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Abstract 

Accurate localization of sensor nodes within precision agriculture applications is a critical component in Wireless Sensor Network 

(WSN)-assisted Internet of Things (IoT) networks. The presence of environmental noise, terrain irregularities, and data anomalies 

degrades the performance of the existing 3D localization techniques. This article presents a novel hybrid 3D localization scheme 

that integrates Particle Swarm Optimization (PSO), Random Forest (RF)-based anomaly detection, and trilateration refinement to 

enhance localization accuracy, energy efficiency, and scalability in smart agriculture (SA) environments. The proposed scheme 

proceeds in three phases, i.e., initial node position estimation using RSSI-based path-loss modelling, machine learning (ML)-based 

anomaly detection and filtering of Received Signal Strength Indicator (RSSI) data, and PSO-based global optimization followed 

by trilateration for fine-tuning. Based on the simulation experiments for several scenarios, the proposed hybrid approach renders a 

robust and scalable solution for accurate node localization in WSN-assisted IoT (WIoT) networks for smart agriculture. It attains 

low localization errors at 1.2 meters, with energy consumption abridged to 8–10 J and computation time under 0.5 seconds, outdoing 

the state-of-the-art. 

 

Keywords- WSN-assisted IoT, Localization, Anomaly detection, PSO, Agriculture. 
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1. Introduction 
The IoT and WSNs have merged to modernize the agriculture sector. These technologies enable humankind 

to manage resources efficiently and collect real-time data to operate them efficiently. The WIoT networks 

are built of devices and sensor nodes, which are required to localize for efficient data transmission. Finding 

the coordinates of the sensor node is called localization. Finding the exact location of the node is challenging 

because of dynamic environmental conditions, high energy consumption due to inefficient resource usage 

and the potential for node failure. This impacts efficient decision-making and results in high energy 

consumption. 

 

By accurately localizing the sensor node, various agricultural applications benefit from and are advanced 

with technology. Applications like precision farming, pesticide usage and control, irrigation management 

and automation, crop health monitoring, crop harvesting, and livestock management have become more 

easily manageable if we apply the correct techniques for sensor node localization (Zhang et al., 2024). 

Various environmental factors create problems and hindrances in accurately localizing the node's position. 

These obstacles are sometimes some physical objects and occasionally extreme weather conditions. Such 

issues impact the signal quality, such as multipath propagation and signal attenuation, resulting in high 

energy consumption. The exhausted node dies soon and affects the overall performance of the network. 

Hence, there occurs the requirement for advanced localization methods as conventional localization 

techniques are not able to deal with the mentioned issues. 

 

Finding the 3D location of sensor nodes in a WIoT network is much more challenging.  Because of the 

adverse environmental conditions, it becomes tough to find the exact distance among the nodes as the 

obstacles create interference with the signal (Survase et al., 2024). Again, the effectiveness of traditional 

localization schemes such as trilateration becomes weak when it is used for large-scale deployment, where 

the noisy data and computation increase (Yinjun, 2024). To solve the mentioned issue, the proposed 

approach has combined trilateration with an ML-based anomaly detection technique for localization, which 

uses PSO for location estimation.  

 

Once the data is gathered, it is not always perfect. It contains various anomalies. It is crucial to remove 

those anomalies (Tan & Wong, 2024) and the RF technique is applied for the same. Further, we must refine 

the location coordinates as they are initial estimates and lack the required precision. For this refinement, 

we have used the trilateration technique and PSO algorithm for further enhancement to improve the location 

estimation. 

 

The proposed work is specifically developed for the 3D scenario of SA. This approach will improve the 

localization accuracy, computational complexity and efficient usage of the resources for large-scale 

environments (Wang et al., 2025). The proposed scheme is also capable of real-time monitoring of 

agricultural resources and crops. The developed system is scalable, reliable, more accurate and energy-

efficient for the advanced applications of agriculture practices. This research is broadly oriented to dealing 

with environmental noise issues in 3D agriculture scenarios and energy-efficient resource management by 

combining PSO, RF-based anomaly detection, and trilateration techniques (Arjun et al., 2025). 

 

This research introduces a novel localization approach that integrates three complementary methods: PSO 

for generating initial position estimates, a random forest algorithm to detect and eliminate anomalous RSSI 

readings, and trilateration for refining positional accuracy. The proposed approach works with a tri-layer 

framework and effectively handles the noisy and dynamic environment. The designed approach can boost 

the network's overall performance by enhancing localization accuracy and network reliability and 

supporting scalability in the WIoT-based SA environment. 
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1.1 Research Contribution 
The notable contribution to WIoT localization in SA is as follows: 

(i) The proposed work develops a scheme that utilizes PSO to estimate the node position. We have used 

RF anomaly detection and trilateration refinement to filter the noisy RSSI values for localization 

accuracy. 

(ii) The proposed work resolves the environmental noise and computational complexity, further enhancing 

the localization accuracy in the changing environment of SA. 

(iii) Combining anomaly detection and optimization techniques collectively ensures energy conservation 

and computational efficiency for large-scale deployment in resource-constrained environments. 

(iv) A hybrid approach that maintains scalability and is suitable for large-scale networks in innovative 

agriculture applications achieved high localization accuracy. 

