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Abstract  

This study employs the Picard-S3 iteration method, which proves to be particularly useful for visualizing and examining fractals, 

as well as investigating intricate dynamical systems. In the present paper, we focus on the complex polynomial function. By 

integrating numerical simulations with graphical representations, we explore how variations in iteration parameters affect the 

morphology and complexity of the obtained fractal structures. The findings indicate that different parameter values lead to highly 

intricate and diverse formations, highlighting the dynamic richness of these fractals. To systematically assess the effects of iteration 

parameters on fractal geometry, three quantitative measures are employed: Escape Time (ET), Density of Non-Escaping Points 

(DP), and Iteration Variance (IV). These metrics provide a thorough investigation on fractal structures respond to the parameter 

change, offering deeper insights into their dynamic properties and sensitivity to variations in iterative processes. 

  

Keywords- Escape time, Fractals, Escape criterion, Density of non-escaping points, Iteration variance. 

 

 

 

1. Introduction  
Fractal are complex shaped patterns observed in both nature and Mathematics, a special class of self-similar 

patterns are called fractals in which fractal dimension strictly exceeds topological dimension of self-similar 

patterns (Weibel, 1991). These visually interesting and complex shapes appear in natural phenomena 

(Mandelbrot, 1982) such as branches of trees, snowflakes, and on the fern leaves (Barcellos, 1990). 

Mathematically, fractals are generated through iterative processes when a complex-valued function is 

repeatedly applied to produce self-similar patterns on different scales. Mandelbrot set is a fractal (Abbas et 

al., 2020) generated by iterating the function 𝑓(𝑧) = 𝑧2 + 𝑐, where 𝑐 ∈  𝐶. Similarly, the Julia set is also 

generated using the same function by varying initial conditions across the complex plane. Graphical 

depictions of these sets show the area, generating fractal patterns. 
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Fixed point theory provides an important framework to understand the iterative methods used in the 

visualization of fractals. The points that remain invariant under iteration and act as attractors, pulling nearby 

points toward them, are known as fixed points. In fractal dynamics, the term “escape” describes the behavior 

of points during iterations. Points escaping to infinity are assigned specific colors, while other points, 

escaping steadily or remaining bounded, are represented with different colors. 

 

Mandelbrot sets are visualized using the escape time algorithm by different computer software like 

MATHEMATICA, MATLAB, Python, etc., calculating the total iterations required for a point’s orbit to 

diverge to infinity. This approach showcases the dynamic nature of iterative processes in fractal generation. 

The Mandelbrot and Julia sets originated first in 1971, when the Picard iteration method was applied to the 

second-order polynomial, 𝑓(𝑧) = 𝑧2 + 𝑐. After these various iterative methods, such as Mann (Shahid et 

al., 2021) and Noor (Qi et al., 2020; Noor, 2000), are developed to explore diverse fractal patterns. These 

iterative methods provide insight for examining variations in the fractal properties, such as size, shape, and 

color, for different functions. Studies by various authors further expanded the understanding of fractals and 

their dynamic characteristics. Tomar et al. (2022a) used a sine function to generate fractals and revealed 

boundary patterns shaped by the complexities of transcendental dynamics. Husain et al. (2022), explored 

different types of fractals, showcasing their practical uses. Prajapati et al. (2022), use Mann iteration and 

uncover detailed and intricate fractal patterns. By suggesting a four-step iteration technique for weak 

contractions, Shatanawi et al. (2020) helped to enhance fixed-point calculations critical for fractal creation. 

Sharma et al. (2025) explore the potential of the Fibonacci sequence in fractal generation and show the 

symmetries of Mandelbrot and Julia sets mathematically by Fibonacci-Mann iteration. Antal et al. (2021) 

focused on the Fractals of complex sine function, revealing distinct behavior of iteration. Their 2022 follow-

up brought Jungck-Ishikawa iteration equipped with s-convexity, which produced various fractals as 

Mandelbrot and Julia sets. Using the DK iteration, Sharma et al. (2023) obtained fractals for logarithmic 

function and Tassaddiq et al. (2023) key development was setting an original escape criteria for complex 

function-driven fractal, hence enhancing graphical representations. Tomar et al. (2023) also looked at 

cosine-based fractals and observed symmetrical patterns in both Mandelbrot and Julia forms. Introducing 

the Fibonacci–Mann iteration into transcendental contexts, Özgür et al. (2022) produced unique fractal 

shapes. Adhikari & Sintunavarat (2024) made logarithmic fractals more diverse and structured by using 

four-step iteration with s-convexity, which expanded the range even more. Comparing the resulting 

complexities in Mandelbrot sets, Srivastava et al. (2024) looked at Picard S-iteration to set escape criteria. 

 

In this study, the Picard-S3 iteration method is applied to generate fractals for the complex polynomial 

𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, 
 

where,  𝑐, 𝑎 ∈  𝐶 and 𝑟 ≥  2, the resulting Mandelbrot and Julia sets exhibit self-similar patterns identical 

to their classical structure. Analyzing these patterns provides insights into the mathematical behavior and 

dynamics of this class of complex functions. The fractals presented in this work highlight the dynamics of 

complex polynomial function under Picard-S3 iteration, offering valuable perspectives on their iterative 

properties. In 2022, Singh et al. (2022) introduced a three-step iteration method for approximation of fixed 

points in contraction mappings (Singh et al., 2022). This method, inspired by the Mann iterative scheme, 

demonstrates rapid convergence, makes it more effective for fractal generation. 

 

The remainder of the paper is organized in the following manner: Section 2 provides key definitions, 

foundational concepts, and essential notations. Section 3 establishes an escape criterion for the function. In 

Section 4 Mandelbrot and Julia sets are generated for the Picard-S3 iteration, Section 5 provides numerical 

examples of fractal generation. and Section 6 summarizes the main findings and conclusions. 
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2. Preliminaries 
Below are fundamental definitions and concepts that will be useful in this research. 

