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Abstract 

The connection between two or more factors plays a key role in many choices in industry where data often lacks clarity or 

completeness. Classical correlation coefficients, however, fail to fully capture a complete measure of the delicate balance between 

membership and non-membership information in fuzzy data. Existing interval-valued intuitionistic fuzzy measures also show 

inconsistency in handling negative relationships, complementary patterns, and structured linguistic variability, and thus underscore 

the need for a more generalized and reliable correlation framework to manage uncertainty effectively. In this paper, we propose a 

generalized correlation coefficient specifically formulated for interval-valued intuitionistic fuzzy data. It uniquely represents 

uncertainty through interval-based membership and non-membership degrees. The proposed coefficient gives a better picture of 

unclear relationships. The performance of the coefficient is illustrated through numerical examples and through its application in a 

multicriteria group decision-making problem focused on supplier selection. A detailed comparative study with existing methods is 

conducted to highlight the superiority of the proposed approach in terms of robustness and reliability. A sensitivity analysis is also 

performed to examine the impact of an adjustable parameter in the proposed measure. It reveals that the proposed measure remains 

consistent and produces dependable results even under varying decision conditions. 

 

Keywords- Interval-valued intuitionistic fuzzy set, Generalized correlation coefficient, MCGDM, Supplier selection. 

 

 

 

1. Introduction 
The correlation coefficient is a statistical measure that is most frequently used in research for understanding 

how two variables move in relation to each other. It is a significant tool in sciences, where finding the 

relationships among variables is essential for predicting the behaviour of the system (Pearson, 1895; 

Benesty et al., 2009). The correlation coefficient quantifies the strength and direction of relationships 

between variables, if these relationships are positive, negative, or negligible. This makes it especially useful 

for researchers who need to simplify complex data interactions into clear, actionable insights. The values 

of correlation coefficients, typically range from −1 to +1. A value that is very close to +1 will indicate a 

strong positive association, where variables increase together. On the other hand, a value that is very close 

to −1 will point to a strong inverse relationship, in which one variable decreases while the other increases 

(Chan, 2003). The values close to zero suggest a weak or no linear relationship between the variables. 

 

Zadeh (1965) introduced the concept of fuzzy sets aimed to solve the problem of ambiguity that is inherent 

in a system. Atanassov (1986) extended this idea by introducing intuitionistic fuzzy sets (IFSs) with a 
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bipolar treatment of ambiguity/vagueness in a system. Extension of fuzzy sets and IFSs to interval-valued 

fuzzy sets (IVFSs) (Zadeh, 1975) and interval-valued intuitionistic fuzzy sets (IVIFSs) (Atanassov and 

Gargov, 1989), respectively, represent membership and non-membership as intervals. These changes have 

led to an even broader range of options for dealing with imprecise information. The concept of the 

correlation coefficient within these contexts has gained significant attention in recent literature. Dumitrescu 

(1978) introduced the idea of fuzzy correlation coefficient that is similar to conventional statistical 

correlation coefficient. Chiang and Lin (1999) proposed a fuzzy correlation coefficient receiving its value 

in [−1, 1]. Gerstenkorn and Manko (1991) pioneered the introduction of a correlation measure and 

correlation coefficient for IFSs within finite spaces. For more studies on correlation measures based on 

intuitionistic fuzzy data (IFD), we can refer to (Hung, 2001; Xu, 2006; Wei et al., 2011b; Liu et al., 2015; 

Garg and Kumar, 2018; Thao et al., 2019; Ejegwa, 2020; Ejegwa and Onyeke, 2020; Ejegwa et al., 2024; 

Ejegwa et al., 2025). Bustince and Burillo (1995) introduced a correlation measure specifically for IVIFSs. 

Hong (1998) extended the study of Bustince and Burillo (1995) for IVIFSs within general probability 

spaces. However, a significant drawback of the correlation coefficients developed by Bustince and Burillo 

(1995) and Hong (1998) is that they consider only positive correlations and ignore negative correlations. 

Hung (2001) further extended the correlation coefficient for IVIFSs to overcome the limitation identified 

in Bustince and Burillo (1995) and Hong (1998). Incorporating the element of hesitation, Park et al. (2009a) 

and Park et al. (2009b) refined Bustince and Burillo (1995) correlation and investigated multi-attribute 

group decision making (MAGDM) problems. Zeng and Wang (2011) also presented a method for 

determining the correlation coefficient of IVIFSs. Liu et al. (2015) suggested a new method to assess the 

correlation between IFSs. Their work also extended traditional statistical measures, such as deviation, 

variance, and covariance for IFSs, and established a correlation coefficient that remains bounded within the 

interval [−1,1]. Thao (2018) and Thao et al. (2019) derived correlation coefficients based on the variance 

and covariance between two IFSs.  

 

The correlation values are very useful in fuzzy and extended fuzzy contexts and have been used in a wide 

range of applications. For example, Huang and Guo (2019) utilized the correlation coefficient of IFSs in 

medical diagnosis and clustering analysis. Augustine (2021) used the intuitionistic fuzzy correlation 

coefficient to multi-criteria decision-making (MCDM). Numerous other studies (Singh and Lalotra, 2018, 

2019; Ganie et al., 2020; Singh et al., 2020; Ejegwa et al., 2023) have explored the use of correlation 

coefficients in different disciplines such as clustering, pattern recognition, medical diagnosis, and 

MAGDM, in frameworks like IFSs, hesitant fuzzy sets, hesitant fuzzy soft sets, and picture fuzzy sets. 

These works highlight the versatility of correlation measures in handling various types of fuzzy information. 

 

As to the use of correlation measures in real-life scenarios, which is very extensive, this study deals with a 

supplier selection problem under the IVIF framework. Supplier selection is an important process in which 

a company chooses vendors who are trustworthy, affordable, and able to provide good-quality products, 

on-time delivery, and proper service. In this case, selection of the right supplier is crucial to build long-term 

and mutually beneficial relationships. A significant part of a company’s budget is spent on its suppliers. 

Therefore, choosing the appropriate supplier is important for reducing risks, getting good value, and 

meeting long-term goals (Taherdoost and Brard, 2019; Nezhad et al., 2024). But the selection process is 

not always straightforward because decision-makers often deal with unclear or incomplete information. To 

handle this uncertainty, many researchers use fuzzy set theory, which provides a practical way to describe 

and analyze vague or imprecise judgments (Naqvi and Amin, 2021; Demir, 2024). 
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1.1 Motivation and Contribution of the Study 
Based on the literature review, we have identified the following issues: 

• Most of the existing correlation coefficients that assume values in the interval [−1, 1] yield negative 

values for dissimilar sets, but these values do not reflect a perfectly negative correlation, even when 

sets are dissimilar. (See Example 3.1) 

• Existing non-parametric IVIFS correlation coefficients become indecisive in certain situations. 

However, a parametric version, by suitable tuning of the parameter, resolves this issue and also 

minimizes the error. (See Example 5.1) 

• Although correlation coefficients are commonly applied across diverse fields, their use in multi-criteria 

group decision-making (MCGDM) for IVIFSs remains largely unexplored. 

 

These limitations serve as the primary motivation for developing a novel, parametric correlation coefficient 

for IVIFSs with a range of [−1,1]. The proposed correlation coefficient is able to distinguish positive as 

well as negative correlations more efficiently; thus, it is a significant point of the paper that the existing 

methods do not reveal this feature. Their usage in decision-making problems is hence extended. To 

highlight the necessity and impact of the proposed method, it is essential to check how existing measures 

perform with respect to the criteria that characterize the robustness of correlation coefficients for IVIFSs. 

 

The following points provide a logical framework for analyzing the performance of existing measures: 

P1: The correlation coefficient is a good measure of negative relationships between IVIFSs. 

P2: The correlation coefficient is 1 if and only if the two IVIFSs are identical.  

P3: The correlation coefficient between any two IVIFSs is −1 if and only if the two IVIFSs are a perfect 

complement of each other. 

P4: The correlation coefficient is able to effectively recognize structured linguistic variables. 

 

Table 1 summarizes how existing methods satisfy (or fail to satisfy) these properties and highlights their 

strengths and limitations. 

 
Table 1. Analysis of limitations across existing IVIF correlation coefficients. 

 

IVIF correlation coefficient P1 P2 P3 P4 

𝕂𝐵𝐵 (Bustince and Burillo, 1995)  ✓   

𝕂𝐻𝑂 (Hong, 1998)  ✓   

𝕂𝐻𝑢 (Hung, 2001) ✓ ✓ ✓  

𝕂𝑋𝑢 (Xu, 2006)     

𝕂𝑃𝐴 (Park et al., 2009a)  ✓   

𝕂𝑊𝐸 (Wei et al., 2011b)  ✓   

𝕂𝑃𝑎 (Park et al., 2009b) ✓ ✓  ✓ 

𝕂𝑍𝑊 (Zeng and Wang, 2011)  ✓   

𝕂𝐿𝐼 (Liu et al., 2015)  ✓   

𝕂𝑇𝐻 (Thao, 2018) ✓ ✓   

𝕂𝑇𝑀𝐹  (Thao et al., 2019) ✓ ✓   

 

 

As there is a need for a novel correlation coefficient to overcome these limitations, it is also important to 

justify why a generalized formulation is required. 

 

What is the necessity of a generalized correlation coefficient? 

Most of the existing correlation measures do not include any adjustable parameters. Because of this, they 

cannot adapt well to different types of data or varying decision-making situations. Introducing a generalized 

correlation coefficient with a parameter 𝛼 helps to overcome this rigidity. The parameter allows the measure 
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to adjust its sensitivity depending on the nature of the IVIF information. This flexibility enables the 

coefficient to detect both strong and weak relationships more accurately. Thus, making it applicable 

practically in all types of fuzzy decision-making problems.  

 

The novel contribution of this paper is as follows: 

• We propose a new generalized (parametric) correlation coefficient for IVIFSs. It helps to explore 

greater flexibility for assessing correlations within IVIF data. 

• The proposed method has been applied to an MCGDM problem.  

• A comparative analysis has been made to buttress the credibility of the proposed method. 

 

The content of this paper is organized as follows: Section 2 lays out the basic ideas. Section 3 presents a 

newly generalized correlation coefficient for IVIFSs. In Section 4, the focus is on illustrating the application 

of the proposed correlation coefficient in MCGDM. This section also presents a comparative evaluation to 

emphasize the benefits of the proposed approach. Section 5 presents a comparative analysis based on 

structured linguistic variables supported by sensitivity analysis of parameter α and the measure of error. 

Finally, Sections 6 and 7, respectively, provide the discussion and conclusion of the study by summarizing 

the key findings and recommendations for future research directions. The framework of the study is 

illustrated in Figure 1. 

 

 
 

Figure 1. Framework of the study. 

 

 

2. Preliminaries 
This section recalls fundamental concepts and revisits significant existing correlation coefficients. These 

concepts form the basis for the methods discussed in this paper and support the comparative analysis carried 

out in the later sections. 

 

2.1 Some Basic Concepts of IVIFSs 
Definition 1: (Atanassov, 1986) Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a universal set. Then an intuitionistic fuzzy set 

𝑋 in 𝑈 is defined as 

𝑋 = {(𝑥𝑖, 𝜇𝑋(𝑥𝑖), 𝜈𝑋(𝑥𝑖))|𝑥𝑖 ∈ 𝑈, 𝑖 = 1,2,3,… , 𝑛} 
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where, 𝜇𝑋: 𝑈 → [0,1] and 𝜈𝑋: 𝑈 → [0,1] are called the membership and non-membership functions for 𝑋, 

respectively, and satisfy the condition 

0 ≤ 𝜇𝑋(𝑥𝑖) + 𝜈𝑋(𝑥𝑖) ≤ 1. 

 

In addition, 𝜋𝑋(𝑥𝑖) = 1 − 𝜇𝑋(𝑥𝑖) − 𝜈𝑋(𝑥𝑖) is called the hesitancy degree of 𝑥𝑖 to ∀𝑥𝑖 ∈ 𝑈. 

 

Definition 2: (Atanassov and Gargov, 1989) Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a universal set. Then an interval-

valued intuitionistic fuzzy set 𝑋 in 𝑈 is defined as 

𝑋 = {(𝑥𝑖, 𝜇𝑋(𝑥𝑖), 𝜈𝑋(𝑥𝑖)): 𝑥𝑖 ∈ 𝑈}. 
 

where, 𝜇𝑋(𝑥𝑖) = [𝜇𝑋
𝑙 (𝑥𝑖), 𝜇𝑋

𝑢(𝑥𝑖)] and 𝜈𝑋(𝑥𝑖) = [𝜈𝑋
𝑙 (𝑥𝑖), 𝜈𝑋

𝑢(𝑥𝑖)] are interval membership and non-

membership of 𝑥𝑖 in 𝑋, respectively. Furthermore, 𝜇𝑋: 𝑈 → [0,1] and 𝜈𝑋: 𝑈 → [0,1] are membership and 

non-membership functions, respectively, which satisfy the conditions 0 ≤ 𝜇𝑋
𝑙 (𝑥𝑖) + 𝜈𝑋

𝑙 (𝑥𝑖) ≤ 1 and 

0 ≤ 𝜇𝑋
𝑢(𝑥𝑖) + 𝜈𝑋

𝑢(𝑥𝑖) ≤ 1. 

 

In addition, [𝜋𝑋
𝑙 (𝑥𝑖), 𝜋𝑋

𝑢(𝑥𝑖)] = [1 − 𝜇𝑋
𝑢(𝑥𝑖) − 𝜈𝑋

𝑢(𝑥𝑖), 1 − 𝜇𝑋
𝑙 (𝑥𝑖) − 𝜈𝑋

𝑙 (𝑥𝑖)] is called the interval-valued 

intuitionistic index of 𝑥𝑖 in 𝑋, which is also called the hesitancy degree of 𝑥𝑖 to 𝑋.  