 

1.2 Structure of the Article 
The sections of the article are as follows: Section 1 is about the introduction of WIoT, localization, ML 

techniques and, SA and how they all are helpful when collaborated, Section 2 outlines the literature survey 

for the proposed scheme. Section 3 produces the problem statement, while Section 4 presents the 

methodology of the proposed scheme. Section 5 is about the mathematical model, followed by Section 6, 

which discusses the simulation framework and parameters. Section 7 demonstrates the results and 

discussions. Section 8 provides insight and implications of the proposed work. Section 9 concludes the 

article along with the future scope. 

 

2. Literature Survey 
Integration of IoT with WSNs has completely transformed the world of agriculture by ensuring that the 

environment is adequately monitored, tracking environmental conditions, collecting real-time data, and 

making data-driven decisions. The precise location of the sensor nodes is essential here, as it allows other 

activities to run efficiently within the network. In this work, we examined the methods and techniques 

related to 3D localization in WIoT applications, which majorly target methods like metaheuristics, 

trilateration, and ML methods for anomaly detection (Singh & Mittal, 2021). 

 

2.1 Traditional Localization Methods 
The localization methods can be classified into two broad categories: range-based and range-free. The 

range-based method calculates the distance between two nodes using techniques like arrival time, angle of 

arrival, and signal strength. The range-based method usually uses the trilateration approach, which 

estimates the node's position by intersection points of spheres that move near the known location of three 

or more reference nodes (Ahmad et al., 2024). Trilateration is a simple and intuitive method to calculate the 

node position. Still, the dynamic behaviour of agriculture, noisy data, and physical distraction does not 

allow the trilateration method to achieve precise location. On top of that, it relies entirely on exact location, 

which is impossible with a large-scale set-up where distraction is quite possible in any format (Rose et al., 

2020). 

 

Multilateration is the next upper version of trilateration, using more reference nodes to improve position 

accuracy. However, it still suffers from physical distraction and huge computation problems in large-scale 

areas. Additionally, these conventional methods face limitations with the dynamic behaviour of agriculture, 

where parameters like soil moisture, rainfall, humidity, and temperature change rapidly, directly impacting 

signal propagation (Malivert et al., 2023). 
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2.2 Metaheuristics for Localization 
To solve the drawbacks of the old localization methods, we have introduced advanced metaheuristic 

optimization techniques, which will improve the efficiency and accuracy of the localization algorithm. 

Metaheuristic methods are most popular because they adequately respond to WIoT networks. They can find 

suboptimal solutions efficiently and optimize network parameters and complex search spaces (Khalil & 

Saeed, 2024). PSO is the most popular optimization technique widely used for localization in WIoT 

networks. PSO is a population-based optimization technique that models the collective behaviour of 

particles (agents) to identify optimal solutions within a search space (Mohammed et al., 2025).  

 

Generally, PSO is used in localization algorithms for estimating the initial position of nodes, where it tries 

to mitigate the noisy data and improves the accuracy of estimates (Lee et al., 2023). PSO is found very 

suitable for reducing localization errors, but to improve accuracy further, it is essential to refine the errors 

in some real-time scenarios combined with trilateration and PSO techniques, localization accuracy and 

computational efficiency (Sattibabu et al., 2025). 

 

2.3 Machine Learning for Anomaly Detection 
Real-time applications like agriculture suffer from various challenges due to dynamic conditions. As these 

factors impact the RSSI value, hampering the distance estimation, sole localization techniques are not 

sufficient (Waqas et al., 2025). Environmental noise increases the localization error and impacts the location 

accuracy. The ML techniques provide advantages through clustering and classification techniques on 

anomalous data to reduce localization error (Hassan & Alharbi, 2024). The RF technique is an appropriate 

technique for anomaly detection in WIoT networks (Hnaien et al., 2025).  

 

The RF technique identifies the underlying patterns by classifying the data points for efficient decision-

making. The classification is done by filtering noise from RSSI values. The RF model is trained using 

historical data and contextual environmental factors. This classification and improvement enhance the 

accuracy of distance estimation. The incorporation of ML techniques and localization algorithms is highly 

capable of improving accuracy (Naeem et al., 2025). The integration of optimization techniques with ML 

and localization techniques provides potential outcomes for localization in 3D environments (Yadav & 

Sharma, 2023b).  

 

2.4 Challenges in Smart Agriculture 
The dynamic nature of the environment gives rise to many challenges to localization in WIoT for Smart 

SA. Factors such as physical obstructions, including trees, buildings, vegetation, and weather conditions, 

can create obstacles and degrade the signal strength, leading to localization inaccuracy. Moreover, larger 

agricultural land requires extensive monitoring, which adds more complexity for localization. Recent 

research has shown that to resolve these larger-scale issues, multiple goal-driven approaches are designed 

to work well in a resource-constrained and dynamic environment (Omari et al., 2024). 

 

In a WIoT environment, the "Energy efficiency" parameter is crucial for sensor nodes regarding 

localization. As IoT devices are battery-operated, energy consumption becomes the primary factor and has 

become the most considered point for recent studies (Sowmya et al., 2025). A hybrid approach can resolve 

these issues by combining metaheuristics, ML, and data filtering techniques. This combination can enhance 

localization accuracy, handle the complexity of a larger network lifespan, and optimize energy usage. 

