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Abstract

To investigate how to maximize the benefits of engineering projects through effective scheduling strategies in the context of limited
resources, this study develops a high-level heuristic strategy that leverages deep reinforcement learning algorithms within a hyper-
heuristic framework, complemented by enhancements to low-level heuristic methods. Experimental results demonstrate that the
proposed super-heuristic algorithm achieves excellent convergence quality and efficiency, reaching a minimum convergence value
of 0.31 and requiring only 32.16 seconds for computation. The super volume and inverse generation distance produced by this
algorithm are 0.906 and 0.254, respectively. Additionally, the algorithm exhibits strong performance in uniformity and breadth
evaluations, making it adept at handling various scenarios in multi-skill, resource-constrained project scheduling problems. In the
realm of engineering project scheduling, the proposed method yields the highest solution quality, achieving a coverage rate of up
to 0.954. It also demonstrates low levels of constraint violation and significant solution set entropy during the solving process,
satisfying the requirements for constrained scheduling optimization. Furthermore, the deviation between the optimized solution
and the ideal shortest project duration is less than 0.15, indicating improved efficiency in project duration optimization. The algo-
rithm's success rate in consistently finding feasible solutions across multiple runs exceeds 90%. This study provides effective
scheduling strategies and optimization methods for engineering project managers, equipping them to tackle the challenges posed
by resource constraints in engineering projects.

Keywords- Genetic programming algorithm, Resource constrained project scheduling problem, Engineering management, Multi-
objective optimization, Heuristic approach.

1. Introduction

An efficient management model is of vital importance in engineering project management, as it not only
helps to enhance project execution efficiency and ensure project quality, but also strengthens risk
management capabilities, laying a solid foundation for project success. In today's complex and ever-
changing business environment, the success of a project often depends on the coordinated cooperation of
multiple factors, including resource allocation, task allocation and the optimization of management models.
Through the rational allocation of resources, project managers can ensure that all important tasks are
executed in a timely manner, thereby taking into account the overall progress and quality of the project.
However, the current existing engineering management model still has some significant deficiencies,
especially the excessive reliance on human resources and the overly high expectations for workers' self-
management ability, which leads to problems such as low work efficiency and soaring labor costs during
the implementation process. Meanwhile, as many projects fail to reasonably consider and evaluate the cost
of material consumption, this not only leads to the waste of resources, but also often results in budget
overruns, hindering enterprises from achieving the goal of economic benefits (Van Eynde et al., 2024).
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To address these challenges, enterprises are obligated to prioritize and consistently refine the project
management model for engineering projects. They should endeavor to enhance the efficiency of resource
utilization, expedite the project completion timeline, and ultimately attain sustainable development (Guo et
al., 2023). Against this background, the Resource Constrained Project Scheduling Problem (RCPSP) has
gradually come into the view of researchers. With refined scheduling strategies, it provides an effective
solution for project management. RCPSP refers to the reasonable arrangement of project execution
sequence and resource allocation under the premise of limited resources, in order to maximize resource
utilization and minimize cost expenditure. Therefore, it provides engineering Project managers with a new
tool to deal with the challenges of resource constraints, enabling more optimized Project Scheduling (PS)
plans, improving project execution efficiency, and performing more efficiently in resource utilization at the
same time (Bahroun et al., 2024; Zhang et al., 2024). However, the complexity of resource characteristics
in actual engineering PS leads to many limitations of the traditional RCPSP model. The Multi-skill RCPSP
model (MS-RCPSP) introduces the concept of skills and establishes a skill matching relationship between
tasks and resources, which has stronger applicability. However, research on the super-heuristic algorithm
(HHA) for solving MS-RCPSP remains insufficient. How to design appropriate heuristic rules to better
adapt to the characteristics of MS-RCPSP still requires in-depth exploration (Vanhoucke and Coelho, 2024).

To address the challenge of resource constrained scheduling optimization in engineering management, this
study utilizes the Deep Reinforcement Learning (DRL) algorithm as the High-Level Heuristic (HLH)
strategy for HHA and optimizes the Low-Level Heuristic (LLH) method, thereby achieving the
optimization of HHA. The innovation point of the research lies in the application of the improved DRL
algorithm to the hyper-heuristic algorithm for the first time. By using the Deep Q-network (DQN) as the
HLH strategy, it can effectively enhance the optimization ability of resource-constrained PS. The research
also conducts systematic optimization for LLH strategies, combining Iterative Local Search (ILS) and
Variable Neighborhood Descent (VND), and enhances the effect of local search through dynamic
adjustment and multiple perturbation strategies. Finally, a MS-RCPSP model was studied and constructed,
taking into account the diversity of resources and skill matching, to expand the application scope of the
traditional RCPSP model.

The structure of the research content is mainly divided into four sections. The second section of the research
reviews the literature related to MS-RCPSP, explores the research progress in this field in recent years, and
discusses the application of different algorithms in engineering management. The third section will
introduce in detail the HHA architecture designed for the MS-RCPSP problem, including HLH and the
improved LLH, and explain its innovativeness. Next, the fourth section will demonstrate the rationality of
the experimental design and parameter settings, analyze the experimental results, and verify the
improvement of the model performance through statistical significance tests. Finally, the article will
summarize the research conclusions, explore its practical application value for engineering project
management, and explore the possible directions for future research.