 

Definition 3: (Bustince and Burillo, 1995) Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a universal set such that the 

cardinality of 𝑈 is 𝑛 < ∞. Then for each IVIFS 𝑋 = {(𝑥, [𝜇𝑋
𝑙 (𝑥), 𝜇𝑋

𝑢(𝑥)], [𝜈𝑋
𝑙 (𝑥), 𝜈𝑋

𝑢(𝑥)]): 𝑥 ∈ 𝑈}, an 

informational energy of an IVIFS is defined as 

𝐸𝐼𝑉𝐼𝐹𝑆(𝑋) = ∑
𝜇𝑋
𝑙 2(𝑥𝑖)+𝜇𝑋

𝑢2(𝑥𝑖)+𝜐𝑋
𝑙 2(𝑥𝑖)+𝜐𝑋

𝑢2(𝑥𝑖)

2
𝑛
𝑖=1                                                                                        (1) 

 

and 𝐸𝐼𝑉𝐼𝐹𝑆(𝑋) satisfies the following properties: 

𝐸1: 𝐸𝐼𝑉𝐼𝐹𝑆(𝑋) = 0 if and only if 𝜇𝑋(𝑥) = 𝜈𝑋(𝑥) = 0 for all 𝑥 ∈ 𝑈, 

𝐸2: 𝐸𝐼𝑉𝐼𝐹𝑆(𝑋) = 𝐸𝐼𝑉𝐼𝐹𝑆(𝑋𝐶) for all 𝑋 in IVIFSs, 

𝐸3: 𝐸𝐼𝑉𝐼𝐹𝑆(𝑋) ≤ 𝑛 for all 𝑋 in IVIFSs, 

𝐸4: If 𝑋 ≤ 𝑌, then 𝐸𝐼𝑉𝐼𝐹𝑆(𝑋) ≤ 𝐸𝐼𝑉𝐼𝐹𝑆(𝑌). 
 

Definition 4: (Bustince and Burillo, 1995) Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a universal set. Let 𝑋 and 𝑌 be two 

IVIFSs in 𝑈, then the correlation of IVIFSs is defined as  

𝐶𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) =  
1

2
∑ (𝜇𝑋

𝑙 (𝑥𝑖)𝜇𝑌
𝑙 (𝑥𝑖) + 𝜇𝑋

𝑢(𝑥𝑖)𝜇𝑌
𝑢(𝑥𝑖) + 𝜈𝑋

𝑙 (𝑥𝑖)𝜈𝑌
𝑙 (𝑥𝑖) + 𝜈𝑋

𝑢(𝑥𝑖)𝜈𝑌
𝑢(𝑥𝑖))

𝑛
𝑖=1                       (2) 

 

and 𝐶𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) satisfies the following properties: 

𝐶1: 𝐶𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑋) = 𝐸𝐼𝑉𝐼𝐹𝑆(𝑋), 
𝐶2: 𝐶𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) = 𝐶𝐼𝑉𝐼𝐹𝑆(𝑌, 𝑋). 
 

Definition 5: (Bustince and Burillo, 1995) Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a universal set. Let 𝑋 and 𝑌 be two 

IVIFSs in 𝑈, then the correlation coefficient of IVIFSs is defined as 

𝕂𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) =
𝐶𝐼𝑉𝐼𝐹𝑆(𝑋,𝑌)

√𝐸𝐼𝑉𝐼𝐹𝑆(𝑋)𝐸𝐼𝑉𝐼𝐹𝑆(𝑌)
                                                                                                              (3) 

 

and 𝕂𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) satisfies the following properties: 

𝐶𝐶1: If 𝑋 = 𝑌, then 𝕂𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) = 1, 

𝐶𝐶2: 𝕂𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) = 𝕂𝐼𝑉𝐼𝐹𝑆(𝑌, 𝑋), 
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𝐶𝐶3: 0 ≤ 𝕂𝐼𝑉𝐼𝐹𝑆(𝑋, 𝑌) ≤ 1. 

 

Definition 6: Let 𝐼𝑉𝐼𝐹𝑆(𝑈) = {𝑋1, 𝑋2, … , 𝑋𝑝} be a collection of IVIFSs. Then generalized correlation 

efficiency of any IVIFSs 𝑋𝑘  (𝑘 = 1,2,… , 𝑝) is defined as 

𝐶𝐼𝑉𝐼𝐹𝑆
𝛼 (𝑋𝑘) =

∑ 𝕂𝐼𝑉𝐼𝐹𝑆
𝛼 (𝑋𝑘,𝑋𝑙)

𝑝
𝑙=1

𝑝−1
, 𝑘 ≠ 𝑙, 𝑙 = 1,2,… , 𝑝; 𝛼 ∈ ℝ                                                                       (4) 

 

Definition 7: Let 𝐼𝑉𝐼𝐹𝑆(𝑈) = {𝑋1, 𝑋2, … , 𝑋𝑝} be a collection of IVIFSs. Then normalized correlation 

efficiency of any IVIFSs 𝑋𝑘  (𝑘 = 1,2,… , 𝑝) is defined as 

ℕ𝐼𝑉𝐼𝐹𝑆(𝑋𝑘) =
𝐶𝐼𝑉𝐼𝐹𝑆
𝛼 (𝑋𝑘)

∑ 𝐶𝐼𝑉𝐼𝐹𝑆
𝛼 (𝑋𝑙)

𝑝
𝑙=1

, 𝛼 ∈ ℝ                                                                                                            (5) 

 

such that ∑ ℕ𝐼𝑉𝐼𝐹𝑆(𝑋𝑘) = 1
𝑝
𝑘=1 . 

 

2.2 Existing Correlation Coefficient 
This section provides an overview of the correlation coefficients for IVIFSs introduced by various 

researchers.  

Let 𝑋 and 𝑌 be two IVIFSs in 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}. 
 

(i) 𝕂𝐵𝐵(𝑋, 𝑌) =
𝐶𝐼𝑉𝐼𝐹𝑆(𝑋,𝑌)

√𝐸𝐼𝑉𝐼𝐹𝑆(𝑋)𝐸𝐼𝑉𝐼𝐹𝑆(𝑌)
=

1

2
∑ (𝜇𝑋

𝑙 (𝑥𝑖)𝜇𝑌
𝑙 (𝑥𝑖)+𝜇𝑋

𝑢(𝑥𝑖)𝜇𝑌
𝑢(𝑥𝑖)+𝜈𝑋

𝑙 (𝑥𝑖)𝜈𝑌
𝑙 (𝑥𝑖)+𝜈𝑋

𝑢(𝑥𝑖)𝜈𝑌
𝑢(𝑥𝑖))

𝑛
𝑖=1

√(
1

2
∑ 𝜇𝑋

𝑙 2(𝑥𝑖)+𝜇𝑋
𝑢2(𝑥𝑖)+𝜐𝑋

𝑙 2(𝑥𝑖)+𝜐𝑋
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )(

1

2
∑ 𝜇𝑌

𝑙 2(𝑥𝑖)+𝜇𝑌
𝑢2(𝑥𝑖)+𝜐𝑌

𝑙 2(𝑥𝑖)+𝜐𝑌
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )

 

(Bustince and Burillo, 1995). 

 
(ii) 𝕂𝐻𝑂(𝑋, 𝑌) = 

1

2
∫(𝜇𝑋

𝑙 (𝑥𝑖)𝜇𝑌
𝑙 (𝑥𝑖)+𝜇𝑋

𝑢(𝑥𝑖)𝜇𝑌
𝑢(𝑥𝑖)+𝜈𝑋

𝑙 (𝑥𝑖)𝜈𝑌
𝑙 (𝑥𝑖)+𝜈𝑋

𝑢(𝑥𝑖)𝜈𝑌
𝑢(𝑥𝑖))𝑑𝑃

√(
1

2
∫(𝜇𝑋

𝑙 2(𝑥𝑖)+𝜇𝑋
𝑢2(𝑥𝑖)+𝜐𝑋

𝑙 2(𝑥𝑖)+𝜐𝑋
𝑢2(𝑥𝑖))𝑑𝑃(

1

2
∫(𝜇𝑋

𝑙 2(𝑥𝑖)+𝜇𝑋
𝑢2(𝑥𝑖)+𝜐𝑋

𝑙 2(𝑥𝑖)+𝜐𝑋
𝑢2(𝑥𝑖))𝑑𝑃))

 (Hong, 1998). 

 

where, P is the probability. 

 

(iii) 𝕂𝐻𝑢(𝑋, 𝑌) =
1

2
((𝕂𝐻𝑢)1 + (𝕂𝐻𝑢)2) (Hung, 2001). 

where, (𝕂𝐻𝑢)1 =
∑ (𝑚𝑋−𝑚̅𝑋)(𝑚𝑌−𝑚̅𝑌)
𝑛
𝑖=1

√∑ (𝑚𝑋−𝑚̅𝑋)
2𝑛

𝑖=1 ∑ (𝑚𝑌−𝑚̅𝑌)
2𝑛

𝑖=1

 and (𝕂𝐻𝑢)2 =
∑ (𝜂𝑋−𝜂̅𝑋)(𝜂𝑌−𝜂̅𝑌)
𝑛
𝑖=1

√∑ (𝜂𝑋−𝜂̅𝑋)
2𝑛

𝑖=1 ∑ (𝜂𝑌−𝜂̅𝑌)
2𝑛

𝑖=1

. 

 

Here, 𝑚𝑋, 𝑚𝑌 and 𝜂𝑋,𝜂𝑌 are middle points of membership and non-membership intervals, respectively and 

𝑚̅𝑋, 𝑚̅𝑌 and 𝜂̅𝑋 , 𝜂̅𝑌 are average membership and non-membership respectively. 

 

(iv) 𝕂𝑋𝑢(𝑋, 𝑌) =
1

4𝑛
∑ [

Δ𝜇𝑚𝑖𝑛
𝑙 +Δ𝜇𝑚𝑎𝑥

𝑙

Δ𝜇𝑖
𝑙+Δ𝜇𝑚𝑎𝑥

𝑙 +
Δ𝜇𝑚𝑖𝑛

𝑢 +Δ𝜇𝑚𝑎𝑥
𝑢

Δ𝜇𝑖
𝑢+Δ𝜇𝑚𝑎𝑥

𝑢 +
Δ𝜐𝑚𝑖𝑛

𝑙 +Δ𝜐𝑚𝑎𝑥
𝑙

Δ𝜐𝑖
𝑙+Δ𝜐𝑚𝑎𝑥

𝑙  +
Δ𝜐𝑚𝑖𝑛

𝑢 +Δ𝜐𝑚𝑎𝑥
𝑢

Δ𝜐𝑖
𝑢+Δ𝜐𝑚𝑎𝑥

𝑢 ]𝑛
𝑖=1  (Xu, 2006). 

 

where, Δ𝜇𝑖
𝑙 = |𝜇𝑋

𝑙 (𝑥𝑖) − 𝜇𝑌
𝑙 (𝑥𝑖)|, Δ𝜐𝑖

𝑙 = |𝜐𝑋
𝑙 (𝑥𝑖) − 𝜐𝑌

𝑙 (𝑥𝑖)|, Δ𝜇𝑖
𝑢 = |𝜇𝑋

𝑢(𝑥𝑖) − 𝜇𝑌
𝑢(𝑥𝑖)|, 

Δ𝜐𝑖
𝑢 = |𝜐𝑋

𝑢(𝑥𝑖) − 𝜐𝑌
𝑢(𝑥𝑖)|, Δ𝜇𝑚𝑖𝑛

𝑙 = min
𝑖
{|𝜇𝑋

𝑙 (𝑥𝑖) − 𝜇𝑌
𝑙 (𝑥𝑖)|} , Δ𝜇𝑚𝑖𝑛

𝑢 = min
𝑖
{|𝜇𝑋

𝑢(𝑥𝑖) − 𝜇𝑌
𝑢(𝑥𝑖)|}, 
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Δ𝜇𝑚𝑎𝑥
𝑙 = max

𝑖
{|𝜇𝑋

𝑙 (𝑥𝑖) − 𝜇𝑌
𝑙 (𝑥𝑖)|} , Δ𝜇𝑚𝑎𝑥

𝑢 = max
𝑖
{|𝜇𝑋

𝑢(𝑥𝑖) − 𝜇𝑌
𝑢(𝑥𝑖)|}, 

Δ𝜈𝑚𝑖𝑛
𝑙 = min

𝑖
{|𝜐𝑋

𝑙 (𝑥𝑖) − 𝜐𝑌
𝑙 (𝑥𝑖)|} , Δ𝜈𝑚𝑖𝑛

𝑢 = min
𝑖
{|𝜐𝑋

𝑢(𝑥𝑖) − 𝜐𝑌
𝑢(𝑥𝑖)|}, 

Δ𝜈𝑚𝑎𝑥
𝑙 = max

𝑖
{|𝜈𝑋

𝑙 (𝑥𝑖) − 𝜈𝑌
𝑙 (𝑥𝑖)|} ,  Δ𝜈𝑚𝑎𝑥

𝑢 = max
𝑖
{|𝜈𝑋

𝑢(𝑥𝑖) − 𝜈𝑌
𝑢(𝑥𝑖)|}.  

 

(v) 𝕂𝑃𝐴(𝑋, 𝑌) =
1

2
∑ (𝜇𝑋

𝑙 (𝑥𝑖)𝜇𝑌
𝑙 (𝑥𝑖)+𝜇𝑋

𝑢(𝑥𝑖)𝜇𝑌
𝑢(𝑥𝑖)+𝜈𝑋

𝑙 (𝑥𝑖)𝜈𝑌
𝑙 (𝑥𝑖)+𝜈𝑋

𝑢(𝑥𝑖)𝜈𝑌
𝑢(𝑥𝑖)+𝜋𝑋

𝑙 (𝑥𝑖)𝜋𝑌
𝑙 (𝑥𝑖)+𝜋𝑋

𝑢(𝑥𝑖)𝜋𝑌
𝑢(𝑥𝑖))

𝑛
𝑖=1

√
(
1

2
∑ 𝜇𝑋

𝑙 2(𝑥𝑖)+𝜇𝑋
𝑢2(𝑥𝑖)+𝜐𝑋

𝑙 2(𝑥𝑖)+𝜐𝑋
𝑢2(𝑥𝑖)+𝜋𝑋

𝑙 2(𝑥𝑖)+𝜋𝑋
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )

(
1

2
∑ 𝜇𝑌

𝑙 2(𝑥𝑖)+𝜇𝑌
𝑢2(𝑥𝑖)+𝜐𝑌

𝑙 2(𝑥𝑖)+𝜐𝑌
𝑢2(𝑥𝑖)+𝜋𝑌

𝑙 2(𝑥𝑖)+𝜋𝑌
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )

 

 

(Park et al., 2009a). 

 

(vi) 𝕂𝑊𝐸(𝑋, 𝑌) =
1

2
∑ (𝜇𝑋

𝑙 (𝑥𝑖)𝜇𝑌
𝑙 (𝑥𝑖)+𝜇𝑋

𝑢(𝑥𝑖)𝜇𝑌
𝑢(𝑥𝑖)+𝜈𝑋

𝑙 (𝑥𝑖)𝜈𝑌
𝑙 (𝑥𝑖)+𝜈𝑋

𝑢(𝑥𝑖)𝜈𝑌
𝑢(𝑥𝑖))

𝑛
𝑖=1

√
(
1

2
∑ 𝜇𝑋

𝑙 2(𝑥𝑖)+𝜇𝑋
𝑢2(𝑥𝑖)+𝜐𝑋

𝑙 2(𝑥𝑖)+𝜐𝑋
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )

(
1

2
∑ 𝜇𝑌

𝑙 2(𝑥𝑖)+𝜇𝑌
𝑢2(𝑥𝑖)+𝜐𝑌

𝑙 2(𝑥𝑖)+𝜐𝑌
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )

 (Wei et al., 2011b). 

