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Abstract  

The rapid advancement of Industry 4.0 has positioned Cyber-Physical Systems (CPS) as key enablers of intelligent and autonomous 

manufacturing. While automation and autonomy are widely discussed, the concept of autonomicity—the system’s ability to self-

manage, adapt, and make decisions independently—remains theoretically underdeveloped and lacks a structured framework for 

assessment. This study addresses this gap by defining the concept of autonomicity in CPS and proposing a five-level evaluation 

scale. A theory development approach was adopted, supported by a systematic literature review and a bibliometric analysis 

conducted using the Scopus database and VOSviewer software. The resulting scale classifies CPS autonomicity from total human 

dependence to full self-management, incorporating criteria such as AI capabilities, self-learning, fault tolerance, and autonomous 

decision-making. The findings contribute to both theory and practice by refining the conceptual understanding of CPS autonomicity 

and offering a structured tool for its assessment. This work provides a foundation for future empirical research and supports strategic 

planning in autonomous industrial environments. 
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1. Introduction 
The global technological landscape has undergone a profound transformation in recent years, driven by the 

emergence of disruptive digital technologies and the widespread integration of computational intelligence 

into everyday life. Innovations such as smartphones, smart TVs, autonomous vehicles, and integrated 

information systems exemplify the digital convergence that has reshaped how individuals and industries 

interact with technology (Cavata et al., 2020). Within this evolving context, enterprises face increasing 

competitive pressure to enhance operational efficiency and respond to market demands with greater agility. 

In response, Industry 4.0 (I4.0) technologies have become instrumental, instrumental in reducing 

operational costs and cycle times while simultaneously fostering innovation and productivity (He & Jin, 

2016). 

 

Recognized as the core of the Fourth Industrial Revolution, I4.0 represents a paradigm shift in 

manufacturing, characterized by the transition from partially automated to fully digitized and intelligent 

production environments (Nafich & Mohelská, 2020). This shift is underpinned by an array of advanced 

technologies, including Big Data, autonomous robotics, the Internet of Things (IoT), cybersecurity, cloud 

computing, 3D printing, and augmented reality (Faria et al., 2019). Among these, CPS play a central role, 

acting as the interface between the physical and digital domains. CPS integrate mechanical components 

with embedded computational intelligence and communication capabilities, enabling real-time sensing, 
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actuation, and autonomous control (Zheng et al., 2021). 

 

In this environment, CPS are often organized into Cyber-Physical Production Systems (CPPS), where 

interconnected sensors and intelligent machines form autonomous production ecosystems capable of self-

monitoring and adaptation (Salazar & Heuser, 2022). Through sophisticated architectures and control 

algorithms, CPS are expected to evolve in terms of scalability, resilience, security, and performance—

surpassing traditional embedded systems in responsiveness and intelligence (Hu et al., 2021). 

 

Despite the extensive focus on automation and autonomy in CPS, the notion of autonomicity—defined as 

a system’s capacity to self-manage, self-optimize, and make independent decisions—remains conceptually 

underdeveloped in the current literature (Sanchez et al., 2020). Autonomicity is not merely a synonym for 

automation or autonomy; it encompasses a higher-level capability for self-regulation, learning, and 

adaptation in dynamic and uncertain environments. 

 

In this context, the lack of a standardized framework for assessing different levels of autonomicity in CPS 

represents a critical gap in both academic research and industrial practice. Without a structured 

understanding of how CPS evolve from fully dependent to fully autonomous behavior, it becomes difficult 

to guide technological implementation and strategic decision-making in I4.0 ecosystems. 

 

Accordingly, this study seeks to address the following research questions: 

(1) How can the concept of autonomicity be theoretically delineated within the context of Cyber-Physical 

Systems (CPS), and what are its defining characteristics?  

(2) What methodological framework can be employed to develop and validate a robust scale for assessing 

varying levels of autonomicity in CPS? 

 

To address these questions, this study adopts a theory development approach, which enables both the 

conceptual clarification of autonomicity and the structured construction of a scale for its assessment in CPS. 

Specifically, the research aims to construct a theoretical concept of autonomicity and propose a five-level 

assessment scale, grounded in a systematic and bibliometric literature review. The main contributions 

include: (i) the development of a structured framework to define and assess CPS autonomicity; (ii) the 

proposition of a conceptual model integrating CPS, IoT, and I4.0 enablers; and (iii) the design of a 

preliminary diagnostic tool for classifying CPS according to their level of autonomous behavior. 

 

The structure of this paper is organized as follows. Section 2 outlines the research methodology, including 

the theory development approach and the bibliometric analysis procedures employed to support the 

conceptual foundation. Section 3 presents the theoretical background, discussing key constructs such as 

autonomicity, I4.0, CPS, and IoT, and culminates with a proposed conceptual model that integrates these 

elements. Section 4 proposes a theoretical definition of autonomicity specifically tailored to CPS and details 

the conceptual development process that supports the construction of the assessment framework. Section 5 

introduces the proposed five-level autonomicity scale, describing its structure, components, and 

functionalities, followed by a critical discussion of its theoretical and practical implications. Finally, Section 

6 presents the study’s conclusions, summarizes its main contributions, addresses its limitations, and offers 

directions for future research. 

 

2. Materials and Methods 
In response to the research questions outlined above, this study adopts the Theory Development approach. 

As emphasized by Gregor (2006), this approach plays a fundamental role in advancing scientific knowledge 

by enabling the creation of robust explanatory models that can be empirically tested and applied across 
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diverse fields. It is characterized by the systematic construction and refinement of conceptual frameworks 

through critical analysis of both emerging and consolidated ideas. 

 

According to Lynham (2002), theory development unfolds through the stages of conceptualization, 

operationalization, and iterative refinement of theoretical constructs. In this study, these stages guided the 

definition of the concept of autonomicity and the development of a multi-level scale for assessing the degree 

of autonomy in CPS, ensuring both theoretical depth and practical applicability. 

 

The theoretical development undertaken here is grounded in a structured literature review that seeks not 

only to synthesize existing knowledge but also to highlight conceptual gaps and future directions. Creswell 

and Clark (2017) argue that theory development involves the formulation of propositions or hypotheses that 

emerge from an extensive review of the literature. Such reviews serve to identify unresolved questions in 

the field and inspire the development of innovative frameworks that address these deficiencies. 

 

To support the theoretical proposition of autonomicity in CPS, a bibliometric analysis was conducted using 

the Scopus database, a comprehensive and authoritative source of peer-reviewed literature (Harzing & 

Alakangas, 2016). The analysis focused on publications from 2012 to 2022, allowing a longitudinal 

perspective on the development of the field (Mariano et al., 2015). Only scientific journal articles were 

included; other types of publications such as thesis, dissertations, and conference proceedings were 

excluded. The selection process followed a predefined set of keywords associated with CPS and 

autonomicity to ensure the relevance and accuracy of the data corpus. 

 

The bibliometric analysis utilized key indicators to characterize the field, including publication growth over 

time, most cited authors and collaboration networks, leading journals, keyword cooccurrence patterns, and 

impact indices such as citation counts and journal impact factors. These metrics allowed for the 

identification of research trends, influential contributors, and emergent themes over the last decade. As 

highlighted by López et al. (2019), bibliometric methods have become increasingly relevant for measuring 

research productivity, quality, and evolution. 

 

The analysis was supported by VOSviewer, a software tool developed by Waltman and Van Eck, known 

for its capacity to generate visual representations of bibliometric networks. VOSviewer’s interface enables 

the identification of relationships such as co-citation, co-authorship, and term cooccurrence. It also allows 

for the clustering of keywords into thematic groups represented by different colors, with the size of each 

node indicating frequency of occurrence (Agudo et al., 2022). 

 

In this study, VOSviewer version 1.6.18 was employed under the following configuration (Van Eck & 

Waltman, 2022): data were extracted from the Scopus database; the period of analysis was 2012–2022; the 

type of analysis was cooccurrence of terms from titles and abstracts; the normalization method applied was 

the force association method; and the minimum threshold for term inclusion was five occurrences. 

 

In addition to bibliometric mapping, the research also incorporated a longitudinal analysis aimed at 

identifying shifts in thematic focus over time. Results indicate that earlier publications (2012-2016) 

concentrated primarily on the structural and architectural aspects of CPS. In contrast, more recent studies 

(2017–2022) increasingly address issues related to artificial intelligence and cybersecurity, revealing the 

dynamic evolution of research interests within the field. This temporal segmentation was crucial to 

understanding the transformation of scientific discourse over time (Mariano et al., 2015). 
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The literature review followed a systematic protocol based on the methodology proposed by Junior and 

Filho (2010), and refined by Mariano et al. (2015). This protocol includes: the identification of relevant 

literature through predefined keywords in selected databases; filtering based on abstract analysis; the 

construction of a classification system to encompass the main dimensions of the research topic; and the 

synthesis of scientific output, highlighting major findings, challenges, and opportunities. This method 

enabled a clear mapping of the current state of research and provided a foundation for the next stages of 

this study. 

 

A mind map was developed to illustrate the methodological flow of the bibliometric review, depicting each 

step taken in the initial phase of the research (Figure 1). This figure helps clarify the logic and progression 

of the methodological approach adopted in this work. 

 

 
Figure 1. Methodological steps. Source: by the author (2025). 

 

 

It is important to note that the bibliometric analysis presented here constitutes the first phase of a broader 

research agenda. Based on the results of this phase, it is possible to define the concept of autonomicity in 

CPS and proceed to the development of a multi-level evaluation scale. In the next stages of the research, 

this work will advance toward the creation of a matrix of relationships between system components and the 

design of an empirical instrument to assess CPS autonomicity. The complete methodological roadmap—

including past, current, and future phases—is illustrated in Figure 2. 
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Figure 2. Present and future research stages. Source: by the author (2025). 

