8645 1 0.9086
VVH 0.3410 0.5871 0.9086 1
Ky, (Hung, 2001) MLH H VH VVH
MLH 1 0.9999 0.9990 0.9941
H 0.9999 1 0.9996 0.9955
VH 0.9990 0.9996 1 0.9979
VVH 0.9941 0.9955 0.9979 1
Kp, (Park et al., 2009a) MLH H VH VVH
MLH 1 0.9356 0.7146 0.4482
H 0.9356 1 0.9093 0.6972
VH 0.7146 0.9093 1 0.9172
VVH 0.4482 0.6972 0.9172 1
Ky g(Wei et al., 2011b), K, (Zeng and Wang, 2011) MLH H VH VVH
MLH 1 0.9529 0.6788 0.3410
H 0.9529 1 0.8645 0.5871
VH 0.6788 0.8645 1 0.9086
VVH 0.3410 0.5871 0.9086 1
K, (Liu et al., 2015) MLH H VH VVH
MLH 1 0.9851 0.9562 0.8721
H 0.9851 1 0.9795 0.8954
VH 0.9562 0.9795 1 0.9414
VVH 0.8721 0.8954 0.9414 1
K7y (Thao, 2018) MLH H VH VVH
MLH 1 0.9063 0.4907 0.0010
H 0.9063 1 0.8016 0.3691
VH 0.4907 0.8016 1 0.8407
VVH 0.0010 0.3691 0.8407 1
Kyyr (Thao et al., 2019) MLH H VH VVH
MLH 1 0.9410 0.7113 0.4066
H 0.9410 1 0.8975 0.6415
VH 0.7113 0.8975 1 0.9035
VVH 0.4066 0.6415 0.9035 1

Ss (Singh, 2012) MLH H VH VVH
MLH 1 0.9616 0.6722 0.3201
H 0.9616 1 0.8496 0.5677
VH 0.6722 0.8496 1 0.9166
VVH 0.3201 0.5677 0.9166 1
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Table 11 continued...

Sps (Dhivya and Sridevi, 2018) MLH H VH VVH
MLH 1 0.8784 0.7380 0.5815
H 0.8784 1 0.8623 0.7153
VH 0.7380 0.8623 1 0.8649
VVH 0.5815 0.7153 0.8649 1
Swe(Wei etal., 2011a) MLH H VH VVH
MLH 1 0.7422 0.5075 0.3157
H 0.7422 1 0.6804 0.4540
VH 0.5075 0.6804 1 0.6867
VVH 0.3157 0.4540 0.6867 1

Sy (Ye, 2013) MLH H VH VVH
MLH 1 0.9354 0.7172 0.4510
H 0.9354 1 0.9100 0.6932
VH 0.7172 0.9100 1 0.9168
VVH 0.4510 0.6932 0.9168 1
Syr(Hu and Li, 2013) MLH H VH VVH
MLH 1 0.8449 0.6503 0.4583
H 0.8449 1 0.8054 0.6134
VH 0.6503 0.8054 1 0.8080
VVH 0.4583 0.6134 0.8080 1
Suc Meng, 2016) MLH H VH VVH
MLH 1 0.7201 0.4538 0.2790
H 0.7201 1 0.6682 0.4325
VH 0.4538 0.6682 1 0.6700
VVH 0.2790 0.4325 0.6700 1
Sse (Alolaiyan et al., 2024) MLH H VH VVH
MLH 1 0.7266 0.4260 0.1189
H 0.7266 1 0.6780 0.3654
VH 0.4260 0.6780 1 0.6799
VVH 0.1189 0.3654 0.6799 1
Dy, (Zhou et al., 2016) MLH H VH VVH
MLH 0 0.0488 0.1113 0.1716
H 0.0488 0 0.0625 0.1228
VH 0.1113 0.0625 0 0.0603
VVH 0.1716 0.1228 0.0603 0
Dg, (Fares et al., 2019) MLH H VH VVH
MLH 0 0.1371 0.3616 0.6215
H 0.1371 0 0.2595 0.5723
VH 0.3616 0.2595 0 0.4453
VVH 0.6215 0.5723 0.4453 0
Dge (Qin et al., 2023) MLH H VH VVH
MLH 0 0.1992 0.4353 0.6357
H 0.1992 0 0.2577 0.4814
VH 0.4353 0.2577 0 0.2577
VVH 0.6357 0.4814 0.2577 0
D, (Ohlan, 2022) MLH H VH VVH
MLH 0 0.0756 0.3884 0.9610
H 0.0756 0 0.1169 0.4701
VH 0.3884 0.1169 0 0.1119
VVH 0.9610 0.4701 0.1119 0
Dy, (Vishnukumar et al., 2024) MLH H VH VVH
MLH 0 0.2858 0.4933 0.6239
H 0.2858 0 0.2258 0.3917
VH 0.4933 0.2258 0 0.1917
VVH 0.6239 0.3917 0.1917 0
Proposed (a = 2) MLH H VH VVH
MLH 1 0.7382 0.5818 0.4122
H 0.7382 1 0.8479 0.6661
VH 0.5818 0.8479 1 0.9127
VVH 0.4122 0.6661 0.9127 1
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Table 11 continued...