 

(vii) 𝕂𝑃𝑎(𝑋, 𝑌) =
1

3
((𝕂𝑃𝑎)1 + (𝕂𝑃𝑎)2 + (𝕂𝑃𝑎)3) (Park et al., 2009b). 

 

where, 

(𝕂𝑃𝑎)1 =
∑ (𝑚𝑋(𝑥𝑖)−𝑚̅𝑋)(𝑚𝑌(𝑥𝑖)−𝑚̅𝑌)
𝑛
𝑖=1

√∑ (𝑚𝑋(𝑥𝑖)−𝑚̅𝑋)
2𝑛

𝑖=1 ∑ (𝑚𝑌(𝑥𝑖)−𝑚̅𝑌)
2𝑛

𝑖=1

, (𝕂𝑃𝑎)2 =
∑ (𝜂𝑋(𝑥𝑖)−𝜂̅𝑋)(𝜂𝑌(𝑥𝑖)−𝜂̅𝑌)
𝑛
𝑖=1

√∑ (𝜂𝑋(𝑥𝑖)−𝜂̅𝑋)
2𝑛

𝑖=1 ∑ (𝜂𝑌(𝑥𝑖)−𝜂̅𝑌)
2𝑛

𝑖=1

 and  

(𝕂𝑃𝑎)3 =
∑ (𝜋𝑋(𝑥𝑖)−𝜋̅𝑋)(𝜋𝑌(𝑥𝑖)−𝜋̅𝑌)
𝑛
𝑖=1

√∑ (𝜋𝑋(𝑥𝑖)−𝜋̅𝑋)
2𝑛

𝑖=1 ∑ (𝜋𝑌(𝑥𝑖)−𝜋̅𝑌)
2𝑛

𝑖=1

.  

 

Here 𝑚𝑋, 𝑚𝑌,  𝜂𝑋 , 𝜂𝑌 and  𝜋𝑋, 𝜋𝑌 are middle points of membership, non-membership and hesitation 

intervals, respectively and 𝑚̅𝑋, 𝑚̅𝑌 and 𝜂̅𝑋, 𝜂̅𝑌 are average membership and non-membership. 

 

(viii) 𝕂𝑍𝑊(𝑋, 𝑌) =
1

2𝑛
∑ (𝜇𝑋

𝑙 (𝑥𝑖)𝜇𝑌
𝑙 (𝑥𝑖)+𝜇𝑋

𝑢(𝑥𝑖)𝜇𝑌
𝑢(𝑥𝑖)+𝜈𝑋

𝑙 (𝑥𝑖)𝜈𝑌
𝑙 (𝑥𝑖)+𝜈𝑋

𝑢(𝑥𝑖)𝜈𝑌
𝑢(𝑥𝑖)+𝜋𝑋

𝑙 (𝑥𝑖)𝜋𝑌
𝑙 (𝑥𝑖)+𝜋𝑋

𝑢(𝑥𝑖)𝜋𝑌
𝑢(𝑥𝑖))

𝑛
𝑖=1

√
(
1

2𝑛
∑ 𝜇𝑋

𝑙 2(𝑥𝑖)+𝜇𝑋
𝑢2(𝑥𝑖)+𝜐𝑋

𝑙 2(𝑥𝑖)+𝜐𝑋
𝑢2(𝑥𝑖)+𝜋𝑋

𝑙 2(𝑥𝑖)+𝜋𝑋
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )

(
1

2𝑛
∑ 𝜇𝑌

𝑙 2(𝑥𝑖)+𝜇𝑌
𝑢2(𝑥𝑖)+𝜐𝑌

𝑙 2(𝑥𝑖)+𝜐𝑌
𝑢2(𝑥𝑖)+𝜋𝑌

𝑙 2(𝑥𝑖)+𝜋𝑌
𝑢2(𝑥𝑖)

𝑛
𝑖=1 )

 

 

(Zeng and Wang, 2011). 

 

(ix) 𝕂𝐿𝐼(𝑋, 𝑌) =
∑ 𝑑(𝑋𝑖,𝑋̅)𝑑(𝑌𝑖,𝑌̅)
𝑛
𝑖=1

√∑ (𝑑(𝑋𝑖,𝑋̅))
2𝑛

𝑖=1 ∑ (𝑑(𝑌𝑖,𝑌̅))
2𝑛

𝑖=1

 (Liu et al., 2015). 

 

where, 𝑑(𝑋, 𝑌) =
𝜇𝑋
𝑙 −𝜇𝑋

𝑢+𝜐𝑋
𝑙 −𝜐𝑋

𝑢

2
−

𝜇𝑌
𝑙 −𝜇𝑌

𝑢+𝜐𝑌
𝑙 −𝜐𝑌

𝑢

2
,  

 

𝑋̅ =  𝐸(𝑋) = (𝜇̅𝑋, 𝜈̅𝑋) = (
1

𝑛
∑ 𝜇𝑋(𝑥𝑖)
𝑛
𝑖=1 ,

1

𝑛
∑ 𝜈𝑋(𝑥𝑖)
𝑛
𝑖=1 ). Similarly, for 𝑌 and 𝑌̅. 
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(x) 𝕂𝑇𝐻(𝑋, 𝑌) = 𝕂𝑇𝐻(𝑋, 𝑌) =
1

𝑛−1
∑ ((𝜇𝑋(𝑥𝑖)−𝜇̅𝑋)(𝜇𝑌(𝑥𝑖)−𝜇̅𝑌)+(𝜐𝑋(𝑥𝑖)−𝜐̅𝑋)(𝜐𝑌−𝜐̅𝑌)+𝑑𝑖(𝑋)𝑑𝑖(𝑌))
𝑛
𝑖=1

√
{
1

𝑛−1
∑ ((𝜇𝑋(𝑥𝑖)−𝜇̅𝑋)

2+(𝜐𝑋(𝑥𝑖)−𝜐̅𝑋)
2+𝑑𝑖

2(𝑋)))𝑛
𝑖=1 }

{
1

𝑛−1
∑ ((𝜇𝑌(𝑥𝑖)−𝜇̅𝑌)

2+(𝜐𝑌(𝑥𝑖)−𝜐̅𝑌)
2+𝑑𝑖

2(𝑌)))𝑛
𝑖=1 }

  

 

where, 𝑑𝑖(𝑋) = (𝜇𝑋(𝑥𝑖) − 𝜇̅𝑋) − (𝜐𝑋 − 𝜐̅𝑋), 𝑑𝑖(𝑌) = (𝜇𝑌(𝑥𝑖) − 𝜇̅𝑌) − (𝜐𝑌(𝑥𝑖) − 𝜐̅𝑌), 
 

𝜇̅𝑋 =
1

2
(
1

𝑛
∑ 𝜇𝑋

𝑙 (𝑥𝑖)
𝑛
𝑖=1 +

1

𝑛
∑ 𝜇𝑋

𝑢𝑛
𝑖=1 (𝑥𝑖)), 𝜐̅𝑋 =

1

2
(
1

𝑛
∑ 𝜐𝑋

𝑙 (𝑥𝑖)
𝑛
𝑖=1 +

1

𝑛
∑ 𝜐𝑋

𝑢(𝑥𝑖)
𝑛
𝑖=1 ). 

 

Similarly, for 𝜇̅𝑌 and 𝜐̅𝑌 (Thao, 2018). 

 

(xi) 𝕂𝑇𝑀𝐹(𝑋, 𝑌) =
1

𝑛−1
∑ ((𝜇𝑋(𝑥𝑖)−𝜇̅𝑋)(𝜇𝑌(𝑥𝑖)−𝜇̅𝑌)+(𝜐𝑋(𝑥𝑖)−𝜐̅𝑋)(𝜐𝑌(𝑥𝑖)−𝜐̅𝑌))
𝑛
𝑖=1

√{
1

𝑛−1
∑ ((𝜇𝑋(𝑥𝑖)−𝜇̅𝑋)

2+(𝜐𝑋(𝑥𝑖)−𝜐̅𝑋)
2))𝑛

𝑖=1 }{
1

𝑛−1
∑ ((𝜇𝑌(𝑥𝑖)−𝜇̅𝑌)

2+(𝜐𝑌(𝑥𝑖)−𝜐̅𝑌)
2))𝑛

𝑖=1 }

  

 

where, 𝜇̅𝑋 =
1

2
(
1

𝑛
∑ 𝜇𝑋

𝑙 (𝑥𝑖)
𝑛
𝑖=1 +

1

𝑛
∑ 𝜇𝑋

𝑢(𝑥𝑖)
𝑛
𝑖=1 ), 𝜐̅𝑋 =

1

2
(
1

𝑛
∑ 𝜐𝑋

𝑙 (𝑥𝑖)
𝑛
𝑖=1 +

1

𝑛
∑ 𝜐𝑋

𝑢(𝑥𝑖)
𝑛
𝑖=1 ).  

 

Similarly, for 𝜇̅𝑌 and 𝜐̅𝑌 (Thao et al., 2019). 

 

The aforementioned correlation coefficients have contributed to extending traditional correlation ideas into 

the IVIF setting. However, many of these measures still fall short of consistently meeting the key 

requirements of an ideal correlation coefficient. 

 

Four fundamental properties (P1–P4) outlined in the introduction were used to assess the new correlation 

coefficient's effectiveness. These properties define the essential expectations for an effective IVIF 

correlation coefficient. A comparative summary of existing approaches with respect to these properties is 

presented in Table 1. The analysis shows that most of the existing formulations are unable to characterize 

negative dependencies, identify complementary IVIFSs, and interpreting the structured linguistic variables 

properly. 

 

These limitations highlight the need for an improved formulation. The next section introduces a new 

correlation coefficient designed to overcome these limitations and provide a more stable solution for IVIF 

situations. 

 

3. Generalized Correlation Coefficient for IVIFSs 
This section introduces a new generalized correlation coefficient for IVIFSs, removing certain pitfalls of 

the existing methods. 

 

Let 𝑋 and 𝑌 be two IVIFSs in 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then we define the following correlation coefficient 

between 𝑋 and 𝑌.  

𝕂𝛼(𝑋, 𝑌) =
𝐶𝐼𝑉𝐼𝐹𝑆(𝑋,𝑌)

max{𝐸𝐼𝑉𝐼𝐹𝑆(𝑋),𝐸𝐼𝑉𝐼𝐹𝑆(𝑌)}
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=

1

2
∑

[
 
 
 (𝜇𝑋

𝑙 (𝑥𝑖)−𝜇̅𝑋
𝑙 (𝑥𝑖))

𝛼
2(𝜇𝑌

𝑙 (𝑥𝑖)−𝜇̅𝑌
𝑙 (𝑥𝑖))

𝛼
2+(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
2(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
2+

(𝜐𝑋
𝑙 (𝑥𝑖)−𝜈̅𝑋

𝑙 (𝑥𝑖))

𝛼
2(𝜐𝑌

𝑙 (𝑥𝑖)−𝜈̅𝑌
𝑙 (𝑥𝑖))

𝛼
2+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼
2(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼
2
]
 
 
 

𝑛
𝑖=1

𝑚𝑎𝑥{
(
1

2
∑ ((𝜇𝑋

𝑙 (𝑥𝑖)−𝜇̅𝑋
𝑙 (𝑥𝑖))

𝛼
+(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
+(𝜐𝑋

𝑙 (𝑥𝑖)−𝜈̅𝑋
𝑙 (𝑥𝑖))

𝛼
+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼
)𝑛

𝑖=1 ),

(
1

2
∑ ((𝜇𝑌

𝑙 (𝑥𝑖)−𝜇̅𝑌
𝑙 (𝑥𝑖))

𝛼
+(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
+(𝜐𝑌

𝑙 (𝑥𝑖)−𝜈̅𝑌
𝑙 (𝑥𝑖))

𝛼
+(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼
)𝑛

𝑖=1 )
}

                               (6) 

 

where, 𝛼 > 0 is a real number, 𝜇̅𝑋
𝑙 (𝑥𝑖) =

1

𝑛
∑ 𝜇𝑋

𝑙 (𝑥𝑖)
𝑛
𝑖=1 , 𝜇̅𝑋

𝑢(𝑥𝑖) =
1

𝑛
∑ 𝜇𝑋

𝑢(𝑥𝑖)
𝑛
𝑖=1 , 𝜈̅𝑋

𝑙 (𝑥𝑖) =
1

𝑛
∑ 𝜈𝑋

𝑙 (𝑥𝑖)
𝑛
𝑖=1 , 

𝜈̅𝑋
𝑢(𝑥𝑖) =

1

𝑛
∑ 𝜈𝑋

𝑢(𝑥𝑖)
𝑛
𝑖=1 , 𝜇̅𝑌

𝑙 (𝑥𝑖) =
1

𝑛
∑ 𝜇𝑌

𝑙 (𝑥𝑖)
𝑛
𝑖=1 , 𝜇̅𝑌

𝑢(𝑥𝑖) =
1

𝑛
∑ 𝜇𝑌

𝑢(𝑥𝑖)
𝑛
𝑖=1 , 𝜈̅𝑌

𝑙 (𝑥𝑖) =
1

𝑛
∑ 𝜈𝑌

𝑙 (𝑥𝑖)
𝑛
𝑖=1  and 

𝜈̅𝑌
𝑢(𝑥𝑖) =

1

𝑛
. 

 

We now verify that the proposed correlation coefficient satisfies the key properties. 

 

Theorem 3.1 Let 𝑋 and 𝑌 are two IVIFSs. Then  

1) If 𝑋 = 𝑌 then 𝕂𝛼(𝑋, 𝑌) = 1. 

2) 𝕂𝛼(𝑋, 𝑌) = 𝕂𝛼(𝑌, 𝑋). 

3) −1 ≤ 𝕂𝛼(𝑋, 𝑌) ≤ 1. 

Proof: 

1) It is trivial. 