2. Related Works

RCPSP is a classic problem in the field of project management, widely used in various project management
such as logistics, production workshops, software development, etc. A large number of researchers have
carried out study on it. Golab et al. (2023) proposed a method based on Evolutionary Convolutional Neural
Network (ECNN) to optimize project duration. This method utilized a serial scheduling generation scheme,
learned and automatically selected priority rules based on project parameters, and scheduled project
activities. Compared with traditional metaheuristic methods, there was no need to generate multiple
solutions or populations. The experiment outcomes indicated that this method outperformed the standard
metaheuristic method in regard to performance (Golab et al., 2023). To explore the PS problem under multi-
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skill resource constraints, Snauwaert and Vanhoucke (2023) proposed a new classification scheme to
systematically sort out related issues, and developed a multi skill RCPSP data generation program to
construct multiple artificial datasets. By comparing the benchmark dataset with the introduced practical
case, and combining genetic algorithm and CPLEX12.6 to solve the mixed integer linear programming
Equation, the influence of skills and labor scale on completion time was experimentally analyzed, verifying
the practicality of the dataset and the complexity of multi skill PS (Snauwaert and Vanhoucke, 2023).

Regarding the replacement subgraph problem in RCPSP, the complex relationship between nesting and

linking. Servranckx et al. (2024) tested and adjusted the satisfiability solver method to address specific

constraints of RCPSP surrogate sub-graphs. Through computational experiments on small and large

instances, the competitiveness of the algorithm with existing metaheuristic algorithms was verified, and its

performance was compared with that of an exact mathematical solver. The results emphasized the

applicability of the satisfiability solver (Servranckx et al., 2024). Pass Lanneau et al. (2024) proposed the

concept of anchor solution as a new robust optimization method for RCPSP to solve the uncertainty of
processing time. They reviewed the graph model for budget uncertainty and designed a dedicated heuristic

algorithm. Numerical experiments showed that the proposed method performed well in terms of efficiency,

verifying its effectiveness in addressing anchor robustness and adjustable robust RCPSP. Armas et al. (2024)
first explored the application of quantum annealing technology to RCPSP. By analyzing various mixed
integer linear programming Equations, the Equation with the highest quantum bit efficiency was selected

and transformed into a quadratic unconstrained binary optimization model. The model was solved using a

D-wave quantum annealer and compared with classical solvers. The results showed that quantum annealing

had great potential in small and medium-sized instances.

There are also many studies on heuristic algorithms. In order to handle the issue of missile path planning in
remote air to ground strikes, Xu et al. (2025) proposed the Monte-Carlo Hyper Heuristic Algorithm
(MCHHA) to address the limitations of traditional metaheuristic algorithms and the difficulty in evaluating
the performance of HHA. This method constructed a set of 18 LLH algorithms and designs high-order
strategies to predict the validity of LLH algorithms using a discrete state action reward table. The results
showed that the algorithm could effectively adapt to different path planning scenarios, and simulation
comparisons verified its superiority and effectiveness. Deliktas and Aydin (2023) aimed to minimize the
number of workstations by maintaining a constant cycle time for simple assembly line balancing problems.
The Artificial Bee Colony-Based Hyper Heuristic Algorithm (ABC-HHA) was used to solve the problem,
optimizing the efficiency and idle rate of the assembly line. Parameter control and calibration were
performed using the IRACE method, and model performance on benchmark problems was tested. The
experiment outcomes indicated that the artificial bee colony super heuristic algorithm performed superior
in 61 problem instances, surpassing the existing cutting-edge methods.

To solve the complex logistics scheduling problem of prefabricated modular cabin units on cruise ships, Li
et al. (2024) designed a Self-learning Hyper Heuristic Algorithm Based on Genetic Algorithm (SLHHA-
GA). This algorithm effectively avoided the infeasible solution problem of metaheuristic algorithms by
optimizing LLH strategies and revealing the relationships between decision stages. Multiple numerical
experiments and actual enterprise cases showed that the algorithm performed well in solving this problem,
significantly improving optimization capabilities and stability, and reducing transportation time by 37% in
actual cases. Zhao et al. (2023) proposed an Estimation of Distribution Algorithm-Based Hyper Heuristic
(EDA-HH) for the scheduling problem of distributed assembly hybrid idle replacement flow shop. This
algorithm used 10 heuristic rules to search the solution space and integrated distribution estimation
algorithm as a high-level strategy to control LLH sequences. Development capabilities were enhanced
through product and job destruction, as well as construction procedures. The experiment showed that the
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algorithm outperformed its competitors statistically and effectively solved 810 large-scale problem
instances.

Nabawy et al. (2024) proposed a neural risk model (INRM) method for infrastructure projects in Egypt to
identify and evaluate the key risk factors affecting construction costs, with a focus on the probability of
occurrence (POO) and the impact on costs (IOC). The research results showed that the coefficient of
determination (R2) of the developed INRM model revealed the best results, among which the best
architectures in the training and test datasets were 0.872 and 0.777 respectively. Fan (2025) proposed an
innovative hybrid soft computing method combining fuzzy logic and deep neural networks to obtain the
prediction results of the relationship between key construction factors and construction quality in response
to the significant impact of the project construction stage on the overall success. The prediction result of
this model reached 96.08%. This research result enhanced project management practices and establishes
effective construction management strategies, thereby improving the construction quality of the project.
Zhang et al. (2024) put forward a novel approach rooted in graph convolutional neural networks and
attention mechanisms. This method is specifically designed to dynamically capture and integrate project-
related relationship information, thereby addressing complex relationship challenges in modern power grid
project management that traditional methods struggle to model accurately. The experiments of this model
on the public recommendation system dataset verified the effectiveness of the proposed method in the
management of power grid projects.