 

Finally, the process of theoretical development carried out in this study aims to provide the conceptual 

foundation for the autonomicity scale in CPS. This scale represents the main theoretical and methodological 

contribution of the article, offering a structured tool to guide future research and practical implementation 

in the field of CPS. 
 

3. Emerging Themes for Autonomy in Cyber-Physical Systems (CPS) 

3.1 Autonomicity  
The concept of autonomy has become increasingly prominent in scientific and industrial domains, 

particularly in light of the growing sophistication of Artificial Intelligence (AI) applications at both 

subsystem and system levels. An autonomous system is defined as one capable of operating independently 

from initiation to completion, without the need for human intervention. The etymology of "autonomy" 

traces back to "autonomous" and finds metaphorical resonance in biology—specifically, in the functioning 

of the Autonomic Nervous System, known for generating involuntary responses (Janiesch et al., 2020). 

 

Traditionally, autonomy has been interpreted as a system's capacity for self-regulation. However, this broad 

interpretation often leads to confusion between automation and true autonomy. Systems that merely follow 

predefined routines are frequently mislabeled as autonomous. In contrast, genuine autonomy involves self-

governance and self-direction, encompassing advanced capabilities such as self-healing, self-protection, 

self-configuration, and self-optimization (Janiesch et al., 2020). 

 

This distinction is further emphasized by Sanchez et al. (2020), who argue that while automation focuses 

on reducing human intervention, autonomy implies situational awareness and responsiveness to real-world 

consequences based on practical data or models. Autonomous systems thus extend beyond data processing 

and decision modeling, necessitating an ongoing debate about how autonomy should be defined and 

measured across diverse technological fields. 

 

In this context, the term autonomicity, borrowed from the biological sciences, has been adapted to 

information technology to denote systems with the capacity for self-management. Such systems can recover 

autonomously from failures, defend against cyber threats, reconfigure based on environmental stimuli, and 

enhance their own performance (Sterritt & Hinchey, 2005). Colman (2007) adds that autonomicity should 

be understood less as an intrinsic property of system components and more as an emergent attribute 

resulting from their interrelationships. 
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From a software engineering perspective, autonomicity also serves as a metric to gauge the extent of a 

system’s autonomous functionalities. Dehraj and Sharma (2020) assert that understanding and quantifying 

these capabilities is critical for fostering user trust in autonomous applications. 

 

The automotive industry, while not typically using the term "autonomicity," offers practical examples of 

its implementation. Vehicles can range from fully manual to entirely self-managed systems. Frameworks 

like SAE J3016 have become standard references for classifying levels of vehicular autonomy (Hopkins & 

Schwanen, 2021). The evolution of this classification system reflects the broader maturation of knowledge 

in this domain. As Varga (2017) highlights, autonomous vehicles promise several societal benefits, 

including improved mobility for vulnerable populations, optimized traffic flow, decreased urban 

congestion, and enhanced fuel efficiency. 

 

Common to both the information technology and automotive sectors is the recognition that autonomic 

systems must possess the ability to self-configure. This adaptation may result from direct human input—

particularly from experienced operators—or arise from the system’s capacity to learn from contextual 

variables (Hopkins & Schwanen, 2021). Nevertheless, as Colman (2007) reminds us, even the most 

advanced models remain limited in their predictive power, as many variables and scenarios can only be 

addressed through exposure in real-world contexts. 

 

This evolving understanding of autonomicity serves as a foundational element for interpreting the 

technological advancements introduced by I4.0. As industrial systems increasingly incorporate 

interconnected devices, intelligent automation, and real-time data processing, the demand for autonomous 

capabilities becomes more pressing. In this context, autonomicity not only underpins the operational logic 

of CPS, but also plays a pivotal role in enabling the self-managing, adaptive, and resilient infrastructures 

envisioned within I4.0 paradigms. 
 

 

3.2 Industry 4.0 
The concept of I4.0, formally introduced at the Hannover Messe in 2011, represents a transformative 

evolution in manufacturing and production systems. By leveraging advanced digital technologies, I4.0 

redefines industrial efficiency, adaptability, and resource optimization through the digitization of entire 

value chains (Liao et al., 2018). It initiates a dynamic shift from traditional production models to integrated, 

intelligent, and autonomous systems. 

 

According to Delke et al. (2023), this paradigm shift is propelled by technologies such as digitization and 

robotization, which reshape organizational interconnectivity and generate wide-reaching economic and 

societal impacts. I4.0 fosters a systemic transformation that extends beyond technological adoption, 

demanding the reconfiguration of managerial, operational, and strategic dimensions within organizations. 

 

I4.0’s core lies in the integration of advanced technologies—including CPS, the Internet of Things (IoT), 

and Cloud Computing—into production environments. These technologies enhance the performance and 

responsiveness of industrial systems, allowing for real-time data acquisition, process optimization, and 

decentralized decision-making (Sony, 2018; Sitepu et al., 2020). The concept of the “smart factory” 

encapsulates this transformation, wherein interconnected machines, products, and systems collaborate to 

achieve high levels of automation, flexibility, and customization (Rossini et al., 2019). 

 

Nonetheless, despite its disruptive potential, the practical implications and conceptual boundaries of I4.0 

are not always fully grasped. According to Shafiq et al. (2015), the depth of its integration and its impacts 
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on industrial practices often remain ambiguous, underscoring the need for clearer frameworks and 

definitions. 

 

Technologies such as Digital Twins (DT), Virtual Reality (VR), and Smart Objects contribute significantly 

to this innovation landscape. DTs enable the virtual simulation of CPS, enhancing predictive capabilities 

and system resilience, while VR offers immersive visualization of industrial environments. Together with 

Big Data analytics and intelligent automation, these tools expand the possibilities of sustainable and 

collaborative production systems (Gutiérrez et al., 2023; Jabbour et al., 2018). 

 

Junior et al. (2018) emphasize that I4.0 should be understood as an emergent and evolving concept within 

production systems, one that depends on the seamless convergence of technologies to generate intelligent, 

autonomous, and responsive environments. Recent global events—such as the Barcelona New Economy 

Week (Bnew, 2024)—illustrate this trajectory by showcasing the role of digital transformation and 

technological convergence in shaping the future of manufacturing. 

 

However, the realization of I4.0’s full potential depends not only on the adoption of advanced technologies 

but also on the organizational capacity to effectively implement and manage them. As Delke et al. (2023) 

notes, successful integration demands competent professionals and strategically aligned implementation 

processes. Biazi & Marques (2023) further argue that the capacity to collect, analyze, and act upon real-

time data requires leadership capable of navigating dynamic contexts, demonstrating self-regulation, 

cognitive flexibility, and rapid value signal adaptation. 

 

Finally, Wagner et al. (2017) highlight that the effective deployment of I4.0 technologies requires an initial 

evaluation of each organization's sociotechnical baseline, the integration of innovation within lean 

production systems, and the continuous adaptation of business processes to technological evolution. 

 

Building on the transformative potential of I4.0, the integration of CPS represents a crucial pillar in 

achieving intelligent and autonomous industrial environments (Tancredi et al., 2022). CPS serve as the 

backbone for the realization of smart factories, enabling seamless interaction between computational 

elements and physical processes. Their capability to sense, analyze, and respond autonomously within 

dynamic contexts underscores the increasing importance of autonomic features in modern industrial 

systems. The following section delves deeper into the emerging characteristics of CPS and explores how 

these systems embody and extend the concept of autonomic behavior within I4.0 frameworks. 

 

3.3 CPS - Cyber Physical Systems  
In the context of I4.0, CPS are central technologies that integrate physical assets with computational 

capabilities to manage interconnected systems. These systems are fundamental for achieving digital 

transformation in production lines, as they enable the integration of physical objects and equipment with 

decision-making processes (Seeger et al., 2022). 

 

The concept of CPS emerged in 2006 at a workshop in Austin, Texas, USA (Jiang, 2018), and has since 

evolved to combine software and hardware components with internet connectivity and user interaction. 

CPS operate across multiple spatial and temporal scales, adapt to a range of behaviors, and are capable of 

contextual interactions (Matsunaga et al., 2022). Their capacity to manage real-time connections between 

physical and computational resources has driven innovation in areas such as smart manufacturing, 

autonomous vehicles, smart cities, and homes (Katina et al., 2017). 
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CPS aim to replicate physical environments through the development of cybernetic components aligned 

with real-world functionalities (Alhafidh & Allen, 2017), and are widely applied to connect devices to the 

internet within the I4.0 ecosystem (Afrizal et al., 2020). Control elements and sensors are embedded in 

machines, devices, networks, and human interfaces to monitor and interact with various systems (Salman 

& Salih, 2019). 

 

However, the development of distributed CPS is complex and error-prone due to their heterogeneous nature, 

involving diverse components, languages, and tools. One of the major design challenges lies in embedding 

security mechanisms early in the development process to enhance system simplicity and maintainability 

(Pinto et al., 2022). 

 

A widely referenced CPS architecture is the 5C model proposed by Lee & Kao (2015), considered a 

practical guideline for implementing I4.0 systems. It is composed of five hierarchical levels: 

 

Level I – Connection: Raw data collection from machines and components via sensors; 

Level II – Conversion: Transformation of data into meaningful information; 

Level III – Cyber: Integration of digital models, including digital twins; 

Level IV – Cognition: Generation of system-level knowledge based on the processed information; 

Level V – Configuration: Autonomous decision-making for self-configuration, self-adjustment, and self-

optimization. 