𝕂𝛼(𝑋, 𝑌) =
𝐶𝐼𝑉𝐼𝐹𝑆(𝑋,𝑌)

max{𝐸𝐼𝑉𝐼𝐹𝑆(𝑋),𝐸𝐼𝑉𝐼𝐹𝑆(𝑌)}
  

=

1

2
∑

[
 
 
 (𝜇𝑋

𝑙 (𝑥𝑖)−𝜇̅𝑋
𝑙 (𝑥𝑖))

𝛼
2(𝜇𝑌

𝑙 (𝑥𝑖)−𝜇̅𝑌
𝑙 (𝑥𝑖))

𝛼
2+(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
2(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
2+

(𝜐𝑋
𝑙 (𝑥𝑖)−𝜈̅𝑋

𝑙 (𝑥𝑖))

𝛼
2(𝜐𝑌

𝑙 (𝑥𝑖)−𝜈̅𝑌
𝑙 (𝑥𝑖))

𝛼
2+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼
2(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼
2
]
 
 
 

𝑛
𝑖=1

𝑚𝑎𝑥

{
 
 
 

 
 
 
(
1

2
∑ (

(𝜇𝑋
𝑙 (𝑥𝑖)−𝜇̅𝑋

𝑙 (𝑥𝑖))
𝛼
+(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
+

(𝜐𝑋
𝑙 (𝑥𝑖)−𝜈̅𝑋

𝑙 (𝑥𝑖))
𝛼
+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼 )𝑛
𝑖=1 ),

(
1

2
∑ (

(𝜇𝑌
𝑙 (𝑥𝑖)−𝜇̅𝑌

𝑙 (𝑥𝑖))
𝛼
+(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
+

(𝜐𝑌
𝑙 (𝑥𝑖)−𝜈̅𝑌

𝑙 (𝑥𝑖))
𝛼
+(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼 )𝑛
𝑖=1 )

}
 
 
 

 
 
 

  

=

1

2
∑

[
 
 
 (𝜇𝑌

𝑙 (𝑥𝑖)−𝜇̅𝑌
𝑙 (𝑥𝑖))

𝛼
2(𝜇𝑋

𝑙 (𝑥𝑖)−𝜇̅𝑋
𝑙 (𝑥𝑖))

𝛼
2+(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
2(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
2+

(𝜐𝑋
𝑙 (𝑥𝑖)−𝜈̅𝑋

𝑙 (𝑥𝑖))

𝛼
2(𝜐𝑌

𝑙 (𝑥𝑖)−𝜈̅𝑌
𝑙 (𝑥𝑖))

𝛼
2+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼
2(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼
2
]
 
 
 

𝑛
𝑖=1

𝑚𝑎𝑥

{
 
 
 

 
 
 
(
1

2
∑ (

(𝜇𝑌
𝑙 (𝑥𝑖)−𝜇̅𝑌

𝑙 (𝑥𝑖))
𝛼
+(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
+

(𝜐𝑌
𝑙 (𝑥𝑖)−𝜈̅𝑌

𝑙 (𝑥𝑖))
𝛼
+(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼 )𝑛
𝑖=1 ),

(
1

2
∑ (

(𝜇𝑋
𝑙 (𝑥𝑖)−𝜇̅𝑋

𝑙 (𝑥𝑖))
𝛼
+(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
+

(𝜐𝑋
𝑙 (𝑥𝑖)−𝜈̅𝑋

𝑙 (𝑥𝑖))
𝛼
+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼 )𝑛
𝑖=1 )

}
 
 
 

 
 
 

  

= 𝕂𝛼(𝑌, 𝑋).  
 

Thus, 𝕂𝛼(𝑋, 𝑌) = 𝕂𝛼(𝑌, 𝑋). 

3) Let 𝑎𝑖 = (𝜇𝑋
𝑙 (𝑥𝑖) − 𝜇̅𝑋

𝑙 (𝑥𝑖))

𝛼

2
, 



Sharma & Singh: Application of a Novel Interval-Valued Intuitionistic Fuzzy Correlation … 
 

157 | Vol. 11, No. 1, 2026 

𝑏𝑖 = (𝜇𝑌
𝑙 (𝑥𝑖) − 𝜇̅𝑌

𝑙 (𝑥𝑖))

𝛼

2
. 

 

Using the Cauchy–Schwarz inequality, we have 

|∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1 | ≤ √∑ 𝑎𝑖

2𝑛
𝑖=1 √∑ 𝑏𝑖

2𝑛
𝑖=1 .  

 

Applying this inequality to all terms, we get 

1

2
∑

[
 
 
 
 
 
 
 (𝜇𝑋

𝑙 (𝑥𝑖) − 𝜇̅𝑋
𝑙 (𝑥𝑖))

𝛼

2
(𝜇𝑌

𝑙 (𝑥𝑖) − 𝜇̅𝑌
𝑙 (𝑥𝑖))

𝛼

2
+

(𝜇𝑋
𝑢(𝑥𝑖) − 𝜇̅𝑋

𝑢(𝑥𝑖))
𝛼

2(𝜇𝑌
𝑢(𝑥𝑖) − 𝜇̅𝑌

𝑢(𝑥𝑖))
𝛼

2 +

(𝜐𝑋
𝑙 (𝑥𝑖) − 𝜈̅𝑋

𝑙 (𝑥𝑖))

𝛼

2
(𝜐𝑌

𝑙 (𝑥𝑖) − 𝜈̅𝑌
𝑙 (𝑥𝑖))

𝛼

2
+

(𝜐𝑋
𝑢(𝑥𝑖) − 𝜈̅𝑋

𝑢(𝑥𝑖))
𝛼

2(𝜐𝑌
𝑢(𝑥𝑖)−𝜈̅𝑌

𝑢(𝑥𝑖))
𝛼

2 ]
 
 
 
 
 
 
 

𝑛
𝑖=1 ≤

{
  
 

  
 

√
  
  
  
  
  
  
 

(

 
 
 
 
1

2
∑

(

 
 
 
 

(𝜇𝑋
𝑙 (𝑥𝑖) − 𝜇̅𝑋

𝑙 (𝑥𝑖))
𝛼
+

(𝜇𝑋
𝑢(𝑥𝑖) − 𝜇̅𝑋

𝑢(𝑥𝑖))
𝛼
+

(𝜐𝑋
𝑙 (𝑥𝑖) − 𝜈̅𝑋

𝑙 (𝑥𝑖))
𝛼
+

(𝜐𝑋
𝑢(𝑥𝑖) − 𝜈̅𝑋

𝑢(𝑥𝑖))
𝛼
)

 
 
 
 

𝑛
𝑖=1

)

 
 
 
 

×  

√
  
  
  
  
  
  
 

(

 
 
 
 
1

2
∑

(

 
 
 
 

(𝜇𝑌
𝑙 (𝑥𝑖) − 𝜇̅𝑌

𝑙 (𝑥𝑖))
𝛼
+

(𝜇𝑌
𝑢(𝑥𝑖) − 𝜇̅𝑌

𝑢(𝑥𝑖))
𝛼
+

(𝜐𝑌
𝑙 (𝑥𝑖) − 𝜈̅𝑌

𝑙 (𝑥𝑖))
𝛼
+

(𝜐𝑌
𝑢(𝑥𝑖) − 𝜈̅𝑌

𝑢(𝑥𝑖))
𝛼
)

 
 
 
 

𝑛
𝑖=1

)

 
 
 
 

}
  
 

  
 

.  

Now, 

{
  
 

  
 

√
  
  
  
  
  
  
 

(

 
 
 
 
1

2
∑

(

 
 
 
 

(𝜇𝑋
𝑙 (𝑥𝑖) − 𝜇̅𝑋

𝑙 (𝑥𝑖))
𝛼
+

(𝜇𝑋
𝑢(𝑥𝑖) − 𝜇̅𝑋

𝑢(𝑥𝑖))
𝛼
+

(𝜐𝑋
𝑙 (𝑥𝑖) − 𝜈̅𝑋

𝑙 (𝑥𝑖))
𝛼
+

(𝜐𝑋
𝑢(𝑥𝑖) − 𝜈̅𝑋

𝑢(𝑥𝑖))
𝛼
)

 
 
 
 

𝑛
𝑖=1

)

 
 
 
 

×  

√
  
  
  
  
  
  
 

(

 
 
 
 
1

2
∑

(

 
 
 
 

(𝜇𝑌
𝑙 (𝑥𝑖) − 𝜇̅𝑌

𝑙 (𝑥𝑖))
𝛼
+

(𝜇𝑌
𝑢(𝑥𝑖) − 𝜇̅𝑌

𝑢(𝑥𝑖))
𝛼
+

(𝜐𝑌
𝑙 (𝑥𝑖) − 𝜈̅𝑌

𝑙 (𝑥𝑖))
𝛼
+

(𝜐𝑌
𝑢(𝑥𝑖) − 𝜈̅𝑌

𝑢(𝑥𝑖))
𝛼
)

 
 
 
 

𝑛
𝑖=1

)

 
 
 
 

}
  
 

  
 

≤  𝑚𝑎𝑥

{
 
 
 
 
 
 

 
 
 
 
 
 

(

 
 
 
 
1

2
∑

(

 
 
 
 

(𝜇𝑋
𝑙 (𝑥𝑖) − 𝜇̅𝑋

𝑙 (𝑥𝑖))
𝛼
+

(𝜇𝑋
𝑢(𝑥𝑖) − 𝜇̅𝑋

𝑢(𝑥𝑖))
𝛼
+

(𝜐𝑋
𝑙 (𝑥𝑖) − 𝜈̅𝑋

𝑙 (𝑥𝑖))
𝛼
+

(𝜐𝑋
𝑢(𝑥𝑖) − 𝜈̅𝑋

𝑢(𝑥𝑖))
𝛼
)

 
 
 
 

𝑛
𝑖=1

)

 
 
 
 

,

(

 
 
 
 
1

2
∑

(

 
 
 
 

(𝜇𝑌
𝑙 (𝑥𝑖) − 𝜇̅𝑌

𝑙 (𝑥𝑖))
𝛼
+

(𝜇𝑌
𝑢(𝑥𝑖) − 𝜇̅𝑌

𝑢(𝑥𝑖))
𝛼
+

(𝜐𝑌
𝑙 (𝑥𝑖) − 𝜈̅𝑌

𝑙 (𝑥𝑖))
𝛼
+

(𝜐𝑌
𝑢(𝑥𝑖) − 𝜈̅𝑌

𝑢(𝑥𝑖))
𝛼
)

 
 
 
 

𝑛
𝑖=1

)

 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

.  

 

Combining all these above results, we have 
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|𝕂𝛼(𝑋, 𝑌)| ==

1

2
∑

[
 
 
 (𝜇𝑋

𝑙 (𝑥𝑖)−𝜇̅𝑋
𝑙 (𝑥𝑖))

𝛼
2(𝜇𝑌

𝑙 (𝑥𝑖)−𝜇̅𝑌
𝑙 (𝑥𝑖))

𝛼
2+(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
2(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
2+

(𝜐𝑋
𝑙 (𝑥𝑖)−𝜈̅𝑋

𝑙 (𝑥𝑖))

𝛼
2(𝜐𝑌

𝑙 (𝑥𝑖)−𝜈̅𝑌
𝑙 (𝑥𝑖))

𝛼
2+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼
2(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼
2
]
 
 
 

𝑛
𝑖=1

𝑚𝑎𝑥{
(
1

2
∑ ((𝜇𝑋

𝑙 (𝑥𝑖)−𝜇̅𝑋
𝑙 (𝑥𝑖))

𝛼
+(𝜇𝑋

𝑢(𝑥𝑖)−𝜇̅𝑋
𝑢(𝑥𝑖))

𝛼
+(𝜐𝑋

𝑙 (𝑥𝑖)−𝜈̅𝑋
𝑙 (𝑥𝑖))

𝛼
+(𝜐𝑋

𝑢(𝑥𝑖)−𝜈̅𝑋
𝑢(𝑥𝑖))

𝛼
)𝑛

𝑖=1 ),

(
1

2
∑ ((𝜇𝑌

𝑙 (𝑥𝑖)−𝜇̅𝑌
𝑙 (𝑥𝑖))

𝛼
+(𝜇𝑌

𝑢(𝑥𝑖)−𝜇̅𝑌
𝑢(𝑥𝑖))

𝛼
+(𝜐𝑌

𝑙 (𝑥𝑖)−𝜈̅𝑌
𝑙 (𝑥𝑖))

𝛼
+(𝜐𝑌

𝑢(𝑥𝑖)−𝜈̅𝑌
𝑢(𝑥𝑖))

𝛼
)𝑛

𝑖=1 )
}

 ≤ 1. 

 

Thus, −1 ≤ 𝕂𝛼(𝑋, 𝑌) ≤ 1. 

 

3.1 Numerical Illustration 
We provide an example with different IVIFSs to show how the proposed generalized correlation coefficient 

outperforms existing approaches. 

 

Example 3.1 Suppose 𝒜 and ℬ are IVIFSs in 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, where 

𝒜 = {〈
{[0.3,0.35],[0.6,0.65]}

𝑥1
〉 , 〈

{[0.4,0.45],[0.5,0.55]}

𝑥2
〉 , 〈

{[0.2,0.25],[0.7,0.75]}

𝑥3
〉} and 

ℬ = {〈
{[0.7,0.75],[0.2,0.25]}

𝑥1
〉 , 〈

{[0.6,0.65],[0.3,0.35]}

𝑥2
〉 , 〈

{[0.8,0.85],[0.1,0.15]}

𝑥3
〉}.  

 

Clearly, 𝒜 and ℬ is perfectly negative since 𝒜 ≠ ℬ, 𝒜 ⊈ ℬ and ℬ ⊈ 𝒜.  

 
Table 2. Correlation coefficient values between 𝒜 and ℬ. 

 

Methods 𝕂𝐵𝐵 (Bustince and Burillo, 

1995), 𝕂𝐻𝑂 (Hong, 1998), 

𝕂𝑊𝐸 (Wei et al., 2011b) 

𝕂𝑃𝐴 (Park et al., 

2009a), 𝕂𝑍𝑊 (Zeng 

and Wang, 2011) 

𝕂𝑃𝑎 (Park et 

al., 2009b) 

𝕂𝐿𝐼 (Liu et 

al., 2015) 

𝕂𝑇𝐻 (Thao, 

2018) 

𝕂𝑇𝑀𝐹  

(Thao et al., 

2019) 

Proposed 

method 

(𝛼 ≥ 2) 

Values 0.6629 0.6659 −0.9699 0 −0.3086 0.2177 −1 

 

 

 
 

Figure 2. Graphical representation of correlation coefficient values for Example 3.1. 

 

 

From Table 2 and Figure 2, we see that the proposed method is the only one to give a correlation value of 

−1, indicating that 𝒜 and ℬ are perfectly negative correlated. This result aligns with their evident 
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dissimilarity and shows that the proposed generalized correlation coefficient is capable of capturing 

negative dependence between IVIFSs. Hence, it can be concluded that the proposed method demonstrates 

greater reliability and accuracy than most of the existing methods. So, the proposed method established its 

superiority in evaluating correlations among IVIFSs. 