Although the above-mentioned research has made certain progress in the RCPSP problem, there are still
some deficiencies. Many studies focus on the single application of specific algorithms or technologies,
lacking comprehensive consideration of scenarios constrained by multi-skill resources. Moreover, when
dealing with dynamic changes and complex constraint conditions, the effects have not met expectations.
Furthermore, traditional methods often lack the potential to effectively integrate machine learning
techniques, which may lead to insufficient adaptability to complex problems. For example, although the
existing hyper-heuristic algorithms have been applied to some extent, they have not been fully combined
with the emerging deep learning and reinforcement learning methods to produce stronger optimization
effects.

This research method introduces the improved DRL algorithm as a HLH strategy and optimizes the LLH
algorithm. It can not only enhance the intelligent decision-making ability in the scheduling process, but also
effectively improve the adaptability to multi-skill resource constraints. This comprehensive technical route
enables the model to enhance scheduling accuracy and efficiency while dealing with resource constraints
and time pressure, emphasizing the importance of establishing dynamic and flexible scheduling strategies
in the field of engineering management. The introduction of the research method aims to fill the gap of the
lack of comprehensiveness and adaptability in the current literature, in order to deal with the complex
problems encountered in the scheduling of multi-skill resource-constrained projects. The integration of the
enhanced DRL technology with the hyper-heuristic algorithm facilitates the derivation of more flexible and
efficient scheduling strategies. This synergy significantly improves the model's responsiveness to dynamic
and complex scenarios, thus propelling the state-of-the-art development in this research domain.

3. Design of HHA Architecture under MS-RCPSP
In the context of MS-RCPSP, the design of HHA architecture was carried out. The study first utilized an
improved DRL algorithm to implement HLH optimization research, and then improved the design of LLH.

3.1 Design of Multi-Objective MS-RCPSP Model
MS-RCPSP is a complex scheduling problem in project management, which is an extension of RCPSP.
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MS-RCPSP requires a reasonable arrangement of task execution time and sequence while meeting the
priority relationships and resource constraints between project activities, while considering the various
skills and proficiency levels of resources, in order to achieve the goal of project optimization (Qian et al.,
2023; Wang et al., 2023). The engineering project includes j tasks T, which has a priority relationship

between different tasks. The start and duration of the tasks are s, and d, , respectively. The project contains
k resources R , which involve n skills §, during the implementation process. Therefore, the cost €, of

using resources to complete project tasks is calculated as shown in Equation (1).
C,=d,-c (1)

In Equation (1), ¢, represents the wage for the use of resources. Firstly, based on the characteristics of

engineering management, a mathematical model of MS-RCPSP is constructed, and the optimization
objective of MS-RCPSP is set to minimize project time and cost. The objective function is shown in
Equation (2).

Min. F,,je]

MinCust :ijcjr (2)
J

In Equation (2), F; represents the completion time of the task T, determined by s and d, . In addition, the

multi-objective MS-RCPSP model also needs to satisfy a series of constraints. The task processing
constraints are shown in Equation (3).

> x,Q. =yl Vie],keS,reRr (3)

In Equation (3), x,, represents the decision variable that determines whether a task is allocated to resource
R.. Q, indicates the proficiency level of resource R mastering skill §, . Y, represents decision variable
that determine whether resources should execute tasks. [, indicates the level of proficiency in the skills

required to complete a task. Meanwhile, the constraint condition satisfies Equation (4).
D> x,=1VYje],reR
-

4
> y.<LVje],reRt @
J

As shown in Equation (4), the number of tasks processed by different resources at once is less than 1, but
all tasks should be processed. In addition, the task processing process meets the temporal requirements, that
is, the next task can only be executed after the previous task is completed. To solve MS-RCPSP, appropriate
algorithm design is required. The algorithm used in the study is HHA, which manages and manipulates a
series of LLH methods through an HLH strategy to achieve optimization in the solution space. HHA
belongs to a class of metaheuristic algorithms that do not rely on domain specific knowledge and use HLH
strategies to guide the selection and combination of LLH to solve complex optimization problems (Cao et
al., 2025; Dang et al., 2025). The basic structure of HHA is in Figure 1.

In Figure 1, the choice of HLH strategy is important as it immediately affects the search efficiency and
resolution quality of HHA. Therefore, the study adopts the DQN in the DRL algorithm as the HLH strategy.
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DQN is an algorithm that combines deep learning and reinforcement learning to solve reinforcement
learning problems based on value functions. The core idea of reinforcement learning is that agents learn
optimal strategies through interaction with the environment to maximize a certain cumulative reward.
Markov Decision Process (MDP) is the standard mathematical model for reinforcement learning problems.
MDP consists of state S, action q, , strategies m, reward r, and the returns. The state represents the

environmental state in which the intelligent agent is located and has Markov properties. The probability P
of a certain state occurring is calculated using Equation (5).