 

Numerous studies on 3D Localization in WIoT for Smart Agriculture (SA) have incorporated multiple 

methods that improve scalability, reduce energy consumption, and enhance accuracy (Saqhib & 

Lakshmikanth, 2025). Earlier methods like trilateration were widely used; however, they were not good 
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enough to handle dynamic behaviour and noisy data. Metaheuristic techniques, such as PSO, have been 

applied to refine node estimation but struggle to obtain optimal accuracy. Moreover, integrating machine 

learning methods, particularly random forest-based anomaly detection, can help filter noisy data and 

strengthen network reliability (Yadav & Sharma, 2023a). 

 

We developed an optimized hybrid 3D scheme incorporating PSO, trilateration, and RF anomaly detection 

techniques. This work is proposed to face the challenges raised by resource constraints, noise, and large-

scale deployment in SA. The fusion of ML with metaheuristics techniques tackles the issues like resource 

constraints, scalability, and energy efficiency. Also, it enhances localization accuracy, a key requirement for 

real-world IoT applications in agriculture. Table 1 overviews various localization techniques for SA in 

WSN and IoT networks. 

 
Table 1. Survey of hybrid 3D localization techniques for WIoT in smart agriculture. 

 

Method/Technique Description Key findings/Contributions Challenges addressed Application/Use case 

Improved 

Trilateration with 
K-Means 

Clustering (Luo et 

al., 2022) 

A novel trilateration 

approach enhanced with 
anchor node combination 

and K-Means clustering 

to reduce the positioning 
errors . 

Proposed a trilateration 

algorithm that utilizes anchor 
node combinations and K-

Means clustering to remove 

significant errors and 
improve accuracy in LOS 

and NLOS environments. 

Environmental noise, 

anchor node uncertainty, 
optimization of 

positioning accuracy in 

diverse environments. 

Tested in indoor, outdoor, 

and hall environments; 
applicable to agriculture 

and IoT-based intelligent 

systems. 

Efficient 
Trilateration 

Algorithm Based on 

RSS (Matharu & 
Buttar, 2016) 

A beacon-based 
distributed algorithm 

using RSS for 3D 

localization via 
trilateration. 

Proposed a distributed 
trilateration algorithm using 

RSSI value to achieve 

accuracy in 3D localization. 

Environmental noise, 
efficient computation of 

3D positions, reducing 

localization error. 

Accurate localization of 
blind nodes in WSNs for 

SA  

Trilateration  (Paul 

& Sato, 2017) 

A traditional range-based 

method for location 

estimation in a 3D 
scenario using the 

intersection of spheres 

centred on known 
reference nodes.  

Trilateration for node 

localization in WSNs, but 

highlighted challenges due to 
environmental noise. 

Environmental noise, 

interference, signal 

distortion. 

Used in general WSNs for 

various applications for 

outdoor environments. 

Hybrid PSO and FF 

Algorithms 
(Arul & Jebaselvi, 

2023) 

A hybrid approach that 

combines PSO and 
Firefly Optimization to 

reduce localization 

errors. 

Proposed hybrid iterations 

(PSO + FF, GA + FF) to 
enhance localization 

accuracy and efficiency.  

localization errors, 

improving accuracy and 
efficiency, robustness in 

complex environments. 

Environmental monitoring, 

surveillance, healthcare, 
and other real-world WSN 

applications. 

PSO-ELM  
(Wanqing et al., 

2024) 

Combines PSO and ELM 
to optimize RSSI 

fingerprinting 

localization with PSO to 
enhance ELM. 

Demonstrated that PSO-ELM 
reduces localization mean 

error and improves 

positioning accuracy. 

Noise in RSSI data, 
improving accuracy of 

fingerprint matching, 

computational 
optimization. 

Indoor Localization for 
high-accuracy positioning 

in environments like smart 

homes or warehouses. 

PSO 

(Gopakumar & 

Jacob, 2008) 

A metaheuristic 

optimization algorithm 

that simulates particle 

social behaviour to find 

optimal positions. 

PSO is applied for the initial 

position, minimizing the 

impact of noisy 

measurements.  

Noisy measurements, 

large-scale WSNs, and 

high computational cost. 

Innovative agriculture 

applications for large-scale 

WSNs with the need for 

accurate positioning. 

Hybrid PSO and 

Trilateration 

(Fute et al., 2022) 

A hybrid approach that 

combines PSO with 

trilateration to refine 
initial estimates and 

improve localization 

accuracy in WSNs for 
agriculture. 

Demonstrated that combining 

PSO with trilateration 

improves the accuracy of 3D 
localization. 

Inaccurate initial 

estimates are needed for 

the iterative refinement 
of positions. 

Used in precision 

agriculture where accurate 

3D localization is required 
for sensor placement. 

RF for Anomaly 

Detection 

(Pachauri & 
Sharma, 2015) 

A ML technique for 

detecting anomalies 

RSSI values to mitigate 
noisy data. 

RF filters noisy RSSI values, 

improving localization 

reliability in dynamic 
environments.  

Noisy data, signal 

distortion, outliers in 

RSSI values. 