Proposed (a = 6) MLH H VH VVH
MLH 1 0.5703 0.1922 0.0249
H 0.5703 1 0.5318 0.1237
VH 0.1922 0.5318 1 0.4488
VVH 0.0249 0.1237 0.4488 1
Proposed (@ = 10) MLH H VH VVH
MLH 1 0.4537 0.0600 0.0015
H 0.4537 1 0.3236 0.0231
VH 0.0600 0.3236 1 0.2314
VVH 0.0015 0.0231 0.2314 1

The bold values in a row indicate the incorrect results.

Table 12. The outcomes of the comparison measures are derived from Table 11.

Measure Inequalities failed Reason for failure

Kpzp (Bustince and Burillo, 1995), Ky, (Hong, 1998) (15 0.8645 *» 0.9086 > 0.6788
K}y, (Hung, 2001) 17) 0.9996 > 0.9979 * 0.9990
Kp, (Park et al., 2009a) (17) 0.9093 » 0.9172 > 0.7146
Kyg (Wei et al., 2011b), K, (Zeng and Wang, 2011) a7 0.8645 * 0.9086 > 0.6788
K;; (Liu et al., 2015) a7 0.9795 > 0.9414 * 0.9562
K7y (Thao, 2018) a7 0.8016 » 0.8407 > 0.4907
Kryr (Thao et al., 2019) a7 0.8975 » 0.9035 > 0.7113
S (Singh, 2012) (17) 0.8496 * 0.9166 > 0.6722
Sps (Dhivya and Sridevi, 2018) a7 0.8683 * 0.8649 > 0.7380
Swe (Wei et al., 2011a) a7 0.6804 *» 0.6867 > 0.5075
Sy (Ye, 2013) a7 0.9100 » 0.9168 > 0.7172
Sy (Hu and Li, 2013) a7 0.8054 » 0.8080 > 0.6503
Syc Meng, 2016) a7 0.6682 *» 0.6700 > 0.4538
Sye (Alolaiyan et al., 2024) an 0.4260 > 0.6780 * 0.6799
Dy, (Zhou et al., 2016) (25) 0.0625 + 0.0603 < 0.1113
Dp, (Fares et al., 2019) (25) 0.2595 < 0.4453 « 0.3616
Dy, (Qin et al., 2023) (25) 0.4353 < 0.2577 « 0.2577
D,, (Ohlan, 2022) (25) 0.3884 < 0.1169 « 0.1119
Dy, (Vishnukumar et al., 2024) (25) 0.4933 < 0.2258 « 0.1917
Proposed (a = 2) a7n 0.8479 » 0.9127 > 0.5818
Proposed (@ = 6) None None

Proposed (@ = 10) None None

The comparative analysis from Table 12 illustrates the limitations of existing measures. All fail to satisfy
the given inequalities and cannot differentiate effectively in critical scenarios. The proposed measure shows
certain limitations at @ = 2, but it proves to be highly effective and consistent when an optimal value of a
is selected. This demonstrates that the method becomes more dependable and accurate than traditional
measures under challenging conditions.

The proposed measure exhibits considerable improvements when a proper value of « is chosen. It fulfills
all the required inequalities and has strong differentiation capabilities. This makes it suitable for handling
complex fuzzy data and ensuring reliable decision-making. Overall, these findings confirm the usefulness
of the proposed approach and highlight its advantage over existing similarity measures.

5.1 Sensitivity Analysis of Parameter a

In order to examine the stability and discrimination power of the proposed correlation coefficient, a detailed
sensitivity analysis with respect to the parameter a was performed. Table 12 provides the outcomes of
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several correlation, similarity and distance measures, highlighting their failure to satisfy the essential
inequality conditions (15), (17) and (25) which are crucial for effective discrimination of structured
linguistic variables.

The analysis shows that:

e For lower values of parameter, such as @ = 2, the measure proposed fails to fully satisfy inequality
(17), in the same way as other existing methods. This suggests that at a lower value of «, the proposed
correlation coefficient cannot be used for the classification of the linguistic variables.

e As a increases (e.g., @ = 6 and a = 10), the proposed measure not only distinguishes the different
structured linguistic variables but also satisfies all the required inequalities. This indicates that the
proposed generalized correlation coefficient is sensitive towards the parameter a. This justifies the
applicability of the generalized correlation coefficient in real-life scenarios.