P[s.al s, |=P[s.| 51,008, ] (5)

In Equation (5), ¢ represents time. Action g, is the action that an intelligent agent can choose to execute in

a given state. Strategy m is the mapping of intelligent agents from state to action. Reward is the immediate
feedback obtained by an intelligent agent from the environment after performing an action, and the return
is the sum of accumulated rewards, usually considering future rewards and discounting them. The
calculation process is shown in Equation (6).

o0
_ i
Go=> 7" (6)
i=0
HLH
T T T :7‘4 N 1|
: Selection Generation | | Nature of organizational :
| policy strategy strategy |
|
R 20 T A A 2
|
I Online Offline . |
. - No learning |
| learning learning |
|

p |
i Constructor Perturbation |
| method method |

Figure 1. Schematic diagram of the basic framework of HHA.

In Equation (6), y represents the discount factor. i represents time increment. Reinforcement learning, within
the MDP framework, estimates the state action value function (AVF) by interacting with the environment,
and updates strategies accordingly to maximize expected returns. The AVF, also known as the Q function,
is expressed in Equation (7).

Q(s,a):E[rﬂ/maxaQ(s’,a')| s, =s,q, :a] (7)

In Equation (7), s’ and a’ represent the state and action at the next moment. The innovation points from
Equation (5) to Equation (7) are mainly reflected in the combination of reinforcement learning and deep
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learning to handle complex state spaces efficiently, thereby enhancing the intelligence of the decision-
making process. These Equations construct a dynamic learning framework by defining the core elements
of the MDP, including state transition probability, action selection strategy and Q-value function, enabling
agents to continuously optimize strategies in the interaction with the environment. Especially the
introduction of the Q-value update Equation (7) optimizes the value assessment of different states and
actions. By using the deep neural network to approximate the Q function, the learning rate and accuracy of
the model in the high-dimensional state space are greatly improved. The core of DQN is to use deep neural
network approximation function Q(s, a) to handle complex state spaces. The DQN algorithm framework is
shown in Figure 2.

Cost function gradient <
Gradient descent 7y ]
updates network O(s,a)
parameters
v
5 - Update network
Interactive environment Current value network parameters Target value network
4. ________
a, A A
(Sl ’ al )
(Sz’anrr’su-l) Si1 rf

Experience pool cache

Figure 2. Schematic diagram of DQN algorithm framework.

As shown in Figure 2, DQN uses an experience replay buffer to store the experience data of the agent's
interaction with the environment, namely the state action reward next state quadruple. Meanwhile, DQN
introduces the target network to calculate the target Q value, thereby stabilizing the training process. The
O function update is shown in Equation (8).

Q(St Jat ) < Q(St 'at ) + a[rt + ymaXaQ(St+1 'a') _Q(St 'at )] (8)

In Equation (8), a represents the hyperparameter learning rate. The action selection strategy is the basis for
the DQN algorithm agent to select actions in a given state, which directly affects the convergence of the
DQN algorithm. The traditional DQN algorithm adopts the e-greedy strategy to balance exploration and
utilization, but the exploration part of this strategy has strong randomness and lacks specificity, resulting in
a significant decrease in the exploration efficiency of the agent. Moreover, random exploration fails to
comprehensively cover all states. This is because it often results in agents being incapable of accessing
isolated regions, thereby causing them to overlook potentially optimal actions and substantial rewards. In
this regard, the study introduces the Upper Confidence Bound (UCB) algorithm to optimize action selection
strategies. UCB is a heuristic search algorithm that considers both the average reward of known actions and
exploration terms related to the number of times actions are selected, improving the probability of actions
being explored. Therefore, UCB sets the UCB to be composed of the estimated average return and the
exploration term, and the calculation of the UCB 4 is shown in Equation (9).
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A =argmax| Q,(a)+c )
a Nt (a)

In Equation (9), Q,(a) denotes the value estimation of the action. ¢ represents positive real number. n
indicates the total number of times an action is selected. N,(a) indicates the number of times the action

was selected before time ¢. The innovation points from Equation (8) to Equation (9) are mainly reflected in
the improved action selection strategy, in which the UCB algorithm is introduced to optimize the
exploration efficiency of the agent in DRL. Equation (8) shows the update of the O value and emphasizes
the revenue-based learning mechanism. Meanwhile, the UCB strategy in Equation (9) enhances the agent's
exploration ability in the solution space by balancing the average benefit of known actions with the
possibility of exploring unknown actions. This action selection based on UCB not only accelerates the
convergence process, but also ensures that the agent can search the solution space more comprehensively,
thereby avoiding potential local optimal solutions and improving the performance of the algorithm in
complex scheduling scenarios.

3.2 HHA Architecture Design Based on Improved LLH

After completing the construction of the multi-objective MS-RCPSP model and optimizing the DQN
algorithm, LLH optimization design is carried out for HHA. The HHA architecture for multi-objective MS-
RCPSP is shown in Figure 3.

| Im DQN
— prove DQ | |
: Sl Frts cyac I: Iterated local search |
o <=> I H |
| | I
I - — I Weigh
ghted - |
| h_> score 2 Variable | |
| | neighborh | |
: |: ood |
- descent |
I Iy Weighted
| Il score 2 :
| I
|

(Stsam’;5s,+1) r—-——— - —— ——— —— — = —— =

Mobile acceptance
strategy LLH

A

Engineering project operatin
& en%ilr)onjmentpe & Disturbance Local search

LLH LLH

Figure 3. Schematic diagram of HHA architecture for multi-objective MS-RCPSP.