Anomaly detection in SA is 

used to reduce localization 

errors and environmental 
disturbances. 
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Table 1 continued… 
 

Energy-Efficient 

localization 

(Jawad et al., 2017) 

Focusing on minimizing 

energy consumption in 

localization algorithms 
to enhance the lifespan 

of WSN nodes. 

Proposed energy-efficient 

localization techniques, 

ensuring a balance between 
accuracy and energy 

consumption in large-scale 

WSNs. 

Energy consumption, 

battery-powered nodes, 

resource constraints in 
SA. 

Energy-efficient methods 

in SA for large-scale 

deployments of WSNs. 

3D localization 

with Metaheuristic 

Algorithms 
(Niranjan et al., 

2024) 

Use of advanced 

metaheuristic algorithms 

to solve the 3D 
localization problem, 

optimizing the search 

space.  

Metaheuristic algorithms for 

3D localization show 

positioning accuracy, 
scalability, and 

computational efficiency 

improvements. 

Complex search spaces, 

large-scale deployments, 

ensuring accurate 3D 
localization. 

3D localization in SA to 

optimize sensor network 

placement and enhance 
resource allocation. 

ML-Driven 
Localization for SA 

(Singh et al., 2024) 

Integrating ML 
algorithms for precise 

Localization in 

agriculture. 

Explored ML techniques and 
fusion technologies to 

enhance localization 

accuracy for real-time 
monitoring challenges. 

Localization accuracy, 
energy efficiency, 

scalability, robustness in 

dynamic agricultural 
conditions. 

Applications in SA, 
including precision 

farming, livestock 

management, and crop 
monitoring. 

Hybrid 

Metaheuristics for 
SA 

(Sharma & 

Tripathi, 2022) 

Combining 

metaheuristics (e.g., 
PSO, Genetic 

Algorithms) with ML 

techniques to create 
hybrid frameworks for 

robust 3D localization in 

agriculture. 

Proposed a hybrid approach 

using PSO and Genetic 
Algorithms with ML for 

localization, ensuring 

accuracy and energy 
efficiency in agricultural 

environments. 

Dynamic environments, 

large-scale deployments, 
energy efficiency, and 

noise handling. 

Hybrid approaches in IoT-

based SA to handle 
complex, dynamic 

environments and ensure 

efficient operations. 

Real time 

agriculture 

application 
(Obaideen et al., 

2022) 

simulated a real-time 

agriculture application 

for an automated 
irrigation scenario. 

Demonstrated an intelligent 

irrigation system that 

automates water delivery 
based on real-time soil and 

environmental data. 

Resource optimization, 

real-time monitoring, 

automated control in 
agriculture. 

Case study showcasing 

automated irrigation; 

relevant for validating 
smart agriculture 

localization frameworks. 

Weighted 

Correction-Based 
Localization(Chang 

et al., 2024) 

Simulated a real-time 

smart agriculture system 
for automated irrigation 

using IoT and sensor 

data analytics. 

Demonstrated an intelligent 

irrigation system that 
automates water delivery 

based on real-time soil and 

environmental data. 

Resource optimization, 

real-time monitoring, 
automated control in 

agriculture. 

Case study showcasing 

automated irrigation; 
relevant for validating 

smart agriculture 

localization frameworks. 

 

2.5 Identified Research Gaps 
Although many advancements have been made in localization techniques and their application in WIoT for 

monitoring agriculture, few gaps remain in this field. Existing methods cannot deliver accurate results in 

dynamic, heterogeneous environments that fail to resolve real-time variations and interference. ML is used 

for data analysis and error detection, but when ML is combined with the localization method, it gives more 

benefits that remain unutilized. Hybrid approaches, such as integrating Conventional with ML and other 

advanced techniques that could improve accuracy and adaptability, remain undiscovered and require 

vertical drop. 

 

Data transmission and processing require a large amount of energy consumption in the localization method, 

so parameter energy efficiency is always a crucial challenge in WIoT. Moreover, many algorithms suffer 

from real-time processing capabilities, limiting their applicability in large-scale or dense sensor networks 

and scalability. Specially designed localization methods for tracking activities such as pest detection, asset 

tracking, and crop monitoring remain underdeveloped, even after they have their unique requirements. Prior 

scholarly work has done much research in solving issues like localization accuracy, often overlooking other 

critical factors like robustness to noise, computational time, and energy consumption. Moreover, studies 

mainly depend upon simulations, which do not meet the requirement of real-world complexities like 

dynamic obstacles and network obstructions. Recent studies have also shown that no deep attention has 

been paid to the energy-efficient parameter, which is essential even after integrating with agricultural 



Singh et al.: Hybrid Optimized 3D Localization for WSN-Assisted IoT Networks in Smart … 
 

 

1973 | Vol. 10, No. 6, 2025 

technologies like pest control and automated irrigation. To fulfil the modern demands for WIoT, agricultural 

activities must first resolve the prevailing issues and then design a robust technology fit for scalability, 

sustainability, efficiency, and accuracy. 