 

The next section demonstrates the practical usefulness of the proposed coefficient by applying it to an 

MCGDM problem. 

 

4. Application of the Proposed Generalized Correlation Coefficient in MCGDM  
MCGDM is a widely used approach for addressing complex decision-making scenarios where several 

criteria must be considered at the same time and different decision-makers contribute their views. The 

proposed correlation coefficient helps in this process by measuring how criteria or alternatives relate to 

each other when the available data are given as IVIF values. 

 

To formalize the MCGDM framework, let us define 𝜙 as the set of alternatives, represented as 𝜙 =
{𝜙1, 𝜙2, … , 𝜙𝑚} and 𝜉 as the set of criteria, represented as 𝜉 = {𝜉1, 𝜉2, … , 𝜉𝑛}. Each criterion is associated 

with a weight 𝜔𝑗, where, 0 ≤ 𝜔𝑗 ≤ 1 and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1. Suppose 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑝} represent the set of 

domain experts where each domain expert 𝐷𝑘; 𝑘 = 1,2, … , 𝑝 provides their respecting rating. The flowchart 

for the MCGDM method is as shown in Figure 3. 

 

Algorithm 

Step 1: Formation of decision matrices 

A group of decision-makers 𝐷𝑘; 𝑘 = 1,2,… , 𝑝 provide their evaluations on the alternatives using IVIFSs 

𝑎𝑖𝑗
𝑘 = {[𝜇𝑖𝑗

𝑙 , 𝜇𝑖𝑗
𝑢 ], [𝜈𝑖𝑗

𝑙 , 𝜈𝑖𝑗
𝑢 ]}, 𝑘 = 1,2,… , 𝑝;  𝑖 = 1,2,… ,𝑚;  𝑗 = 1,2, … , 𝑛 and each decision-maker assigns 

interval-valued intuitionistic fuzzy values (IVIFVs) to indicate the relative importance of each criterion 

with respect to the alternative values. Based on these values, 𝑝-decision matrices (𝐷1, 𝐷2, … , 𝐷𝑝) are 

constructed. 

 

Step 2: Computation of the correlation coefficient of decision matrices 

The correlation coefficient 𝕂𝐼𝑉𝐼𝐹𝑆
𝛼 (𝐷𝑘, 𝐷𝑙); 𝑘, 𝑙 = 1,2,… , 𝑝 as defined in Definition 5 is computed for each 

pair of IVIFVs. This correlation coefficient quantifies the degree of association between the evaluations 

provided by different decision-makers using their respective IVIFSs. 

 

Step 3: Computation of correlation efficiency and normalized correlation efficiency 

Using Definition 6 and Definition 7, correlation efficiency 𝐶𝐼𝑉𝐼𝐹𝑆
𝛼 (𝐷𝑘) and normalized correlation 

efficiency ℕ𝐼𝑉𝐼𝐹𝑆
𝛼 (𝐷𝑘) for each pair of IVIFVs 𝐷𝑘 are calculated. The normalized correlation efficiency 

values are used as weight vector 𝛿 = {𝛿1, 𝛿2, … , 𝛿𝑝}, where each 𝛿𝑘 corresponds to the weight assigned to 

decision-maker 𝐷𝑘. 

 

Step 4: Computation of the aggregated interval-valued intuitionistic fuzzy decision matrix 

The aggregation of the fuzzy rating 𝒶𝑖𝑗 of alternatives 𝜙𝑖 with respect to criteria 𝜉𝑗 is done using the 

symmetric interval-valued intuitionistic fuzzy weighted averaging (SIVIFWA) operator (Liao et al., 2014). 

This operator combines the individual ratings given by the decision-makers into one aggregated value while 

taking into consideration their weights. The aggregated value can be expressed as follows: 
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𝒷𝑖𝑗 = 𝑆𝐼𝑉𝐼𝐹𝑊𝐴(𝒶𝑖𝑗
1 , 𝒶𝑖𝑗

2 , … , 𝒶𝑖𝑗
𝑝
) =

{
 
 

 
 

[
 
 
 
 
 

∏ (((𝜇𝑖𝑗
𝑙 )

𝑘
)

𝛼
2
)

𝛿𝑘

𝑝
𝑘=1

∏ (((𝜇𝑖𝑗
𝑙 )

𝑘
)

𝛼
2
)

𝛿𝑘

𝑝
𝑘=1 +∏ (1−((𝜇𝑖𝑗

𝑙 )
𝑘
)

𝛼
2
)

𝛿𝑘

𝑝
𝑘=1

,

∏ (((𝜇𝑖𝑗
𝑢)

𝑘
)

𝛼
2
)

𝛿𝑘

𝑝
𝑘=1
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𝑢)

𝑘
)

𝛼
2
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𝑝
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𝛼
2
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𝑝
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}
 
 

 
 

                                          (7) 

 

where, 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2,… , 𝑛; 𝑘 = 1,2,… , 𝑝. 
 

The aggregated interval-valued intuitionistic fuzzy decision matrix is 

ℬ = [

𝒷11 𝒷12 ⋯ 𝒷1𝑛
𝒷21 𝒷22 … 𝒷2𝑛
⋮ ⋮ ⋱ ⋮

𝒷𝑚1 𝒷𝑚2 ⋯ 𝒷𝑚𝑛

],  

 

where, 𝒷𝑖𝑗 = {[𝜇𝑖𝑗
′𝑙 , 𝜇𝑖𝑗

′𝑢], [𝜈𝑖𝑗
′𝑙 , 𝜈𝑖𝑗

′𝑢]}; 𝑖 = 1,2,… ,𝑚; 𝑗 = 1,2,… , 𝑛. 

 

Step 5: Determine objective weights for criteria using the entropy method 

In order to find the objective weights of attributes, the entropy value ℰ𝑗 is calculated for each criterion using 

the data from the aggregated decision matrix ℬ. The entropy value (ℰ𝑗) of matrix ℬ can be computed as 

follows (Gao and Wei, 2012): 

ℰ𝑗 = ℰ(𝜉𝑗) =
min{∑ (2−𝜇𝑖𝑗

′𝑙−𝜇𝑖𝑗
′𝑢)𝑚

𝑖=1 ,∑ (2−𝜈𝑖𝑗
′𝑙−𝜈𝑖𝑗

′𝑢)𝑚
𝑖=1 }

max{∑ (2−𝜇𝑖𝑗
′𝑙−𝜇𝑖𝑗

′𝑢)𝑚
𝑖=1 ,∑ (2−𝜈𝑖𝑗

′𝑙−𝜈𝑖𝑗
′𝑢)𝑚

𝑖=1 }
                                                                                      (8) 

 

After entropy is calculated, the degree of divergence (𝒟𝒟)𝑗 for each criterion is calculated using the 

following formula: 
(𝒟𝒟)𝑗 = 1 − ℰ𝑗                                                                                                                                           (9) 

 

The final objective weight 𝑤𝑗 for each criterion is calculated using the degree of divergence values (𝒟𝒟)𝑗 

as follows: 

𝑤𝑗 =
(𝒟𝒟)𝑗

∑ (𝒟𝒟)𝑗
𝑛
𝑖=1

, 𝑗 = 1,2,… , 𝑛                                                                                                                     (10) 

 

These objective weights obtained from the entropy and divergence measures reflect the significance of each 

criterion in the decision-making process. 
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Figure 3. Flowchart of the proposed algorithm for solving the MCGDM problem. 
 

 

Step 6: Construction of interval-valued intuitionistic fuzzy score values 

Once the aggregated interval-valued intuitionistic fuzzy decision matrix has been constructed and the 

criterion weights are known, the interval-valued intuitionistic fuzzy score values corresponding to each 

alternative are calculated. These values are represented as 

𝒱𝑖 = {[(𝜇𝑖
′′𝑙), (𝜇𝑖

′′𝑢)], [(𝜈𝑖
′′𝑙), (𝜈𝑖

′′𝑢)]}.  
 

for each alternative 𝜙𝑖 (𝑖 = 1,2,… ,𝑚). To compute these values, the generalized interval-valued 

intuitionistic fuzzy interactive weighted averaging (GIVIFIWA) (Garg, 2016) operator is used. The 

interval-valued intuitionistic fuzzy score values are calculated as: 

𝒱𝑖 = 𝐺𝐼𝑉𝐼𝐹𝐼𝑊𝐴(𝒷𝑖1, 𝒷𝑖2, … , 𝒷𝑖𝑛) = {[(𝜇𝑖
′′𝑙), (𝜇𝑖

′′𝑢)], [(𝜈𝑖
′′𝑙), (𝜈𝑖

′′𝑢)]}                                                  (11) 
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where,  

(𝜇𝑖
′′𝑙) = (1 −∏ (1 − (1 − (𝜈𝑖𝑗

′𝑙))
𝜆
+ (1 − ((𝜇𝑖𝑗

′𝑙) + (𝜈𝑖𝑗
′𝑙)))

𝜆

)

𝑤𝑗

𝑛
𝑗=1 +∏ (1 − ((𝜇𝑖𝑗

′𝑙) +𝑛
𝑗=1

(𝜈𝑖𝑗
′𝑙)))

𝜆𝑤𝑗

)

1
𝜆⁄

−∏ (1 − ((𝜇𝑖𝑗
′𝑙) + (𝜈𝑖𝑗

′𝑙))
𝑤𝑗
)𝑛

𝑗=1 , 

(𝜇𝑖
′′𝑢) = (1 −∏ (1− (1 − (𝜈𝑖𝑗

′𝑢))
𝜆
+ (1 − ((𝜇𝑖𝑗

′𝑢) + (𝜈𝑖𝑗
′𝑢)

𝑖𝑗
))

𝜆

)

𝑤𝑗

𝑛
𝑗=1 +∏ (1 − ((𝜇𝑖𝑗

′𝑢) +𝑛
𝑗=1

(𝜈𝑖𝑗
′𝑢)))

𝜆𝑤𝑗

)

1
𝜆⁄

−∏ (1 − ((𝜇𝑖𝑗
′𝑢) + (𝜈𝑖𝑗

′𝑢))
𝑤𝑗
)𝑛

𝑗=1 , 

(𝜈𝑖
′′𝑙) = 1 − (1 −∏ (1 − (1 − (𝜈𝑖𝑗

′𝑙))
𝜆
+ (1 − ((𝜇𝑖𝑗

′𝑙) + (𝜈𝑖𝑗
′𝑙)))

𝜆

)

𝑤𝑗
𝑛
𝑗=1 +∏ (1 − (𝜇𝑖𝑗

′𝑙) +𝑛
𝑗=1

(𝜈𝑖𝑗
′𝑙))

𝜆𝑤𝑗

)

1
𝜆⁄

, and 

(𝜈𝑖
′′𝑢) = 1 − (1 −∏ (1 − (1 − (𝜈𝑖𝑗

′𝑢))
𝜆
+ (1 − ((𝜇𝑖𝑗

′𝑢) + (𝜈𝑖𝑗
′𝑢)))

𝜆

)

𝑤𝑗
𝑛
𝑗=1 +∏ (1 − (𝜇𝑖𝑗

′𝑢) +𝑛
𝑗=1

(𝜈𝑖𝑗
′𝑢))

𝜆𝑤𝑗

)

1
𝜆⁄

. 

 

where, 𝜆 > 0 is a real number. 

 

Step 7: Computation of score values 

The score values for each alternative 𝜙𝑖 (𝑖 = 1,2,… ,𝑚) are computed using the following formula (Garg, 

2016): 

𝒮𝑖 =
(𝜇𝑖

′′𝑙)+(𝜇𝑖
′′𝑢)+(𝜇𝑖

′′𝑙)(1−(𝜇𝑖
′′𝑙)−(𝜈𝑖

′′𝑙))+(𝜇𝑖
′′𝑢)(1−(𝜇𝑖

′′𝑢)−(𝜈𝑖
′′𝑢))

2
                                                                   (12) 

 

Step 8: Ranking the alternatives 

After score values 𝒮𝑖 for each alternative 𝜙𝑖 have been calculated, the alternatives are arranged in decreasing 

order of their score values. The alternative with the highest score is considered the most preferable 

alternative while those with lower scores follow in decreasing order of preference. The ranking of 

alternatives thus facilitates the selection of the optimal alternative that best matches the specified criteria 

and the decision-makers' evaluations. 

 

4.1 Supplier Selection Problem 
In order to demonstrate how the proposed method can be practically applied, we have taken a supplier 

selection problem to explain as our case study. A worldwide company is deciding which supplier will be 

best to supply their new manufacturing plant and has narrowed down its options to five potential suppliers. 

There are five suppliers for the company to choose from. Supplier A (𝜙1), Supplier B (𝜙2), Supplier C 

(𝜙3), Supplier D (𝜙4), and Supplier E (𝜙5) are the five suppliers. The decision-makers will assess these 

suppliers based on four key criteria: Cost of acquisition (𝜉1), Proximity to existing supply chains and 
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customers (𝜉2), Availability of skilled workforce (𝜉3), Environmental impact and Compliance with 

regulations (𝜉4). 
 

A panel of three experts from different domains - finance (𝐷1), logistics (𝐷2), and environmental 

sustainability (𝐷3) will contribute to their assessments to ensure a thorough evaluation. Each expert will 

evaluate the suppliers using IVIFSs to reflect the uncertainty and fuzziness that are natural to the decision-

making process.  

 

The data used in this study is created artificially for experimental purposes. It allows for a controlled 

verification of the suggested method without the need for a real industry dataset. This ensures that the focus 

remains on demonstrating the methodology’s applicability and robustness. 

 

Figure 4 presents various elements of a supplier selection problem. 

 

We address this problem through the proposed MCGDM approach (Step 1 to Step 8).  

 

Step 1: Formation of decision matrices 

The ratings given by three decision makers (DMs) (𝐷𝑘, 𝑘 = 1,2,3) for the five suppliers based on the 

specified criteria are shown in Tables 3, 4 and 5.  

 
Table 3. The ratings assigned by decision maker 1 to the suppliers. 

 

Alternatives 
/Criteria 

𝜉1 𝜉2 𝜉3 𝜉4 

𝜙1 {[0.3,0.4], [0.2,0.3]} {[0.4,0.5], [0.2,0.4]} {[0.5,0.6], [0.1,0.2]} {[0.2,0.3], [0.1,0.2]} 
𝜙2 {[0.4,0.6], [0.1,0.2]} {[0.3,0.7], [0.1,0.2]} {[0.3,0.6], [0.2,0.3]} {[0.2,0.3], [0.1,0.2]} 
𝜙3 {[0.4,0.5], [0.3,0.4]} {[0.2,0.6], [0.1,0.3]} {[0.4,0.5], [0.3,0.4]} {[0.2,0.6], [0.1,0.3]} 
𝜙4 {[0.6,0.8], [0.1,0.2]} {[0.5,0.6], [0.1,0.2]} {[0.4,0.6], [0.1,0.2]} {[0.3,0.4], [0.2,0.3]} 
𝜙5 {[0.6,0.7], [0.2,0.3]} {[0.2,0.6], [0.1,0.3]} {[0.3,0.7], [0.1,0.2]} {[0.4,0.8], [0.1,0.2]} 

 

 
 

Table 4. The ratings assigned by decision maker 2 to the suppliers. 
 