As shown in Figure 3, the study introduced ILS to optimize the organization of LLH and built an
automatically designed HHA architecture. ILS is an exploratory local search method, whose core is to add
perturbations to the local optimal solution obtained by local search, and then perform local search again.
Meanwhile, by using perturbation strategies to escape from local optima and utilizing local search to search
in a new solution space, a more optimal solution can be found (Bozorgi et al., 2023; Salem et al., 2023).
ILS starts local search from the initial solution, obtains the local optimal solution, and then perturbs it to
obtain a new solution. Then it starts a new local search from the new solution and finds a local optimal
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solution again. Finally, based on the judgment strategy, it evaluates the new local optimal solution and
decides whether to accept it as the new optimal solution. This process is repeated continuously until the
termination condition is met. The search process and automatic design framework of ILS are shown in
Figure 4.
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Figure 4. Schematic diagram of ILS search process and automatic design framework.

As shown in Figure 4, the ILS process mainly includes three main stages: disturbance, local search, and
movement acceptance. The entire ILS process repeats these three stages continuously, forming different
ILS cycles. At the end of each cycle, the automatic design framework determines whether to start a new
round of ILS cycle based on the set restart conditions. The commonly used judgment criteria are shown in
Equation (10).

1 if f(s)<f(3)

f(s)-f(3)
T

p(Accept(S,s , history))= (10)

exp(— otherwise

In Equation (10), represents the probability function in simulated annealing. f

p(Accept(s, s, history))
represents the objective function. The innovation point of Equation (10) lies in its introduction of the
mechanism of dynamic restart conditions, thereby enhancing the flexibility and adaptability of ILS. This
Equation sets an evaluation criterion for the probability function in the simulated annealing algorithm,
enabling it to automatically determine whether a new ILS loop needs to be initiated when a specific number
of iterations or solution quality standards are reached. This dynamic judgment strategy promotes the
effectiveness of the parsing process, allowing the algorithm to be more targeted and adaptable during the
solution process, so as to continuously explore new solution spaces, thereby improving the quality of the
overall solution and the search efficiency. Among them, in the local search stage, the algorithm used in the
study is VND. VND is a refinement method that alternately searches in the solution space based on different
neighborhood structures to find the local optimal solution of the problem. The VND algorithm first selects
different neighborhood structures, constructs initial solutions, and sets termination criteria for the algorithm.
Then, starting from the first neighborhood structure, the algorithm performs local search based on the search
strategy defined by that structure. When a better solution cannot be found in the current neighborhood, it
switches to the next neighborhood structure to continue searching. If a better solution is found within a
certain neighborhood structure, the current solution will be updated. The operation process of VND is
shown in Figure 5.
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As shown in Figure 5, when the VND reaches the predetermined number of iterations or the quality of the
solution meets a certain requirement, the algorithm terminates and outputs the optimal solution. Finally, the
study investigated the LLH design of HHA architecture, including the design of Local Search LLH
(LSLLH), Disturbance LLH (DLLH), and Mobile Acceptance Strategy LLH. LSLLH defines 11 types of
neighborhoods, and LSLLH1 randomly inserts process codes from a string into other positions in the
sequence. LSLLH2 selects the process code in the string and randomly changes it to another machine code.
LSLLH3 adopts dual local search and combines the operations of LSLLH1 and LSLLH2 to change the
encoding. The operation process of LSLLH4 and LSLLHS5 is shown in Figure 6.

Non improving neighborhood

Neighborhood 1 v
Neighborhood 2//

Neighborhood n

Neighborhood .-~~~

—@
Multi-

objective

MS-

RCPSP
Initial

Solution

. JE

~ Improving
neighborhood

Figure 5. Schematic diagram of VND process.
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Figure 6. Schematic diagram of process code exchange and reverse operation.
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As shown in Figure 6, LSLLH4 selects two process codes from the string and swaps them. LSLLHS5 selects
the process code in the string and flips it. LSLLH6 selects the process code in the string and adjusts the
execution order of the process by moving the sub-sequence forward. LSLLH7 selects two process codes in
the string and swaps them, while changing the corresponding machine codes. LSLLH8 changes the
corresponding machine code simultaneously after operating LSLLHS. After operating LSLLH9 according
to LSLLH6, the corresponding machine code is changed simultaneously. LSLLH10 moves the process of
the machine with the highest workload to other optional machines. LSLLH11 repeatedly performs
movement operations on the LSLLH2 neighborhood until the preset stopping condition is reached. 11
neighborhoods are used to support local search in VND algorithm. Six types of DLLH were set up in the
study, and DLLH1 randomly scrambled any two process codes. DLLH2 and LSLLH4 operate similarly.
DLLH3 operates similarly to LSLLH2. DLLH4 operates similarly to LSLLH7. DLLHS requires randomly
exchanging the process codes of two jobs in pairs. DLLHG6 operates the same as LSLLHS. Finally, the study
utilized simulated annealing to design the mobile acceptance strategy LLH.

