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Abstract

The rapid advancement of Industry 4.0 has positioned Cyber-Physical Systems (CPS) as key enablers of intelligent and autonomous
manufacturing. While automation and autonomy are widely discussed, the concept of autonomicity—the system’s ability to self-
manage, adapt, and make decisions independently—remains theoretically underdeveloped and lacks a structured framework for
assessment. This study addresses this gap by defining the concept of autonomicity in CPS and proposing a five-level evaluation
scale. A theory development approach was adopted, supported by a systematic literature review and a bibliometric analysis
conducted using the Scopus database and VOSviewer software. The resulting scale classifies CPS autonomicity from total human
dependence to full self-management, incorporating criteria such as Al capabilities, self-learning, fault tolerance, and autonomous
decision-making. The findings contribute to both theory and practice by refining the conceptual understanding of CPS autonomicity
and offering a structured tool for its assessment. This work provides a foundation for future empirical research and supports strategic
planning in autonomous industrial environments.

Keywords- Industry 4.0, Cyber-physical systems, Autonomicity, Automation levels, Internet of things (IoT).

1. Introduction

The global technological landscape has undergone a profound transformation in recent years, driven by the
emergence of disruptive digital technologies and the widespread integration of computational intelligence
into everyday life. Innovations such as smartphones, smart TVs, autonomous vehicles, and integrated
information systems exemplify the digital convergence that has reshaped how individuals and industries
interact with technology (Cavata et al., 2020). Within this evolving context, enterprises face increasing
competitive pressure to enhance operational efficiency and respond to market demands with greater agility.
In response, Industry 4.0 (I4.0) technologies have become instrumental, instrumental in reducing
operational costs and cycle times while simultaneously fostering innovation and productivity (He & Jin,
2016).

Recognized as the core of the Fourth Industrial Revolution, 4.0 represents a paradigm shift in
manufacturing, characterized by the transition from partially automated to fully digitized and intelligent
production environments (Nafich & Mohelska, 2020). This shift is underpinned by an array of advanced
technologies, including Big Data, autonomous robotics, the Internet of Things (IoT), cybersecurity, cloud
computing, 3D printing, and augmented reality (Faria et al., 2019). Among these, CPS play a central role,
acting as the interface between the physical and digital domains. CPS integrate mechanical components
with embedded computational intelligence and communication capabilities, enabling real-time sensing,
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actuation, and autonomous control (Zheng et al., 2021).

In this environment, CPS are often organized into Cyber-Physical Production Systems (CPPS), where
interconnected sensors and intelligent machines form autonomous production ecosystems capable of self-
monitoring and adaptation (Salazar & Heuser, 2022). Through sophisticated architectures and control
algorithms, CPS are expected to evolve in terms of scalability, resilience, security, and performance—
surpassing traditional embedded systems in responsiveness and intelligence (Hu et al., 2021).

Despite the extensive focus on automation and autonomy in CPS, the notion of autonomicity—defined as
a system’s capacity to self-manage, self-optimize, and make independent decisions—remains conceptually
underdeveloped in the current literature (Sanchez et al., 2020). Autonomicity is not merely a synonym for
automation or autonomy; it encompasses a higher-level capability for self-regulation, learning, and
adaptation in dynamic and uncertain environments.

In this context, the lack of a standardized framework for assessing different levels of autonomicity in CPS
represents a critical gap in both academic research and industrial practice. Without a structured
understanding of how CPS evolve from fully dependent to fully autonomous behavior, it becomes difficult
to guide technological implementation and strategic decision-making in 14.0 ecosystems.

Accordingly, this study seeks to address the following research questions:

(1) How can the concept of autonomicity be theoretically delineated within the context of Cyber-Physical
Systems (CPS), and what are its defining characteristics?

(2) What methodological framework can be employed to develop and validate a robust scale for assessing
varying levels of autonomicity in CPS?

To address these questions, this study adopts a theory development approach, which enables both the
conceptual clarification of autonomicity and the structured construction of a scale for its assessment in CPS.
Specifically, the research aims to construct a theoretical concept of autonomicity and propose a five-level
assessment scale, grounded in a systematic and bibliometric literature review. The main contributions
include: (i) the development of a structured framework to define and assess CPS autonomicity; (ii) the
proposition of a conceptual model integrating CPS, IoT, and 14.0 enablers; and (iii) the design of a
preliminary diagnostic tool for classifying CPS according to their level of autonomous behavior.

The structure of this paper is organized as follows. Section 2 outlines the research methodology, including
the theory development approach and the bibliometric analysis procedures employed to support the
conceptual foundation. Section 3 presents the theoretical background, discussing key constructs such as
autonomicity, 14.0, CPS, and IoT, and culminates with a proposed conceptual model that integrates these
elements. Section 4 proposes a theoretical definition of autonomicity specifically tailored to CPS and details
the conceptual development process that supports the construction of the assessment framework. Section 5
introduces the proposed five-level autonomicity scale, describing its structure, components, and
functionalities, followed by a critical discussion of its theoretical and practical implications. Finally, Section
6 presents the study’s conclusions, summarizes its main contributions, addresses its limitations, and offers
directions for future research.

2. Materials and Methods

In response to the research questions outlined above, this study adopts the Theory Development approach.
As emphasized by Gregor (2006), this approach plays a fundamental role in advancing scientific knowledge
by enabling the creation of robust explanatory models that can be empirically tested and applied across
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diverse fields. It is characterized by the systematic construction and refinement of conceptual frameworks
through critical analysis of both emerging and consolidated ideas.

According to Lynham (2002), theory development unfolds through the stages of conceptualization,
operationalization, and iterative refinement of theoretical constructs. In this study, these stages guided the
definition of the concept of autonomicity and the development of a multi-level scale for assessing the degree
of autonomy in CPS, ensuring both theoretical depth and practical applicability.

The theoretical development undertaken here is grounded in a structured literature review that seeks not
only to synthesize existing knowledge but also to highlight conceptual gaps and future directions. Creswell
and Clark (2017) argue that theory development involves the formulation of propositions or hypotheses that
emerge from an extensive review of the literature. Such reviews serve to identify unresolved questions in
the field and inspire the development of innovative frameworks that address these deficiencies.

To support the theoretical proposition of autonomicity in CPS, a bibliometric analysis was conducted using
the Scopus database, a comprehensive and authoritative source of peer-reviewed literature (Harzing &
Alakangas, 2016). The analysis focused on publications from 2012 to 2022, allowing a longitudinal
perspective on the development of the field (Mariano et al., 2015). Only scientific journal articles were
included; other types of publications such as thesis, dissertations, and conference proceedings were
excluded. The selection process followed a predefined set of keywords associated with CPS and
autonomicity to ensure the relevance and accuracy of the data corpus.

The bibliometric analysis utilized key indicators to characterize the field, including publication growth over
time, most cited authors and collaboration networks, leading journals, keyword cooccurrence patterns, and
impact indices such as citation counts and journal impact factors. These metrics allowed for the
identification of research trends, influential contributors, and emergent themes over the last decade. As
highlighted by Lopez et al. (2019), bibliometric methods have become increasingly relevant for measuring
research productivity, quality, and evolution.

The analysis was supported by VOSviewer, a software tool developed by Waltman and Van Eck, known
for its capacity to generate visual representations of bibliometric networks. VOSviewer’s interface enables
the identification of relationships such as co-citation, co-authorship, and term cooccurrence. It also allows
for the clustering of keywords into thematic groups represented by different colors, with the size of each
node indicating frequency of occurrence (Agudo et al., 2022).

In this study, VOSviewer version 1.6.18 was employed under the following configuration (Van Eck &
Waltman, 2022): data were extracted from the Scopus database; the period of analysis was 2012-2022; the
type of analysis was cooccurrence of terms from titles and abstracts; the normalization method applied was
the force association method; and the minimum threshold for term inclusion was five occurrences.

In addition to bibliometric mapping, the research also incorporated a longitudinal analysis aimed at
identifying shifts in thematic focus over time. Results indicate that earlier publications (2012-2016)
concentrated primarily on the structural and architectural aspects of CPS. In contrast, more recent studies
(2017-2022) increasingly address issues related to artificial intelligence and cybersecurity, revealing the
dynamic evolution of research interests within the field. This temporal segmentation was crucial to
understanding the transformation of scientific discourse over time (Mariano et al., 2015).
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The literature review followed a systematic protocol based on the methodology proposed by Junior and
Filho (2010), and refined by Mariano et al. (2015). This protocol includes: the identification of relevant
literature through predefined keywords in selected databases; filtering based on abstract analysis; the
construction of a classification system to encompass the main dimensions of the research topic; and the
synthesis of scientific output, highlighting major findings, challenges, and opportunities. This method
enabled a clear mapping of the current state of research and provided a foundation for the next stages of
this study.

A mind map was developed to illustrate the methodological flow of the bibliometric review, depicting each
step taken in the initial phase of the research (Figure 1). This figure helps clarify the logic and progression
of the methodological approach adopted in this work.
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Figure 1. Methodological steps. Source: by the author (2025).