 

This structure provides a systematic workflow to support the implementation of CPS in manufacturing 

environments (Bruton et al., 2016). At the base level, the connection between sensors and machines ensures 

precise data acquisition. The conversion level processes this data into actionable information, while the 

cybernetic layer enables deeper insights through data analysis (Jiang, 2018). 

 

Sensors are essential for CPS functionality, as they provide real-time data that supports processing and 

control decisions (Zheng et al., 2021). These sensors are integrated with machines, networks, and human 

operators, and monitor key operational parameters such as voltage, temperature, vibration, speed, oil 

concentration, and visual attributes of components (Jiang, 2018). Additionally, they track environmental 

variables such as humidity, lighting, and atmospheric pressure, which are crucial for maintaining optimal 

industrial performance (Jiang, 2018). 

 

Nonetheless, CPS development still faces challenges related to portability, time constraints, and 

connectivity reliability, all of which can affect predictability and data integrity (Alhafidh & Allen, 2017). 

 

Security is another critical aspect in CPS and encompasses two domains: information security and control 

security. The former focuses on protecting data throughout its lifecycle—collection, processing, and 

sharing—particularly in open, distributed networks. The latter safeguards control systems from targeted 

attacks on evaluation and decision-making algorithms (Mbiriki et al., 2018). 

 

CPS are often conceptualized as feedback systems that merge computing, networking, and physical 

processes. These intelligent systems apply artificial intelligence to monitor and regulate their environments, 

enabling precise and timely decision-making and influencing how organizations are structured and operate 

(Varadarajan et al., 2022). 

 

The consolidation of CPS within I4.0 has laid the groundwork for even broader integration between 

physical devices and digital systems. In this context, the Internet of Things (IoT) emerges as a 
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complementary and essential technology, enabling continuous communication among connected objects 

and enhancing real-time monitoring, control, and decision-making capabilities. The synergy between CPS 

and IoT empowers intelligent industrial environments, providing robust connectivity that supports more 

autonomous, efficient, and responsive production operations. 

 

3.3.1 IoT - Internet of Things 
The Internet of Things (IoT), in conjunction with CPS, refers to the interconnection of physical devices 

capable of collecting data, communicating information, and being remotely monitored or controlled. These 

devices—such as smart vehicles, drones, household appliances, and industrial machines—are embedded 

with sensors that enable the integration of physical and digital environments (Mbiriki et al., 2018). Within 

the context of I 4.0, CPS play a central role in the digital transformation of manufacturing, while the IoT 

provides a foundational infrastructure that significantly influences modern lifestyles (Varadarajan et al., 

2022). 

 

One of the major contemporary challenges in industrial environments is the transition of manufacturing 

processes toward IoT-enabled or CPS-based architectures. This transformation demands not only the 

networking of physical objects but also the creation of their digital counterparts, forming integrated 

ecosystems (Salau et al., 2022). The acceleration of digitalization and the demand for intelligent, adaptive 

manufacturing systems have driven the evolution of the IoT, facilitating machine-to-machine 

communication and the handling of large-scale, mission-critical data flows (Kebande, 2022). 

 

The International Telecommunication Union (ITU) (2024) defines the IoT as a global infrastructure for the 

information society, enabling advanced services through the interconnection of “things” (both physical and 

virtual) based on information and communication technologies (ICT). This definition underscores the 

centrality of connectivity and device integration in promoting technological advancement across multiple 

domains. 

 

Historically, the development of IoT and CPS has been driven by the pursuit of economic and social 

benefits, with applications now extending across smart transportation, industrial logistics, and personalized 

healthcare. In the healthcare domain, for instance, CPS enable smart hospitals to remotely monitor patients, 

issuing automatic alerts to family members, emergency services, or hospitals in the event of critical 

incidents (Ramasamy et al., 2022). 

 

According to Magomadov (2020), the IoT is a transformative technology designed to revolutionize 

industrial practices by integrating predictive analytics and artificial intelligence through sensor-based 

device interconnectivity. It forms a unified system that allows for seamless transmission of data between 

machines, devices, and users in both human-to-human and human-to-computer interactions (Laghari et al., 

2021). Furthermore, the IoT enables real-time data collection, cloud-based storage, and analytical 

processing, supporting both immediate and predictive decision-making (Banerjee, 2022). This makes it an 

indispensable component of I 4.0, especially in manufacturing environments where sensors and connected 

systems enhance operational efficiency and responsiveness (Magomadov, 2020). 

 

 

Looking ahead, the IoT is expected to encompass a vast array of interconnected devices and sensors, each 

generating substantial volumes of data. This expansion will require reliable and scalable communication 

protocols, as well as robust hardware and software infrastructures to ensure interoperability, security, and 

responsiveness (Salau et al., 2022). 
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Given the central role of IoT in enabling communication, data exchange, and real-time responsiveness 

within CPS, it becomes evident that these technologies not only support system functionality but also lay 

the groundwork for autonomous behavior. However, despite the technological advancements observed, a 

clear and structured framework for understanding and evaluating autonomicity in CPS remains absent. This 

gap highlights the need for a comprehensive conceptual model that integrates key elements of I4.0 and 

addresses the progressive nature of autonomy in these systems. The following section presents a model 

designed to meet this need, offering a systematic approach to analyze and classify levels of autonomicity 

in CPS. 

 

3.4 Proposed Conceptual Model for Autonomicity in Cyber-Physical Systems (CPS) 
The literature on CPS and their autonomic capabilities reveals significant conceptual and methodological 

gaps that limit the effective assessment and application of autonomicity. A major limitation is the absence 

of a structured and universally accepted framework capable of categorizing the degrees of autonomy that 

CPS can attain. Although discussions about the relevance of autonomic behavior in these systems are 

growing, there is no precise definition or measurement scale that enables systematic evaluation. 

Furthermore, many existing models overlook the dynamic interplay between emerging technologies—such 

as the Internet of Things (IoT), artificial intelligence (AI), and communication infrastructures—that are 

fundamental to the evolution of CPS under the I4.0 paradigm. 

 

To address these limitations, this study proposes a conceptual model of autonomicity in CPS. The model 

seeks to integrate key elements of I4.0 with the structural features of CPS to provide a coherent framework 

for understanding and evaluating different levels of autonomy. It is composed of four main components: 

Autonomicity: Defined as the system's capacity for self-management and independent decision-making, 

this element is influenced by capabilities such as AI, machine learning, redundancy, self-healing, and 

adaptive behavior. The model incorporates five distinct levels of autonomicity—ranging from total 

dependence to full autonomy—building on the framework proposed by Kivrak et al. (2024). 

 

• I4.0 Enablers: These include enabling technologies such as IoT, AI, cloud computing, and big data 

analytics. These tools are essential for enhancing the cognitive and responsive capacities of CPS, 

enabling dynamic adaptation, decentralized control, and higher degrees of system independence (Aceto 

et al., 2020). 

 

• Cyber-Physical Systems: As the core of the model, CPS represent the integration of physical components 

(e.g., sensors, actuators) with computational intelligence. Through real-time data collection, processing, 

and action, CPS form the operational foundation upon which autonomy can be developed (Kivrak et al., 

2024). 

 

• Internet of Things (IoT): The IoT provides the infrastructure that allows CPS to continuously gather data 

from the physical environment and transmit it to the cyber layer. This connectivity enables real-time 

analysis and autonomous decision-making, serving as the communication backbone of the system 

(Kumar et al., 2022). 

 

These components are interconnected in a feedback loop: data collected through IoT-enabled sensors is 

processed by intelligent algorithms, which guide autonomous responses in real time. This interaction 

enables the system to continuously learn, adapt, and optimize itself without direct human intervention. 

 

The proposed model advances previous approaches—such as those by Broy (2013) and Salazar &Heuser 

(2022)—by offering a structured scale that classifies CPS autonomicity into five progressive levels. Unlike 
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prior models that focus mainly on automation, this framework integrates contemporary I4.0 technologies 

to reflect the current landscape of CPS development. It also aligns with the adaptive systems perspective, 

incorporating the complex interaction between CPS, IoT, and AI (Sundarakani & Tan, 2022; Zhang & Lee, 

2023). 

 

By consolidating these elements into a unified framework, the model provides a theoretical foundation for 

evaluating and guiding the development of autonomous capabilities in CPS. It also contributes to closing 

the gap between technological evolution and conceptual clarity, offering practical value for future empirical 

research and system design. 

 

3.4.1 Contributions and Applications 
The proposed conceptual model of autonomicity in CPS offers significant practical contributions for both 

academia and industry. It establishes a comprehensive foundation for future research aimed at 

understanding the progressive evolution of CPS autonomy and their integration with emerging I4.0 

technologies. By providing a structured framework, the model facilitates the assessment, benchmarking, 

and enhancement of autonomy levels across diverse application domains, including smart manufacturing, 

autonomous transportation, and smart cities. 

 

From an industrial perspective, the model assists organizations in identifying the current autonomy level of 

their CPS implementations, guiding strategic decisions for technological upgrades and innovation. The 

proposed five-level autonomy scale serves as a diagnostic and evaluative tool to measure the influence of 

key enabling technologies—such as IoT and artificial intelligence—on system performance and operational 

independence. 

 

Moreover, the model encourages the development of new metrics and parameters to evaluate critical system 

attributes such as reliability, robustness, and adaptive capacity, which are essential for designing and 

deploying advanced autonomous solutions. By linking theoretical constructs with practical needs, this 

model contributes not only to the conceptual understanding of autonomicity but also to its tangible 

application in the I4.0 context. 