The above content indicates that the combination of the UCB algorithm and DQN can demonstrate certain
advantages in dynamic task scheduling and complex decision-making scenarios. The introduction of UCB
enables agents to effectively balance exploration and utilization when choosing actions, optimizes the
selection process of strategies, and realizes a more efficient search mechanism. By leveraging UCB, agents
can not only make choices among known high-yield actions, but also intelligently explore unknown areas,
providing opportunities for potential optimal solutions. This integration is capable of enhancing the
convergence rate and solution quality of the DQN. It circumvents the issue of inadequate randomness
inherent in conventional exploration strategies, thereby augmenting the algorithm's adaptability and
efficiency within multi-skill resource-constrained PS scenarios. Consequently, the algorithm demonstrates
heightened robustness and flexibility when confronted with complex problems.

4. Efficiency Evaluation and Application Effect Examination of Improved HHA Algorithm
To confirm the validity of the improved HHA algorithm designed for solving multi-objective MS-RCPSP
models, efficiency evaluation and application examination experiments were conducted, and the
experimental results were discussed.

4.1 Improved HHA Algorithm Performance Testing

Firstly, a performance comparison analysis of the HHA algorithm was conducted. The experiment was
based on the Windows 10 operating system, with an Intel Core 15-4200 4-core processor and a 2.50GHz
clock speed. The image processor was GTX1080, the deep learning framework was Pytorch 1.7, and the
programming language was Python 3.8. The dataset used in the experiment included intelligent Multi-
objective PS Environment (iMOPSE) and PS Problem Library (PSPLIB). The iMOPSE dataset is a
specialized dataset for multi-objective PS problems, which includes PS instances of various scales and
complexities. The PSPLIB dataset covers different project sizes, resource types, and constraints, and can
be extended to test the performance of the MS-RCPSP algorithm. The comparative algorithms included
MCHHA from reference (Xu et al., 2025), ABC-HHA from reference (Deliktas and Aydin, 2023), SLHHA-
GA from reference (Li et al., 2024), and EDA-HH from reference (Zhao et al., 2023).

Firstly, the convergence characteristics and solving efficiency of different algorithms were compared, and
the experimental results are shown in Figure 7. Figure 7 shows the convergence trend of the proposed
super heuristic algorithm under different iterations. In the experiment, with the increase of the number of
iterations, the value of the objective function of the algorithm gradually decreased, showing good
convergence. Especially within the first 50 iterations, the convergence speed was relatively fast, which
indicated that the algorithm could quickly find a better solution in the initial stage. Next, although the
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convergence rate slowed down somewhat, it remained stable and finally reached the lowest value of 0.31
after the 100th iteration. This trend not only proved the effectiveness of the algorithm, but also indicated
that feasible optimization schemes can be found in a relatively short period of time, providing reliable
support for the scheduling of engineering projects.
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Figure 7. Comparison of loss value and computational efficiency.

The results of Hypervolume (HV) and Inverse Generative Distance (IGD) for different HHAs are in Figure
8. The multi-objective optimization results shown in Figure 8 demonstrate the balancing ability of the
algorithm when solving multiple objective functions. In this figure, the horizontal axis represents different
goals, while the vertical axis represents the corresponding optimization values. It can be observed that the
super heuristic algorithm achieved a good trade-off between the two goals of HV and inverse generation
distance. Especially in the index of HV (0.906), it indicated that the algorithm could find a relatively
uniform distribution in a wide solution space. This indicated that through reasonable strategy design, the
algorithm not only focused on a single objective but also effectively took into account multiple other
objectives, which was conducive to achieving overall optimization.
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Figure 8. Comparison of IGD and HV indicators for various algorithms.

The evaluation results of the distribution of various HHA solutions are in Figure 9. Improved DQN-LLH
performed well in Uniformity Performance (UP) evaluation, with a maximum UP value of 0.945 after 50
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iterations of solving. However, the UP values of MCHHA, ABC-HHA, SLHHA-GA, and EDA-HH only
reached 0.844, 0.769, 0.828, and 0.824. The improved DQN-LLH algorithm designed for the MS-RCPSP
problem did not tend towards certain specific regions during the search process, and could explore the
solution space more comprehensively. In Figure 9(b), there were significant differences among different
HHAs in solving the Spacing Performance (SP) evaluation. The improved DQN-LLH had the smallest SP
distribution range, with a minimum SP value of only 0.131. The improved DQN-LLH performed well in
various situations in the MS-RCPSP problem. In terms of the uniformity index, the high score performance
reflected that the algorithm could effectively avoid the clustering phenomenon when exploring the solution
space and ensure the diversity of the solutions. This feature is particularly important in PS with severe
resource constraints, avoiding the decline in solution quality caused by local optimality.