It is important to note that the bibliometric analysis presented here constitutes the first phase of a broader
research agenda. Based on the results of this phase, it is possible to define the concept of autonomicity in
CPS and proceed to the development of a multi-level evaluation scale. In the next stages of the research,
this work will advance toward the creation of a matrix of relationships between system components and the
design of an empirical instrument to assess CPS autonomicity. The complete methodological roadmap—
including past, current, and future phases—is illustrated in Figure 2.
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Figure 2. Present and future research stages. Source: by the author (2025).

Finally, the process of theoretical development carried out in this study aims to provide the conceptual
foundation for the autonomicity scale in CPS. This scale represents the main theoretical and methodological
contribution of the article, offering a structured tool to guide future research and practical implementation
in the field of CPS.

3. Emerging Themes for Autonomy in Cyber-Physical Systems (CPS)

3.1 Autonomicity

The concept of autonomy has become increasingly prominent in scientific and industrial domains,
particularly in light of the growing sophistication of Artificial Intelligence (Al) applications at both
subsystem and system levels. An autonomous system is defined as one capable of operating independently
from initiation to completion, without the need for human intervention. The etymology of "autonomy"
traces back to "autonomous" and finds metaphorical resonance in biology—specifically, in the functioning
of the Autonomic Nervous System, known for generating involuntary responses (Janiesch et al., 2020).

Traditionally, autonomy has been interpreted as a system's capacity for self-regulation. However, this broad
interpretation often leads to confusion between automation and true autonomy. Systems that merely follow
predefined routines are frequently mislabeled as autonomous. In contrast, genuine autonomy involves self-
governance and self-direction, encompassing advanced capabilities such as self-healing, self-protection,
self-configuration, and self-optimization (Janiesch et al., 2020).

This distinction is further emphasized by Sanchez et al. (2020), who argue that while automation focuses
on reducing human intervention, autonomy implies situational awareness and responsiveness to real-world
consequences based on practical data or models. Autonomous systems thus extend beyond data processing
and decision modeling, necessitating an ongoing debate about how autonomy should be defined and
measured across diverse technological fields.

In this context, the term autonomicity, borrowed from the biological sciences, has been adapted to
information technology to denote systems with the capacity for self-management. Such systems can recover
autonomously from failures, defend against cyber threats, reconfigure based on environmental stimuli, and
enhance their own performance (Sterritt & Hinchey, 2005). Colman (2007) adds that autonomicity should
be understood less as an intrinsic property of system components and more as an emergent attribute
resulting from their interrelationships.
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From a software engineering perspective, autonomicity also serves as a metric to gauge the extent of a
system’s autonomous functionalities. Dehraj and Sharma (2020) assert that understanding and quantifying
these capabilities is critical for fostering user trust in autonomous applications.

The automotive industry, while not typically using the term "autonomicity," offers practical examples of
its implementation. Vehicles can range from fully manual to entirely self-managed systems. Frameworks
like SAE J3016 have become standard references for classifying levels of vehicular autonomy (Hopkins &
Schwanen, 2021). The evolution of this classification system reflects the broader maturation of knowledge
in this domain. As Varga (2017) highlights, autonomous vehicles promise several societal benefits,
including improved mobility for vulnerable populations, optimized traffic flow, decreased urban
congestion, and enhanced fuel efficiency.

Common to both the information technology and automotive sectors is the recognition that autonomic
systems must possess the ability to self-configure. This adaptation may result from direct human input—
particularly from experienced operators—or arise from the system’s capacity to learn from contextual
variables (Hopkins & Schwanen, 2021). Nevertheless, as Colman (2007) reminds us, even the most
advanced models remain limited in their predictive power, as many variables and scenarios can only be
addressed through exposure in real-world contexts.

This evolving understanding of autonomicity serves as a foundational element for interpreting the
technological advancements introduced by 14.0. As industrial systems increasingly incorporate
interconnected devices, intelligent automation, and real-time data processing, the demand for autonomous
capabilities becomes more pressing. In this context, autonomicity not only underpins the operational logic
of CPS, but also plays a pivotal role in enabling the self-managing, adaptive, and resilient infrastructures
envisioned within 14.0 paradigms.

3.2 Industry 4.0

The concept of 14.0, formally introduced at the Hannover Messe in 2011, represents a transformative
evolution in manufacturing and production systems. By leveraging advanced digital technologies, 14.0
redefines industrial efficiency, adaptability, and resource optimization through the digitization of entire
value chains (Liao et al., 2018). It initiates a dynamic shift from traditional production models to integrated,
intelligent, and autonomous systems.

According to Delke et al. (2023), this paradigm shift is propelled by technologies such as digitization and
robotization, which reshape organizational interconnectivity and generate wide-reaching economic and
societal impacts. 14.0 fosters a systemic transformation that extends beyond technological adoption,
demanding the reconfiguration of managerial, operational, and strategic dimensions within organizations.

14.0’s core lies in the integration of advanced technologies—including CPS, the Internet of Things (IoT),
and Cloud Computing—into production environments. These technologies enhance the performance and
responsiveness of industrial systems, allowing for real-time data acquisition, process optimization, and
decentralized decision-making (Sony, 2018; Sitepu et al., 2020). The concept of the “smart factory”
encapsulates this transformation, wherein interconnected machines, products, and systems collaborate to
achieve high levels of automation, flexibility, and customization (Rossini et al., 2019).

Nonetheless, despite its disruptive potential, the practical implications and conceptual boundaries of 14.0
are not always fully grasped. According to Shafiq et al. (2015), the depth of its integration and its impacts
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on industrial practices often remain ambiguous, underscoring the need for clearer frameworks and
definitions.

Technologies such as Digital Twins (DT), Virtual Reality (VR), and Smart Objects contribute significantly
to this innovation landscape. DTs enable the virtual simulation of CPS, enhancing predictive capabilities
and system resilience, while VR offers immersive visualization of industrial environments. Together with
Big Data analytics and intelligent automation, these tools expand the possibilities of sustainable and
collaborative production systems (Gutiérrez et al., 2023; Jabbour et al., 2018).

Junior et al. (2018) emphasize that 14.0 should be understood as an emergent and evolving concept within
production systems, one that depends on the seamless convergence of technologies to generate intelligent,
autonomous, and responsive environments. Recent global events—such as the Barcelona New Economy
Week (Bnew, 2024)—illustrate this trajectory by showcasing the role of digital transformation and
technological convergence in shaping the future of manufacturing.

However, the realization of 14.0’s full potential depends not only on the adoption of advanced technologies
but also on the organizational capacity to effectively implement and manage them. As Delke et al. (2023)
notes, successful integration demands competent professionals and strategically aligned implementation
processes. Biazi & Marques (2023) further argue that the capacity to collect, analyze, and act upon real-
time data requires leadership capable of navigating dynamic contexts, demonstrating self-regulation,
cognitive flexibility, and rapid value signal adaptation.

Finally, Wagner et al. (2017) highlight that the effective deployment of 14.0 technologies requires an initial
evaluation of each organization's sociotechnical baseline, the integration of innovation within lean
production systems, and the continuous adaptation of business processes to technological evolution.

Building on the transformative potential of 14.0, the integration of CPS represents a crucial pillar in
achieving intelligent and autonomous industrial environments (Tancredi et al., 2022). CPS serve as the
backbone for the realization of smart factories, enabling seamless interaction between computational
elements and physical processes. Their capability to sense, analyze, and respond autonomously within
dynamic contexts underscores the increasing importance of autonomic features in modern industrial
systems. The following section delves deeper into the emerging characteristics of CPS and explores how
these systems embody and extend the concept of autonomic behavior within 14.0 frameworks.

3.3 CPS - Cyber Physical Systems

In the context of 14.0, CPS are central technologies that integrate physical assets with computational
capabilities to manage interconnected systems. These systems are fundamental for achieving digital
transformation in production lines, as they enable the integration of physical objects and equipment with
decision-making processes (Seeger et al., 2022).

The concept of CPS emerged in 2006 at a workshop in Austin, Texas, USA (Jiang, 2018), and has since
evolved to combine software and hardware components with internet connectivity and user interaction.
CPS operate across multiple spatial and temporal scales, adapt to a range of behaviors, and are capable of
contextual interactions (Matsunaga et al., 2022). Their capacity to manage real-time connections between
physical and computational resources has driven innovation in areas such as smart manufacturing,
autonomous vehicles, smart cities, and homes (Katina et al., 2017).
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CPS aim to replicate physical environments through the development of cybernetic components aligned
with real-world functionalities (Alhafidh & Allen, 2017), and are widely applied to connect devices to the
internet within the 14.0 ecosystem (Afrizal et al., 2020). Control elements and sensors are embedded in
machines, devices, networks, and human interfaces to monitor and interact with various systems (Salman
& Salih, 2019).

However, the development of distributed CPS is complex and error-prone due to their heterogeneous nature,
involving diverse components, languages, and tools. One of the major design challenges lies in embedding
security mechanisms early in the development process to enhance system simplicity and maintainability
(Pinto et al., 2022).