 

Definition 2.1 Julia set (Barcellos, 1990; Julia, 1918): The Julia set is defined as the collection of all points 

within the complex plane for which the orbit of the function 𝑇 ∶  𝐶 →  𝐶 diverges to infinity. The filled 

Julia set of T can be expressed as: 

𝑆𝑇 = {𝑥 ∈ 𝐶: {|𝑇𝑖(𝑥)|}𝑖=0 
∞ 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑}                                                                                                    (1) 

 

The boundary of ST is referred to as the Julia set of T. 

 

Definition 2.2 Mandelbrot set (Devaney, 2018): The Mandelbrot set is the set of parameter values c within 

the complex plane such that the filled Julia set ST, corresponding to the function 𝑇(𝑥) = 𝑥2 + 𝑐 , is 

connected. Formally, it is defined as: 

𝑀𝑆 = {𝑐 ∈ 𝐶: 𝑆𝑇 is connected }                                                                                                                              (2) 

 

The Mandelbrot set MS encapsulates significant information about the filled Julia set and can alternatively 

be expressed as: 

𝑀𝑆 = {|𝑇(𝑥)| ↛ ∞ as 𝑘 → ∞}                                                                                                                         (3) 

 

Definition 2.3 Picard-S3 iteration (Singh et al., 2022): For 𝑥0 ∈ 𝐶, Picard-S3 iteration is defined as 

𝑦𝑖 = (1 − 𝛼𝑖)𝑥𝑖 + 𝛼𝑖𝑇(𝑇(𝑥𝑖)), 

𝑥𝑖+1 = (1 − 𝛽𝑖)𝑦𝑖 + 𝛽𝑖𝑇(𝑦𝑖)                                                                                                                      (4) 

 

where, 𝛼𝑖, 𝛽𝑖 ∈ (0,1] and 𝑖 =  0,1,2. . .. 
 

3. Main Results 
Escape criteria play an important role in the visualization of complex fractals. In this work, we establish 

the escape criteria for the given function using the Picard-S3 iteration. The Picard-S3 iteration consists of 

two steps, where we consider the sequences 𝛼𝑖 = 𝛼 and 𝛽𝑖 = 𝛽. 
 

3.1 Escape Criteria of Picard-S3 Iteration 
Suppose 𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, where 𝑐, 𝑎 ∈  𝐶, and r ≥ 2, be a function, then, 

 

Theorem 3.1 Let 𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, where 𝑐, 𝑎 ∈  𝐶 and r ≥ 2 and {𝑥𝑖}𝑖∈𝑊 be the Picard-S3 iteration 

defined in Equation (4). If, |𝑥0| ≥ |𝑐| > (2 + |𝑎|)
1

(𝑟−1), |𝑥0| ≥ |𝑐| > (
2−𝛼

𝛼
)

1

(𝑟−1)
  and  |𝑥0| ≥ |𝑐| >

(
2+𝛽|𝑎|

𝛽
)

1

(𝑟−1)
. Then |𝑥𝑖| →  ∞, as 𝑖 → ∞. 

 

Proof. From Equation (4), the initial step of Picard-S3 iteration is, 

|𝑦𝑖| = |(1 − α)𝑥𝑖 + α 𝑇(𝑇(𝑥𝑖))| 
 

Then for 𝑖 =  0 and from 𝑇𝑐(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, we get, 

|𝑦0| = |(1 − α)𝑥0 + α 𝑇(𝑇(𝑥0))| 

                       = |(1 − 𝛼)𝑥0 + 𝛼𝑇(𝑥0
𝑟 + 𝑎𝑥0 + 𝑐)|. 

So, we get, 
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|𝑦0| = |(1 − α)𝑥0 + α[(𝑥0
𝑟 + 𝑎𝑥0 + 𝑐)𝑟 + 𝑎(𝑥0

𝑟 + 𝑎𝑥0 + 𝑐) + 𝑐]|                                                          (5) 

Since |𝑥0| ≥ |𝑐|, then for large |𝑥0|, the term |𝑥0|𝑟dominates in 𝑇(𝑥0) so, 
|𝑇(𝑥0)| = |𝑥0

𝑟 + 𝑎𝑥0 + 𝑐| 
                                                                        ≥ |𝑥0|𝑟 −  |𝑎||𝑥0| − |𝑐| (By using triangle inequality). 

 

From |𝑥0| ≥ |𝑐|, we have, 

           |𝑇(𝑥0)| ≥ |𝑥0|𝑟 − |𝑎||𝑥0| − |𝑥0| 
                            = |𝑥0|(|𝑥0|𝑟−1 − |𝑎| − 1). 

 

Since |𝑥0| > (2 + |𝑎|)
1

𝑟−1 , we have |𝑥0|𝑟−1 > 2 + |𝑎|, it follows that |𝑥0|𝑟−1 − |𝑎| − 1 > 1, so, 

|𝑇(𝑥0)| ≥ |𝑥0|(|𝑥0|𝑟−1 − |𝑎| − 1) > |𝑥0|. 
 

Next, we compute,  

𝑇(𝑇(𝑥0) = 𝑇(𝑥0
𝑟 + 𝑎𝑥0 + 𝑐) = (𝑥0

𝑟 + 𝑎𝑥0 + 𝑐)𝑟 + 𝑎(𝑥0
𝑟 + 𝑎𝑥0 + 𝑐) + 𝑐. 