To verify the influence analysis of experimental parameters on the model, the study set different parameters
and made comparisons. The selection of the learning rate ranged from a smaller 0.01 to a larger 0.5 to
explore the impact of different update speeds on the convergence of the model and ensure a more detailed
and comprehensive search process. The setting of the discount factor (y) took into account the importance
of future rewards and was set at 0.9 and 0.95, enabling the algorithm to effectively balance long-term
benefits and short-term benefits when optimizing the current decision. The variation of the exploration
strategy parameter (c) further enhanced the flexibility of the model in different choices, enabling the agent
to achieve a more effective balance between known results and new opportunities. The results are shown
in Table 1. Table 1 shows the influence of different parameter Settings on the model performance, which
is specifically reflected in indicators such as the final loss value, inverse generation distance (IGD), HV,
and uniformity performance (UP). When the learning rate varied from 0.01 to 0.1, the performance of the
model improved significantly. Especially when the discount factor (y) increased to 0.95 and was combined
with appropriate exploration strategy parameters (c), both the final loss value and IGD decreased
significantly, indicating that the convergence of the model and the quality of the solution improved. For
example, when the learning rate was set to 0.01, y was 0.95 and ¢ was 3, the final loss value dropped to
0.265 and the IGD reached 0.328, which indicated that the effect of this parameter combination was optimal.
Meanwhile, the changes in p-values also showed significant differences in model performance under
different parameter Settings. The p-values of multiple combinations were lower than 0.05, indicating that
the influence of these Settings on model performance was statistically significant. These analysis results
provided a strong empirical basis for the subsequent optimization of model parameters and the improvement
of scheduling efficiency.
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Figure 9. Comparison of SP and UP values of algorithms.
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Table 1. The influence results of different parameters on the model.

Parameter setting Final loss value IGD HV Up p value
Learning rate=0.01, y=0.9, c=1 0.320 0.356 0.885 0.912 0.032
Learning rate=0.01, y=0.9, c=2 0.290 0.342 0.895 0.925 0.028
Learning rate=0.01, y=0.9, c=3 0.270 0.335 0.900 0.930 0.025
Learning rate=0.01, y=0.95, c=1 0.315 0.360 0.880 0.910 0.030
Learning rate=0.01, y=0.95, c=2 0.285 0.345 0.893 0.920 0.026
Learning rate=0.01, y=0.95, c=3 0.265 0.328 0.905 0.935 0.023
Learning rate=0.1, y=0.9, c=1 0.340 0.374 0.875 0.905 0.042
Learning rate=0.1, y=0.9, c=2 0.315 0.352 0.888 0.912 0.040
Learning rate=0.1, y=0.9, c=3 0.300 0.340 0.895 0.925 0.039
Learning rate=0.1, y=0.95, c=1 0.335 0.365 0.883 0.915 0.041
Learning rate=0.1, y=0.95, c=2 0.310 0.351 0.878 0.918 0.037
Learning rate=0.1, y=0.95, ¢=3 0.280 0.330 0.892 0.930 0.036
Learning rate=0.5, y=0.95, c=1 0.380 0.401 0.865 0.895 0.055
Learning rate=0.5, y=0.9, c=2 0.355 0.385 0.872 0.902 0.053
Learning rate=0.5, y=0.9, c=3 0.330 0.375 0.878 0.910 0.050
Learning rate=0.5, y=0.95, c=1 0.370 0.395 0.870 0.900 0.052
Learning rate=0.5, y=0.95, c=2 0.345 0.382 0.865 0.905 0.047
Learning rate=0.5, y=0.95, c=3 0.320 0.370 0.872 0.912 0.045

4.2 Analysis of the Engineering Application Effect of Improving HHA Algorithm

Taking a large-scale infrastructure construction project in China as an example, the project included
multiple sub-tasks and activities such as design, procurement, construction, and commissioning, each of
which required specific types of resources and skills to complete. The project mainly consisted of 20 main
tasks, each with a duration ranging from a few days to several months, depending on the complexity of the
tasks and the required resources. The project was equipped with sufficient manpower, equipment, and
materials, subject to constraints such as timing, resources, skills, and others.

The comparison of C-metric and Knee driven dissimilarity (KD) metrics for various algorithms is shown
in Figure 10. In Figure 10(a), the improved DQN-LLH performed well in the task scheduling process with
a significant advantage over other methods in terms of the C-metric metric, with a maximum value of 0.954.
High coverage means that the research design method could cover more solution space, increasing the
possibility of accessing more solutions. As shown in Figure 10(b), the algorithm performed well in KD
values, with a minimum value of only 0.167, and the solved set could cover the inflection points of possible
solutions well. The results showed that this algorithm had a prominent efficiency performance when
optimizing the PS problem. The method proposed in the research could greatly improve the response speed
of decision-makers and help project managers make more reasonable scheduling decisions in a timely
manner.

The analysis of the Constraint Violation Degree (CVD) and Solution Set Entropy (SSE) of different
algorithms on the MS-RCPSP problem is shown in Figure 11. As shown in Figure 11(a), the improved
DQN-LLH had the smallest CVD value during the solving process, fluctuating within the range of 0.1-0.25.
The CVD values of other algorithms were all higher than 0.25. CVD measures the degree to which the
solution set generated by the algorithm violates constraint conditions, indicating that the design of the study
satisfies constrained scheduling optimization. Meanwhile, as shown in Figure 11(b), the SSE values of the
improved DQN-LLH fluctuate at the highest level, indicating good diversity in the solution set. The results
showed that during the entire optimization process, the values of constraint violations remained within a
very low range, proving that it had a high degree of reliability when dealing with the scheduling problem
of resource constraints. This good control of constraints enabled the final output solution to not only meet
the feasibility requirements but also conform to various restrictive conditions in the actual project execution.
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Figure 10. Coverage metrics and KD for different algorithms.