A widely referenced CPS architecture is the 5C model proposed by Lee & Kao (2015), considered a
practical guideline for implementing 4.0 systems. It is composed of five hierarchical levels:

Level I — Connection: Raw data collection from machines and components via sensors;

Level II — Conversion: Transformation of data into meaningful information;

Level III — Cyber: Integration of digital models, including digital twins;

Level IV — Cognition: Generation of system-level knowledge based on the processed information;

Level V — Configuration: Autonomous decision-making for self-configuration, self-adjustment, and self-
optimization.

This structure provides a systematic workflow to support the implementation of CPS in manufacturing
environments (Bruton et al., 2016). At the base level, the connection between sensors and machines ensures
precise data acquisition. The conversion level processes this data into actionable information, while the
cybernetic layer enables deeper insights through data analysis (Jiang, 2018).

Sensors are essential for CPS functionality, as they provide real-time data that supports processing and
control decisions (Zheng et al., 2021). These sensors are integrated with machines, networks, and human
operators, and monitor key operational parameters such as voltage, temperature, vibration, speed, oil
concentration, and visual attributes of components (Jiang, 2018). Additionally, they track environmental
variables such as humidity, lighting, and atmospheric pressure, which are crucial for maintaining optimal
industrial performance (Jiang, 2018).

Nonetheless, CPS development still faces challenges related to portability, time constraints, and
connectivity reliability, all of which can affect predictability and data integrity (Alhafidh & Allen, 2017).

Security is another critical aspect in CPS and encompasses two domains: information security and control
security. The former focuses on protecting data throughout its lifecycle—collection, processing, and
sharing—particularly in open, distributed networks. The latter safeguards control systems from targeted
attacks on evaluation and decision-making algorithms (Mbiriki et al., 2018).

CPS are often conceptualized as feedback systems that merge computing, networking, and physical
processes. These intelligent systems apply artificial intelligence to monitor and regulate their environments,
enabling precise and timely decision-making and influencing how organizations are structured and operate
(Varadarajan et al., 2022).

The consolidation of CPS within 14.0 has laid the groundwork for even broader integration between
physical devices and digital systems. In this context, the Internet of Things (IoT) emerges as a
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complementary and essential technology, enabling continuous communication among connected objects
and enhancing real-time monitoring, control, and decision-making capabilities. The synergy between CPS
and IoT empowers intelligent industrial environments, providing robust connectivity that supports more
autonomous, efficient, and responsive production operations.

3.3.1 IoT - Internet of Things

The Internet of Things (IoT), in conjunction with CPS, refers to the interconnection of physical devices
capable of collecting data, communicating information, and being remotely monitored or controlled. These
devices—such as smart vehicles, drones, household appliances, and industrial machines—are embedded
with sensors that enable the integration of physical and digital environments (Mbiriki et al., 2018). Within
the context of I 4.0, CPS play a central role in the digital transformation of manufacturing, while the loT

provides a foundational infrastructure that significantly influences modern lifestyles (Varadarajan et al.,
2022).

One of the major contemporary challenges in industrial environments is the transition of manufacturing
processes toward loT-enabled or CPS-based architectures. This transformation demands not only the
networking of physical objects but also the creation of their digital counterparts, forming integrated
ecosystems (Salau et al., 2022). The acceleration of digitalization and the demand for intelligent, adaptive
manufacturing systems have driven the evolution of the IoT, facilitating machine-to-machine
communication and the handling of large-scale, mission-critical data flows (Kebande, 2022).

The International Telecommunication Union (ITU) (2024) defines the IoT as a global infrastructure for the
information society, enabling advanced services through the interconnection of “things” (both physical and
virtual) based on information and communication technologies (ICT). This definition underscores the
centrality of connectivity and device integration in promoting technological advancement across multiple
domains.

Historically, the development of IoT and CPS has been driven by the pursuit of economic and social
benefits, with applications now extending across smart transportation, industrial logistics, and personalized
healthcare. In the healthcare domain, for instance, CPS enable smart hospitals to remotely monitor patients,
issuing automatic alerts to family members, emergency services, or hospitals in the event of critical
incidents (Ramasamy et al., 2022).

According to Magomadov (2020), the IoT is a transformative technology designed to revolutionize
industrial practices by integrating predictive analytics and artificial intelligence through sensor-based
device interconnectivity. It forms a unified system that allows for seamless transmission of data between
machines, devices, and users in both human-to-human and human-to-computer interactions (Laghari et al.,
2021). Furthermore, the IoT enables real-time data collection, cloud-based storage, and analytical
processing, supporting both immediate and predictive decision-making (Banerjee, 2022). This makes it an
indispensable component of I 4.0, especially in manufacturing environments where sensors and connected
systems enhance operational efficiency and responsiveness (Magomadov, 2020).

Looking ahead, the IoT is expected to encompass a vast array of interconnected devices and sensors, each
generating substantial volumes of data. This expansion will require reliable and scalable communication
protocols, as well as robust hardware and software infrastructures to ensure interoperability, security, and
responsiveness (Salau et al., 2022).
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Given the central role of IoT in enabling communication, data exchange, and real-time responsiveness
within CPS, it becomes evident that these technologies not only support system functionality but also lay
the groundwork for autonomous behavior. However, despite the technological advancements observed, a
clear and structured framework for understanding and evaluating autonomicity in CPS remains absent. This
gap highlights the need for a comprehensive conceptual model that integrates key elements of 14.0 and
addresses the progressive nature of autonomy in these systems. The following section presents a model
designed to meet this need, offering a systematic approach to analyze and classify levels of autonomicity
in CPS.

3.4 Proposed Conceptual Model for Autonomicity in Cyber-Physical Systems (CPS)

The literature on CPS and their autonomic capabilities reveals significant conceptual and methodological
gaps that limit the effective assessment and application of autonomicity. A major limitation is the absence
of a structured and universally accepted framework capable of categorizing the degrees of autonomy that
CPS can attain. Although discussions about the relevance of autonomic behavior in these systems are
growing, there is no precise definition or measurement scale that enables systematic evaluation.
Furthermore, many existing models overlook the dynamic interplay between emerging technologies—such
as the Internet of Things (IoT), artificial intelligence (Al), and communication infrastructures—that are
fundamental to the evolution of CPS under the 14.0 paradigm.

To address these limitations, this study proposes a conceptual model of autonomicity in CPS. The model
seeks to integrate key elements of 14.0 with the structural features of CPS to provide a coherent framework
for understanding and evaluating different levels of autonomy. It is composed of four main components:
Autonomicity: Defined as the system's capacity for self-management and independent decision-making,
this element is influenced by capabilities such as Al, machine learning, redundancy, self-healing, and
adaptive behavior. The model incorporates five distinct levels of autonomicity—ranging from total
dependence to full autonomy—building on the framework proposed by Kivrak et al. (2024).

o [4.0 Enablers: These include enabling technologies such as IoT, Al, cloud computing, and big data
analytics. These tools are essential for enhancing the cognitive and responsive capacities of CPS,
enabling dynamic adaptation, decentralized control, and higher degrees of system independence (Aceto
et al., 2020).

e Cyber-Physical Systems: As the core of the model, CPS represent the integration of physical components
(e.g., sensors, actuators) with computational intelligence. Through real-time data collection, processing,
and action, CPS form the operational foundation upon which autonomy can be developed (Kivrak et al.,
2024).

e Internet of Things (IoT): The IoT provides the infrastructure that allows CPS to continuously gather data
from the physical environment and transmit it to the cyber layer. This connectivity enables real-time
analysis and autonomous decision-making, serving as the communication backbone of the system
(Kumar et al., 2022).

These components are interconnected in a feedback loop: data collected through IoT-enabled sensors is
processed by intelligent algorithms, which guide autonomous responses in real time. This interaction

enables the system to continuously learn, adapt, and optimize itself without direct human intervention.

The proposed model advances previous approaches—such as those by Broy (2013) and Salazar &Heuser
(2022)—Dby offering a structured scale that classifies CPS autonomicity into five progressive levels. Unlike
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prior models that focus mainly on automation, this framework integrates contemporary 14.0 technologies
to reflect the current landscape of CPS development. It also aligns with the adaptive systems perspective,
incorporating the complex interaction between CPS, 10T, and Al (Sundarakani & Tan, 2022; Zhang & Lee,
2023).

By consolidating these elements into a unified framework, the model provides a theoretical foundation for
evaluating and guiding the development of autonomous capabilities in CPS. It also contributes to closing
the gap between technological evolution and conceptual clarity, offering practical value for future empirical
research and system design.

3.4.1 Contributions and Applications

The proposed conceptual model of autonomicity in CPS offers significant practical contributions for both
academia and industry. It establishes a comprehensive foundation for future research aimed at
understanding the progressive evolution of CPS autonomy and their integration with emerging 14.0
technologies. By providing a structured framework, the model facilitates the assessment, benchmarking,
and enhancement of autonomy levels across diverse application domains, including smart manufacturing,
autonomous transportation, and smart cities.

From an industrial perspective, the model assists organizations in identifying the current autonomy level of
their CPS implementations, guiding strategic decisions for technological upgrades and innovation. The
proposed five-level autonomy scale serves as a diagnostic and evaluative tool to measure the influence of
key enabling technologies—such as [oT and artificial intelligence—on system performance and operational
independence.