 

To bound |𝑇(𝑇(𝑥0))|, applying the triangle inequality, 

|𝑇(𝑇(𝑥0))|  ≥  |(𝑥0
𝑟 + 𝑎𝑥0 + 𝑐)𝑟|  − |𝑎(𝑥0

𝑟 + 𝑎𝑥0 + 𝑐)| − |𝑐|                                                               (6) 

 

Since |𝑥0
𝑟 + 𝑎𝑥0 + 𝑐|≥ |𝑥0|𝑟 − |𝑎||𝑥0| − |𝑐|, we have, 

 

|(𝑥0
𝑟 + 𝑎𝑥0 + 𝑐)𝑟| ≥ (|𝑥0|𝑟 − |𝑎||𝑥0| − |𝑐|)𝑟 

                               ≥ (|𝑥0|𝑟 − |𝑎||𝑥0| − |𝑥0|)𝑟 ( ⸪ |𝑥0| ≥ |𝑐| ) 
                               = |𝑥0|𝑟(|𝑥0|𝑟−1 − |𝑎| − 1)𝑟                                                                                        (7) 

 

For the second term, 
|𝑎(𝑥0

𝑟 + 𝑎𝑥0 + 𝑐)| ≤ |𝑎|(|𝑥0|𝑟 + |𝑎||𝑥0| + |𝑐|) 

                                                                              ≤ |𝑎|(|𝑥0|𝑟 + |𝑎||𝑥0| + |𝑥0|).                                      (8) 

 

Substituting Equation (7) and Equation (8) into Equation (6), we get, 

|𝑇(𝑇(𝑥0))| ≥ |𝑥0|𝑟(|𝑥0|𝑟−1 − |𝑎| − 1)𝑟 − |𝑎|(|𝑥0|𝑟 + |𝑎||𝑥0| + |𝑥0|) − |𝑐|                                          (9) 

 

To simplify, factor out |𝑥0|, 

|𝑥0|𝑟(|𝑥0|𝑟−1 − |𝑎| − 1)𝑟 = |𝑥0|𝑟2
(1 −

|𝑎|+1

|𝑥0|𝑟−1)
𝑟
, 

|𝑎|(|𝑥0|𝑟 + |𝑎||𝑥0| + |𝑥0|) = |𝑎||𝑥0|𝑟 (1 +
|𝑎|+1

|𝑥0|𝑟−1). 

 

Thus Equation (9) becomes, 

|𝑇(𝑇(𝑥0))| ≥ |𝑥0|𝑟2
(1 −

|𝑎| + 1

|𝑥0|𝑟−1)

𝑟

− |𝑎||𝑥0|𝑟 (1 +
|𝑎| + 1

|𝑥0|𝑟−1) − |c| 

|𝑇(𝑇(𝑥0))| ≥ |𝑥0| [|𝑥0|𝑟2−1 (1 −
|𝑎|+1

|𝑥0|𝑟−1)
𝑟

− |𝑎|(|𝑥0|𝑟−1 + |𝑎| + 1) −
|𝑐|

|𝑥0|
]                                         (10) 

 

For large |𝑥0|, since |𝑥0|𝑟−1 > 2 + |𝑎|, the term 
|𝑎|+1

|𝑥0|𝑟−1  <  1. Also |𝑎|(|𝑥0|𝑟−1 + |𝑎| + 1)  ≈ |𝑎||𝑥0|𝑟−1, 

and 
|𝑐|

|𝑥0|
 ≤ 1. Thus, 
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|𝑇(𝑇(𝑥0))| ≥ |𝑥0|(|𝑥0|𝑟2−1 − |𝑎||𝑥0|𝑟−1 − |𝑎| − 1)                                                                             (11) 

                   = |𝑥0|𝑟 (|𝑥0|𝑟+1 − |𝑎| −
|𝑎|+1

|𝑥0|𝑟−1). 

 

Since 
|𝑎|+1

|𝑥0|𝑟−1  <  1, 

|𝑇(𝑇(𝑥0))| ≥ |𝑥0|𝑟(|𝑥0|𝑟+1 − |𝑎| − 1)                                                                                                   (12) 

 

Now,  

|𝑥0|𝑟+1 > |𝑥0|𝑟−1   (⸪r ≥ 2) 

             > 2 + |𝑎|    (⸪  |𝑥0| > (2 + |𝑎|)
1

(𝑟−1)) 

 

Hence Equation (12) becomes,  

|𝑇(𝑇(𝑥0))| ≥ |𝑥0|𝑟                                                                                                                                   (13) 

 

Using Equation (13) in Equation (5) we get, 

 
|𝑦0| = |(1 − α)𝑥0+α𝑇(𝑇(x0))| 

           = |α𝑇(𝑇(𝑥0)) + (1 − α)𝑥0| 

             ≥ α|𝑇(𝑇(x0))| - (1 − α)|𝑥0| 

≥ α|𝑥0|𝑟- (1 − α)|𝑥0| 
            ≥ |𝑥0|(α|𝑥0|𝑟−1 − (1 − α)). 

Since |𝑥0| ≥ (
2−α

α
)

1

𝑟−1
, and 𝑟 ≥ 2, we have |𝑥0|𝑟−1 ≥  

2−α

α
. 

 

Thus, 
|𝑦0| ≥ |𝑥0|                                                                                                                                                 (14) 

 

In the next step of Picard-S3 iteration, 
|𝑥𝑖+1| = |(1 − 𝛽𝑖)𝑦𝑖 + 𝛽𝑖𝑇(𝑦𝑖)| 

 

for 𝑖 =  0 we have, 
|𝑥1| = |(1 − 𝛽)𝑦0 + 𝛽𝑇(𝑦0)| 

                          = |(1 − 𝛽)𝑦0 + 𝛽(𝑦0
𝑟 + 𝑎𝑦0 + 𝑐)| 

                                ≥ |𝛽𝑦0
𝑟 + 𝛽𝑎𝑦0 + 𝛽𝑐)| − (1 − 𝛽)|𝑦0| 

                                       ≥ 𝛽|𝑦0
𝑟| − 𝛽|𝑎||𝑦0| − 𝛽|𝑐| − (1 − 𝛽)|𝑦0|. 