Finally, the project schedule deviation and algorithm success rate of different algorithms in engineering
management scheduling were analyzed, as shown in Figure 12. As shown in Figure 12(a), the deviation
between the scheduling results of the improved DQN-LLH algorithm designed for research and the ideal
shortest duration was the smallest, less than 0.15. In contrast, the deviation fluctuation range of other
methods was too large, and the algorithm's effectiveness in optimizing project duration was insufficient. In
Figure 12(b), the success rate of the improved DQN-LLH algorithm was the highest, reaching over 0.90.
The proportion of successfully finding feasible solutions in multiple runs was relatively high, indicating
good stability. The results showed that the set optimization strategy and algorithm design had good
robustness and stability, and could maintain a high problem-solving ability in numerous complex
scheduling instances. This result not only highlighted the potential of the algorithm in practical applications,
but also provided project managers with confidence when facing the ever-changing project environment.
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Figure 11. Comparison of CVD and SSE of different algorithms.

To further verify the universality of the improved DQN-LLH model, the study analyzed the model through
actual engineering application scenarios. The experiment selected the cross-sea tunnel project in the
Guangdong-Hong Kong-Macao Greater Bay Area as the verification case. This case included 120
construction tasks (earthwork excavation, support structure, mechanical and electrical installation, etc.),
which had typical characteristics of multi-stage collaboration and dynamic allocation of multi-skill
resources. The comparison algorithms included Non-dominated Sorting Genetic Algorithm III(NSGA-III),
Multi-Objective Evolutionary Algorithm based on Decomposition with Differential Evolution (MOEA/D-
DE), and Deep Reinforcement Learning Algorithm for Scheduling (DRLA-Schedule). The evaluation
indicators were analyzed by using the project duration deviation rate (AT), total cost deviation rate (AC),
convergence time and task scale expansion rate. The results are shown in Table 2.
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Figure 12. Comparison between project duration deviation and scheduling success rate.

Table 2 shows the performance of different algorithms in the practical application of cross-sea tunnel
projects in the Guangdong-Hong Kong-Macao Greater Bay Area. The results showed that the improved
DQN-LLH model performed well in both AT and AC, which were 1.28% and 2.15% respectively. Both
were significantly superior to other comparison algorithms, such as NSGA-III (AT was 4.79%, AC was
5.62%) and MOEA/D-DE (AT was 3.95%, AC was 4.33%). Furthermore, the improved DQN-LLH also
demonstrated significant advantages in terms of convergence time, taking only 856 seconds, which was
lower than that of NSGA-III (1245 seconds) and MOEA/D-DE (1520 seconds), showing its potential in
more efficient resource allocation and rapid scheme generation. Meanwhile, its task scale expansion rate
reached 12.7%, further highlighting the scalability of the improved DQN-LLH in dealing with complex PS.
This indicated that the model had strong universality and practicability, providing an effective scheduling
solution for practical engineering.

Table 2. The application effects of different algorithms in real cases.

Algorithm AT (%) AC (%) Time (s) Scalability (%)
CPLEX 0 0 21850 N/A
Improve DQN-LLH 1.28 2.15 856 12.7
NSGA-III 4.79 5.62 1245 34.8
MOEA/D-DE 3.95 433 1520 28.3
DRLA-Schedule 2.14 3.02 932 18.5

5. Conclusion

To achieve optimal scheduling of the project, improve project execution efficiency, reduce costs, and ensure
timely delivery, the improved DQN was studied as the HLH strategy and LLH was optimized to construct
the MS-RCPSP super heuristic algorithm. The experiment outcomes indicated that the improved DQN-
LLH algorithm exhibited the fastest convergence speed, with a computation time of 32.16 seconds. In
addition, the lowest IGD value converged to 0.254, the maximum HV value reached 0.906, the highest UP
value reached 0.945, and the SP distribution range was the smallest. In practical application, the C-metric
and KD indicators of the algorithm performed well, with a maximum C-metric value of 0.954 and a
minimum KD value of only 0.167. Meanwhile, the algorithm performed well in solving the MS-RCPSP
problem with CVD and SSE values, satisfying constrained scheduling optimization. In the end, the
algorithm designed for research had the smallest deviation between the scheduling results and the ideal
shortest duration, and had the best stability in multiple runs. This study aimed to optimize resource
scheduling in engineering management, reduce project costs and time consumption, improve overall project
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efficiency, and promote sustainable development in the construction industry. However, the research design
failed to fully consider various uncertain factors that might be encountered in actual engineering projects,
such as the sudden shortage of resources and the dynamic adjustment of task priorities, which might affect
the applicability and robustness of the model. In future research work, the study will enhance the
adaptability and accuracy of the model by introducing more advanced machine learning techniques and big
data analysis methods. For example, by combining graph neural networks with reinforcement learning, the
complex relationships and dynamic changes among resources can be explored, thereby providing more real-
time decision support. Additionally, the impact of incorporating uncertain factors during the scheduling
process will be taken into account. These uncertain factors encompass changes in task priorities and
fluctuations in resource availability. The objective is to augment the practicability and robustness of the
model.
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