Moreover, the model encourages the development of new metrics and parameters to evaluate critical system
attributes such as reliability, robustness, and adaptive capacity, which are essential for designing and
deploying advanced autonomous solutions. By linking theoretical constructs with practical needs, this
model contributes not only to the conceptual understanding of autonomicity but also to its tangible
application in the 14.0 context.

Importantly, the model integrates core themes of 14.0 and CPS, underscoring their interdependence in
driving autonomous capabilities. It offers a clear and systematic progression of autonomy levels, which
elucidates how CPS evolve from human-dependent systems to fully autonomous entities. This clarity
enables researchers, engineers, and practitioners to focus on the critical components and enabling
technologies that must be developed and optimized to achieve higher autonomy.

Figure 3 illustrates the model as a circular interconnection, highlighting the continuous feedback loop
among Autonomicity, CPS, IoT, and 14.0 drivers. This representation emphasizes real-time data flow and
decision-making processes, capturing the dynamic and adaptive nature of modern autonomous systems.

Complementing the conceptual model, an Autonomous Feedback Hub (AFH) has been developed to serve
as an intelligent intermediary among CPS, [oT, and 14.0 drivers. This hub dynamically processes real-time
data, optimizes decision-making, and ensures the adaptive behavior of the entire system.

The proposed AFH represents a transformative advancement in enhancing autonomicity within CPS under
14.0 paradigms. By integrating Al-driven real-time analytics, self-healing capabilities, and predictive
adaptation, the hub optimizes industrial processes dynamically, fostering resilient and intelligent
manufacturing operations. These contributions facilitate the broader adoption of autonomous industrial
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ecosystems, paving the way toward a new era characterized by intelligent automation and self-managed
production systems.

Real-Time Data Flow
! & Decision Making Auto

Industry 470 Drivers

Figure 3. A circular interconnection model of CPS autonomicity. Source: by the author (2025).

Functioning as an intelligent mediator, the AFH continuously optimizes industrial interactions by enabling
real-time data exchange and autonomous responses. Its architecture is built around three core components:
Al-driven analytics, self-healing mechanisms, and predictive adaptation coupled with autonomous
decision-making. Together, these elements ensure that CPS can respond proactively to environmental
changes and operational challenges, maintaining efficiency and robustness.

Figure 4 illustrates the conceptual model of the Autonomous Feedback Hub. In this diagram, the hub acts
as the processing core, collecting and analyzing data streams from IoT devices and intelligent systems. It
employs advanced Al algorithms for autonomous decision-making and self-correction, reinforcing
autonomicity as a fundamental enabler for self-management within CPS. The cyclical flow depicted in the
figure highlights the continuous interaction among system components, emphasizing the dynamic and
evolving nature of autonomy in 14.0 intelligent systems.

The implementation of an autonomous feedback hub will significantly enhance the autonomy, efficiency,
and adaptability of 14.0 systems. Key expected outcomes include: Improved decision-making capabilities
through Al-driven insights; Reduced downtime and operational disruptions via self-healing mechanisms;
Enhanced adaptability to fluctuating industrial conditions through predictive adaptation; Optimization of
resource utilization, improving energy efficiency and cost-effectiveness.
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Figure 4. Proposed autonomous feedback hub (AFH). Source: by the author (2025).

4. Understanding and Proposing the Concept of Autonomicity in Cyber Physical System
(CPS)

The aim of this study was to develop a scale of autonomicity levels for CPS, based on criteria that have
already been defined, as well as to develop and introduce a theoretical concept of autonomicity for these
systems. This proposal aims to broaden understanding, facilitate practical application and promote
theoretical progress in the field of research.

The analysis is bibliometric and longitudinal and retrospective (2012-2022), with the main means of
evidence for this analysis being keywords. The search strings were centered on three basic research areas
and themes, namely: A-) "Autonomicity"; B-) "Cyber-Physical System"; C-) "Cyber-Physical System"
AND "Autonomicity", with each research block detailed below.

A) Autonomicity
A1l — Autonomicity.
A2 - Autonomicity AND Autonomous.
A3 - Autonomicity AND Autonomous OR Autonomy.

B) Cyber-Physical System
B1 - Cyber-Physical System.
B2 - Cyber-Physical System AND Industry 4.0.

C) Cyber-Physical System AND Autonomicity
CI - Cyber-Physical System AND Autonomicity.
C2 - Cyber-Physical System AND Autonomous.
C3 - Cyber-Physical System AND Autonomy.
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The search and selection procedures were conducted in four main stages:

(i) Initial database search and preliminary analysis;

(i1) Refined search based on defined inclusion and exclusion criteria;

(ii1) Compilation of a list of authors (including areas of concentration and associated keywords);
(iv) Execution of the bibliometric analysis and formation of thematic clusters.

The inclusion criteria adopted in steps A, B, and C were as follows: type of material (articles and conference
papers), publication status (final or in press), language (English), and source type (conference proceedings
and journals). These filters were chosen to ensure that the selected materials were peer-reviewed and of
academic quality. Subsequently, exclusion criteria were applied, which included: articles related to medical
subfields and a temporal limitation covering the period from 2012 to 2022.

The primary rationale for selecting this time frame lies in the increasing relevance of topics related to Cyber-
Physical Systems (CPS), automation, and, by extension, I 4.0. In most databases, publications on these
themes begin to appear more consistently from 2014 onwards. Although the term "14.0" was first introduced
at the Hannover Messe (Germany) in 2011, it gained wider traction in the country around 2016, through
initiatives aimed at pushing the technological boundaries of its manufacturing sector (Liao et al., 2018).

The bibliometric procedures described above provided the basis for a structured and evidence-based
understanding of the field. The following section presents a detailed analysis of the bibliometric findings,
including visual mappings and cluster interpretations that reveal the central themes and evolving research
directions related to CPS and 14.0.

4.1 Analysis of the Bibliometric Review
The analysis began with criterion A1 (Autonomicity), as shown in the figure below (Figure 5).

Based on the search criteria described above, the initial sample was narrowed down to 49 articles (referred
to as Al — Autonomicity). The analysis of this sample is illustrated in Figure 6, which also presents the
keyword co-occurrence network generated using the VOSviewer software. The visualization reveals the
formation of three distinct clusters, each represented by a different color: red (application aspects), blue
(approach-related aspects), and green (autonomicity).

Search Criteria

A 4

Figure 5. Search criteria A1 (Autonomicity). Source: by the author (2022).
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The objective of this analysis is to identify prevailing research trends by organizing related studies into
thematic clusters. VOSviewer processes bibliometric data from multiple studies in related fields and maps
them into broader research domains, segmenting them based on the frequency and co-occurrence of
keywords.

The visual representation of the co-occurrence network in Figure 6 was further analyzed through the
classification of keywords into thematic clusters. These clusters represent three distinct dimensions
observed in the bibliometric mapping. The red cluster, associated with application-related aspects, includes
the terms: application, internet, paper, solution, system, and thing. the green cluster, which reflects the
concept of autonomicity, encompasses the terms: autonomicity, architecture, network, SDN (Software
Defined Networks), and self-management. lastly, the blue cluster, corresponding to approach-oriented
aspects, comprises the terms: agent, approach, complexity, and sensor. This categorization reinforces the
thematic segmentation observed in the network and highlights the central position of autonomicity in
relation to technological infrastructure and application domains within CPS.

Following the cluster mapping presented in Figure 6, a more detailed analysis was conducted, justified by
the centrality of the concept of "autonomicity" to this research. All 49 articles from the A1 sample were
read, critically analyzed, and tabulated. Based on the relevance and alignment with the proposed theme, 22
articles were excluded, resulting in a refined sample of 27 articles.

The same systematic procedure was applied to all search groups: initial screening, application of inclusion
and exclusion criteria, cluster generation based on keyword co-occurrence, and identification of trend lines
through color-coded clusters. In all cases, the selected articles were read in full, analyzed, and organized in
a structured table.

The search strategy illustrated in Figure 3 was consistently applied across all subsequent analyses and
cluster constructions. For clarity and focus, only the main clusters identified in each group are graphically
presented in this article.

In the A2 analysis (Autonomicity AND Autonomous), the initial sample comprised 10 articles. After the
refinement process, 7 articles remained, resulting in four clusters: red (complexity aspects), green
(network), blue (system aspects), and yellow (approach aspects).

In the A3 analysis (Autonomicity AND Autonomous OR Autonomy), the initial sample consisted of 12
articles, which was reduced to 7 after assessing thematic adherence. These articles were distributed across
four clusters: red (autonomous), green (system), blue (network), and yellow (approach).

Finally, in the B1 analysis (Cyber-Physical System), a broader search yielded a total of 16,334 articles.
Figure 7 illustrates the keyword co-occurrence network resulting from this bibliometric analysis, in which
four thematic clusters were identified: red (technology), green (security), blue (protocol), and yellow
(approach).