 

The assumption |𝑦0| ≥ |𝑐| implies −|𝑐| ≥ −|𝑦0|, therefore we get, 
|𝑥1| ≥ 𝛽|𝑦0

𝑟| − 𝛽|𝑎||𝑦0| − 𝛽|𝑦0| − (1 − 𝛽)|𝑦0|   
                                                     = 𝛽|𝑦0

𝑟| − 𝛽|𝑎||𝑦0| − |𝑦0| 

                                                     = |𝑦0|(𝛽|𝑦0
𝑟−1| − 𝛽|𝑎| − 1). 

 

From Equation (14), we have, 

|𝑥1| ≥ |𝑥0|(𝛽|𝑥0
𝑟−1| − 𝛽|𝑎| − 1). 

Since |𝑥0| ≥ |𝑐| > (
2+𝛽|𝑎|

𝛽
)

1

(𝑟−1)
⟹ (𝛽|𝑥0

𝑟−1| − 𝛽|𝑎| − 1) > 1, 
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Therefore, 
|𝑥1| ≥ |𝑥0|. 

Now using the same argument recursively, 

 

For 𝑖 =  1, 

|𝑥2| ≥ |𝑥0|(𝛽|𝑥0
𝑟−1| − 𝛽|𝑎| − 1)

2
⟹  |𝑥2| >   |𝑥0|. 

 

Next, for 𝑖 =  2, we have, 

|𝑥3| ≥ |𝑥0|(𝛽|𝑥0
𝑟−1| − 𝛽|𝑎| − 1)

3
. 

. 

. 

. 

|𝑥𝑖+1| ≥ |𝑥0|(𝛽|𝑥0
𝑟−1| − 𝛽|𝑎| − 1)

𝑖
. 

 

Therefore, |𝑥𝑖| → ∞ as 𝑖 →  ∞. 

 

Remark 1. The condition |𝑥0| ≥ |𝑐| > max {|𝑐|, (2 + |𝑎|)
1

𝑟−1, (
2−𝛼

𝛼
)

1

𝑟−1
, (

2+𝛽|𝑎|

𝛽
)

1

𝑟−1
}, ensure |𝑥0|𝑟−1  is 

sufficiently large to make the dominant terms (e.g., |𝑥0|𝑟2
, |𝑦0|𝑟−1) outweigh lower-order terms, validating 

the approximations. Specifically: 

• |𝑥0|𝑟−1 > 2 + |𝑎| ensures |𝑥0|𝑟2−1 > |𝑎| + 2, so |𝑇(𝑇(𝑥0))| > |𝑥0|. 

• |𝑥0|𝑟−1 >
2−α

α
 ensure |𝑦0| ≈ α|𝑥0|𝑟2

> |𝑥0|. 

• |𝑥0|𝑟−1 >
2+β|𝑎|

β
 ensure |𝑥1| > |𝑦0|. 

 

Corollary 3.1 For 𝑘 ≥  0, if 

{|𝑥𝑖| > 𝑥0 > 𝑚𝑎𝑥{|𝑐|, (2 + |𝑎|)
1

(𝑟−1), (
2−𝛼

𝛼
)

1

(𝑟−1)
, (

2+𝛽|𝑎|

𝛽
)

1

(𝑟−1)
}} , then there exists 𝜃 >  0,  so that 

|𝑥| ((|𝑥0
𝑟−1| − |𝑎| − 1)(𝛼|𝑥0

𝑟−1| − 1 + 𝛼)(𝛽|𝑥0
𝑟−1| − 𝛽|𝑎| − 1)) > 1 + 𝜃 ⟹ |𝑥𝑘+𝑖| > |𝑥𝑘|(1 +

𝜃)𝑘+𝑖 and then |𝑥𝑖| → ∞ as 𝑖 →  ∞. 
 

4. Generation of Fractals for 𝑻(𝒙) = 𝒙𝒓 + 𝒂𝒙 + 𝒄 
To generate Julia sets, we employ Algorithm 1, while Algorithm 2 is utilized for Mandelbrot sets. These 

algorithms are implemented to construct fractals for the polynomial function using the Picard-S3 iteration 

scheme in MATLAB (R2015a) with an appropriate colormap (Figure 1) and different value of parameters 

(Table 1-4). Throughout this iterative process, a diverse range of fractals emerges, representing Julia and 

Mandelbrot sets. To ensure consistency across numerical experiments, the Picard-S3 parameters 𝛼, 𝛽 ∈
(0,1] are sampled over resolution grid. 

 

The coloring algorithm maps the number of Picard-S3 iterations i before an orbit escape to a color index. 

For each point 𝑥0 (Julia set) or c (Mandelbrot set), the orbit escapes when |𝑥𝑖+1|  >  𝑅 or |𝑧𝑖+1|  >  𝑅, 

respectively. The color index 𝑗 is computed as  

𝑗 = ⌊(𝐶 − 1)
𝑖

𝑃
⌋, 
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where, C is the number of colors in the colormap, and P is the maximum iteration count. Points that remain 

bounded after P iterations (i.e., i = P) are assigned the last color, indicating potential membership in the set. 

Notably, many of these fractals exhibit symmetrical properties. This self-similarity holds considerable 

significance, particularly in applications such as the Textile Industry and interior design, where such 

patterns are prized for their intricate structures and visual appeal. 

 

4.1 Julia Sets 
We generate the Julia sets for the polynomial function 𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, where 𝑐, 𝑎 ∈  𝐶 and r ≥ 2, by 

varying the parameter values using the Picard-S3 iteration method. The maximum number of Picard-S3 

iteration, P is set to 30. 

 

 
 

Figure 1. Colourmap for the fractals. 