 

Importantly, the model integrates core themes of I4.0 and CPS, underscoring their interdependence in 

driving autonomous capabilities. It offers a clear and systematic progression of autonomy levels, which 

elucidates how CPS evolve from human-dependent systems to fully autonomous entities. This clarity 

enables researchers, engineers, and practitioners to focus on the critical components and enabling 

technologies that must be developed and optimized to achieve higher autonomy. 

 

Figure 3 illustrates the model as a circular interconnection, highlighting the continuous feedback loop 

among Autonomicity, CPS, IoT, and I4.0 drivers. This representation emphasizes real-time data flow and 

decision-making processes, capturing the dynamic and adaptive nature of modern autonomous systems. 

 

Complementing the conceptual model, an Autonomous Feedback Hub (AFH) has been developed to serve 

as an intelligent intermediary among CPS, IoT, and I4.0 drivers. This hub dynamically processes real-time 

data, optimizes decision-making, and ensures the adaptive behavior of the entire system. 

 

The proposed AFH represents a transformative advancement in enhancing autonomicity within CPS under 

I4.0 paradigms. By integrating AI-driven real-time analytics, self-healing capabilities, and predictive 

adaptation, the hub optimizes industrial processes dynamically, fostering resilient and intelligent 

manufacturing operations. These contributions facilitate the broader adoption of autonomous industrial 
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ecosystems, paving the way toward a new era characterized by intelligent automation and self-managed 

production systems. 

 

  
 

Figure 3. A circular interconnection model of CPS autonomicity. Source: by the author (2025). 

 

 

Functioning as an intelligent mediator, the AFH continuously optimizes industrial interactions by enabling 

real-time data exchange and autonomous responses. Its architecture is built around three core components: 

AI-driven analytics, self-healing mechanisms, and predictive adaptation coupled with autonomous 

decision-making. Together, these elements ensure that CPS can respond proactively to environmental 

changes and operational challenges, maintaining efficiency and robustness. 

 

Figure 4 illustrates the conceptual model of the Autonomous Feedback Hub. In this diagram, the hub acts 

as the processing core, collecting and analyzing data streams from IoT devices and intelligent systems. It 

employs advanced AI algorithms for autonomous decision-making and self-correction, reinforcing 

autonomicity as a fundamental enabler for self-management within CPS. The cyclical flow depicted in the 

figure highlights the continuous interaction among system components, emphasizing the dynamic and 

evolving nature of autonomy in I4.0 intelligent systems. 

 

The implementation of an autonomous feedback hub will significantly enhance the autonomy, efficiency, 

and adaptability of I4.0 systems. Key expected outcomes include: Improved decision-making capabilities 

through AI-driven insights; Reduced downtime and operational disruptions via self-healing mechanisms; 

Enhanced adaptability to fluctuating industrial conditions through predictive adaptation; Optimization of 

resource utilization, improving energy efficiency and cost-effectiveness. 
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Figure 4. Proposed autonomous feedback hub (AFH). Source: by the author (2025). 

 

 

4. Understanding and Proposing the Concept of Autonomicity in Cyber Physical System 

(CPS) 
The aim of this study was to develop a scale of autonomicity levels for CPS, based on criteria that have 

already been defined, as well as to develop and introduce a theoretical concept of autonomicity for these 

systems. This proposal aims to broaden understanding, facilitate practical application and promote 

theoretical progress in the field of research. 

 

The analysis is bibliometric and longitudinal and retrospective (2012-2022), with the main means of 

evidence for this analysis being keywords. The search strings were centered on three basic research areas 

and themes, namely: A-) "Autonomicity"; B-) "Cyber-Physical System"; C-) "Cyber-Physical System" 

AND "Autonomicity", with each research block detailed below. 

 

A) Autonomicity 

A1 – Autonomicity. 

A2 - Autonomicity AND Autonomous. 

A3 - Autonomicity AND Autonomous OR Autonomy. 

 

 

B) Cyber-Physical System 

B1 - Cyber-Physical System. 

B2 - Cyber-Physical System AND Industry 4.0. 

 

C) Cyber-Physical System AND Autonomicity 

C1 - Cyber-Physical System AND Autonomicity. 

C2 - Cyber-Physical System AND Autonomous. 

C3 - Cyber-Physical System AND Autonomy. 
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The search and selection procedures were conducted in four main stages: 

(i) Initial database search and preliminary analysis; 

(ii) Refined search based on defined inclusion and exclusion criteria; 

(iii) Compilation of a list of authors (including areas of concentration and associated keywords); 

(iv) Execution of the bibliometric analysis and formation of thematic clusters. 

 

The inclusion criteria adopted in steps A, B, and C were as follows: type of material (articles and conference 

papers), publication status (final or in press), language (English), and source type (conference proceedings 

and journals). These filters were chosen to ensure that the selected materials were peer-reviewed and of 

academic quality. Subsequently, exclusion criteria were applied, which included: articles related to medical 

subfields and a temporal limitation covering the period from 2012 to 2022. 

 

The primary rationale for selecting this time frame lies in the increasing relevance of topics related to Cyber-

Physical Systems (CPS), automation, and, by extension, I 4.0. In most databases, publications on these 

themes begin to appear more consistently from 2014 onwards. Although the term "I4.0" was first introduced 

at the Hannover Messe (Germany) in 2011, it gained wider traction in the country around 2016, through 

initiatives aimed at pushing the technological boundaries of its manufacturing sector (Liao et al., 2018). 

 

The bibliometric procedures described above provided the basis for a structured and evidence-based 

understanding of the field. The following section presents a detailed analysis of the bibliometric findings, 

including visual mappings and cluster interpretations that reveal the central themes and evolving research 

directions related to CPS and I4.0. 

 

4.1 Analysis of the Bibliometric Review 
The analysis began with criterion A1 (Autonomicity), as shown in the figure below (Figure 5). 

 

Based on the search criteria described above, the initial sample was narrowed down to 49 articles (referred 

to as A1 – Autonomicity). The analysis of this sample is illustrated in Figure 6, which also presents the 

keyword co-occurrence network generated using the VOSviewer software. The visualization reveals the 

formation of three distinct clusters, each represented by a different color: red (application aspects), blue 

(approach-related aspects), and green (autonomicity). 

 

 

 
 

Figure 5. Search criteria A1 (Autonomicity). Source: by the author (2022). 
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The objective of this analysis is to identify prevailing research trends by organizing related studies into 

thematic clusters. VOSviewer processes bibliometric data from multiple studies in related fields and maps 

them into broader research domains, segmenting them based on the frequency and co-occurrence of 

keywords. 

 

The visual representation of the co-occurrence network in Figure 6 was further analyzed through the 

classification of keywords into thematic clusters. These clusters represent three distinct dimensions 

observed in the bibliometric mapping. The red cluster, associated with application-related aspects, includes 

the terms: application, internet, paper, solution, system, and thing. the green cluster, which reflects the 

concept of autonomicity, encompasses the terms: autonomicity, architecture, network, SDN (Software 

Defined Networks), and self-management. lastly, the blue cluster, corresponding to approach-oriented 

aspects, comprises the terms: agent, approach, complexity, and sensor. This categorization reinforces the 

thematic segmentation observed in the network and highlights the central position of autonomicity in 

relation to technological infrastructure and application domains within CPS. 

 

Following the cluster mapping presented in Figure 6, a more detailed analysis was conducted, justified by 

the centrality of the concept of "autonomicity" to this research. All 49 articles from the A1 sample were 

read, critically analyzed, and tabulated. Based on the relevance and alignment with the proposed theme, 22 

articles were excluded, resulting in a refined sample of 27 articles. 

 

The same systematic procedure was applied to all search groups: initial screening, application of inclusion 

and exclusion criteria, cluster generation based on keyword co-occurrence, and identification of trend lines 

through color-coded clusters. In all cases, the selected articles were read in full, analyzed, and organized in 

a structured table. 

 

The search strategy illustrated in Figure 3 was consistently applied across all subsequent analyses and 

cluster constructions. For clarity and focus, only the main clusters identified in each group are graphically 

presented in this article. 

 

In the A2 analysis (Autonomicity AND Autonomous), the initial sample comprised 10 articles. After the 

refinement process, 7 articles remained, resulting in four clusters: red (complexity aspects), green 

(network), blue (system aspects), and yellow (approach aspects). 

 

In the A3 analysis (Autonomicity AND Autonomous OR Autonomy), the initial sample consisted of 12 

articles, which was reduced to 7 after assessing thematic adherence. These articles were distributed across 

four clusters: red (autonomous), green (system), blue (network), and yellow (approach). 

 

Finally, in the B1 analysis (Cyber-Physical System), a broader search yielded a total of 16,334 articles. 

Figure 7 illustrates the keyword co-occurrence network resulting from this bibliometric analysis, in which 

four thematic clusters were identified: red (technology), green (security), blue (protocol), and yellow 

(approach). 

 

These clusters represent a multidimensional structure of research themes within CPS. The red cluster, 

comprising 171 articles and related to technology-oriented aspects, includes keywords such as artificial 

intelligence, automation, autonomy, big data, blockchain, cybersecurity, digital technology, industrial 

internet, innovation, production process, and smart manufacturing. The green cluster, associated with 

security-related topics and comprising 168 articles, contains terms like attack, control system, cyber 

physical, defender, error, failure, information flow, security, and strategy. The blue cluster, linked to 
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protocols and connectivity, includes terms such as authentication, battery, deep learning, edge computing, 

IoT device, mobility, privacy, protocol, smart city, and vehicle. finally, the yellow cluster, formed by 48 

articles and reflecting approach-related themes, gathers keywords such as behavior, benchmark, complex 

cyber-physical, development process, formal verification, modelling, simulation, tool, and workflow. This 

categorization enhances the reader’s understanding of the visual data and underscores the interplay between 

technological innovation, cybersecurity challenges, and system-level approaches in CPS research. 