Alternatives 
/Criteria 

𝜉1 𝜉2 𝜉3 𝜉4 

𝜙1 {[0.6,0.7], [0.2,0.3]} {[0.2,0.6], [0.1,0.3]} {[0.3,0.6], [0.2,0.3]} {[0.3,0.4], [0.2,0.3]} 
𝜙2 {[0.3,0.4], [0.2,0.3]} {[0.5,0.6], [0.1,0.2]} {[0.2,0.6], [0.1,0.3]} {[0.4,0.8], [0.1,0.2]} 
𝜙3 {[0.4,0.5], [0.3,0.4]} {[0.4,0.5], [0.2,0.4]} {[0.4,0.6], [0.1,0.2]} {[0.5,0.6], [0.1,0.2]} 
𝜙4 {[0.4,0.6], [0.1,0.2]} {[0.2,0.6], [0.1,0.3]} {[0.5,0.6], [0.1,0.2]} {[0.2,0.3], [0.1,0.2]} 
𝜙5 {[0.6,0.8], [0.1,0.2]} {[0.3,0.7], [0.1,0.2]} {[0.4,0.5], [0.3,0.4]} {[0.2,0.3], [0.1,0.2]} 

 

 

 

Table 5. The ratings assigned by decision maker 3 to the suppliers. 
 

Alternatives 

/Criteria 
𝜉1 𝜉2 𝜉3 𝜉4 

𝜙1 {[0.3,0.4], [0.2,0.3]} {[0.6,0.8], [0.1,0.2]} {[0.3,0.6], [0.2,0.3]} {[0.2,0.3], [0.1,0.2]} 
𝜙2 {[0.5,0.8], [0.1,0.2]} {[0.2,0.6], [0.1,0.3]} {[0.4,0.8], [0.1,0.2]} {[0.2,0.6], [0.1,0.3]} 
𝜙3 {[0.4,0.8], [0.1,0.2]} {[0.2,0.3], [0.1,0.2]} {[0.4,0.5], [0.1,0.4]} {[0.6,0.7], [0.2,0.3]} 
𝜙4 {[0.2,0.6], [0.1,0.3]} {[0.3,0.7], [0.1,0.2]} {[0.5,0.6], [0.1,0.2]} {[0.6,0.8], [0.1,0.2]} 
𝜙5 {[0.5,0.8], [0.1,0.2]} {[0.6,0.7], [0.2,0.3]} {[0.5,0.8], [0.1,0.2]} {[0.3,0.6], [0.2,0.3]} 
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Figure 4. A schematic illustration of the framework addressing the supplier selection problem. 

 

 

Step 2: Computation of correlation coefficients of decision matrices 

Using Definition 5, the correlation coefficient 𝕂𝐼𝑉𝐼𝐹𝑆
𝛼 (𝐷𝑘, 𝐷𝑙); 𝑘, 𝑙 = 1,2,3 for each pair of IVIFVs is shown 

in Table 6. 

 
Table 6. Correlation coefficients of decision matrices. 

 

 DM1 DM2 DM3 

DM1 1 0.0085 −0.3000 

DM2 0.0085 1 0.1695 

DM3 −0.3000 0.1695 1 

 

 

 

Step 3: Computation of correlation efficiency and normalized correlation efficiency 

Using Definition 6 and Definition 7, the correlation efficiency 𝐶𝐼𝑉𝐼𝐹𝑆
𝛼 (𝐷𝑘) and normalized correlation 

efficiency ℕ𝐼𝑉𝐼𝐹𝑆
𝛼 (𝐷𝑘) for each pair of IVIFVs 𝐷𝑘 is as shown in Table 7. 
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Table 7. Generalized correlation efficiency and normalized correlation efficiency of IVIFVs. 
 

 Generalized correlation efficiency Normalized correlation efficiency 

DM1 −0.1458 1.1947 

DM2 0.0890 −0.7295 

DM3 −0.0653 0.5348 

 

 

Remark: The normalized correlation efficiency of IVIFSs represents the degree of linear association 

between two IVIFSs. In contrast to standard correlation measures, this efficiency can take on negative 

values, signifying an inverse correlation between the sets. A negative value indicates that as one IVIFS 

increases, the other tends to decrease, and vice versa. This ability to express both directions of association 

is essential when the interaction between sets is not always positive, allowing the measure to represent a 

wider range of real-world relationships.  

 

An important point to note is that the sum of the normalized correlation efficiency values for any pair of 

IVIFSs should always equal to 1. This property ensures that the total degree of correlation, whether positive 

or negative, is properly balanced, reflecting the complete relationship between the sets being analyzed. 

 

Step 4: Computation of aggregated interval-valued intuitionistic fuzzy decision matrix 

Using Equation (7), the aggregated interval-valued intuitionistic fuzzy decision matrix is obtained in Table 

8. 

 
Table 8. Aggregated interval-valued intuitionistic fuzzy decision matrix. 

 

Alternatives 

/Criteria 
𝜉1 𝜉2 𝜉3 𝜉4 

𝜙1 {[0.15,0.21], [0.20,0.30]} {[0.68,0.61], [0.23,0.35]} {[0.54,0.6], [0.09,0.18]} {[0.14,0.24], [0.06,0.14]} 
𝜙2 {[0.53,0.82], [0.06,0.14]} {[0.15,0.72], [0.10,0.25]} {[0.45,0.72], [0.23,0.24]} {[0.11,0.14], [0.10,0.25]} 
𝜙3 {[0.40,0.68], [0.17,0.28]} {[0.11,0.51], [0.06,0.19]} {[0.40,0.43], [0.36,0.58]} {[0.19,0.66], [0.15,0.39]} 
𝜙4 {[0.51,0.83], [0.10,0.25]} {[0.64,0.66], [0.10,0.14]} {[0.38,0.60], [0.10,0.20]} {[0.55,0.71], [0.23,0.32]} 
𝜙5 {[0.55,0.68], [0.23,0.32]} {[0.31,0.58], [0.15,0.39]} {[0.33,0.85], [0.04,0.11]} {[0.52,0.92], [0.15,0.25]} 

 

 

Step 5: Determine objective weights for attributes using the entropy method 

Using the data from Table 8, compute the entropy values first using Equation (8). Next, calculate (𝒟𝒟)𝑗 

and 𝑤𝑗 by applying Equation (9) and Equation (10). The results of these calculations are presented in Table 

9. 
Table 9. Objective weights. 

 

 𝜉1 𝜉2 𝜉3 𝜉4 

ℰ𝑗 0.5851 0.6283 0.5977 0.7305 

(𝒟𝒟)𝑗 0.4149 0.5640 0.4904 0.6409 

𝑤𝑗 0.2845 0.2549 0.2758 0.1848 

 

 

Step 6: Construction of interval-valued intuitionistic fuzzy score values 

Using Equation (11), the interval-valued intuitionistic fuzzy score values are obtained as 

𝒱1 = {[0.4383,0.6689], [0.2055,0.3310]}, 

𝒱2 = {[0.3548,0.7552], [0.1354,0.2448]}, 

𝒱3 = {[0.2973,0.5780], [0.2315,0.4220]}, 

𝒱4 = {[0.5236,0.7245], [0.1326,0.2755]}, 

𝒱5 = {[0.4300,0.7868], [0.1647,0.2132]}. 
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Step 7: Calculation of score values 

The score values for each alternative 𝜙𝑖 (𝑖 = 1,2,… ,5) are computed using Equation (12) and are given as 

𝒮1 = 0.6317, 

𝒮2 = 0.6455, 

𝒮3 = 0.5077, 

𝒮4 = 0.7141, 

𝒮5 = 0.6955. 
 

Step 8: Ranking the Alternatives 

After computing the score function 𝒮𝑖 (𝑖 = 1,2, … ,6) for each alternative 𝜓𝑖 (𝑖 = 1,2, … ,6), ranking is as 

follows: 

𝜙4 > 𝜙5 > 𝜙2 > 𝜙1 > 𝜙3. 
 

Thus, 𝜙4 is the best alternative. So, Supplier D is the best supplier for a new manufacturing plant. 

 

 
 

Figure 5. Comparison of score values obtained from different methods. 

 

The score values obtained from the different methods are shown in Figure 5. A closer look at the figure 

shows that, for most of the alternatives, the proposed measure produces noticeably higher scores than the 

others. This pattern suggests that the proposed approach performs more reliably and gives stronger 

outcomes in comparison with the existing methods, demonstrating its overall advantage in a wide range of 

cases. 

 

4.2 Superiority Analysis 
To demonstrate the strength of the proposed methodology, a comparative evaluation is carried out using 

the concept of the degree of confidence (Luo and Zhang, 2024). 

 

The degree of confidence is defined as  

𝐷𝑜𝐶 = ∑ |𝒮𝑖 − 𝒮𝑖0|
𝑛
𝑖=1,𝑖≠𝑖0

                                                                                                                        (13) 

 

where, 𝒮𝑖0 is the score of the best alternative.  
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An approach that shows a greater level of confidence is considered superior. It delivers more reliable and 

stable outcomes compared to the alternative approaches. 

 

The comparative results for Example 4.1 are summarized in Table 10 and shown in Figure 6. 

 
Table 10. Comparison of the result rankings obtained through various methods. 

 

Method Ranking Best alternative Degree of confidence 

𝕂𝐵𝐵(Bustince and Burillo, 1995) 𝜙4 > 𝜙5 > 𝜙2 > 𝜙3 > 𝜙1 𝜙4 0.2026 

𝕂𝐻𝑂 (Hong, 1998) 𝜙4 > 𝜙5 > 𝜙2 > 𝜙3 > 𝜙1 𝜙4 0.2026 

𝕂𝐻𝑢 (Hung, 2001) 𝜙4 > 𝜙5 > 𝜙2 > 𝜙1 > 𝜙3 𝜙4 0.2838 

𝕂𝑃𝐴 (Park et al., 2009a) 𝜙4 > 𝜙5 > 𝜙2 > 𝜙3 > 𝜙1 𝜙4 0.2048 

𝕂𝑊𝐸 (Wei et al., 2011b) 𝜙4 > 𝜙5 > 𝜙2 > 𝜙3 > 𝜙1 𝜙4 0.2026 

𝕂𝑍𝑊 (Zeng and Wang, 2011) 𝜙4 > 𝜙5 > 𝜙2 > 𝜙3 > 𝜙1 𝜙4 0.2048 

Proposed method 𝜙4 > 𝜙5 > 𝜙2 > 𝜙1 > 𝜙3 𝜙4 0.3760 

 

 

 
 

Figure 6. Comparison of degree of confidence obtained from different measures. 

 

 

It is very clear from Table 10 and Figure 6 that the proposed method is the one that attained the greatest 

degree of confidence by most of the existing methods. Therefore, it indicates its comparative superiority 

and shows its potential to separate and evaluate different alternatives to a higher degree of accuracy and 

consistency. 

 

5. Comparative Analysis Concerning Structured Linguistic Variables 
Zadeh (1972) introduced the idea of the structured linguistic variables, which are generally called linguistic 

hedges. The idea has become a primary tool in finding the answer to countless problems in the real world. 

These linguistic variables make it possible to inculcate human-like reasoning into computational 

frameworks by capturing terms such as “very similar”, “somewhat similar”, or “not very similar”. What 

they do is to provide a very efficient way for human beings to go from their subjective judgment to an 

objective numerical analysis, thus complex information becomes easily accessible. 

 

Along with correlation coefficients, linguistic variables significantly influence both the clarity and the 

accuracy of relationship analysis. Correlation coefficients, that indicate how strong and in which direction 

the relationships between variables are, benefit from the addition of linguistic hedges by more accurately 

representing subtle human perceptions of similarity or dissimilarity. 
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Linguistic variables can be described with the help of modifiers as those defined in Equation (14) (Dymova 

and Sevastjanov, 2016). These modifiers represent varying degrees of magnitude or intensity for linguistic 

terms including High (𝐻), Very High (𝑉𝐻), Very-Very High (𝑉𝑉𝐻) and More or Less High (𝑀𝐿𝐻). We 

can consider 𝐴 as (𝐻), 𝐴
1

2 as (𝑀𝐿𝐻), 𝐴2 as (𝑉𝐻) and 𝐴4 as (𝑉𝑉𝐻). 

 

The generalized modifier is presented as follows: 

𝐴𝜆 = {[(𝜇𝐴
𝑙 (𝑥𝑖))

𝜆
, (𝜇𝐴

𝑢(𝑥𝑖))
𝜆
] , [1 − (1 − 𝜈𝐴

𝑙 (𝑥𝑖))
𝜆
, 1 − (1 − 𝜈𝐴

𝑢(𝑥𝑖))
𝜆
]| 𝑥𝑖 ∈ 𝑋, 𝑖 = 1,2,3, … , 𝑛}     (14) 

where, 𝜆 > 0. 

 

The linguistic variable (𝑀𝐿𝐻) demonstrates greater similarity to the linguistic variable (𝐻) compared to 

(𝑉𝐻) and (𝑉𝑉𝐻) (Singh and Singh, 2025). Using mathematical language, this concept can be elaborated to 

formally define the expressions corresponding to inequalities (15) to (18), (19) to (22) and (23) to (26). 

 

The intended hierarchy for the correlation measure is given by the set of inequalities (15) to (18). 

𝕂(𝑀𝐿𝐻,𝐻) > 𝕂(𝑀𝐿𝐻, 𝑉𝐻) > 𝕂(𝑀𝐿𝐻, 𝑉𝑉𝐻)                                                                                      (15) 

𝕂(𝐻,𝑀𝐿𝐻) > 𝕂(𝐻, 𝑉𝐻) > 𝕂(𝐻, 𝑉𝑉𝐻)                                                                                                 (16) 

𝕂(𝑉𝐻,𝐻) > 𝕂(𝑉𝐻, 𝑉𝑉𝐻) > 𝕂(𝑉𝐻,𝑀𝐿𝐻)                                                                                            (17) 

𝕂(𝑉𝑉𝐻, 𝑉𝐻) > 𝕂(𝑉𝑉𝐻,𝐻) > 𝕂(𝑉𝑉𝐻,𝑀𝐿𝐻)                                                                                       (18) 

 

The intended hierarchy for the similarity measure is given by the set of inequalities (19) to (22). 