 

Algorithm 1: Generation of Julia Set 

Input: 𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, where 𝑐, 𝑎 ∈  𝐶 and 𝑟 ≥  2;  𝐴𝑟𝑒𝑎 𝐴 ⊂  𝐶; 𝑃 Maximum iterations; 
 𝛼, 𝛽 ∈  (0,1]; Color map[0. . . 𝐶 − 1] with C colors 

Output: Julia set for area A 

1) for each 𝑥0 ∈ 𝐴 do 

2) 𝑅 = max {|𝑐|, (2 + |𝑎|)
1

𝑟−1, (
2−𝛼

𝛼
)

1

𝑟−1
, (

2+𝛽|𝑎|

𝛽
)

1

𝑟−1
} 

3)  𝑖 =  0 

4) 𝑥𝑖 = 𝑥0 

5) while 𝑖 ≤  𝑃 do 

6) 𝑦𝑖 = (1 − 𝛼)𝑥𝑖 + 𝛼𝑇2(𝑥𝑖) 

7) 𝑥𝑖+1 = (1 − 𝛽)𝑦𝑖 + 𝛽𝑇(𝑦𝑖) 

8) if |𝑥𝑖+1|  >  𝑅 then 

9)   break  

10)  end if 

11) 𝑖 =  𝑖 +  1 

12) end while 

13) 𝑗 = ⌊(𝐶 − 1)
𝑖

𝑃
⌋  

14) Color 𝑥0 with Color map[𝑗] 
15) end for 

 

 

Table 1. Parametric values used in Figure 2 for Julia sets. 
 

Sr. No. α β a r Area Time 

(a) 0.99 1 0.583-0.785i 2 [-1.3,0.7]× [-0.8,1.6] 1.279249s. 

(b) 0.99 1 0.583-0.785i 3 [-1.2,1.2]× [-1.5,1.5] 2.516655s. 

(c) 0.99 1 0.583-0.785i 4 [-1.2,1.2]× [-1.3,1] 2.602523s. 

(d) 0.99 1 0.583-0.785i 5 [-1.2,1.2]× [-1.2,1.2] 2.733305s. 

(e) 0.99 1 0.583-0.785i 6 [-1.2,1.2]× [-1.2,1.2] 2.919975s. 

(f) 0.99 1 0.583-0.785i 7 [-1.2,1.2]× [-1.2,1.2] 2.998813s. 
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(a)                                                                  (b)                                                                   (c) 

 
                          (d)                                                                  (e)                                                        (f) 

 

Figure 2. Julia sets for Picard-S3 iteration. 
 

In Figures 2 (a)-(f), 𝑐 =
0.9

100
𝑖, and combination of parameters given in Table 1 is used and examine that 

Julia sets appear for this exponential function appear like the subclasses of complex starlike function found 

in different symmetrical shapes in Geometry and Biological world. 

 
Table 2. Parametric values used in Figure 3 for Julia sets. 

 

Sr. No. α β a r Area Time 

(a) 0.1 0.8 0.1 2 [-2.5,1.6]× [-2.5,2.5] 1.357802s. 

(b) 0.1 0.8 0.1 3 [-1.3,1.3]× [-1.4,1.4] 2.075251s. 

(c) 0.1 0.8 0.1 4 [-1.3,1.3]× [-1.4,1.4] 3.013689s. 

(d) 0.25 0.89 0.1 2 [-2,1.2]× [-1.8,1.8] 1.272235s. 

(e) 0.25 0.89 0.5 2 [-2,1]× [-1.8,1.8] 1.265864s. 

(f) 0.25 0.89 1 2 [-2.2,0.8]× [-1.8,1.8] 1.272035s. 

 

 
(a)                                                             (b)                                                                  (c) 

 

 
(d)                                                               (e)                                                     (f) 

 

Figure 3. Julia sets for Picard-S3 iteration. 
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In Figure 3(a)-(f), 𝑐 =  0.1𝑖, and combination of parameters given in Table 2 is used and Julia fractals 

approach sunflower shapes with circular symmetry as the value of r increases. And for higher values of r 

Julia fractals approach triangular shapes with non-rectifiable boundary (See Figure 3). 

 

4.2 Mandelbrot Set 
In this section, we examine different Mandelbrot sets for the function 𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, where 𝑐, 𝑎 ∈
 𝐶 and 𝑟 ≥  2, for distinct values of r within the orbit of the Picard-S3 iteration. Mandelbrot sets have been 

generated for various parameter configurations using the Picard-S3 iteration method. To ensure uniformity 

across all fractals, the maximum number of iterations, P is fixed at 30 as specified in Algorithm 2. 

 

Algorithm 2: Generation of Mandelbrot Set 

Input:𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐 , where 𝑐, 𝑎 ∈  𝐶  and 𝑟 ≥  2;  𝐴𝑟𝑒𝑎 𝐴 ⊂  𝐶; Maximum iterations 𝑃; 𝛼, 𝛽 ∈
 (0,1]; Color map[0. . . 𝐶 − 1] with C colors 

Output: Mandelbrot set for area A 

1) for each 𝑐 ∈ 𝐴 do 

2) 𝑅 = max {|𝑐|, (2 + |𝑎|)
1

𝑟−1, (
2−𝛼

𝛼
)

1

𝑟−1
, (

2+𝛽|𝑎|

𝛽
)

1

𝑟−1
} 

3)  𝑖 =  0 

4)  𝑥𝑖 = 0 

5) while 𝑖 ≤  𝑃 do 

6) 𝑦𝑖 = (1 − 𝛼)𝑥𝑖 + 𝛼𝑇2(𝑥𝑖) 

7) 𝑥𝑖+1 = (1 − 𝛽)𝑦𝑖 + 𝛽𝑇(𝑦𝑖) 

8) if |𝑥𝑖+1| >  𝑅 then 

9)  break  

10)  end if 

11) 𝑖 =  𝑖 +  1 

12) end while 

13) 𝑗 = ⌊(𝐶 − 1)
𝑖

𝑃
⌋  

14) Color 𝑐 with Color map[𝑗] 
15) end for 

 
Table 3. Parametric values used in Figure 4 for Mandelbrot sets. 