These clusters represent a multidimensional structure of research themes within CPS. The red cluster,
comprising 171 articles and related to technology-oriented aspects, includes keywords such as artificial
intelligence, automation, autonomy, big data, blockchain, cybersecurity, digital technology, industrial
internet, innovation, production process, and smart manufacturing. The green cluster, associated with
security-related topics and comprising 168 articles, contains terms like attack, control system, cyber
physical, defender, error, failure, information flow, security, and strategy. The blue cluster, linked to
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protocols and connectivity, includes terms such as authentication, battery, deep learning, edge computing,
IoT device, mobility, privacy, protocol, smart city, and vehicle. finally, the yellow cluster, formed by 48
articles and reflecting approach-related themes, gathers keywords such as behavior, benchmark, complex
cyber-physical, development process, formal verification, modelling, simulation, tool, and workflow. This
categorization enhances the reader’s understanding of the visual data and underscores the interplay between
technological innovation, cybersecurity challenges, and system-level approaches in CPS research.

sector

agent
approach
complexity
system
network t icit
autonomici =3
Y paer appligatcon
solution inférnet

sdn
architecture
paper

self management

Figure 6. Cooccurrence network of keywords in group Al. Source: by the author (2022).

Table 1 displays the number of articles published each year throughout the analyzed period.

Table 1. Number of articles per year (B1 analysis).

Year Number of articles
2012 399
2013 562
2014 659
2015 890
2016 1166
2017 1568
2018 2094
2019 2470
2020 2384
2021 2558
2022 1584
Total 16.334
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Figure 7. Cooccurrence network of keywords in group B1. Source: by the author (2022).

Following the analytical framework proposed by Alkubati et al. (2023), the results indicate a consistent
annual increase in the number of publications related to Cyber-Physical Systems (CPS). This growth is
particularly evident during the period when I 4.0 began to receive more focused attention from the academic
community, with a notable peak in publications occurring between 2019 and 2021. It is important to note
that the data for 2022 were incomplete at the time of the survey, and therefore the total number of
publications for that year cannot be considered definitive.

In the B2 analysis (Cyber-Physical System AND Industry 4.0), a total of 1,252 articles were identified,
resulting in the formation of nine clusters: red (implementation protocols), green (organizational aspects),
blue (CPS aspects), yellow (adoption areas), purple (social impacts), cyan (academic aspects), orange
(managerial aspects), violet (types of organization), and lilac (digital aspects), as shown in Figure 8.

Figure 8 illustrates the keyword co-occurrence network generated from this bibliometric analysis. Each
color represents a distinct research perspective. The red cluster, associated with implementation protocols,
includes terms such as blockchain technology, CPS architecture, deep learning, loT system, and sensor
data. The green cluster, focused on organizational aspects, highlights terms like automotive sector, big data
analytics, human factor, and supply chain management. The blue cluster, related to the core structure of
CPS, contains keywords such as cyber physical production, mobile robot, reference model, and system
model. The yellow cluster, linked to adoption areas, includes 4th industrial revolution, construction
industry, digital transformation, and intelligent machine. The purple cluster, representing social impacts,
lists terms such as adaptation, cyber security, intelligent manufacturing, and society. Additionally, the cyan
cluster gathers academic aspects, including engineering education, learning factory, and university; the
orange cluster addresses managerial aspects, with terms such as control process and decision making
process; the violet cluster groups types of organization, including computer science, stakeholder, and
measurement system; and finally, the lilac cluster focuses on digital aspects, with terms such as meta model,
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virtual world, and CPPSs. This comprehensive categorization reflects the multidimensional scope of CPS
research in the context of Industry 4.0, encompassing technological, managerial, social, academic, and
digital domains.
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Figure 8. Cooccurrence network of keywords in group B2. Source: by the author (2022).

The C1 analysis (Cyber-Physical System AND Autonomicity) revealed a notably limited set of results, with
only two articles meeting the inclusion criteria. This scarcity underscores the conceptual and academic
novelty of the term “autonomicity” within the context of CPS. Despite its theoretical potential, the term has
yet to be widely adopted or consistently applied in empirical research. Nevertheless, the cooccurrence
network generated from this small dataset produced two distinct clusters: one represented in red, focusing
on the relationship between CPS and autonomicity itself, and another in green, emphasizing communication
aspects. This limited representation reinforces the need for deeper theoretical exploration and broader
dissemination of the concept, suggesting that autonomicity remains an underexplored dimension in the
broader discourse surrounding CPS and 14.0.
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In contrast, the C2 analysis (Cyber-Physical System AND Autonomous) demonstrated substantial academic
engagement with the theme, yielding a sample of 1,218 articles. The co-occurrence network derived from
this dataset depicted in Figure 9, resulted in the formation of seven clearly defined clusters. This indicates
that the notion of autonomy within CPS is significantly more consolidated and explored in the literature
compared to autonomicity.

For the C3 analysis (Cyber-Physical System AND Autonomy), the sample was 262 articles, and seven
clusters were generated (Figure 10).
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Figure 9. Cooccurrence network of keywords in group C2. Source: by the author (2022).
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Figure 10. Cooccurrence network of keywords in group C2. Source: by the author (2022).

After a comprehensive and systematic search using keywords closely aligned with the central theme of this
study, it becomes evident that the chosen topic—autonomicity within CPS—is both promising and
underexplored. While the concept holds significant theoretical and practical potential, especially in relation
to autonomy, there remain substantial gaps in the literature. These gaps highlight the need for deeper
investigation, particularly concerning the consolidation of autonomy-related concepts in CPS contexts.
Given this landscape, the continuation of this research appears both timely and valuable, with the potential
to generate meaningful theoretical contributions and practical applications.

It is important to note that this article is part of the bibliographic investigation supporting a doctoral thesis
in the field of Production Engineering. All the data collected throughout the bibliometric review will serve
as the foundation for the development of the final research proposal and framework.

The analysis uncovered several noteworthy findings. For instance, the number of publications related to
CPS increased steadily between 2012 and 2022, particularly during the period when 14.0 began to receive
greater attention from the academic community. A publication peak was observed between 2019 and 2021.
Interestingly, a decline in publications occurred in 2020, likely due to the disruptions caused by the COVID-
19 pandemic.

Regarding the theme of autonomy, the number of publications was not only lower in volume but also in
emphasis. The term “autonomy” remains theoretically fragmented and has yet to be fully integrated into
the core frameworks of CPS-related research. This presents a critical theoretical gap—one that this study
seeks to explore and address more systematically.
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The most frequently associated and structuring themes identified in the literature between 2012 and 2022
include: Internet of Things (IoT), Sensors, Artificial Intelligence (AlI), Cybersecurity, Machine Learning
(ML), Innovation, Autonomous Vehicles (AV), Digitalization, Automation, Smart Cities, and the 5C
Architecture. These recurring terms reflect the technological ecosystem within which autonomicity and
CPS are situated, and they offer a foundation for future interdisciplinary exploration.

In-depth keyword-based bibliometric research such as this contributes to academic literature by clarifying
the dominant themes, gaps, and evolution of research in autonomicity and CPS. A summary of the total

number of articles retrieved under each search criterion is presented in Table 2.

Table 2. Total articles according to keyword searches. Source: by the author (2022).

Keyword search criteria (2012-2022) Initial sez}rch‘ (without Search with in?lusion and
criteria) exclusion

Al - Autonomicity 162 50

A2 - Autonomicity AND Autonomous 38 10

A3 - Autonomicity AND Autonomous OR Autonomy 45 12

B1 - Cyber-Physical System 23.643 18.748

B2 - Cyber-Physical System AND Industry 4.0 2456 1252

C1 - Cyber-Physical System AND Autonomicity 3 2

C2 - Cyber-Physical System AND Autonomous 1697 1218

C3 - Cyber-Physical System AND Autonomy 347 262

Total articles returned 28391 21554

4.2 Basic Theories for Developing the Concept
A theory, in general, has the capacity to describe phenomena and provide structured guidelines for
conducting empirical investigations (Sovacool & Hess, 2017).

Following the approach proposed by Agudo et al. (2022), a bibliographic survey was conducted to identify
theories related to autonomics and autonomous systems. The adopted strategy involved constructing a
research trends diagram (Table 3), which maps the selected theories alongside their respective authors.
This consolidation of frequently used theoretical foundations into a single document serves as a valuable
resource for scholars interested in conducting more comprehensive and targeted investigations into the field
of autonomicity.

By examining the main theoretical underpinnings and their connection to the driving themes of automation
and autonomy, it is possible to identify key frameworks that may serve as theoretical pillars for future
studies. These include: fuzzy control theory, theory of planned behavior in autonomous vehicle—pedestrian
interaction, viability theory, game theory, graph theory, car-following theory, theory of autonomous load
control, diffusion of innovations theory, and scale-free network theory.

The autonomicity aspects presented in Table 3 were derived from a detailed literature review, in which
themes such as connectivity, networks, human factors, artificial intelligence, infrastructure, and
mathematical modeling emerged as the most recurrent. Among the theories identified, Fuzzy Control
Theory stands out due to its strong alignment with the concept of autonomicity, particularly because it
mimics human decision-making through artificial intelligence. Additionally, the trend diagram reinforces
the relevance of these aspects by visually representing their recurrence across the selected theories.