This analysis highlights the tuning function of parameter a. By changing the value of «, decision-makers
can enhance or relax the discriminative strength of the correlation measure depending on the degree of
closeness of the linguistic variables.

Hence, the sensitivity analysis serves as a clear indication of the importance of selecting an appropriate
value of a. This gives the proposed measure the ability to be at its best when compared with the classical
measures which do not have the flexibility feature introduced by the parameter, thus making it a strong and
adaptable approach in complex decision-making environments.

The sensitivity analysis insights the importance of the parameter a in enhancing the responsiveness of the
correlation coefficient. It improved the distinction among alternatives in decision-making scenarios.
Following this observation, it becomes essential to assess not only the sensitivity but also the reliability of
the proposed method. For this purpose, we incorporate the measure of error- originally proposed by
Muthukumar and Krishnan (2016) for intuitionistic fuzzy soft sets as an additional evaluation metric.

5.1.1 Measure of Error

The measure of error provides the extent of variation or inconsistency among the alternatives by analyzing
the relationship between the chosen optimal alternative and all other alternative pairs. In this study, we
extend this concept to the framework of IVIFSs by substituting conventional similarity measures with
correlation coefficients, which more effectively capture the level of association between the alternatives.
Let K(Ai, A]-) denote the correlation coefficient between two IVIFSs A; and 4;, and K(A¢, A,) denote the
highest value of correlation coefficient between any two IVIFSs A; and A,.. Then, the measure of error for
the IVIFS-based method is defined as

1
My = K(4,,4,) +
E (A 4r) Z(i,j)#—(t,r)(K(AtrAr)_]K(AirAj))

(30)

For Example 5.1, let A; = A 2,A, = A, A; = A% and A, = A*. The correlation coefficient values between
two IVIFSs A; and A; for different values of parameter a are shown in Table 13. Table 13 summarizes the
computed pairwise correlation coefficients for six different values of «, illustrating how the relationships
among alternatives evolve as the sensitivity parameter a changes.
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Table 13. Correlation coefficient values for different values of parameter a.

a=2 a=4% a=6 a=10 a=12 a =14
K(A,,4,) 0.7382 0.6379 0.5703 0.4537 0.4021 0.3550
K(A,,45) 0.5818 0.3388 0.1922 0.0600 0.0335 0.0187
K(A;,A,) 0.4122 0.1039 0.0249 0.0015 0.0004 0.0001
K(A4,,45) 0.8479 0.6828 0.5318 0.3236 0.2578 0.2085
K(A,,4,) 0.6661 0.2921 0.1237 0.0231 0.0102 0.0046
K(A5,4A,) 0.9127 0.6458 0.4488 0.2314 0.1705 0.1267

Based on these results, the corresponding values of the measure of error (Mg) using Equation (30) for
different values of a are computed and summarized in Table 14.

Table 14. Calculated values of the measure of error for the proposed method (Example 5.1).

Values of Mg
2 1.6718
4 1.3994
6 1.2239
10 1.0676
12 1.0523
14 1.0610
1.7
16
_15f
g
214t
©
£
213f
©
2
121

-
o

Figure 7. Measure of error for different values of parameter .

Table 14 and Figure 7 show that as the parameter a increases, the corresponding measure of error Mg
decreases. As a result of this behavior, one may infer that an increase in the value of parameter & makes
the model stronger since it can better discriminate among alternatives resulting in a lower error when
identifying the most appropriate option. However, after a certain point (e.g., after « = 12), the measure
of error begins to increase, highlighting that the selection of an appropriate value for « is crucial.

In other words, the method is becoming more stable and accurate in finding the best alternative as the a
increases.
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5.1.2 Comparative Evaluation Based on Measure of Error
A comparative analysis based on the My was carried out to rigorously evaluate the computational
performance and reliability of the proposed correlation coefficient.

Table 15 and Figure 8 provide a comparative assessment of the My corresponding to different existing
correlation coefficient methods, which have been evaluated using Example 5.1.

Table 15. Calculated values of the measure of error for the various existing methods (Example 5.1).

Values of Mg

Kpp (Bustince and Burillo, 1995), Ky, (Hong, 1998) 1.6752
K, (Hung, 2001) 75.627
Kp, (Park et al., 2009a) 1.9442
Ky g (Wei et al., 2011b), K, (Zeng and Wang, 2011) 1.6752
K;; (Liu et al., 2015) 4.5451
K7y (Thao, 2018) 1.3993
Kryr (Thao et al., 2019) 1.8147
S (Singh, 2012) 1.6365
Sps (Dhivya and Sridevi, 2018) 2.4657
Swe (Wei et al., 2011a) 1.6797
Sy (Ye, 2013) 1.9467
Sy (Hu and Li, 2013) 1.9696
Syc Meng, 2016) 1.6317
S4e (Alolaiyan et al., 2024) 1.4593
Proposed method (a = 12) 1.0523

4.5

3.5

2.5

Measure of error

15

0.5

Methods

= KBB, KHO KPA
IKWE, KZW KLI
m KTH w KTMF
=SS m SDS
= Swe = SY
m SHL m SMC
SAe Proposed method (alpha=12)

Figure 8. Measure of error for various methods.