𝑆(𝑀𝐿𝐻,𝐻) > 𝑆(𝑀𝐿𝐻, 𝑉𝐻) > 𝑆(𝑀𝐿𝐻, 𝑉𝑉𝐻)                                                                                         (19) 

𝑆(𝐻,𝑀𝐿𝐻) > 𝑆(𝐻, 𝑉𝐻) > 𝑆(𝐻, 𝑉𝑉𝐻)                                                                                                    (20) 

𝑆(𝑉𝐻,𝐻) > 𝑆(𝑉𝐻, 𝑉𝑉𝐻) > 𝑆(𝑉𝐻,𝑀𝐿𝐻)                                                                                               (21) 

𝑆(𝑉𝑉𝐻, 𝑉𝐻) > 𝑆(𝑉𝑉𝐻,𝐻) > 𝑆(𝑉𝑉𝐻,𝑀𝐿𝐻)                                                                                          (22) 

 

The set of inequalities (23) to (26) establishes the intended hierarchy for the distance/dissimilarity measure. 

𝐷(𝑀𝐿𝐻,𝐻) < 𝐷(𝑀𝐿𝐻, 𝑉𝐻) < 𝐷(𝑀𝐿𝐻, 𝑉𝑉𝐻)                                                                                       (23) 

𝐷(𝐻,𝑀𝐿𝐻) < 𝐷(𝐻, 𝑉𝐻) < 𝐷(𝐻, 𝑉𝑉𝐻)                                                                                                  (24) 

𝐷(𝑉𝐻,𝐻) < 𝐷(𝑉𝐻, 𝑉𝑉𝐻) < 𝐷(𝑉𝐻,𝑀𝐿𝐻)                                                                                             (25) 

𝐷(𝑉𝑉𝐻, 𝑉𝐻) < 𝐷(𝑉𝑉𝐻,𝐻) < 𝐷(𝑉𝑉𝐻,𝑀𝐿𝐻)                                                                                        (26) 

 

Now, a numerical example is presented to assess the performance and effectiveness of the proposed 

measures in comparison with the existing approaches.  

 

Example 5.1 Consider an IVIFS 𝐴 in the universal set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} given as: 

𝐴 = {

(𝑥1, {[0.2,0.5], [0.1,0.3]}),
(𝑥2, {[0.3,0.6], [0.2,0.35]}),
(𝑥3, {[0.4,0.7], [0.15,0.2]})

}, 

 

Using the fuzzy set modifier defined in Equation (14), we calculate the IVIFSs 𝐴
1

2 , 𝐴2 and 𝐴4 as follows 

𝐴
1

2 = {

(𝑥1, {[0.45,0.71], [0.05,0.16]}),
(𝑥2, {[0.55,0.81], [0.13,0.19]}),
(𝑥3, {[0.67,0.84], [0.08,0.13]})

}                                                                                                 (27) 
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𝐴2 = {

(𝑥1, {[0.04,0.25], [0.19,0.51]}),
(𝑥2, {[0.09,0.42], [0.44,0.58]}),
(𝑥3, {[0.20,0.49], [0.28,0.44]})

}                                                                                                 (28) 

𝐴4 =

{
 
 

 
 (𝑥1, {

[0.0016,0.0625],
[0.3439,0.7599]

}) ,

(𝑥2, {
[0.0081,0.1785],
[0.6836,0.8215]

}) ,

(𝑥3, {
[0.0410,0.2401],
[0.4780,0.6836]

})
}
 
 

 
 

                                                                                                          (29) 

 

We apply both the proposed and existing measures to calculate the correlation/similarity/distance values 

between various pairs of linguistic variables 𝐻, 𝑉𝐻, 𝑉𝑉𝐻 and 𝑀𝐿𝐻. The results obtained using these 

measures are summarized in Table 11. 

 
Table 11. Calculated values for pairs of linguistic variables utilizing different comparison methods. 

 

Correlation/Similarity/Distance methods Computed values between different pairs of linguistic variables 

𝕂𝐵𝐵 (Bustince and Burillo, 1995),𝕂𝐻𝑂 (Hong, 1998) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9529 0.6788 0.3410 

𝐻 0.9529 1 0.8645 0.5871 

𝑉𝐻 𝟎. 𝟔𝟕𝟖𝟖 𝟎. 𝟖𝟔𝟒𝟓 1 𝟎. 𝟗𝟎𝟖𝟔 

𝑉𝑉𝐻 0.3410 0.5871 0.9086 1 

𝕂𝐻𝑢 (Hung, 2001) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9999 0.9990 0.9941 

𝐻 0.9999 1 0.9996 0.9955 

𝑉𝐻 𝟎. 𝟗𝟗𝟗𝟎 𝟎. 𝟗𝟗𝟗𝟔 1 𝟎. 𝟗𝟗𝟕𝟗 

𝑉𝑉𝐻 0.9941 0.9955 0.9979 1 

𝕂𝑃𝐴 (Park et al., 2009a) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9356 0.7146 0.4482 

𝐻 0.9356 1 0.9093 0.6972 

𝑉𝐻 𝟎. 𝟕𝟏𝟒𝟔 𝟎. 𝟗𝟎𝟗𝟑 1 𝟎. 𝟗𝟏𝟕𝟐 

𝑉𝑉𝐻 0.4482 0.6972 0.9172 1 

𝕂𝑊𝐸(Wei et al., 2011b), 𝕂𝑍𝑊 (Zeng and Wang, 2011) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9529 0.6788 0.3410 

𝐻 0.9529 1 0.8645 0.5871 

𝑉𝐻 𝟎. 𝟔𝟕𝟖𝟖 𝟎. 𝟖𝟔𝟒𝟓 1 𝟎. 𝟗𝟎𝟖𝟔 

𝑉𝑉𝐻 0.3410 0.5871 0.9086 1 

𝕂𝐿𝐼 (Liu et al., 2015) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9851 0.9562 0.8721 

𝐻 0.9851 1 0.9795 0.8954 

𝑉𝐻 𝟎. 𝟗𝟓𝟔𝟐 𝟎. 𝟗𝟕𝟗𝟓 1 𝟎. 𝟗𝟒𝟏𝟒 

𝑉𝑉𝐻 0.8721 0.8954 0.9414 1 

𝕂𝑇𝐻 (Thao, 2018) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9063 0.4907 0.0010 

𝐻 0.9063 1 0.8016 0.3691 

𝑉𝐻 𝟎. 𝟒𝟗𝟎𝟕 𝟎. 𝟖𝟎𝟏𝟔 1 𝟎. 𝟖𝟒𝟎𝟕 

𝑉𝑉𝐻 0.0010 0.3691 0.8407 1 

𝕂𝑇𝑀𝐹  (Thao et al., 2019) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9410 0.7113 0.4066 

𝐻 0.9410 1 0.8975 0.6415 

𝑉𝐻 𝟎. 𝟕𝟏𝟏𝟑 𝟎. 𝟖𝟗𝟕𝟓 1 𝟎. 𝟗𝟎𝟑𝟓 

𝑉𝑉𝐻 0.4066 0.6415 0.9035 1 

𝑆𝑆  (Singh, 2012) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9616 0.6722 0.3201 

𝐻 0.9616 1 0.8496 0.5677 

𝑉𝐻 𝟎. 𝟔𝟕𝟐𝟐 𝟎. 𝟖𝟒𝟗𝟔 1 𝟎. 𝟗𝟏𝟔𝟔 

𝑉𝑉𝐻 0.3201 0.5677 0.9166 1 
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Table 11 continued… 
 

𝑆𝐷𝑆 (Dhivya and Sridevi, 2018) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.8784 0.7380 0.5815 

𝐻 0.8784 1 0.8623 0.7153 

𝑉𝐻 𝟎. 𝟕𝟑𝟖𝟎 𝟎. 𝟖𝟔𝟐𝟑 1 𝟎. 𝟖𝟔𝟒𝟗 

𝑉𝑉𝐻 0.5815 0.7153 0.8649 1 

𝑆𝑊𝑒(Wei et al., 2011a) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.7422 0.5075 0.3157 

𝐻 0.7422 1 0.6804 0.4540 

𝑉𝐻 𝟎. 𝟓𝟎𝟕𝟓 𝟎. 𝟔𝟖𝟎𝟒 1 𝟎. 𝟔𝟖𝟔𝟕 

𝑉𝑉𝐻 0.3157 0.4540 0.6867 1 

𝑆𝑌 (Ye, 2013) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.9354 0.7172 0.4510 

𝐻 0.9354 1 0.9100 0.6932 

𝑉𝐻 𝟎. 𝟕𝟏𝟕𝟐 𝟎. 𝟗𝟏𝟎𝟎 1 𝟎. 𝟗𝟏𝟔𝟖 

𝑉𝑉𝐻 0.4510 0.6932 0.9168 1 

𝑆𝐻𝐿(Hu and Li, 2013) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.8449 0.6503 0.4583 

𝐻 0.8449 1 0.8054 0.6134 

𝑉𝐻 𝟎. 𝟔𝟓𝟎𝟑 𝟎. 𝟖𝟎𝟓𝟒 1 𝟎. 𝟖𝟎𝟖𝟎 

𝑉𝑉𝐻 0.4583 0.6134 0.8080 1 

𝑆𝑀𝐶  (Meng, 2016) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.7201 0.4538 0.2790 

𝐻 0.7201 1 0.6682 0.4325 

𝑉𝐻 𝟎. 𝟒𝟓𝟑𝟖 𝟎. 𝟔𝟔𝟖𝟐 1 𝟎. 𝟔𝟕𝟎𝟎 

𝑉𝑉𝐻 0.2790 0.4325 0.6700 1 

𝑆𝐴𝑒  (Alolaiyan et al., 2024) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.7266 0.4260 0.1189 

𝐻 0.7266 1 0.6780 0.3654 

𝑉𝐻 𝟎. 𝟒𝟐𝟔𝟎 𝟎. 𝟔𝟕𝟖𝟎 1 𝟎. 𝟔𝟕𝟗𝟗 

𝑉𝑉𝐻 0.1189 0.3654 0.6799 1 

𝐷𝑍𝑒  (Zhou et al., 2016) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 0 0.0488 0.1113 0.1716 

𝐻 0.0488 0 0.0625 0.1228 

𝑉𝐻 𝟎. 𝟏𝟏𝟏𝟑 𝟎. 𝟎𝟔𝟐𝟓 0 𝟎. 𝟎𝟔𝟎𝟑 

𝑉𝑉𝐻 0.1716 0.1228 0.0603 0 

𝐷𝐹𝑒 (Fares et al., 2019) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 0 0.1371 0.3616 0.6215 

𝐻 0.1371 0 0.2595 0.5723 

𝑉𝐻 𝟎. 𝟑𝟔𝟏𝟔 𝟎. 𝟐𝟓𝟗𝟓 0 𝟎. 𝟒𝟒𝟓𝟑 

𝑉𝑉𝐻 0.6215 0.5723 0.4453 0 

𝐷𝑄𝑒 (Qin et al., 2023) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 0 0.1992 0.4353 0.6357 

𝐻 0.1992 0 0.2577 0.4814 

𝑉𝐻 𝟎. 𝟒𝟑𝟓𝟑 𝟎. 𝟐𝟓𝟕𝟕 0 𝟎. 𝟐𝟓𝟕𝟕 

𝑉𝑉𝐻 0.6357 0.4814 0.2577 0 

𝐷𝐴𝑂 (Ohlan, 2022) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 0 0.0756 0.3884 0.9610 

𝐻 0.0756 0 0.1169 0.4701 

𝑉𝐻 𝟎. 𝟑𝟖𝟖𝟒 𝟎. 𝟏𝟏𝟔𝟗 0 𝟎. 𝟏𝟏𝟏𝟗 

𝑉𝑉𝐻 0.9610 0.4701 0.1119 0 

𝐷𝑉𝑒 (Vishnukumar et al., 2024) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 0 0.2858 0.4933 0.6239 

𝐻 𝟎. 𝟐𝟖𝟓𝟖 0 𝟎. 𝟐𝟐𝟓𝟖 𝟎. 𝟑𝟗𝟏𝟕 

𝑉𝐻 𝟎. 𝟒𝟗𝟑𝟑 𝟎. 𝟐𝟐𝟓𝟖 0 𝟎. 𝟏𝟗𝟏𝟕 

𝑉𝑉𝐻 0.6239 0.3917 0.1917 0 

Proposed (𝛼 = 2) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.7382 0.5818 0.4122 

𝐻 0.7382 1 0.8479 0.6661 

𝑉𝐻 𝟎. 𝟓𝟖𝟏𝟖 𝟎. 𝟖𝟒𝟕𝟗 1 𝟎. 𝟗𝟏𝟐𝟕 

𝑉𝑉𝐻 0.4122 0.6661 0.9127 1 
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Table 11 continued… 
 

Proposed (𝛼 = 6) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.5703 0.1922 0.0249 

𝐻 0.5703 1 0.5318 0.1237 

𝑉𝐻 0.1922 0.5318 1 0.4488 

𝑉𝑉𝐻 0.0249 0.1237 0.4488 1 

Proposed (𝛼 = 10) 𝑀𝐿𝐻 𝐻 𝑉𝐻 𝑉𝑉𝐻 

𝑀𝐿𝐻 1 0.4537 0.0600 0.0015 

𝐻 0.4537 1 0.3236 0.0231 

𝑉𝐻 0.0600 0.3236 1 0.2314 

𝑉𝑉𝐻 0.0015 0.0231 0.2314 1 

 

The bold values in a row indicate the incorrect results. 

 
Table 12. The outcomes of the comparison measures are derived from Table 11. 