  

Sr. No. α β a r Area Time 

(a) 0.9 0.1 0.1 2 [-1.5,1.6]× [-1,1] 1.609162s. 

(b) 0.9 0.2 0.1 2 [-1.5,0.6]× [-1,1] 1.509401s. 

(c) 0.9 0.5 0.1 2 [-1.5,0.6]× [-1,1] 1.563076s. 

(d) 0.9 0.6 0.5 2 [-1.5,0.6]× [-1,1] 1.648927s. 

(e) 0.9 0.8 0.5 2 [-1.5,0.6]× [-1,1] 1.684885s. 

(f) 0.9 0.1 0.5 2 [-2.2,0.8]× [-1.8,1.8] 1.673943s. 

 

 
Table 4. Parametric values used in Figure 5 for Mandelbrot sets. 

 

Sr. No. α β a r Area Time 

(a) 0.99 0.98 0.5 4 [-1,0.7]× [-0.8,0.8] 3.026923s. 

(b) 0.99 0.98 0.5 5 [-0.7,0.7]× [-0.7,0.7] 2.966343s. 

(c) 0.99 0.98 0.5 7 [-0.7,0.7]× [-0.7,0.7] 3.375605s. 

(d) 0.99 0.98 0.5 8 [-0.7,0.7]× [-0.7,0.7] 4.170721s. 

(e) 0.99 0.98 0.5 11 [-0.7,0.7]× [-0.7,0.7] 4.781605s. 

(f) 0.99 0.98 0.5 15 [-0.7,0.7]× [-0.7,0.7] 5.177218s. 
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(a)                                                                (b)                                                             (c) 

 

 

 
                            (d)                                                             (e)                                                     (f) 

 

Figure 4. Mandelbrot sets for Picard-S3 iteration. 

 

Mandelbrot Sets appear in Figure 4 (a)-(f), with bean shaped portion. For higher values of r and value of 

parameters given in Table 3 it closely resembles to original Mandelbrot set given by Benoit Mandelbrot. 

 

 
(a)                                                             (b)                                                         (c) 

 

 
                        (d)                                                             (e)                                                  (f) 

 
Figure 5. Mandelbrot sets for Picard-S3 iteration. 
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Mandelbrot sets for higher values of r is obtained. The set approach’s petal like shapes with circular 

symmetry (See Figures 5 (a)-(f) and Table 4). 

 

Figures 2-5, shows that the computation time is significantly less than the standard fixed-point iterations 

such as Picard, Mann, Ishikawa, etc. For r = 2, generated fractal closely resembles the classical Mandelbrot 

set (See Figure 4(a) and Figure 4(f)), which show the efficiency of the Picard-S3 iteration. 

 

5. Numerical Examples 
In this section, we analyze the Mandelbrot and Julia sets for polynomial functions via the Picard-S3 iteration. 

The Mandelbrot sets for complex polynomial functions typically forms a petal-like shape. This section 

investigates the influence of various parameters on the Julia and Mandelbrot sets. Different metrics are 

employed to better understand these effects on the sets, allowing us to represent different properties 

graphically. We compute three key measures namely, Escape Time (ET), Density of Non-Escaping Points 

(DP), and Iteration Variance (IV). These metrices are obtained from distinct points in the set. The Escape 

Time (ET) quantifies the mean iterations required for points in the complex plane to escape from a bounded 

region: 

𝐸𝑇 =
1

𝑁esc
∑ 𝑘𝑖

𝑖∈Escaping Points

, 

 

where, 𝑁𝑒𝑠𝑐  denotes the total number of points that escape within the maximum iteration limit, and 𝑘𝑖  

represents the iteration count needed for the 𝑖𝑡ℎ  point to escape. If no points escape, the escape time is 

generally set to the maximum iteration limit. The Density of Non-Escaping Points (DP) assesses the 

proportion of points inside fractal that remain bounded after the maximum number of iterations: 

𝐷𝑃 =
𝑁non-esc

𝑁total

, 

 

where, 𝑁non-esc is the number of points that did not escape, and 𝑁total is the total points in the grid. Iteration 

Variance (IV) is a statistical measure that evaluates the variability in the iterations required for points to 

either escape or remain within the fractal. 

𝐼𝑉 =
1

𝑁
∑(𝑘𝑖 − 𝑘̅)

2
𝑁

𝑖=1

, 

 

where, 𝑘𝑖  is the iteration count for the 𝑖𝑡ℎ  point, 𝑘̅ is the average iteration count, and N represents the 

number of points. To illustrate the relation between the parameters 𝛼 and 𝛽 with these numerical measures, 

we analyze the Mandelbrot and Julia sets for distinct values of a and r. These measures are calculated and 

the final outcomes are plotted. The parameters 𝛼 and 𝛽 are sampled at 100 points which are evenly spaced 

within the range (0,1], resulting in 10,000 generated images for each plot from Figure 6 to Figure 15. 