 

 

 
 

Figure 6. Cooccurrence network of keywords in group A1. Source: by the author (2022). 

 

 

Table 1 displays the number of articles published each year throughout the analyzed period. 

 
Table 1. Number of articles per year (B1 analysis). 

 

Year Number of articles 
2012 399 

2013 562 

2014 659 

2015 890 

2016 1166 

2017 1568 

2018 2094 

2019 2470 

2020 2384 

2021 2558 

2022 1584 

Total 16.334 
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Figure 7. Cooccurrence network of keywords in group B1. Source: by the author (2022). 
 

 

Following the analytical framework proposed by Alkubati et al. (2023), the results indicate a consistent 

annual increase in the number of publications related to Cyber-Physical Systems (CPS). This growth is 

particularly evident during the period when I 4.0 began to receive more focused attention from the academic 

community, with a notable peak in publications occurring between 2019 and 2021. It is important to note 

that the data for 2022 were incomplete at the time of the survey, and therefore the total number of 

publications for that year cannot be considered definitive. 

 

In the B2 analysis (Cyber-Physical System AND Industry 4.0), a total of 1,252 articles were identified, 

resulting in the formation of nine clusters: red (implementation protocols), green (organizational aspects), 

blue (CPS aspects), yellow (adoption areas), purple (social impacts), cyan (academic aspects), orange 

(managerial aspects), violet (types of organization), and lilac (digital aspects), as shown in Figure 8. 

 

Figure 8 illustrates the keyword co-occurrence network generated from this bibliometric analysis. Each 

color represents a distinct research perspective. The red cluster, associated with implementation protocols, 

includes terms such as blockchain technology, CPS architecture, deep learning, IoT system, and sensor 

data. The green cluster, focused on organizational aspects, highlights terms like automotive sector, big data 

analytics, human factor, and supply chain management. The blue cluster, related to the core structure of 

CPS, contains keywords such as cyber physical production, mobile robot, reference model, and system 

model. The yellow cluster, linked to adoption areas, includes 4th industrial revolution, construction 

industry, digital transformation, and intelligent machine. The purple cluster, representing social impacts, 

lists terms such as adaptation, cyber security, intelligent manufacturing, and society. Additionally, the cyan 

cluster gathers academic aspects, including engineering education, learning factory, and university; the 

orange cluster addresses managerial aspects, with terms such as control process and decision making 

process; the violet cluster groups types of organization, including computer science, stakeholder, and 

measurement system; and finally, the lilac cluster focuses on digital aspects, with terms such as meta model, 
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virtual world, and CPPSs. This comprehensive categorization reflects the multidimensional scope of CPS 

research in the context of Industry 4.0, encompassing technological, managerial, social, academic, and 

digital domains. 

 

 

 
 

Figure 8. Cooccurrence network of keywords in group B2. Source: by the author (2022). 

 

The C1 analysis (Cyber-Physical System AND Autonomicity) revealed a notably limited set of results, with 

only two articles meeting the inclusion criteria. This scarcity underscores the conceptual and academic 

novelty of the term “autonomicity” within the context of CPS. Despite its theoretical potential, the term has 

yet to be widely adopted or consistently applied in empirical research. Nevertheless, the cooccurrence 

network generated from this small dataset produced two distinct clusters: one represented in red, focusing 

on the relationship between CPS and autonomicity itself, and another in green, emphasizing communication 

aspects. This limited representation reinforces the need for deeper theoretical exploration and broader 

dissemination of the concept, suggesting that autonomicity remains an underexplored dimension in the 

broader discourse surrounding CPS and I4.0. 
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In contrast, the C2 analysis (Cyber-Physical System AND Autonomous) demonstrated substantial academic 

engagement with the theme, yielding a sample of 1,218 articles. The co-occurrence network derived from 

this dataset depicted in Figure 9, resulted in the formation of seven clearly defined clusters. This indicates 

that the notion of autonomy within CPS is significantly more consolidated and explored in the literature 

compared to autonomicity.  
 

For the C3 analysis (Cyber-Physical System AND Autonomy), the sample was 262 articles, and seven 

clusters were generated (Figure 10). 
 

 
 

Figure 9. Cooccurrence network of keywords in group C2. Source: by the author (2022). 
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Figure 10. Cooccurrence network of keywords in group C2. Source: by the author (2022). 

 

After a comprehensive and systematic search using keywords closely aligned with the central theme of this 

study, it becomes evident that the chosen topic—autonomicity within CPS—is both promising and 

underexplored. While the concept holds significant theoretical and practical potential, especially in relation 

to autonomy, there remain substantial gaps in the literature. These gaps highlight the need for deeper 

investigation, particularly concerning the consolidation of autonomy-related concepts in CPS contexts. 

Given this landscape, the continuation of this research appears both timely and valuable, with the potential 

to generate meaningful theoretical contributions and practical applications. 
 

It is important to note that this article is part of the bibliographic investigation supporting a doctoral thesis 

in the field of Production Engineering. All the data collected throughout the bibliometric review will serve 

as the foundation for the development of the final research proposal and framework. 

 

The analysis uncovered several noteworthy findings. For instance, the number of publications related to 

CPS increased steadily between 2012 and 2022, particularly during the period when I4.0 began to receive 

greater attention from the academic community. A publication peak was observed between 2019 and 2021. 

Interestingly, a decline in publications occurred in 2020, likely due to the disruptions caused by the COVID-

19 pandemic. 

 

Regarding the theme of autonomy, the number of publications was not only lower in volume but also in 

emphasis. The term “autonomy” remains theoretically fragmented and has yet to be fully integrated into 

the core frameworks of CPS-related research. This presents a critical theoretical gap—one that this study 

seeks to explore and address more systematically. 
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The most frequently associated and structuring themes identified in the literature between 2012 and 2022 

include: Internet of Things (IoT), Sensors, Artificial Intelligence (AI), Cybersecurity, Machine Learning 

(ML), Innovation, Autonomous Vehicles (AV), Digitalization, Automation, Smart Cities, and the 5C 

Architecture. These recurring terms reflect the technological ecosystem within which autonomicity and 

CPS are situated, and they offer a foundation for future interdisciplinary exploration. 
 

In-depth keyword-based bibliometric research such as this contributes to academic literature by clarifying 

the dominant themes, gaps, and evolution of research in autonomicity and CPS. A summary of the total 

number of articles retrieved under each search criterion is presented in Table 2. 

 
Table 2. Total articles according to keyword searches. Source: by the author (2022). 

 

Keyword search criteria (2012-2022) 
Initial search (without 

criteria) 

Search with inclusion and 

exclusion 

A1 - Autonomicity 162 50 

A2 - Autonomicity AND Autonomous 38 10 

A3 - Autonomicity AND Autonomous OR Autonomy 45 12 

B1 - Cyber-Physical System 23.643 18.748 

B2 - Cyber-Physical System AND Industry 4.0 2456 1252 

C1 - Cyber-Physical System AND Autonomicity 3 2 

C2 - Cyber-Physical System AND Autonomous 1697 1218 

C3 - Cyber-Physical System AND Autonomy 347 262 

Total articles returned 28391 21554 

 

 

4.2 Basic Theories for Developing the Concept 
A theory, in general, has the capacity to describe phenomena and provide structured guidelines for 

conducting empirical investigations (Sovacool & Hess, 2017). 

 

Following the approach proposed by Agudo et al. (2022), a bibliographic survey was conducted to identify 

theories related to autonomics and autonomous systems. The adopted strategy involved constructing a 

research trends diagram (Table 3), which maps the selected theories alongside their respective authors. 

This consolidation of frequently used theoretical foundations into a single document serves as a valuable 

resource for scholars interested in conducting more comprehensive and targeted investigations into the field 

of autonomicity. 

 

By examining the main theoretical underpinnings and their connection to the driving themes of automation 

and autonomy, it is possible to identify key frameworks that may serve as theoretical pillars for future 

studies. These include: fuzzy control theory, theory of planned behavior in autonomous vehicle–pedestrian 

interaction, viability theory, game theory, graph theory, car-following theory, theory of autonomous load 

control, diffusion of innovations theory, and scale-free network theory. 

 

The autonomicity aspects presented in Table 3 were derived from a detailed literature review, in which 

themes such as connectivity, networks, human factors, artificial intelligence, infrastructure, and 

mathematical modeling emerged as the most recurrent. Among the theories identified, Fuzzy Control 

Theory stands out due to its strong alignment with the concept of autonomicity, particularly because it 

mimics human decision-making through artificial intelligence. Additionally, the trend diagram reinforces 

the relevance of these aspects by visually representing their recurrence across the selected theories. 

 

Beyond listing theoretical contributions, Table 3 also reveals how these frameworks align with recurring 

autonomicity elements, such as human interaction, network architecture, intelligent decision-making, and 
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adaptive behavior. For example, fuzzy control theory is frequently cited due to its applicability in modeling 

decision processes under uncertainty—a central characteristic in autonomous systems. Likewise, theories 

such as game theory and graph theory offer robust tools for analyzing strategic interactions and 

interconnected system behavior, respectively. The inclusion of theories related to infrastructure diffusion 

and planned behavior further underscores the relevance of socio-technical factors in the evolution and 

implementation of autonomous technologies. As such, Table 3 serves not only as a theoretical foundation 

for this study, but also as a roadmap for future empirical applications and conceptual refinements in the 

field of autonomicity. 