Beyond listing theoretical contributions, Table 3 also reveals how these frameworks align with recurring
autonomicity elements, such as human interaction, network architecture, intelligent decision-making, and
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adaptive behavior. For example, fuzzy control theory is frequently cited due to its applicability in modeling
decision processes under uncertainty—a central characteristic in autonomous systems. Likewise, theories
such as game theory and graph theory offer robust tools for analyzing strategic interactions and
interconnected system behavior, respectively. The inclusion of theories related to infrastructure diffusion
and planned behavior further underscores the relevance of socio-technical factors in the evolution and
implementation of autonomous technologies. As such, Table 3 serves not only as a theoretical foundation
for this study, but also as a roadmap for future empirical applications and conceptual refinements in the
field of autonomicity.

Table 3. Trend diagram: related theories. Source: by the author (2022).

Aspects of autonomicity

Human | Artificial Infrastructur Mathemat
Theory Theory concepts/Objectives Connectivity | Network . . i-cal
aspect intelligence e model

It addresses a driving control system for
Av, which can simulate driving behavior
(Zheng et al., 2021).

The authors adopt the fuzzy theory
approach  integrated with  Analytic
Hierarchy Process (AHP) to measure the
subjective attribute of Autonomy (Deharaj
& Sharma, 2020).

Fuzzy control theory is used to control an
autonomous mobile robot for parallel
parking, and fuzzy rules can be derived by v v
modeling conventional car driving actions.
The theory has been used in the fields of
control, artificial intelligence, expert
systems and so on (Miyata et al., 1996).
Fuzzy logic is an area of Al that is widely
used in expert systems. Its principles of
uncertainty are capable of improving the
control techniques used in industrial
automation. The theory simulates human
intelligence and is a solution for non-linear
processes (Tarso & Bezerra, 2009).

The theory of planned behavior is one of
the most dominant theoretical frameworks
applied to predicting human behavior. This
theory predicts pedestrian  behavior
(Hafeez et al., 2022).

The requirements for pedestrian models
increase in level, with the initial model
requiring detection, the higher model
requiring recognition and tracking, and the
full  interaction  model  requiring
psychological and social resources and v v
understanding to interact in any situation
(Hafeez et al., 2022).

This theory seeks to capture the highly
complicated reality of travel mode choice
in a framework consisting of attitudes,
subjective norms and behavioral control
(Jing et al., 2019).

This theory is the extension model of the
Theory of Reasoned Action and is widely
used to investigate behavioral intention
(Jing et al., 2019).

Fuzzy
Control
Theory

Theory
of
Planned
Behavior
in AV
Pedestria
n
Interacti
on
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Table 3 continued...

Viability
Theory

Viability  theory  characterizes the
controllability of a range of constrained
non-linear systems (Pinto et al., 2022).

It can be applied to autonomous vehicles
(Pinto et al., 2022).

In autonomous driving of miniature racing
cars, viability theory is used to generate
finite  anticipation trajectories  that
maximize progress while recursively
feasible with respect to static obstacles
(Liniger & Lygeros, 2019).

Game
Theory

According to game theory, agents prefer
certain states of the environment, which is
modeled with a utility function. If the
agents do not cooperate, then the rational
agent selects that action which has the
highest value between the worst possible
utilities of the results of its own action and
the actions of other agents. Classical game
theory is concerned with equilibrium
(Varga, 2017).

Game theory provides the basis for the
design and analysis of energy systems.
Classically, games involve players whose
strategies are coupled only through the
dependence of utility functions on the
strategies of other players (Kulkarni, 2017).
The authors used game theory to run an
autonomous vehicle and determine its
actions in near real time, relying only on
spatial and  temporal data and
electromagnetic information (Kusyk et al.,
2021).

Game theory in engineering can be
effective in computer communications,
especially for multi-objective optimization
problems in network resource allocation,
routing efficiency and intrusion detection
systems (Kusyk et al., 2021).

Theory

Graphs

Discrete mathematics covers the field of
graph theory, which solves various graph
problems using algorithms such as colored
graphs. Part of graph theory focuses on
algorithms that solve the passage through
labyrinths (Coufal et al., 2021).

A graph is nothing more than a
representation of the interdependence
between elements that are represented by
nodes. Elements that meet the imagined
relationship are symbolically joined by a
line called an edge (Souza et al., 2017).

Car-
Folling
Theory

Car-following (CF) theory is a platooning
control strategy for vehicles based on
sliding mode control theory. This strategy
can be applied to achieve fast platooning of
multiple autonomous vehicles and maintain
the steady state of the platooned vehicle
(Jing et al., 2019).
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Table 3 continued...

This theory transforms the remote control
system that receives operating instructions
Theory | and controls the units into a task-oriented
of Aut. | charging system that receives tasks to perform v v
Load automatic/autonomous control. The authors
Control | tested the effectiveness of this theory by a real
vehicle test on a particular type of unmanned
vehicle (Liu et al., 2021).
In this theory, each individual member goes
through the five stages of the innovation-
decision and process, which are as follows:
knowledge stage; persuasion stage; decision
stage; implementation stage and confirmation
stage. Diffusion being the process by which an
innovation is communicated through specific
channels over time among the members of a
social system; and innovation being an idea,
practice or object that is considered new in an
individual's life (Shaikh et al., 2020).
The diffusion of innovation theory is widely
used to identify information technology

Dl(t)’tr’lum adoption: It_is c_ommoqu used to examine
Theory corr}rr}umcahon mnovatlpn, the 1pnovat19n-

of d601§10n process and the impact of innovation v v
Innovat (Shaikh et a_l., 2_020). The authf)rs us&_ed the

ions theory of diffusion of innovation with an

innovation-decision approach, as a process
model with indicators of knowledge,
persuasion, decision, implementation, and
confirmation (Shaikh et al., 2020).

The persuasion phase describes the evaluation
of the innovation. The decision phase
illustrates how the individual makes the
choice to accept or reject the innovation. The
implementation stage reveals the use of the
innovation by those who accept the
innovation. And the confirmation stage
explains whether the adopter will continue
with the innovation or not (Badri, 2021).
Albert - Laszlo Barabasi was the first person
to identify a network as scale-free. He
discovered that the distribution of nodes in the
Internet tele information network does not
correspond to the usual distribution. He used
Scale his mathematical model of a global network to

free analyze different phenomena and discovered v v
networ | that the distribution of nodes is atypical only
k for the Internet. In this way, it is possible to

theory | analyze many other social, technological or
biological phenomena. Each phenomenon,
which has a network structure, and the
system's communication connections can be
analyzed (Kowalczyk et al., 2014).

4.3 Proposing a Concept of Autonomicity in CPS

While the terms automation and autonomy are widely employed in discussions surrounding CPS, the notion
of autonomicity remains conceptually fragmented and poorly defined. This gap presents a challenge both
to academic research and to practical implementations in 4.0 environments, where systems are increasingly
expected to operate with minimal human intervention, adapt to changing conditions, and make decisions
independently.
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Unlike automation, which typically refers to task execution without real-time human input, or autonomy,
which implies some level of decision-making capacity, autonomicity denotes a more advanced and
comprehensive property: the system’s ability to self-manage, self-configure, self-heal, and self-optimize
within complex and dynamic contexts. This concept stems from autonomic computing theories (Kephart &
Chess, 2003), but its application to CPS requires theoretical refinement and contextual adaptation.

The absence of a clear and structured definition of autonomicity in the context of CPS limits our capacity
to assess, compare, and evolve intelligent industrial systems. It also hinders the development of
standardized frameworks that support maturity assessments, performance benchmarking, and decision-
making in digital transformation processes.

Drawing from the analysis of emerging themes in the literature and the integration of interdisciplinary
perspectives—including systems engineering, Al, and control theory—this study proposes the following
theoretical definition:

Autonomicity in CPS is the level of autonomy and autonomous capacity achieved within a CPS system,
encompassing the ability of these systems to operate, make decisions and adapt autonomously, based on
information obtained from the physical environment and cyber data, and can go from the level of zero
autonomy to the level of maximum autonomy and self-management, where in this case, there is no human
intervention.

To achieve high degrees of autonomicity, systems must integrate various enabling technologies such as the
Internet of Things (IoT), Artificial Intelligence (Al), Cloud Computing (CP), Machine Learning (ML), and
Cybersecurity. When effectively combined, these technologies enhance CPS capabilities to operate
independently, adapt to change, and function in dynamic and unpredictable environments. Nevertheless,
autonomy must be pursued in conjunction with ethical principles, safety requirements, and transparency to
ensure secure and trustworthy operations.

Based on the bibliometric analysis conducted and the foundational theories explored, this concept serves as
a necessary theoretical foundation for the creation of the autonomicity scale presented in the following
section. By clearly defining autonomicity in CPS, this work supports the main objective of the study: to
provide a structured and actionable tool for assessing levels of autonomic behavior in CPS.

In a hypothetical state of total autonomicity, CPS would function entirely independently, even in highly
complex and unforeseen scenarios. Such systems must transcend traditional automation by incorporating
real-time adaptation, continuous learning, and self-improvement capabilities aimed at maximizing
efficiency, resilience, and safety under any operating condition. This level of sophistication demands not
only advanced computational architectures but also adaptive decision-making mechanisms and robust
feedback control.