 

5.1 ET, DP and IV for Julia Sets 
In Figure 6, the plots for the measures of Escape Time (ET), Density of Non-Escaping Points (DP), and 

Iteration Variance (IV) are shown for the function 𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐. The maximum iteration count is 

set to 30, with 𝑐 =
0.9

100
𝑖, 𝑟 =  2, and 𝑎 =  0.583 −  0.785𝑖. The image generated in the area [−2,2]2. By 

examining the plots, it is observed that the highest ET value is 24.6227, at 𝛼 = 1.0 and 𝛽 = 0.01, while the 

lowest ET value of 0.6088 is observed at 𝛼 = 0.1 and 𝛽 = 0.5. In contrast, the DP plot displays a distinct 

pattern contrast to the ET measure. The peak DP value is 0.7569, which occurs at 𝛼 = 1.0 and 𝛽 = 1.0, while 
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the lowest DP value of 0 is observed at several different 𝛼 and 𝛽 values. The plots for DP and IV share 

similar trends. The highest IV value is 216.2349, occurring at 𝛼 = 0.25 and 𝛽 = 0.34, while the lowest IV 

value of 14.2744 is observed at 𝛼 = 0.01 and 𝛽 = 0.05. Figure 6, clearly demonstrates that both the ET and 

DP measures attain highest values at the boundaries. 

 

 
(a)                                                             (b)                                                                  (c) 

 

 

 
                        (d)                                                             (e)                                                     (f) 

 

Figure 6. ET, DP and IV for Julia sets. 

 

In Figure 7, the Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) 

measures plots are shown for the function 𝑇(𝑥) = 𝑥𝑟  +  𝑎𝑥 +  𝑐 with parameters 𝑐 =
0.9

100
𝑖, 𝑟 =  5, and a 

= 0.583 − 0.785i. From plots, the highest ET value is 9.1325, which occurs at α = 0.01 and β = 0.99, while 

the lowest ET value is 0.6035, seen at α = 0.82 and β = 0.69. In contrary, the DP plot displays a different 

trend to the ET measure. The highest DP value is 0.8418, which occurs at α = 1.0 and β = 1.0, while the 

lowest DP value is 0.7032, observed at α = 0.01 and β = 0.01. The plots for DP and IV show similar 

behaviors. The highest IV value is 171.7265, occurring at α = 0.01 and β = 0.07, while the lowest IV value 

of 111.2017 is observed at α = 1.0 and β = 1.0. Figure 7, offers a detailed analysis of these measures. 

 

In Figure 8, the Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) 

measures are shown for the parameters c = 0.1i, a = 0.1, and r = 2. Upon reviewing the plots, the highest 

ET value of 23.2318 is observed at α = 1.0 and β = 0.01, while the lowest ET value of 0.2471 occurs at α = 

0.01 and β = 0.03. In contrast to the ET measure, the DP plot demonstrates a distinct pattern. The maximum 

value for DP measure is 0.7697, for α = 1.0 and β = 1.0, and the minimum value for DP measure is 0, for 

multiple combinations of α and β. The plots of DP and IV on comparison show distinct behavior. The 

highest IV value of 216.9689 occurs at α = 0.29 and β = 0.35, and the lowest IV value of 5.2816 is recorded 

at α = 0.01 and β = 0.03. 
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(a)                                                             (b)                                                                 (c) 

 

 
               (d)                                                                (e)                                                         (f) 

 

Figure 7. ET, DP and IV for Julia sets. 
 

 

 
(a)                                                             (b)                                                                 (c) 

 

 
               (d)                                                                (e)                                                         (f) 

 

Figure 8. ET, DP and IV for Julia sets. 

 

In Figure 9, the plots for the Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration 

Variance (IV) measures are for the parameters c = 0.1i, a = 0.1, and r = 4. The plots reveal that the maximum 

ET value is 9.4477 occurs at α = 0.01 and β = 1, while the upper limit of ET value is 0.1441, observed at α 

= 0.74 and β = 0.87. The DP plot, shows a different behavior contrast to the ET measure. The highest DP 

value, 0.8072, is at α = 1.0 and β = 1.0, whereas the minimum DP value of 0.5886 occurs at α = 0.01 and β 
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= 0.01. The behavior of the DP and IV plots is similar. The highest IV value of 199.3113 appears at α = 

0.01 and β = 0.07, while the lowest IV value of 139.1188 is recorded at α = 1.0 and β = 1.0. 

 

 
(a)                                                             (b)                                                                 (c) 

 

 
                  (d)                                                                (e)                                                      (f) 

 

Figure 9. ET, DP and IV for Julia sets. 

 

 

 
                     (a)                                                                  (b)                                                             (c) 

 

 
                  (d)                                                                (e)                                                      (f) 

 

Figure 10. ET, DP and IV for Julia sets. 
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In Figure 10, the Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) 

plots displayed for the combination of parameters c = 0.1i, a = 1, and r = 2. The plots shows that the 

Maximum ET value is 23.5441, for α = 1.0 and β = 0.01, while the minimum ET value is 0.7610, for α = 

0.01 and β = 0.03. The DP plot, is different to the ET measure. The highest value for DP measure is 0.7517, 

for α = 1.0 and β = 1.0, while the minimum value for DP measure is 0 observed for multiple combinations 

of α and β. The plot for DP and IV measures shows similar patterns. The highest IV value of 217.0 occurs 

at α = 0.27 and β = 0.36, whereas the lowest IV value of 17.8503 is found at α = 0.01 and β = 0.03. 

 

5.2 ET, DP and IV Measures for Mandelbrot Sets 
In Figure 11, the plots for Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance 

(IV) measures are presented for the combination of the parameters a = 0.1, and r = 2. We get the highest 

ET value of 25.5502 occurs at α = 1.0, β = 0.01, while the minimum ET value of 0.6476 is found at α = 

0.01, β = 0.04. The DP measure plot present different pattern in contrast to the ET measure. The highest 

DP value is 0.7968, for α = 1.0, β = 1.0, while the lowest DP value is 0, observed for various combinations 

of α and β.  Both the DP and IV measure plots show similar patterns. The maximum IV value of 215.0777 

occurs at α = 0.25, β = 0.29, while the minimum IV value of 15.0110 is observed at α = 0.01, β = 0.03. 

 

 
(a)                                                                (b)                                                                 (c) 

 

 
                  (d)                                                                (e)                                                      (f) 

 

Figure 11. ET, DP and IV for Mandelbrot sets. 