 
Table 3. Trend diagram: related theories. Source: by the author (2022). 

 

  Aspects of autonomicity  

Theory Theory concepts/Objectives Connectivity Network 
Human 

aspect 

Artificial 

intelligence 

Infrastructur

e 

Mathemat

i-cal 

model 

Fuzzy 

Control 
Theory 

It addresses a driving control system for 
Av, which can simulate driving behavior 

(Zheng et al., 2021).  

The authors adopt the fuzzy theory 
approach integrated with Analytic 

Hierarchy Process (AHP) to measure the 

subjective attribute of Autonomy (Deharaj 
& Sharma, 2020). 

Fuzzy control theory is used to control an 

autonomous mobile robot for parallel 
parking, and fuzzy rules can be derived by 

modeling conventional car driving actions. 

The theory has been used in the fields of 
control, artificial intelligence, expert 

systems and so on (Miyata et al., 1996). 
Fuzzy logic is an area of AI that is widely 

used in expert systems. Its principles of 

uncertainty are capable of improving the 
control techniques used in industrial 

automation. The theory simulates human 

intelligence and is a solution for non-linear 
processes (Tarso & Bezerra, 2009). 

✓  ✓  ✓  ✓    

Theory 
of 

Planned 

Behavior 

in AV 

Pedestria

n 
Interacti

on 

The theory of planned behavior is one of 

the most dominant theoretical frameworks 

applied to predicting human behavior. This 
theory predicts pedestrian behavior 

(Hafeez et al., 2022). 

The requirements for pedestrian models 
increase in level, with the initial model 

requiring detection, the higher model 

requiring recognition and tracking, and the 
full interaction model requiring 

psychological and social resources and 

understanding to interact in any situation 
(Hafeez et al., 2022). 

This theory seeks to capture the highly 

complicated reality of travel mode choice 
in a framework consisting of attitudes, 

subjective norms and behavioral control 
(Jing et al., 2019). 

This theory is the extension model of the 

Theory of Reasoned Action and is widely 
used to investigate behavioral intention 

(Jing et al., 2019). 

✓   ✓   ✓   
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Table 3 continued… 
 

Viability 

Theory 

Viability theory characterizes the 

controllability of a range of constrained 

non-linear systems (Pinto et al., 2022). 
It can be applied to autonomous vehicles 

(Pinto et al., 2022). 

In autonomous driving of miniature racing 
cars, viability theory is used to generate 

finite anticipation trajectories that 

maximize progress while recursively 
feasible with respect to static obstacles 

(Liniger & Lygeros, 2019). 

✓     ✓  ✓  

Game 

Theory 

According to game theory, agents prefer 

certain states of the environment, which is 

modeled with a utility function. If the 

agents do not cooperate, then the rational 
agent selects that action which has the 

highest value between the worst possible 

utilities of the results of its own action and 
the actions of other agents. Classical game 

theory is concerned with equilibrium 

(Varga, 2017).  
Game theory provides the basis for the 

design and analysis of energy systems. 

Classically, games involve players whose 
strategies are coupled only through the 

dependence of utility functions on the 

strategies of other players (Kulkarni, 2017). 
The authors used game theory to run an 

autonomous vehicle and determine its 

actions in near real time, relying only on 
spatial and temporal data and 

electromagnetic information (Kusyk et al., 

2021). 
Game theory in engineering can be 

effective in computer communications, 

especially for multi-objective optimization 
problems in network resource allocation, 

routing efficiency and intrusion detection 

systems (Kusyk et al., 2021). 

✓  ✓  ✓   ✓  ✓  

Theory 

of 

Graphs 

Discrete mathematics covers the field of 

graph theory, which solves various graph 

problems using algorithms such as colored 
graphs. Part of graph theory focuses on 

algorithms that solve the passage through 

labyrinths (Coufal et al., 2021). 
A graph is nothing more than a 

representation of the interdependence 

between elements that are represented by 
nodes. Elements that meet the imagined 

relationship are symbolically joined by a 

line called an edge (Souza et al., 2017). 

    ✓  ✓  

Car-
Folling 

Theory 

Car-following (CF) theory is a platooning 

control strategy for vehicles based on 

sliding mode control theory. This strategy 
can be applied to achieve fast platooning of 

multiple autonomous vehicles and maintain 

the steady state of the platooned vehicle 
(Jing et al., 2019).  

✓    ✓  ✓   
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Table 3 continued… 
 

Theory 
of Aut. 

Load 

Control 

This theory transforms the remote control 

system that receives operating instructions 

and controls the units into a task-oriented 
charging system that receives tasks to perform 

automatic/autonomous control. The authors 

tested the effectiveness of this theory by a real 
vehicle test on a particular type of unmanned 

vehicle (Liu et al., 2021). 

✓   ✓   ✓   

Diffusi

on 
Theory 

of 

Innovat
ions 

In this theory, each individual member goes 
through the five stages of the innovation-

decision and process, which are as follows: 

knowledge stage; persuasion stage; decision 

stage; implementation stage and confirmation 

stage. Diffusion being the process by which an 

innovation is communicated through specific 
channels over time among the members of a 

social system; and innovation being an idea, 

practice or object that is considered new in an 
individual's life (Shaikh et al., 2020). 

The diffusion of innovation theory is widely 

used to identify information technology 
adoption. It is commonly used to examine 

communication innovation, the innovation-

decision process and the impact of innovation 
(Shaikh et al., 2020). The authors used the 

theory of diffusion of innovation with an 

innovation-decision approach, as a process 
model with indicators of knowledge, 

persuasion, decision, implementation, and 

confirmation (Shaikh et al., 2020). 
The persuasion phase describes the evaluation 

of the innovation. The decision phase 

illustrates how the individual makes the 
choice to accept or reject the innovation. The 

implementation stage reveals the use of the 

innovation by those who accept the 
innovation. And the confirmation stage 

explains whether the adopter will continue 

with the innovation or not (Badri, 2021).  

✓  ✓  ✓   ✓   

 

Scale 
free 

networ

k 
theory 

Albert - László Barabási was the first person 

to identify a network as scale-free. He 

discovered that the distribution of nodes in the 
Internet tele information network does not 

correspond to the usual distribution. He used 

his mathematical model of a global network to 
analyze different phenomena and discovered 

that the distribution of nodes is atypical only 

for the Internet. In this way, it is possible to 
analyze many other social, technological or 

biological phenomena. Each phenomenon, 

which has a network structure, and the 
system's communication connections can be 

analyzed (Kowalczyk et al., 2014). 

✓  ✓     ✓  

 

 

4.3 Proposing a Concept of Autonomicity in CPS 
While the terms automation and autonomy are widely employed in discussions surrounding CPS, the notion 

of autonomicity remains conceptually fragmented and poorly defined. This gap presents a challenge both 

to academic research and to practical implementations in I4.0 environments, where systems are increasingly 

expected to operate with minimal human intervention, adapt to changing conditions, and make decisions 

independently. 
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Unlike automation, which typically refers to task execution without real-time human input, or autonomy, 

which implies some level of decision-making capacity, autonomicity denotes a more advanced and 

comprehensive property: the system’s ability to self-manage, self-configure, self-heal, and self-optimize 

within complex and dynamic contexts. This concept stems from autonomic computing theories (Kephart & 

Chess, 2003), but its application to CPS requires theoretical refinement and contextual adaptation. 

 

The absence of a clear and structured definition of autonomicity in the context of CPS limits our capacity 

to assess, compare, and evolve intelligent industrial systems. It also hinders the development of 

standardized frameworks that support maturity assessments, performance benchmarking, and decision-

making in digital transformation processes. 

 

Drawing from the analysis of emerging themes in the literature and the integration of interdisciplinary 

perspectives—including systems engineering, AI, and control theory—this study proposes the following 

theoretical definition: 

 

Autonomicity in CPS is the level of autonomy and autonomous capacity achieved within a CPS system, 

encompassing the ability of these systems to operate, make decisions and adapt autonomously, based on 

information obtained from the physical environment and cyber data, and can go from the level of zero 

autonomy to the level of maximum autonomy and self-management, where in this case, there is no human 

intervention. 

 

To achieve high degrees of autonomicity, systems must integrate various enabling technologies such as the 

Internet of Things (IoT), Artificial Intelligence (AI), Cloud Computing (CP), Machine Learning (ML), and 

Cybersecurity. When effectively combined, these technologies enhance CPS capabilities to operate 

independently, adapt to change, and function in dynamic and unpredictable environments. Nevertheless, 

autonomy must be pursued in conjunction with ethical principles, safety requirements, and transparency to 

ensure secure and trustworthy operations. 

 

Based on the bibliometric analysis conducted and the foundational theories explored, this concept serves as 

a necessary theoretical foundation for the creation of the autonomicity scale presented in the following 

section. By clearly defining autonomicity in CPS, this work supports the main objective of the study: to 

provide a structured and actionable tool for assessing levels of autonomic behavior in CPS. 

 

In a hypothetical state of total autonomicity, CPS would function entirely independently, even in highly 

complex and unforeseen scenarios. Such systems must transcend traditional automation by incorporating 

real-time adaptation, continuous learning, and self-improvement capabilities aimed at maximizing 

efficiency, resilience, and safety under any operating condition. This level of sophistication demands not 

only advanced computational architectures but also adaptive decision-making mechanisms and robust 

feedback control. 