 

Despite recent progress in WIoT localization techniques, several research gaps persist. Existing methods 

lack robustness against environmental noise, dynamic obstacles, and terrain variation—conditions 

commonly encountered in real-world agricultural deployments. Many models fail to simultaneously 

optimize for localization accuracy, energy consumption, and computational complexity. Furthermore, while 

ML has shown promise for anomaly detection, its integration with optimization-based localization 

techniques remains underutilized. Hybrid solutions involving data-driven filtering and metaheuristic 

optimization are still in early stages of development. There is also a lack of practical implementations that 

validate simulation models through field trials in diverse topographical conditions. Our proposed 

framework addresses these shortcomings by introducing a three-layered hybrid model tailored for SA’s 

unique challenges. 

 

3. Problem Statement 
For innovative agriculture applications, monitoring the environment and collecting accurate real-time data 

are necessary. It is challenging to calculate the precise location of the node in such scenarios. The 

environmental noise affects the RSSI value, resulting in low accuracy. Conventional localization techniques 

have low performance as they have high computation costs. The traditional methods are also less suitable 

for large WIoT networks and are less efficient in managing energy consumption during data transmission 

among the nodes. Most of the time, the data collected through the WIoT nodes are erroneous. Removing or 

mitigating anomalies is crucial for efficient localization via position estimation. To address the challenges 

of anomalies, localization error, and energy consumption, we proposed a hybrid optimized 3D localization 

scheme in a WIoT network for SA. 

 

4. Methodology of Proposed Work 
Figure 1 shows the methodology of the proposed scheme, which proceeds in the following steps: 

 

(i) Data Acquisition: The RSSI values are acquired through sensor nodes along with timestamps and 

provided as the input for the following process for location estimation. 

(ii) Localization Techniques: The PSO and trilateration techniques are used to estimate the location of the 

nodes, minimize the location error, and refine the estimated position.  

(iii) Anomaly Detection: The RF reduces anomalies in the RSSI data. These anomalies are generated by 

environmental noise and hardware failures. The process of anomaly detection is essential as it enhances 

Localization accuracy because erroneous inputs are highly prone to increasing errors. 

(iv) Evaluation: The proposed scheme is evaluated using parameters viz localization error, energy 

consumption, scalability and convergence time in three scenarios of SA: crop monitoring, pest 

detection, and asset tracking. 
 

 
 

Figure 1. Proposed methodology. 
 

In the PSO optimization process, the initial positions of unknown sensor nodes are assigned using a uniform 

random distribution within the defined 3D space. This approach ensures that the particles are systematically 

spread across the search space as the optimization begins. It also enhances the likelihood of converging 
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toward the global optimum. To prevent particles from moving outside the valid region, boundary constraints 

are applied during iterations. To balance exploration and algorithmic simplicity, we didn’t use heuristic-

based initialization, as uniform random seeding can balance it. 

 

We selected the RF algorithm for anomaly detection as it is robust and efficient in handling noisy, non-

linear, and high-dimensional RSSI data. Unlike other classifiers like Support Vector Machines (SVM), K-

Nearest Neighbors (KNN), or decision trees, RF minimizes overfitting through ensemble averaging, 

requires minimal hyperparameter tuning, and provides high classification accuracy for noisy input data. 

Due to the feature of fast inference, the RF algorithm is also suitable for real-time IoT applications in SA. 

Its feature importance capability further helps in understanding environmental factors contributing to 

anomalies. 

 

This study operates under several practical assumptions, including the static position of sensor nodes after 

deployment and prior knowledge of the path-loss exponent for each terrain type. The RSSI values are 

modelled using Gaussian noise to simulate environmental interference. In real-world deployments, factors 

such as terrain heterogeneity, multi-path propagation, node hardware variation, and synchronization delays 

may introduce additional uncertainties. These aspects will be explored in future field implementations to 

further validate the model’s performance. 
 

5. Mathematical Model for Hybrid Optimized 3D Localization Scheme 
The mathematical model for the proposed scheme has three key components—data acquisition and anomaly 

detection, optimization, and refinement. The data is gathered from the WIoT nodes deployed in the network. 

These nodes include the unknown and anchor nodes (whose location is known). The data includes the 

anchor nodes' location, RSSI value, transmission power, and environmental parameters. PSO is applied to 

estimate the unknown node’s position, which minimizes the error between calculated and estimated 

distances. Applying the ability of local exploitation and global exploration, PSO refines potential solutions 

effectively. This quality makes it more suitable for implementing agricultural scenarios with many sensor 

nodes. 

 

Anomaly detection is incorporated using a RF classifier to improve dependability. It identifies and 

eliminates the anomalous RSSI values caused by environmental factors like noise, sensor interference, and 

malfunctioning. The preprocessing step of anomaly detection provides only legitimate data as input to the 

localization algorithms. A closed-form geometric technique, i.e., trilateration, is used to refine the estimated 

positions after removing the anomalous data. This refinement is done by calculating the distance of nodes 

and the position of the anchor nodes. The proposed approach provides high accuracy because PSO is used 

for broad optimization and trilateration for fine-tuning. 

 

The input parameters are the position of the anchor nodes and the distance to the anchor nodes. (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), 

is the anchor nodes’ position, where 𝑖 = 1,2, … , 𝑚, where, 𝑚 is the number of anchor nodes. Equation (1) 

calculates the distance to Anchor Nodes (𝑑𝑖): 

𝑑𝑖 = 10
𝑝𝑡−𝑝𝑟
10−𝑛                                                                                                                                         (1) 

 
where, 𝑝𝑡 is Transmission power (dBm), 𝑝𝑟 is the RSSI value from anchor node 𝑖, and 𝑛 is the Path-loss 

exponent (environment-dependent). 