Future research should further investigate how organizations can practically attain maximum autonomicity
and which system components are critical for achieving full operational independence. These inquiries are
essential for guiding implementation strategies, risk management, and performance assessment in highly
autonomous industrial environments.

As CPS advance toward higher levels of autonomicity, significant questions arise: Should these systems

operate without any human oversight? What are the technical, regulatory, and societal implications of such
capabilities? Achieving full autonomicity is not only a technical ambition but also a philosophical and
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ethical frontier, demanding rigorous interdisciplinary inquiry.

This definition also opens pathways for deeper theoretical inquiry into the boundaries, risks, and
implications of full autonomicity, which remain topics of ongoing academic and industrial debate. The
theoretical development presented in this section constitutes the first phase of a broader research initiative.
The next section introduces a five-level scale designed to classify CPS according to their degree of
autonomicity. This will be followed by the proposal of a relationship matrix and the design of an evaluation
instrument, aiming to operationalize the theoretical model developed herein.

5. Development of a CPS Autonomicity Scale Separated into Levels

The analogy between Autonomous Vehicles (AVs) and Machine Learning (ML) was adopted as the
conceptual foundation for the proposed scale. These subjects were previously introduced in general terms
in the theoretical framework of this study and are now examined in greater detail, serving as the structural
basis for the development of a multi-level scale for evaluating autonomicity in CPS.

AVs initially emerged as a topic of interest within engineering domains but have since garnered attention
across a wide array of disciplines, including insurance, urban planning, public policy, and social sciences.
To describe the varying degrees of automation and task distribution between humans and machines, the
concept of automation levels was introduced (Hopkins & Schwanen, 2021). By 2025, it is expected that
nearly half of newly produced vehicles will incorporate autonomous functionalities reaching Level 5
automation, as defined by the Society of Automotive Engineers (SAE), potentially enhancing safety,
reducing congestion, and alleviating driver stress (Gluck et al., 2022). Similarly, ML can also be categorized
into hierarchical levels of autonomy, reflecting increasing complexity in learning and decision-making
capabilities.

According to Lee et al. (2017), ML autonomy ranges from Level 1 to Level 5, with each level defined by
specific requirements, including the availability of training datasets and input attributes. At Level 1, AVs
are fully controlled by the driver, with no automation support—comparable to manual labor environments
devoid of technological assistance. Although still common on roads today, Level 1 vehicles are gradually
being replaced by models equipped with basic driver-assistance systems (Dias et al., 2021; Smith et al.,
2021).

At the base of the ML spectrum lies supervised learning, where algorithms are trained on labeled data under
human supervision. This setup is analogous to Level 1 AVs, where constant and targeted human input is
necessary to guide learning processes. Supervised ML is widely utilized in applications such as image
recognition and natural language processing (Mitchell, 1997).

In Level 2 AVs, vehicles can manage both steering and speed, though human drivers must remain attentive
and ready to intervene. These vehicles typically include features like adaptive cruise control and parking
assistance, representing a transitional phase toward automation, but still presenting reliability and safety
concerns (Cooper et al., 2023). Correspondingly, semi-supervised ML—which trains models on a mix of
labeled and unlabeled data—mirrors this intermediate state. Although it allows partial independence,
human oversight remains essential for improving system performance, especially in data-scarce
environments (Bengio et al., 2021).

Level 3 AVs are capable of partial automation, handling acceleration, braking, and steering, but still
requiring the driver to monitor the environment and intervene when necessary. This phase reflects ML
models that demonstrate high adaptability but still rely on human supervision in complex or uncertain
scenarios (Bengio et al., 2021).
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In Level 4, vehicles operate autonomously in most environments, requiring human intervention only in
exceptional cases (Cooper et al., 2023). This stage parallels ML models with strong autonomy capabilities,
capable of executing complex tasks with minimal external input.

Finally, Level 5 AVs are fully autonomous, capable of operating in all conditions without human
intervention (Dias et al., 2021). These vehicles represent a major innovation in the automotive sector by
replacing driver tasks with intelligent software systems (Cooper et al., 2023). Similarly, Level 5 ML
systems exhibit complete decision-making independence across various contexts and environments
(Russell & Norvig, 2020).

The recent discourse on automation levels, particularly within the context of 14.0, underscores the
importance of adaptive systems that blend the flexibility of manual processes with the efficiency of
automated ones. These systems promote productive human-machine collaboration and contribute to
significant improvements in cycle time and operational efficiency (Bortolini et al., 2021).

On the human side, the perception of autonomy levels and user trust in autonomous systems are influenced
by a variety of technical and social factors. While automation advances rapidly, higher levels of autonomy
may paradoxically decrease user confidence, especially when cognitive and psychological factors are not
adequately addressed (Yang et al., 2024).

Grounded in the analogies drawn from the extensive literature on AVs and ML, a five-level scale was
developed to categorize the degrees of autonomicity in CPS. As presented in Table 4, the levels are defined
as follows:

Level 1 — Total Dependence;
Level 2 — Moderate Dependence;
Level 3 — Partial Autonomy;
Level 4 — Substantial Autonomy;
Level 5 — Total Autonomy.

Level 1 - Total Dependence:

At Level 1, systems are entirely dependent on external commands and constant human intervention.
Automation is minimal, and all operations are executed manually, with no ability to autonomously respond
to environmental changes or system events. Achieving Level 1 autonomy in a CPS involves the integration
of essential components such as:

- Sensors and Actuators: Capture environmental data and execute physical actions based on manual
commands.

- Human-Machine Interface (HMI): Facilitates operator interaction via input/output devices like screens
and buttons.

- Direct Human Control: All critical decisions and actions are made manually using specific interfaces.

- Network Connectivity: Enables system communication with operators through local or internet-based
networks.

- Monitoring and Alert Systems: Provide real-time status tracking and notifications of critical events.

- Security Protocols: Protect the system against unauthorized access and malicious activity.

- Manual Interruption Capability: Allows emergency shutdown in the event of failure or hazard.
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Level 2 - Moderate Dependence:

At this stage, reliance on external commands is reduced, and some degree of automation is introduced.
Systems begin to execute predefined tasks autonomously but still require human oversight for complex or
unexpected situations. Additional components are integrated to support limited autonomy, including:

- Decision-Making Algorithms: Enable basic data analysis and decision-making using control logic, expert
systems, or ML techniques.

- Predictive Models: Utilize historical data to anticipate events and support proactive responses.

- Sensory Feedback Mechanisms: Monitor and adjust actions based on environmental feedback.

- Human Supervision: Maintained to intervene when decisions exceed system capacity.

- Adaptation to Change: Adjusts operational strategies in response to dynamic conditions.

- Redundancy and Fault Tolerance: Ensures operational continuity even during component failures.

- Learning Capacity: Improves performance over time through experience and human input.

Level 3 - Partial Autonomy:

Systems at Level 3 are capable of autonomous operation under predefined conditions, with more advanced
automation, yet still dependent on human intervention in unforeseen scenarios. Key components enabling
this level include:

- Advanced Al: Employs complex algorithms such as deep neural networks and fuzzy logic for decision-
making.

- Self-Learning and Adaptation: Continuously improves through real-time data and accumulated
experience.

- Self-Diagnosis and Repair: Identifies and resolves issues autonomously, or alerts operators when
necessary.

- Autonomous Communication: Interacts with IoT devices and other CPS systems without human
mediation.

- Multifaceted Decision-Making: Incorporates multiple variables and constraints to optimize performance.

- These features significantly reduce dependence on human oversight, though supervisory functions remain
necessary to ensure safety and ethical compliance in exceptional situations.

Level 4 - Substantial Autonomy:

At Level 4, systems demonstrate high autonomy, operating independently in most scenarios and adapting
to unforeseen events with minimal human input. The range of automated functions expands significantly
and is supported by the following components:

- Advanced Al (*)

- Self-Learning and Adaptation (*)

- Autonomous and Multidimensional Decision-Making: Considers multiple, sometimes conflicting, factors
to autonomously optimize outcomes.

- Communication and Coordination: Collaborates with IoT and CPS entities to perform distributed tasks.

- Self-Diagnosis and Repair (*)

- Advanced Security: Implements real-time threat detection, encryption, and system protection protocols.

- Simulation and Testing: Conducts rigorous performance and safety validations in varied and extreme
scenarios.
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Level 5 - Total Autonomy:
The highest level of the scale represents full autonomy, with systems capable of operating in any condition
without human intervention. These systems manage complex decisions, adapt continuously, and perform
reliably in unpredictable environments. Critical components include:

- Super Al (*)
- Self-Learning and Adaptation (*)
- Autonomous and Multidimensional Decision-Making (*)
- Advanced Communication and Coordination: Utilizes cutting-edge protocols to interact with a range of
cyber-physical entities.
- Self-Diagnosis and Repair (*)
- Extreme Security and Resilience: Employs advanced cryptography, real-time intrusion detection, and
cyber-resilience strategies.
- Simulation and Testing (*)

(*) Previously described components in earlier levels, here employed with higher performance and
independence thresholds.