Key observations from Table 15 and Figure 8:

o Measure Ky, (Hung, 2001), generate a very large error value of 75.627 which shows that it performs
poorly and lacks stability in this particular environment.

e Measures K;; (Liu et al., 2015) and Sps (Dhivya and Sridevi, 2018) also output significantly high error
values (above 4.5 and 2.4, respectively). These results lead to the conclusion that the existing
approaches are inconsistent when taking into account structured linguistic information.
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e Although a few methods show moderate performance, none of them can be at the level of the proposed
method in terms of precision and error minimization.

e The proposed method (at ¢ = 12) is the one that produces the lowest Mg value of 1.0523, thereby
confirming its high computational accuracy and reliability.

6. Discussion

This study presents a novel generalized correlation coefficient for IVIFSs, that can go a long way in

resolving the problems typical of fuzzy decision-making environments, such as ambiguity, inverse

relationships, and nuanced preference modelling. The key results and implications of this work are as
follows:

e Accurate representation of dissimilarity: One of the most prominent features of the proposed measure
is its ability to attain a correlation value of —1 for completely dissimilar IVIFSs. Many existing
approaches fail to achieve this. Thus, making this property both meaningful and essential for accurate
modelling.

e Enhanced modelling in MCGDM applications: This measure has been used to solve a real-world
supplier selection problem, thus proving its capability in MCGDM. The use of normalized correlation
efficiency is a very efficient tool for the assignment of both positive and negative expert weights, thus
making the representation of the conflicting views more accurate.

o Strong differentiation via confidence evaluation: The method leads to very high degrees of confidence
almost all the time, and thus it can be used for making exact distinctions between alternatives. This
provides a foundation for its use in ranking, selection, and other decision-based evaluations.

¢ Enhanced handling of structured linguistic terms: In cases where slight differences in the linguistic
variables (e.g., MLH, H, VH, VVH) are considered, the proposed coefficient better distinguishes
between variables than the existing measures. Although a few limitations are observed at lower
parameter settings, optimal parameter tuning significantly improves accuracy and interpretability.

o Sensitivity analysis: The sensitivity analysis revealed that the parameter @ was the main factor that
influenced the measure's behavior. Its performance was constantly increasing as the value of « increases
and reaches its best performance at « = 12 for the test case considered (see Table 14). Beyond this
value, accuracy begins to decline, which highlights the importance of identifying an optimal «a.

e Validated by Measure of Error analysis: The measure of error analysis is an additional source that
validates the robustness of the proposed approach. At @ = 12, the method attains the smallest error
value, M = 1.0523, outperforming all comparable methods and demonstrating superior computational
reliability.

7. Conclusion

This paper introduces a generalized correlation coefficient for IVIFSs that addresses the issues of existing
methods. The new coefficient more accurately reflects both positive and negative relationships. It captures
linguistic vagueness more delicately and offers strong computational efficiency. Due to these qualities, the
measure is better suited for real decision-making scenarios involving incomplete or imprecise information.

While the parameter « is one of the major strengths, its best selection is still very much dependent on user’s

judgment, indicating that adaptive or data-driven strategies for choosing a could enhance usability to a

greater extent. Besides, the method has the following limitations:

(i) Attribute interdependencies: The incorporation of objective weights notwithstanding, the current
formulation does not consider the interdependencies of attributes, which may have an impact on the
results in complex scenarios.
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(ii) Scalability: The method has been shown to work efficiently for small and medium-sized problems,
however, it’s not clear how it will behave with every large dataset.

(iii) Performance under extreme uncertainty: Additional studies should be carried out to confirm the
robustness of the proposed correlation coefficient in cases of very uncertain or highly variable IVIF
information.

Future research might also consider automated selection of a, use different kinds of data that represent
attribute relationships, and develop the method for other fuzzy environments. Moreover, this approach can
be used on big data sets from real-world datasets, which will further validate its practical relevance.

Besides that, delving into new functionalities of these coefficients in complicated cases and their complex
scenarios, such as machine learning or optimization techniques, may have a significant impact on their
power to deal with uncertainty and facilitating informed decisions across various domains. Information
from recent studies on cosine similarity measures for I[FSs (Ahemen et al., 2024) could also be an idea-
generating source for the development of generalized cosine-based correlation coefficients for IVIFSs,
providing a promising direction for future research.
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