 

Equation (2) calculates the objective function. The objective is to minimize the error between the measured 

distances (𝑑𝑖) and the estimated distances (𝑑̂𝑖): 
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𝐸(𝑥̂, 𝑦̂, 𝑧̂) = ∑ (√(𝑥̂ − 𝑥𝑖)2 + (𝑦̂ − 𝑦𝑖)2 + (𝑧̂ − 𝑧𝑖)2 − 𝑑𝑖)
2𝑚

𝑖=1                                                            (2) 

 
where, (𝑥, 𝑦̂, 𝑧̂) is the estimated position of the unknown node. 

 

PSO is applied as an optimization technique whose goal is to minimize the objective function value, i.e., 

𝐸(𝑥, 𝑦̂, 𝑧̂). 

 

Equation (3) calculates the value of velocity update:  

𝑣𝑝
𝑡+1 = 𝜔. 𝑣𝑝

𝑡 + 𝑐1. 𝑟𝑖. (𝑃𝑏𝑒𝑠𝑡
𝑝 − 𝑥𝑝

𝑡 ) + 𝑐2. 𝑟2. (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑝
𝑡 )                                                            (3) 

 
The position update is calculated from Equation (4) 

𝑥𝑝
𝑡+1 = 𝑥𝑝

𝑡 + 𝑣𝑝
𝑡+1                                                                                                                          (4) 

 
where, 𝜔 is inertia weight, 𝑐1 and 𝑐2 are cognitive and social coefficients, 𝑟1  𝑎𝑛𝑑 𝑟2 are random values in 

[0,1], and 𝑃𝑏𝑒𝑠𝑡  𝐺𝑏𝑒𝑠𝑡 are the Best-known positions for the particle and globally. 

 

After PSO optimization, the solution is refined using closed-form trilateration as Equation (5): 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏                                                                                                                          (5) 

 
𝐴 is a matrix derived from anchor node coordinates, 𝑏 is a vector of distances 𝑑𝑖 , and 𝑋 = (𝑥, 𝑦̂, 𝑧̂)𝑇 is the 

refined position. 

 

Before optimization, anomalous RSSI values are filtered using a RF classifier as in Equation (6): 

𝑦 = 𝑓(𝑋; 𝜃)                                                                                                                                   (6) 
 

where, 𝑋 is the feature vector from RSSI data, 𝜃 is the parameters of the trained RF model, 𝑦 ∈ {0,1} is the 

indicator of valid (1) or anomalous (0) data. Anomalous RSSI values are excluded, ensuring robust 

optimization. 

 

The localization accuracy is the estimated position is calculated as Equation (7): 

𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ √(𝑥̂𝑗 − 𝑥𝑗)2 + (𝑦̂𝑗 − 𝑦𝑗)2 + (𝑧̂𝑗 − 𝑧𝑗)2𝑛

𝑗=1                                                              (7) 

 
where, 𝑛 is the number of test nodes. 

 

Total energy consumption is measured as Equation (8): 

𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = ∑ 𝑃𝑖 , 𝑇𝑖
𝑛
𝑖=1                                                                                                                 (8) 

 
𝑃𝑖 is the power consumed, and 𝑇𝑖 is the time for computation. Computational cost is measured as the total 

number of iterations and time required for PSO convergence. 

 

Algorithm 1: Data Processing and Optimization Using PSO 

Input: 

          𝑁: Total number of sensor nodes 

          𝑚: Total number of anchor nodes 

         (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖): Anchor node position for 𝑖 = 1, … , 𝑚 
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          𝑝𝑟: Received Signal Indicator (RSSI) values 

          𝑝𝑡: Transmission power of node 

          𝜂: Path-loss exponent 

          PSO parameters: 𝜔, 𝑐1, 𝑐2 

Begin 

Step A: Data Acquisition 

A1. Initialize_Sensor_Node_Locations (N, Width, Height, Depth): 

       Randomly initialize the position of 𝑁 unknown nodes: 

          {(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)}𝑗=1
𝑁  

A2. Compute_Distance (𝑑𝑖): 

       For each anchor node 𝑖 = 1, … , 𝑚 

           𝑑𝑖 = 10
𝑝𝑡−𝑝𝑟[𝑖]

10=𝜂               

        End For 

Step B: Anomaly Detection 

B1. Filter_Anomalous_RSSI_data (𝑃𝑟): 

Use a Random Forest Classifier 

   Extract features from RSSI data: 

      𝑋 = [𝑃𝑟 , 𝑣𝑎𝑟𝑖𝑎𝑚𝑐𝑒, 𝑚𝑒𝑎𝑛, 𝑅𝑆𝑆𝐼 𝑡𝑟𝑒𝑛𝑑]  
   Classify anomalies using the model: 

      𝑦 = 𝑓(𝑋; 𝜃) 

    For 𝑖 = 1, … , 𝑚 

       If 𝑦 = 0 

         Mark 𝑃𝑟[𝑖] as anomalous and exclude it 

       End if 

    End for  

Step C: Particles Swarm Optimization (PSO)       