Table 4. Proposal for a scale of autonomy in CPS and its components and expected functionalities. Source: by the

author (2024).
Levels Description CPS components Expected functionalities
Sensors and Actuators: Human-Machine The CPS requires human intervention for all 0p§rat10ns. Operators
. are responsible for all stages of the production process, from
Interface; Direct Human Control; Network . . . .. .
Total 2 . controlling the machines to making decisions about maintenance
Level 1 Connectivity;  Monitoring and  Alert .2 . o .
dependence ) . ) and logistics. It can provide basic information on the status of
Systems; Security Protocols; Manual . . .
. 2. machines and processes, but all actions are carried out by the
Interruption Capability.
operators.
Decision-Making  Algorithms; Predictive It can pierform simple, repetitive tasks without direct human
Models;  Senso Feedback; Human intervention.
Moderate D Ty . ’ Operators still have control over the system, but it can automate
Level 2 Supervision;  Adaptation to Change; . .
dependence . : some stages of the process, such as transporting materials between
Redundancy and Fault Tolerance; Learning -
. different areas of the factory. It can alert operators to problems or
Capacity. . o . . .
exceptional situations that require human intervention.
Advanced Artificial Intelligence; Self- | The CPS can make decisions within predefined parameters and deal
Partial Learning and Adaptation; Self-Diagnosis | with routine situations without human intervention.
Level 3 and Repair; Multifaceted Decision-Making; | It can adapt production processes in response to real-time data, like
autonomy s . . R e
Autonomous Communication; Simulation | changes in market demand or raw material availability.
and Testing.
Super Advanced IA; Advanced Self- | Itis highly autonomous and can operate efficiently with little human
Learning and Dynamic  Adaptation; | supervision.
Advanced Autonomous and | It is able to optimize production, carry out predictive maintenance
Level 4 Substantial Multidimensional Decision Making; | and deal with variations in the production environment without
autonomy Advanced Autonomous Communicationand | direct intervention from operators.
Coordination; Advanced Self-Diagnosis, | Operators play a more strategic role, monitoring system
Repair and Maintenance; Advanced | performance and intervening only in exceptional cases or for high-
Security; Advanced Simulation. level decisions.
Super Advanced Artificial Intelligence;
Advanced Self-Learning and Dynamic . . ..
vance g YRAMIC | 14 works completely independently, without requiring human
Adaptation; Advanced Autonomous and | . i .
L . .. . interference. It has the ability to constantly learn and adjust,
Multidimensional Decision Making; | . . .
Total L improving all aspects of production, from resource management to
Advanced Autonomous Communication and . .
Level 5 | autonomy the quality of the end product. Meanwhile, operators have an

Coordination; Advanced Self-Diagnosis,
Repair and Maintenance; Advanced Security
and Extreme Resilience;  Advanced
Simulation in  Virtual and  Real
Environments.

advisory role, offering high-level guidance and overseeing the
system in strategic terms, but are not directly involved in day-to-
day operating activities.
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The primary objective of this phase was to define clear metrics and structural elements that allow the
assessment of autonomy levels in CPS. This scale serves as the foundation for the development of a future
assessment instrument, enabling the empirical evaluation of autonomicity in complex systems and
facilitating deeper understanding of the interactions among the involved technological and human factors.

Having defined the levels and components required to assess autonomicity in CPS, it becomes essential to
critically analyze the theoretical and practical implications of this proposed scale. The following section
discusses how the structure of the scale aligns with the technological maturity of CPS, the conceptual gaps
identified in the literature, and the interdisciplinary nature of autonomy-related capabilities. This discussion
also aims to position the scale within the broader context of 14.0 and intelligent automation, emphasizing
its potential for application in both academic and industrial environments.

5.1 Discussions

The primary objective of this study is to develop a scale for assessing different levels of autonomicity in
CPS. Accordingly, its implications are both wide-ranging and significant, encompassing theoretical
advancements and practical applications. This section addresses the conceptual contributions and potential
uses of the proposed scale, highlighting its relevance across multiple domains of 14.0.

From a theoretical standpoint, the articulation of autonomicity in CPS fills a critical gap in the existing
literature. Although automation and autonomy have been extensively studied within CPS contexts, the
notion of autonomicity—understood as the system’s capacity for self-management, optimization, and
independent decision-making—remains under defined and largely unstandardized. By proposing a
structured and operationalized definition, this study contributes meaningfully to the conceptual
development of CPS, particularly within the 14.0 paradigm. The framework presented offers a foundation
for future academic inquiry, enabling the creation of more precise models and tools for evaluating
autonomous behaviors in complex systems.

Beyond theoretical advancements, the scale also demonstrates strong practical relevance. Within 14.0
environments—characterized by the integration of CPS in manufacturing, logistics, and smart
infrastructures—the ability to assess autonomicity is essential for optimizing performance and innovation.
The proposed scale can serve as a diagnostic and strategic tool for both researchers and practitioners. For
example, industrial stakeholders can use the scale to evaluate the current level of autonomy in their CPS
implementations, identify bottlenecks, and prioritize investments in technologies such as artificial
intelligence and machine learning.

The potential applications of the scale span multiple domains of the 14.0 ecosystem, including smart
manufacturing, supply chain management, and autonomous robotics. In smart factories, for instance, CPS
equipped with higher levels of autonomicity can enable real-time decision-making, increase production
efficiency, and enhance operational safety. In logistics, autonomous CPS can support dynamic routing,
adaptive inventory management, and greater responsiveness to environmental or market fluctuations.

Nonetheless, it is important to acknowledge that the concept of autonomicity in CPS is still evolving. The
scale introduced here should be seen as an initial framework—one that requires empirical testing and
refinement. Further studies are needed to validate the scale across diverse industrial contexts and to
investigate how varying levels of autonomicity affect performance metrics, cost-effectiveness, and system
adaptability. While the scale was developed with 14.0 applications in mind, its relevance to adjacent
sectors—such as healthcare, energy, or transportation—should also be explored in future research.
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In summary, this study offers both a theoretical framework for understanding autonomicity in CPS and a
practical scale for its assessment and enhancement within the 4.0 context. The contributions extend beyond
academia, offering actionable insights for professionals seeking to harness the full potential of autonomous
systems. Importantly, this work forms part of a broader research project aimed at developing, applying, and
empirically testing a CPS Autonomicity Assessment Instrument. The phases outlined in this article lay the
groundwork for subsequent stages, which will involve real-world applications and further refinement of the
scale through empirical validation.

6. Conclusions

This article aimed to advance the academic understanding of autonomicity in Cyber-Physical Systems
(CPS) by addressing two central research questions: (1) how the concept of autonomicity can be
theoretically delineated within the CPS context and what its defining characteristics are, and (2) what
methodological framework can be used to develop a robust scale for assessing different levels of
autonomicity in these systems. To answer these questions, the study proposed a theoretical definition of
autonomicity and introduced a five-level assessment scale that classifies CPS according to their degree of
self-management and autonomous decision-making. These contributions were supported by a bibliometric
review, a structured theory development process, and analogy-based modeling, which together provided a
coherent methodological foundation for conceptual clarification and scale construction.

The rapid advancements driven by I 4.0 have underscored the central role of CPS in modern industrial
environments. These systems—characterized by the integration of computational intelligence with physical
processes—offer unprecedented levels of automation, efficiency, and adaptability. However, despite the
growing relevance of autonomy in CPS, the concept of autonomicity remains insufficiently defined and
structurally underdeveloped in the existing literature. This study sought to address this conceptual gap by
proposing a theoretical framework and introducing a five-level scale to classify CPS according to their
degree of self-management and decision-making independence.

The findings contribute meaningfully to both theory and practice. The proposed autonomicity scale offers
a structured mechanism for assessing levels of autonomy in CPS, providing a clearer distinction between
automation, autonomy, and autonomicity. This differentiation not only advances academic discourse but
also presents practical value for optimizing industrial processes, enhancing system resilience, and
improving autonomous decision-making across various 14.0 applications.

Critically, the literature review revealed a fragmented understanding of autonomicity in CPS. Many existing
studies emphasize automation or general autonomy without clearly articulating criteria for system self-
governance. This absence of a unified conceptual and operational framework has led to inconsistencies in
how autonomy is interpreted, measured, and applied across industrial sectors. The framework proposed in
this study represents an initial step toward addressing this gap; however, its refinement and empirical
validation in diverse real-world contexts remain essential.

Future research should prioritize the empirical testing of the proposed scale through case studies and pilot
applications in industrial settings. Incorporating interdisciplinary approaches—particularly those
integrating artificial intelligence, machine learning, and human—machine interaction—could deepen the
understanding of autonomicity in increasingly complex CPS environments. Furthermore, the ethical,
regulatory, and societal implications of highly autonomous systems warrant careful consideration. Issues
such as workforce displacement, cybersecurity vulnerabilities, and governance challenges must be
addressed alongside technical advancements.
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By laying the groundwork for a structured and scalable approach to evaluating autonomicity in CPS, this
study contributes to both the academic literature and industrial innovation. The scale and framework
presented here offer a practical foundation for researchers and practitioners aiming to implement
autonomous technologies in a more deliberate, safe, and informed manner. As 14.0 continues to evolve,
ongoing exploration of the intersections between autonomy, intelligence, and self-management will be
crucial to ensuring that CPS remain effective, ethical, and sustainable.
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