 

In Figure 12, Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) 

measure plots are presented for the combination of the parameters a = 0.5 and r = 2. The maximum ET 

value of 25.6804 is observed at α = 1.0, β = 0.01, while the minimum ET value of 0.9364 occurs at α = 0.01, 

β = 0.03. The highest DP value is 0.7886, for α = 1.0, and β = 1.0. The minimum DP value is 0, for multiple 

combinations of α and β. The DP and IV plots show similar patterns. The highest IV value of 214.8429 
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occurs at α = 0.22, β = 0.27, and the lowest IV value of 21.7837 is observed at α = 0.01, β = 0.03. 

 

 
(a)                                                             (b)                                                                 (c) 

 

 
                  (d)                                                                (e)                                                      (f) 

 

Figure 12. ET, DP and IV for Mandelbrot sets. 

 

 

In Figure 13, Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) 

measures plots are shown for the combination of the parameters a = 0.5 and r = 4. The maximum number 

of Picard-S3 iteration is set to 30, and the plotting area is [−2,2] × [-2,2]. It is observed that the highest ET 

value, 22.0562, occurs at α = 0.01, β = 1.0, while the lowest ET value, 4.3802, is observed at α = 0.10, β = 

0.18. The DP plot show a different functioning compared to the ET measure on comparison. The highest 

DP value of 0.8878 occurs at α = 1.0, β = 1.0, and the minimum DP value of 0.6 is recorded at α = 0.01, β 

= 0.01. The plots of DP and IV shows different trends. The highest IV value, 191.6480, is observed at α = 

0.01, β = 0.05, and the lowest IV value of 47.5911 occurs at α = 1.0, β = 0.98. 

 

In Figure 14, the Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) 

plots are presented for the parameters a = 0.5 and r = 7. From the plots, it is observed that the maximum 

ET value, 19.4684, occurs at α = 0.01, β = 1.0, while the minimum ET value, 1.7784, is recorded at α = 

0.01, β = 0.05. The DP plot shows distinct characteristic compared to the ET measure. The highest DP value 

of 0.9104 occurs at α = 1.0, β = 1.0, and the lowest DP value of 0.7808 at α = 0.01, β = 0.01. The plots of 

DP and IV show similar trends. The highest IV value, 144.6103, is observed at α = 0.01, β = 0.04, while 

the lowest IV value, 41.5881, occurs at α = 1.0, β = 1.0. 
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(a)                                                             (b)                                                                 (c) 

 

 
                  (d)                                                                (e)                                                      (f) 

 

Figure 13. ET, DP and IV for Mandelbrot sets. 

 

 

 
(a)                                                             (b)                                                                 (c) 

 

 
                  (d)                                                                (e)                                                      (f) 

 

Figure 14. ET, DP and IV for Mandelbrot sets. 
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In Figure 15, the Escape Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) 

measures plots are presented for the parameters a = 0.5 and r = 15. From the plots, it is observed that the 

maximum ET value, 19.4877, occurs at α = 0.01, β = 1.0, while the minimum ET value, 1.8541, is recorded 

at α = 0.01, β = 0.06. The DP plot shows a distinct behavior contrast to the ET measure. The highest DP 

value of 0.9320 at numerous values of α and β, while the minimum DP value, 0.8280, occurs at α = 0.01, β 

= 0.01. DP and IV plots show similar trends. The highest IV value, 119.8681, occurs at α = 0.01, β = 0.06, 

and the lowest IV value, 38.2918, is observed at α = 0.98, β = 1.0. 

 

 
                  (a)                                                                (b)                                                                 (c) 

 

 
                  (d)                                                                (e)                                                      (f) 

 

Figure 15. ET, DP and IV for Mandelbrot sets. 

 

 

6. Conclusion and Future Scope 
The escape criteria for the second-degree complex polynomial function 𝑇(𝑥) = 𝑥𝑟 + 𝑎𝑥 + 𝑐, where c and 

a are complex numbers and r ≥ 2, has been derived using the Picard-S3 Iteration method. By leveraging 

Theorem 3.1 and Corollary 3.1 in the Picard-S3 orbit, both Mandelbrot and Julia sets have been visualized 

and analyzed. The results provide a detailed analysis of the Mandelbrot and Julia sets produced for different 

values of r. We found that as r varies, so do the distribution and quantity of attractors and repellers. The 

boundary of the Julia set is complex for distinct values of c, while the Mandelbrot set begins to resemble 

petals as r increases. Additionally, the escape time for fractal generation was calculated, and it varies 

according to the parameters that are used in the Julia and Mandelbrot sets. These images were created using 

a variety of techniques, which affected their color schemes, dynamics, and general appeal. Figures 5(d)-(f) 

resemble to flower petals and star-like shapes for higher values of 𝑟. Values of numerical measures Escape 

Time (ET), Density of Non-Escaping Points (DP), and Iteration Variance (IV) are maximum and minimum 

at the boundary of the parametric space. These findings show the effect of different numerical methods on 

the generation of fractals. 
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For future scope, exploring fractional or higher-degree complex polynomials for Picard-S3 iteration could 

result in the finding of more complex and different fractal structures such as biomorphs. Examining 

different iterative techniques such as hybrid Picard iteration, M iteration, T iteration, etc., and combining 

them with Picard-S3 iteration to analyze convergence, efficiency, and the impact of the resulting fractals 

can be useful. Further effects of various parameters present in iteration schemes may also give insight into 

fractal’s symmetry, stability, and bifurcation analysis. Additionally, there is a possibility of creating 

computationally efficient real-time visualization methods that could be applied in various fields like 

computer graphics, system simulation, and interactive learning environments. Given the intricacy of these 

fractals, multifractal analysis may be an effective method for examining structural variations at various 

scales. 
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