C1. Initialize_Particles 

       Initialize 𝑘 particles with random position  (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) 

        Assign random velocities (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) 

C2. Compute_Initial_Fitness (𝐸): 

       For each particle 𝑝 = 1, … , 𝑘: 

            𝐸𝑝 = ∑ (√(𝑥𝑝 − 𝑥𝑖)2 + (𝑦𝑝 − 𝑦𝑖)2 + (𝑧𝑝 − 𝑧𝑖)2 − 𝑑𝑖)2𝑚
𝑖=1  

        End For 

C3. Iterative_Optimization (A, B, Y, n, λ): 

       While stopping criteria not met (maximum iteration/threshold) 

         For each particle 𝑝 = 1, … , 𝑘: 
              Update Velocity: 

                  𝑣𝑝
𝑡+1 = 𝜔. 𝑣𝑝

𝑡 + 𝑐1. 𝑟1. (𝑃𝑏𝑒𝑠𝑡
𝑝

− 𝑥𝑝
𝑡 ) + 𝑐2. 𝑟2. (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑝

𝑡 ) 

              Update Position: 

                  𝑥𝑝
𝑡+1 = 𝑥𝑝

𝑡 + 𝑣𝑝
𝑡+1 

         End For 

         Re-evaluate fitness 𝐸𝑝 for each particle 

         Update 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 

End 

Output: Optimized position of unknown nodes via PSO                  
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Algorithm 2: Trilateration Refinement and Evaluation 

Input: 

          Optimized position form Algorithm 1 

          Anchor position (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) 

          Distances 𝑑𝑖  

 

Begin 

Step A: Trilateration Refinement 

A1. Linearize Distance Equations: 

        For each anchor node 𝑖 = 1, … , 𝑚 

          (𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 = 𝑑𝑖
2 

        End For           

A2. Matrix Representation 

       Define: 

           𝐴 = [
2(𝑥2 − 𝑥1) 2(𝑦2 − 𝑦1) 2(𝑧2 − 𝑧1)

⋮ ⋮ ⋮
2(𝑥𝑚 − 𝑥1) 2(𝑦𝑚 − 𝑦1) 2(𝑧𝑚 − 𝑧1)

] 

 

          𝑏 = [
𝑑1

2 − 𝑑2
2 − 𝑥1

2 + 𝑥2
2 − 𝑦1

2 + 𝑦2
2 − 𝑧1

2 + 𝑧2
2

⋮
𝑑1

2 − 𝑑𝑚
2 − 𝑥1

2 + 𝑥𝑚
2 − 𝑦1

2 + 𝑦𝑚
2 − 𝑧1

2 + 𝑧𝑚
2

] 

A3. Refine Position Using Trilateration 

Compute: 

   𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 

Where 𝑋 = (𝑥, 𝑦̂, 𝑧̂)𝑟          

Step B: Evaluation  

B1. Compute Localization Error: 

       Compute the average localization error: 

           𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ √(𝑥𝑗 − 𝑥𝑗)2 + (𝑦̂𝑗 − 𝑦𝑗)2 + (𝑧̂𝑗 − 𝑧𝑗)2𝑁

𝑗=1             

B2. Compute Energy Consumption: 

       Evaluate energy consumed by the system: 

           𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = ∑ 𝑃𝑖. 𝑇𝑖
𝑁
𝑖=1  

B3. Record Computational Performance: 

     Log the total iterations, convergence time, and computational cost. 

 

End 

Output: Final refined positions, localization error, and system energy consumption. 

 

 

Algorithm 1 outlines the process to address the issues raised by environmental noise and computational 

efficiency by incorporating data preprocessing and optimization techniques. The RF technique is applied 

for anomaly detection. It ensures the reliability of RSSI data by filtering out noise and erroneous values to 

improve the quality of input data for the localization process. Afterwards, the PSO technique estimates the 

positions of unknown sensor nodes by reducing the error between calculated and estimated distances. The 

iterative nature of the PSO technique balances exploration and exploitation, which makes it well-suited for 

large-scale WIoT networks. 
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Algorithm 2 refines the estimated positions after the localization of unknown nodes from PSO using 

trilateration and closed-form geometric computations to improve accuracy. The linearized distance 

equations amend any deviations introduced in the optimization phase. Evaluating localization error and 

energy consumption shows the precision and feasibility of the proposed approach for WIoT networks for 

agricultural scenarios. Maintaining energy efficiency, this refinement phase ensures robust performance in 

noisy or complex environments. Combining deterministic refinement with heuristic optimization, the 

proposed hybrid algorithm ensures scalability and precision. 

 

The computational complexity of the proposed hybrid model depends on three components: PSO-based 

position estimation, RF-based anomaly detection, and trilateration refinement. 

• The time complexity of PSO algorithm is 𝑂(𝑃 × 𝐼), where 𝑃 is the number of particles and 𝐼 is the 

number of iterations required for convergence. 

• RF-based anomaly detection is performed once during preprocessing and is parallelizable. The 

complexity of RF anomaly detection model is 𝑂(𝑇 ⋅ 𝐹 ⋅ log 𝐹), where 𝑇 is the number of trees and 𝐹 is 

the number of features. 