 

Measure Inequalities failed Reason for failure 

𝕂𝐵𝐵 (Bustince and Burillo, 1995), 𝕂𝐻𝑂 (Hong, 1998) (15) 0.8645 ≯ 0.9086 > 0.6788 

𝕂𝐻𝑢 (Hung, 2001) (17) 0.9996 > 0.9979 ≯ 0.9990 

𝕂𝑃𝐴 (Park et al., 2009a) (17) 0.9093 ≯ 0.9172 > 0.7146 

𝕂𝑊𝐸 (Wei et al., 2011b), 𝕂𝑍𝑊 (Zeng and Wang, 2011) (17) 0.8645 ≯ 0.9086 > 0.6788 

𝕂𝐿𝐼 (Liu et al., 2015) (17) 0.9795 > 0.9414 ≯ 0.9562 

𝕂𝑇𝐻 (Thao, 2018) (17) 0.8016 ≯ 0.8407 > 0.4907 

𝕂𝑇𝑀𝐹  (Thao et al., 2019) (17) 0.8975 ≯ 0.9035 > 0.7113 

𝑆𝑆  (Singh, 2012) (17) 0.8496 ≯ 0.9166 > 0.6722 

𝑆𝐷𝑆 (Dhivya and Sridevi, 2018) (17) 0.8683 ≯ 0.8649 > 0.7380 

𝑆𝑊𝑒 (Wei et al., 2011a) (17) 0.6804 ≯ 0.6867 > 0.5075 

𝑆𝑌 (Ye, 2013) (17) 0.9100 ≯ 0.9168 > 0.7172 

𝑆𝐻𝐿 (Hu and Li, 2013) (17) 0.8054 ≯ 0.8080 > 0.6503 

𝑆𝑀𝐶  (Meng, 2016) (17) 0.6682 ≯ 0.6700 > 0.4538 

𝑆𝐴𝑒  (Alolaiyan et al., 2024) (17) 0.4260 > 0.6780 ≯ 0.6799 

𝐷𝑍𝑒  (Zhou et al., 2016) (25) 0.0625 ≮ 0.0603 < 0.1113 

𝐷𝐹𝑒 (Fares et al., 2019) (25) 0.2595 < 0.4453 ≮ 0.3616 

𝐷𝑄𝑒 (Qin et al., 2023) (25) 0.4353 < 0.2577 ≮ 0.2577 

𝐷𝐴𝑂 (Ohlan, 2022) (25) 0.3884 < 0.1169 ≮ 0.1119 

𝐷𝑉𝑒 (Vishnukumar et al., 2024) (25) 0.4933 < 0.2258 ≮ 0.1917 

Proposed (𝛼 = 2) (17) 0.8479 ≯ 0.9127 > 0.5818 

Proposed (𝛼 = 6) None None 

Proposed (𝛼 = 10) None None 

 

 

The comparative analysis from Table 12 illustrates the limitations of existing measures. All fail to satisfy 

the given inequalities and cannot differentiate effectively in critical scenarios. The proposed measure shows 

certain limitations at 𝛼 = 2, but it proves to be highly effective and consistent when an optimal value of 𝛼 

is selected. This demonstrates that the method becomes more dependable and accurate than traditional 

measures under challenging conditions. 

 

The proposed measure exhibits considerable improvements when a proper value of 𝛼 is chosen. It fulfills 

all the required inequalities and has strong differentiation capabilities. This makes it suitable for handling 

complex fuzzy data and ensuring reliable decision-making. Overall, these findings confirm the usefulness 

of the proposed approach and highlight its advantage over existing similarity measures. 

 

5.1 Sensitivity Analysis of Parameter 𝜶 
In order to examine the stability and discrimination power of the proposed correlation coefficient, a detailed 

sensitivity analysis with respect to the parameter 𝛼 was performed. Table 12 provides the outcomes of 
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several correlation, similarity and distance measures, highlighting their failure to satisfy the essential 

inequality conditions (15), (17) and (25) which are crucial for effective discrimination of structured 

linguistic variables. 

 

The analysis shows that: 

• For lower values of parameter, such as 𝛼 = 2, the measure proposed fails to fully satisfy inequality 

(17), in the same way as other existing methods. This suggests that at a lower value of 𝛼, the proposed 

correlation coefficient cannot be used for the classification of the linguistic variables. 

• As 𝛼 increases (e.g., 𝛼 = 6 and 𝛼 = 10), the proposed measure not only distinguishes the different 

structured linguistic variables but also satisfies all the required inequalities. This indicates that the 

proposed generalized correlation coefficient is sensitive towards the parameter 𝛼. This justifies the 

applicability of the generalized correlation coefficient in real-life scenarios. 

 

This analysis highlights the tuning function of parameter 𝛼. By changing the value of 𝛼, decision-makers 

can enhance or relax the discriminative strength of the correlation measure depending on the degree of 

closeness of the linguistic variables.  

 

Hence, the sensitivity analysis serves as a clear indication of the importance of selecting an appropriate 

value of 𝛼. This gives the proposed measure the ability to be at its best when compared with the classical 

measures which do not have the flexibility feature introduced by the parameter, thus making it a strong and 

adaptable approach in complex decision-making environments.  

 

The sensitivity analysis insights the importance of the parameter 𝛼 in enhancing the responsiveness of the 

correlation coefficient. It improved the distinction among alternatives in decision-making scenarios. 

Following this observation, it becomes essential to assess not only the sensitivity but also the reliability of 

the proposed method. For this purpose, we incorporate the measure of error- originally proposed by 

Muthukumar and Krishnan (2016) for intuitionistic fuzzy soft sets as an additional evaluation metric. 

 

5.1.1 Measure of Error 
The measure of error provides the extent of variation or inconsistency among the alternatives by analyzing 

the relationship between the chosen optimal alternative and all other alternative pairs. In this study, we 

extend this concept to the framework of IVIFSs by substituting conventional similarity measures with 

correlation coefficients, which more effectively capture the level of association between the alternatives.  

Let 𝕂(𝐴𝑖 , 𝐴𝑗) denote the correlation coefficient between two IVIFSs 𝐴𝑖 and 𝐴𝑗, and 𝕂(𝐴𝑡 , 𝐴𝑟) denote the 

highest value of correlation coefficient between any two IVIFSs 𝐴𝑡  and 𝐴𝑟. Then, the measure of error for 

the IVIFS-based method is defined as 

𝑀𝐸 = 𝕂(𝐴𝑡 , 𝐴𝑟) +
1

∑ (𝕂(𝐴𝑡,𝐴𝑟)−𝕂(𝐴𝑖,𝐴𝑗))(𝑖,𝑗)≠(𝑡,𝑟)

                                                                                         (30) 

 

For Example 5.1, let 𝐴1 = 𝐴
1
2⁄ , 𝐴2 = 𝐴, 𝐴3 = 𝐴2 and 𝐴4 = 𝐴4. The correlation coefficient values between 

two IVIFSs 𝐴𝑖  and 𝐴𝑗 for different values of parameter 𝛼 are shown in Table 13. Table 13 summarizes the 

computed pairwise correlation coefficients for six different values of 𝛼, illustrating how the relationships 

among alternatives evolve as the sensitivity parameter 𝛼 changes.  
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Table 13. Correlation coefficient values for different values of parameter 𝛼. 
 

 𝛼 = 2 𝛼 = 4 𝛼 = 6 𝛼 = 10 𝛼 = 12 𝛼 = 14 

𝕂(𝐴1, 𝐴2) 0.7382 0.6379 0.5703 0.4537 0.4021 0.3550 

𝕂(𝐴1, 𝐴3) 0.5818 0.3388 0.1922 0.0600 0.0335 0.0187 

𝕂(𝐴1, 𝐴4) 0.4122 0.1039 0.0249 0.0015 0.0004 0.0001 

𝕂(𝐴2, 𝐴3) 0.8479 0.6828 0.5318 0.3236 0.2578 0.2085 

𝕂(𝐴2, 𝐴4) 0.6661 0.2921 0.1237 0.0231 0.0102 0.0046 

𝕂(𝐴3, 𝐴4) 0.9127 0.6458 0.4488 0.2314 0.1705 0.1267 

 

 

Based on these results, the corresponding values of the measure of error (𝑀𝐸) using Equation (30) for 

different values of 𝛼 are computed and summarized in Table 14.  

 
Table 14. Calculated values of the measure of error for the proposed method (Example 5.1). 

 

Values of 𝛼 𝑀𝐸 

2 1.6718 

4 1.3994 

6 1.2239 

10 1.0676 

12 1.0523 

14 1.0610 

 

 

 
 

Figure 7. Measure of error for different values of parameter 𝛼. 

 

 

Table 14 and Figure 7 show that as the parameter 𝛼 increases, the corresponding measure of error 𝑀𝐸 

decreases. As a result of this behavior, one may infer that an increase in the value of parameter 𝛼 makes 

the model stronger since it can better discriminate among alternatives resulting in a lower error when 

identifying the most appropriate option. However, after a certain point (e.g., after 𝛼 =  12), the measure 

of error begins to increase, highlighting that the selection of an appropriate value for 𝛼 is crucial. 

 

In other words, the method is becoming more stable and accurate in finding the best alternative as the 𝛼 

increases. 
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5.1.2 Comparative Evaluation Based on Measure of Error 
A comparative analysis based on the 𝑀𝐸 was carried out to rigorously evaluate the computational 

performance and reliability of the proposed correlation coefficient. 

 

Table 15 and Figure 8 provide a comparative assessment of the 𝑀𝐸 corresponding to different existing 

correlation coefficient methods, which have been evaluated using Example 5.1. 

 
Table 15. Calculated values of the measure of error for the various existing methods (Example 5.1). 

 

Values of 𝛼 𝑀𝐸 

𝕂𝐵𝐵 (Bustince and Burillo, 1995), 𝕂𝐻𝑂 (Hong, 1998) 1.6752 

𝕂𝐻𝑢 (Hung, 2001) 75.627 

𝕂𝑃𝐴 (Park et al., 2009a) 1.9442 

𝕂𝑊𝐸 (Wei et al., 2011b), 𝕂𝑍𝑊 (Zeng and Wang, 2011) 1.6752 

𝕂𝐿𝐼 (Liu et al., 2015) 4.5451 

𝕂𝑇𝐻 (Thao, 2018) 1.3993 

𝕂𝑇𝑀𝐹  (Thao et al., 2019) 1.8147 

𝑆𝑆  (Singh, 2012) 1.6365 

𝑆𝐷𝑆 (Dhivya and Sridevi, 2018) 2.4657 

𝑆𝑊𝑒 (Wei et al., 2011a) 1.6797 

𝑆𝑌 (Ye, 2013) 1.9467 

𝑆𝐻𝐿 (Hu and Li, 2013) 1.9696 

𝑆𝑀𝐶  (Meng, 2016) 1.6317 

𝑆𝐴𝑒  (Alolaiyan et al., 2024) 1.4593 

Proposed method (𝛼 = 12) 1.0523 

 

 

 
 

Figure 8. Measure of error for various methods. 

 

 

Key observations from Table 15 and Figure 8: 

 

• Measure 𝕂𝐻𝑢 (Hung, 2001), generate a very large error value of 75.627 which shows that it performs 

poorly and lacks stability in this particular environment. 

• Measures 𝕂𝐿𝐼 (Liu et al., 2015) and 𝑆𝐷𝑆 (Dhivya and Sridevi, 2018) also output significantly high error 

values (above 4.5 and 2.4, respectively). These results lead to the conclusion that the existing 

approaches are inconsistent when taking into account structured linguistic information. 
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• Although a few methods show moderate performance, none of them can be at the level of the proposed 

method in terms of precision and error minimization. 

• The proposed method (at 𝛼 =  12) is the one that produces the lowest 𝑀𝐸 value of 1.0523, thereby 

confirming its high computational accuracy and reliability. 

 

6. Discussion 
This study presents a novel generalized correlation coefficient for IVIFSs, that can go a long way in 

resolving the problems typical of fuzzy decision-making environments, such as ambiguity, inverse 

relationships, and nuanced preference modelling. The key results and implications of this work are as 

follows:  

• Accurate representation of dissimilarity: One of the most prominent features of the proposed measure 

is its ability to attain a correlation value of −1 for completely dissimilar IVIFSs. Many existing 

approaches fail to achieve this. Thus, making this property both meaningful and essential for accurate 

modelling. 

• Enhanced modelling in MCGDM applications: This measure has been used to solve a real-world 

supplier selection problem, thus proving its capability in MCGDM. The use of normalized correlation 

efficiency is a very efficient tool for the assignment of both positive and negative expert weights, thus 

making the representation of the conflicting views more accurate.  

• Strong differentiation via confidence evaluation: The method leads to very high degrees of confidence 

almost all the time, and thus it can be used for making exact distinctions between alternatives. This 

provides a foundation for its use in ranking, selection, and other decision-based evaluations. 

• Enhanced handling of structured linguistic terms: In cases where slight differences in the linguistic 

variables (e.g., MLH, H, VH, VVH) are considered, the proposed coefficient better distinguishes 

between variables than the existing measures. Although a few limitations are observed at lower 

parameter settings, optimal parameter tuning significantly improves accuracy and interpretability. 

• Sensitivity analysis: The sensitivity analysis revealed that the parameter 𝛼 was the main factor that 

influenced the measure's behavior. Its performance was constantly increasing as the value of 𝛼 increases 

and reaches its best performance at 𝛼 =  12 for the test case considered (see Table 14). Beyond this 

value, accuracy begins to decline, which highlights the importance of identifying an optimal 𝛼. 

• Validated by Measure of Error analysis: The measure of error analysis is an additional source that 

validates the robustness of the proposed approach. At 𝛼 =  12, the method attains the smallest error 

value, 𝑀𝐸 = 1.0523, outperforming all comparable methods and demonstrating superior computational 

reliability. 

 

7. Conclusion 
This paper introduces a generalized correlation coefficient for IVIFSs that addresses the issues of existing 

methods. The new coefficient more accurately reflects both positive and negative relationships. It captures 

linguistic vagueness more delicately and offers strong computational efficiency. Due to these qualities, the 

measure is better suited for real decision-making scenarios involving incomplete or imprecise information. 

 

While the parameter 𝛼 is one of the major strengths, its best selection is still very much dependent on user’s 

judgment, indicating that adaptive or data-driven strategies for choosing 𝛼 could enhance usability to a 

greater extent. Besides, the method has the following limitations: 

(i) Attribute interdependencies: The incorporation of objective weights notwithstanding, the current 

formulation does not consider the interdependencies of attributes, which may have an impact on the 

results in complex scenarios. 
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(ii) Scalability: The method has been shown to work efficiently for small and medium-sized problems, 

however, it’s not clear how it will behave with every large dataset. 

(iii) Performance under extreme uncertainty: Additional studies should be carried out to confirm the 

robustness of the proposed correlation coefficient in cases of very uncertain or highly variable IVIF 

information. 

 

Future research might also consider automated selection of 𝛼, use different kinds of data that represent 

attribute relationships, and develop the method for other fuzzy environments. Moreover, this approach can 

be used on big data sets from real-world datasets, which will further validate its practical relevance. 

 

Besides that, delving into new functionalities of these coefficients in complicated cases and their complex 

scenarios, such as machine learning or optimization techniques, may have a significant impact on their 

power to deal with uncertainty and facilitating informed decisions across various domains. Information 

from recent studies on cosine similarity measures for IFSs (Ahemen et al., 2024) could also be an idea-

generating source for the development of generalized cosine-based correlation coefficients for IVIFSs, 

providing a promising direction for future research. 
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