 

Future research should further investigate how organizations can practically attain maximum autonomicity 

and which system components are critical for achieving full operational independence. These inquiries are 

essential for guiding implementation strategies, risk management, and performance assessment in highly 

autonomous industrial environments. 

 

As CPS advance toward higher levels of autonomicity, significant questions arise: Should these systems 

operate without any human oversight? What are the technical, regulatory, and societal implications of such 

capabilities? Achieving full autonomicity is not only a technical ambition but also a philosophical and 
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ethical frontier, demanding rigorous interdisciplinary inquiry. 

This definition also opens pathways for deeper theoretical inquiry into the boundaries, risks, and 

implications of full autonomicity, which remain topics of ongoing academic and industrial debate. The 

theoretical development presented in this section constitutes the first phase of a broader research initiative. 

The next section introduces a five-level scale designed to classify CPS according to their degree of 

autonomicity. This will be followed by the proposal of a relationship matrix and the design of an evaluation 

instrument, aiming to operationalize the theoretical model developed herein. 

 

5. Development of a CPS Autonomicity Scale Separated into Levels 

The analogy between Autonomous Vehicles (AVs) and Machine Learning (ML) was adopted as the 

conceptual foundation for the proposed scale. These subjects were previously introduced in general terms 

in the theoretical framework of this study and are now examined in greater detail, serving as the structural 

basis for the development of a multi-level scale for evaluating autonomicity in CPS. 

 

AVs initially emerged as a topic of interest within engineering domains but have since garnered attention 

across a wide array of disciplines, including insurance, urban planning, public policy, and social sciences. 

To describe the varying degrees of automation and task distribution between humans and machines, the 

concept of automation levels was introduced (Hopkins & Schwanen, 2021). By 2025, it is expected that 

nearly half of newly produced vehicles will incorporate autonomous functionalities reaching Level 5 

automation, as defined by the Society of Automotive Engineers (SAE), potentially enhancing safety, 

reducing congestion, and alleviating driver stress (Gluck et al., 2022). Similarly, ML can also be categorized 

into hierarchical levels of autonomy, reflecting increasing complexity in learning and decision-making 

capabilities. 

 

According to Lee et al. (2017), ML autonomy ranges from Level 1 to Level 5, with each level defined by 

specific requirements, including the availability of training datasets and input attributes. At Level 1, AVs 

are fully controlled by the driver, with no automation support—comparable to manual labor environments 

devoid of technological assistance. Although still common on roads today, Level 1 vehicles are gradually 

being replaced by models equipped with basic driver-assistance systems (Dias et al., 2021; Smith et al., 

2021). 

 

At the base of the ML spectrum lies supervised learning, where algorithms are trained on labeled data under 

human supervision. This setup is analogous to Level 1 AVs, where constant and targeted human input is 

necessary to guide learning processes. Supervised ML is widely utilized in applications such as image 

recognition and natural language processing (Mitchell, 1997). 

 

In Level 2 AVs, vehicles can manage both steering and speed, though human drivers must remain attentive 

and ready to intervene. These vehicles typically include features like adaptive cruise control and parking 

assistance, representing a transitional phase toward automation, but still presenting reliability and safety 

concerns (Cooper et al., 2023). Correspondingly, semi-supervised ML—which trains models on a mix of 

labeled and unlabeled data—mirrors this intermediate state. Although it allows partial independence, 

human oversight remains essential for improving system performance, especially in data-scarce 

environments (Bengio et al., 2021). 

 

Level 3 AVs are capable of partial automation, handling acceleration, braking, and steering, but still 

requiring the driver to monitor the environment and intervene when necessary. This phase reflects ML 

models that demonstrate high adaptability but still rely on human supervision in complex or uncertain 

scenarios (Bengio et al., 2021). 
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In Level 4, vehicles operate autonomously in most environments, requiring human intervention only in 

exceptional cases (Cooper et al., 2023). This stage parallels ML models with strong autonomy capabilities, 

capable of executing complex tasks with minimal external input. 

 

Finally, Level 5 AVs are fully autonomous, capable of operating in all conditions without human 

intervention (Dias et al., 2021). These vehicles represent a major innovation in the automotive sector by 

replacing driver tasks with intelligent software systems (Cooper et al., 2023). Similarly, Level 5 ML 

systems exhibit complete decision-making independence across various contexts and environments 

(Russell & Norvig, 2020). 

 

The recent discourse on automation levels, particularly within the context of I4.0, underscores the 

importance of adaptive systems that blend the flexibility of manual processes with the efficiency of 

automated ones. These systems promote productive human-machine collaboration and contribute to 

significant improvements in cycle time and operational efficiency (Bortolini et al., 2021). 

 

On the human side, the perception of autonomy levels and user trust in autonomous systems are influenced 

by a variety of technical and social factors. While automation advances rapidly, higher levels of autonomy 

may paradoxically decrease user confidence, especially when cognitive and psychological factors are not 

adequately addressed (Yang et al., 2024). 

 

Grounded in the analogies drawn from the extensive literature on AVs and ML, a five-level scale was 

developed to categorize the degrees of autonomicity in CPS. As presented in Table 4, the levels are defined 

as follows: 

 

Level 1 – Total Dependence; 

Level 2 – Moderate Dependence; 

Level 3 – Partial Autonomy; 

Level 4 – Substantial Autonomy; 

Level 5 – Total Autonomy. 

 

Level 1 - Total Dependence: 

At Level 1, systems are entirely dependent on external commands and constant human intervention. 

Automation is minimal, and all operations are executed manually, with no ability to autonomously respond 

to environmental changes or system events. Achieving Level 1 autonomy in a CPS involves the integration 

of essential components such as: 

 

- Sensors and Actuators: Capture environmental data and execute physical actions based on manual 

commands. 

- Human-Machine Interface (HMI): Facilitates operator interaction via input/output devices like screens 

and buttons. 

- Direct Human Control: All critical decisions and actions are made manually using specific interfaces. 

- Network Connectivity: Enables system communication with operators through local or internet-based 

networks. 

- Monitoring and Alert Systems: Provide real-time status tracking and notifications of critical events. 

- Security Protocols: Protect the system against unauthorized access and malicious activity. 

- Manual Interruption Capability: Allows emergency shutdown in the event of failure or hazard. 

 

 



Berretini & Gobbo Junior: Autonomicity in Cyber-Physical Systems: Proposing a Theoretical Concept … 
 

 

1814 | Vol. 10, No. 6, 2025 

Level 2 - Moderate Dependence: 

At this stage, reliance on external commands is reduced, and some degree of automation is introduced. 

Systems begin to execute predefined tasks autonomously but still require human oversight for complex or 

unexpected situations. Additional components are integrated to support limited autonomy, including: 

 

- Decision-Making Algorithms: Enable basic data analysis and decision-making using control logic, expert 

systems, or ML techniques. 

- Predictive Models: Utilize historical data to anticipate events and support proactive responses. 

- Sensory Feedback Mechanisms: Monitor and adjust actions based on environmental feedback. 

- Human Supervision: Maintained to intervene when decisions exceed system capacity. 

- Adaptation to Change: Adjusts operational strategies in response to dynamic conditions. 

- Redundancy and Fault Tolerance: Ensures operational continuity even during component failures. 

- Learning Capacity: Improves performance over time through experience and human input. 

 

Level 3 - Partial Autonomy: 

Systems at Level 3 are capable of autonomous operation under predefined conditions, with more advanced 

automation, yet still dependent on human intervention in unforeseen scenarios. Key components enabling 

this level include: 

 

- Advanced AI: Employs complex algorithms such as deep neural networks and fuzzy logic for decision-

making. 

- Self-Learning and Adaptation: Continuously improves through real-time data and accumulated 

experience. 

- Self-Diagnosis and Repair: Identifies and resolves issues autonomously, or alerts operators when 

necessary. 

- Autonomous Communication: Interacts with IoT devices and other CPS systems without human 

mediation. 

- Multifaceted Decision-Making: Incorporates multiple variables and constraints to optimize performance. 

- These features significantly reduce dependence on human oversight, though supervisory functions remain 

necessary to ensure safety and ethical compliance in exceptional situations. 

 

Level 4 - Substantial Autonomy: 

At Level 4, systems demonstrate high autonomy, operating independently in most scenarios and adapting 

to unforeseen events with minimal human input. The range of automated functions expands significantly 

and is supported by the following components: 

 

- Advanced AI (*) 

- Self-Learning and Adaptation (*) 

- Autonomous and Multidimensional Decision-Making: Considers multiple, sometimes conflicting, factors 

to autonomously optimize outcomes. 

- Communication and Coordination: Collaborates with IoT and CPS entities to perform distributed tasks. 

- Self-Diagnosis and Repair (*) 

- Advanced Security: Implements real-time threat detection, encryption, and system protection protocols. 

- Simulation and Testing: Conducts rigorous performance and safety validations in varied and extreme 

scenarios. 
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Level 5 - Total Autonomy: 

The highest level of the scale represents full autonomy, with systems capable of operating in any condition 

without human intervention. These systems manage complex decisions, adapt continuously, and perform 

reliably in unpredictable environments. Critical components include: 

 

- Super AI (*) 

- Self-Learning and Adaptation (*) 

- Autonomous and Multidimensional Decision-Making (*) 

- Advanced Communication and Coordination: Utilizes cutting-edge protocols to interact with a range of 

cyber-physical entities. 

- Self-Diagnosis and Repair (*) 

- Extreme Security and Resilience: Employs advanced cryptography, real-time intrusion detection, and 

cyber-resilience strategies. 

- Simulation and Testing (*) 

 

(*) Previously described components in earlier levels, here employed with higher performance and 

independence thresholds. 

 
Table 4. Proposal for a scale of autonomy in CPS and its components and expected functionalities. Source: by the 

author (2024). 
 

Levels  Description CPS components Expected functionalities 

Level 1 
Total 

dependence 

Sensors and Actuators; Human-Machine 

Interface; Direct Human Control; Network 
Connectivity; Monitoring and Alert 

Systems; Security Protocols; Manual 

Interruption Capability. 

The CPS requires human intervention for all operations. Operators 
are responsible for all stages of the production process, from 

controlling the machines to making decisions about maintenance 

and logistics. It can provide basic information on the status of 

machines and processes, but all actions are carried out by the 

operators. 

Level 2 
Moderate 

dependence 

Decision-Making Algorithms; Predictive 

Models; Sensory Feedback; Human 
Supervision; Adaptation to Change; 

Redundancy and Fault Tolerance; Learning 

Capacity. 

It can perform simple, repetitive tasks without direct human 
intervention. 

Operators still have control over the system, but it can automate 

some stages of the process, such as transporting materials between 
different areas of the factory. It can alert operators to problems or 

exceptional situations that require human intervention. 

Level 3 
Partial 

autonomy 

Advanced Artificial Intelligence; Self-

Learning and Adaptation; Self-Diagnosis 
and Repair; Multifaceted Decision-Making; 

Autonomous Communication; Simulation 

and Testing. 

The CPS can make decisions within predefined parameters and deal 

with routine situations without human intervention.  
It can adapt production processes in response to real-time data, like 

changes in market demand or raw material availability. 

 

Level 4 
Substantial 

autonomy 

Super Advanced IA; Advanced Self-

Learning and Dynamic Adaptation; 

Advanced Autonomous and 
Multidimensional Decision Making; 

Advanced Autonomous Communication and 

Coordination; Advanced Self-Diagnosis, 
Repair and Maintenance; Advanced 

Security; Advanced Simulation. 

It is highly autonomous and can operate efficiently with little human 

supervision. 

It is able to optimize production, carry out predictive maintenance 
and deal with variations in the production environment without 

direct intervention from operators. 

Operators play a more strategic role, monitoring system 
performance and intervening only in exceptional cases or for high-

level decisions. 

Level 5 

Total 

autonomy 

 

Super Advanced Artificial Intelligence; 
Advanced Self-Learning and Dynamic 

Adaptation; Advanced Autonomous and 

Multidimensional Decision Making; 
Advanced Autonomous Communication and 

Coordination; Advanced Self-Diagnosis, 

Repair and Maintenance; Advanced Security 
and Extreme Resilience; Advanced 

Simulation in Virtual and Real 

Environments. 

It works completely independently, without requiring human 
interference. It has the ability to constantly learn and adjust, 

improving all aspects of production, from resource management to 

the quality of the end product. Meanwhile, operators have an 
advisory role, offering high-level guidance and overseeing the 

system in strategic terms, but are not directly involved in day-to-

day operating activities. 
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The primary objective of this phase was to define clear metrics and structural elements that allow the 

assessment of autonomy levels in CPS. This scale serves as the foundation for the development of a future 

assessment instrument, enabling the empirical evaluation of autonomicity in complex systems and 

facilitating deeper understanding of the interactions among the involved technological and human factors. 

 

Having defined the levels and components required to assess autonomicity in CPS, it becomes essential to 

critically analyze the theoretical and practical implications of this proposed scale. The following section 

discusses how the structure of the scale aligns with the technological maturity of CPS, the conceptual gaps 

identified in the literature, and the interdisciplinary nature of autonomy-related capabilities. This discussion 

also aims to position the scale within the broader context of I4.0 and intelligent automation, emphasizing 

its potential for application in both academic and industrial environments. 

 

5.1 Discussions 
The primary objective of this study is to develop a scale for assessing different levels of autonomicity in 

CPS. Accordingly, its implications are both wide-ranging and significant, encompassing theoretical 

advancements and practical applications. This section addresses the conceptual contributions and potential 

uses of the proposed scale, highlighting its relevance across multiple domains of I4.0. 

 

From a theoretical standpoint, the articulation of autonomicity in CPS fills a critical gap in the existing 

literature. Although automation and autonomy have been extensively studied within CPS contexts, the 

notion of autonomicity—understood as the system’s capacity for self-management, optimization, and 

independent decision-making—remains under defined and largely unstandardized. By proposing a 

structured and operationalized definition, this study contributes meaningfully to the conceptual 

development of CPS, particularly within the I4.0 paradigm. The framework presented offers a foundation 

for future academic inquiry, enabling the creation of more precise models and tools for evaluating 

autonomous behaviors in complex systems. 

 

Beyond theoretical advancements, the scale also demonstrates strong practical relevance. Within I4.0 

environments—characterized by the integration of CPS in manufacturing, logistics, and smart 

infrastructures—the ability to assess autonomicity is essential for optimizing performance and innovation. 

The proposed scale can serve as a diagnostic and strategic tool for both researchers and practitioners. For 

example, industrial stakeholders can use the scale to evaluate the current level of autonomy in their CPS 

implementations, identify bottlenecks, and prioritize investments in technologies such as artificial 

intelligence and machine learning. 

 

The potential applications of the scale span multiple domains of the I4.0 ecosystem, including smart 

manufacturing, supply chain management, and autonomous robotics. In smart factories, for instance, CPS 

equipped with higher levels of autonomicity can enable real-time decision-making, increase production 

efficiency, and enhance operational safety. In logistics, autonomous CPS can support dynamic routing, 

adaptive inventory management, and greater responsiveness to environmental or market fluctuations. 

 

Nonetheless, it is important to acknowledge that the concept of autonomicity in CPS is still evolving. The 

scale introduced here should be seen as an initial framework—one that requires empirical testing and 

refinement. Further studies are needed to validate the scale across diverse industrial contexts and to 

investigate how varying levels of autonomicity affect performance metrics, cost-effectiveness, and system 

adaptability. While the scale was developed with I4.0 applications in mind, its relevance to adjacent 

sectors—such as healthcare, energy, or transportation—should also be explored in future research. 
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In summary, this study offers both a theoretical framework for understanding autonomicity in CPS and a 

practical scale for its assessment and enhancement within the I4.0 context. The contributions extend beyond 

academia, offering actionable insights for professionals seeking to harness the full potential of autonomous 

systems. Importantly, this work forms part of a broader research project aimed at developing, applying, and 

empirically testing a CPS Autonomicity Assessment Instrument. The phases outlined in this article lay the 

groundwork for subsequent stages, which will involve real-world applications and further refinement of the 

scale through empirical validation. 

 

6. Conclusions 
This article aimed to advance the academic understanding of autonomicity in Cyber-Physical Systems 

(CPS) by addressing two central research questions: (1) how the concept of autonomicity can be 

theoretically delineated within the CPS context and what its defining characteristics are, and (2) what 

methodological framework can be used to develop a robust scale for assessing different levels of 

autonomicity in these systems. To answer these questions, the study proposed a theoretical definition of 

autonomicity and introduced a five-level assessment scale that classifies CPS according to their degree of 

self-management and autonomous decision-making. These contributions were supported by a bibliometric 

review, a structured theory development process, and analogy-based modeling, which together provided a 

coherent methodological foundation for conceptual clarification and scale construction. 

 

The rapid advancements driven by I 4.0 have underscored the central role of CPS in modern industrial 

environments. These systems—characterized by the integration of computational intelligence with physical 

processes—offer unprecedented levels of automation, efficiency, and adaptability. However, despite the 

growing relevance of autonomy in CPS, the concept of autonomicity remains insufficiently defined and 

structurally underdeveloped in the existing literature. This study sought to address this conceptual gap by 

proposing a theoretical framework and introducing a five-level scale to classify CPS according to their 

degree of self-management and decision-making independence. 

 

The findings contribute meaningfully to both theory and practice. The proposed autonomicity scale offers 

a structured mechanism for assessing levels of autonomy in CPS, providing a clearer distinction between 

automation, autonomy, and autonomicity. This differentiation not only advances academic discourse but 

also presents practical value for optimizing industrial processes, enhancing system resilience, and 

improving autonomous decision-making across various I4.0 applications. 

 

Critically, the literature review revealed a fragmented understanding of autonomicity in CPS. Many existing 

studies emphasize automation or general autonomy without clearly articulating criteria for system self-

governance. This absence of a unified conceptual and operational framework has led to inconsistencies in 

how autonomy is interpreted, measured, and applied across industrial sectors. The framework proposed in 

this study represents an initial step toward addressing this gap; however, its refinement and empirical 

validation in diverse real-world contexts remain essential. 

 

Future research should prioritize the empirical testing of the proposed scale through case studies and pilot 

applications in industrial settings. Incorporating interdisciplinary approaches—particularly those 

integrating artificial intelligence, machine learning, and human–machine interaction—could deepen the 

understanding of autonomicity in increasingly complex CPS environments. Furthermore, the ethical, 

regulatory, and societal implications of highly autonomous systems warrant careful consideration. Issues 

such as workforce displacement, cybersecurity vulnerabilities, and governance challenges must be 

addressed alongside technical advancements. 
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By laying the groundwork for a structured and scalable approach to evaluating autonomicity in CPS, this 

study contributes to both the academic literature and industrial innovation. The scale and framework 

presented here offer a practical foundation for researchers and practitioners aiming to implement 

autonomous technologies in a more deliberate, safe, and informed manner. As I4.0 continues to evolve, 

ongoing exploration of the intersections between autonomy, intelligence, and self-management will be 

crucial to ensuring that CPS remain effective, ethical, and sustainable. 
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