• The trilateration refinement has a complexity of 𝑂(𝑛3), where 𝑛 is the number of anchor nodes. IS 

involves a system of linear equations using matrix operation. 

 

The combined approach remains efficient and scalable for medium- to large-scale deployments, mainly due 

to PSO’s global convergence behaviour and the one-time RF preprocessing. 

 

6. Simulation Framework and Parameters 
The simulation environment was developed using a combination of software tools. The RF classifier for 

anomaly detection was implemented using Python’s Scikit-learn library. The PSO algorithm and 

trilateration refinement were simulated using MATLAB for matrix-based optimization. Visualization and 

performance graphs were generated using Seaborn and Matplotlib in Python. 

The input RSSI data were synthetically generated, simulating varying terrain and noise conditions. While 

no real-world dataset was used, the complete simulation code and synthetic data generation scripts are 

available upon request for academic use. 

 

Three primary simulation scenarios are considered: crop monitoring, pest detection, and asset tracking. 

These tools enable the implementation of algorithms for data processing and anomaly detection to simulate 

WIoT and visualize sensor data in agricultural environments. Sensor nodes observe the soil moisture level, 

temperature, and humidity across a large field to monitor the crop. The purpose is to achieve high 

localization accuracy to deploy an automated irrigation system. For pest detection, the sensor nodes track 

the pattern of pest movement in greenhouses to provide real-time location data for effective measurement 

of direct pest control. Asset tracking is done by implanting IoT devices on agricultural machinery to 

optimize resource usage through precise positional tracking. 

 

The simulation incorporates parameters like sensor nodes, anchor nodes, deployment area dimensions, 

RSSI value, and path-loss exponent. The number of unknown sensor nodes (𝑁) ranges from 100 to 500, 

while anchor nodes (𝑚) vary between 10 and 50. We considered a 3D space with dimensions 100 × 100 × 

50 arbitrary units as the deployment area. The RSSI value (𝑝𝑟) has a range from 2.0 to 4.0. The value 

depends on signal attenuation and gets impacted by the path-loss exponent (𝜂). The inertia weight (𝜔) is 

taken within the range of 0.5 to 1.0 for PSO parameters. Each of the acceleration coefficients (𝑘1, 𝑘2) is set 

to 1.5. The stopping criteria or PSO algorithm is defined as a maximum of 200 iterations or an error 

threshold. Here, the number of particles (𝑘) have range between 50 to 100. 
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The inertia weight and acceleration coefficients are crucial for balancing exploration and exploitation in the 

PSO algorithm. The inertia weight is set between 0.5 and 1.0 because this range allows the particles to 

explore the solution space broadly during the initial iterations. The task focuses on exploitation as the 

algorithm converges by broadly exploring the search space. It also improves convergence stability and 

solution quality. The acceleration coefficients are chosen based on standard practices to balance the 

cognitive and social components equally. The cognitive components are individual experiences, while the 

social cognitive are the swarm experience components. The choice of moderate values saves from 

premature convergence by ensuring that particles are influenced adequately by both personal and global 

best solutions. 

 

In the simulation, Additive White Gaussian Noise (AWGN) is introduced into the RSSI values to simulate 

signal degradation. Environmental interference, sensor hardware variation, and multipath fading are some 

reasons for the signal degradation. The noise acquires a zero-mean Gaussian distribution with varying 

standard deviations to represent different noise levels, i.e. 5%, 10%, 15%, and 20%. This modelling closely 

approximates real-world RSSI fluctuations and allows performance evaluation of the localization algorithm 

under controlled noisy conditions. 

 

The simulation assumes perfect time synchronization between sensor and anchor nodes. This assumption 

simplifies modeling and allows the evaluation of localization performance without introducing timing-

induced biases. While synchronization discrepancies can affect real-world RSSI-based methods, our 

framework focuses on handling signal strength variability. Future implementations will consider 

synchronization errors and propose timing-resilient enhancements 

 

The simulation framework employs two main algorithms, i.e., "Data Processing and Optimization Using 

PSO” and “Trilateration Refinement and Evaluation”. Algorithm 1 begins with data acquisition by 

initializing sensor node locations and computing distances among nodes using RSSI values. Anomalous 

RSSI data is filtered out by using a RF Classifier. Afterwards, the PSO technique is applied to optimize the 

positions of unknown sensor nodes. Through iterative updates of particle velocities and positions, the 

position of unknown nodes is optimized by evaluating fitness at each step till meeting the stopping criteria. 

To refine the positions of the nodes estimated by Algorithm 1, Algorithm 2 takes place. Algorithm 2 

linearizes the distance equations to represent them as a matrix to calculate refined positions. The evaluation 

phase calculates localization error using root mean square error (RMSE) and consumed energy and logs 

computational performance metrics. 

 

Evaluation metrics, including localization error, energy consumption, and computational performance, are 

used to test the scheme's performance. Localization accuracy is measured by calculating the RMSE between 

actual and estimated positions. Energy consumption evaluates the efficiency of the system, and 

computational performance metrics provide the count of total iterations, convergence time, and 

computational cost. Table 2 summarizes the key parameters and their respective values/ranges for 

simulating the hybrid localization framework described in the algorithms. Table 3 provides an overview of 

the effect of various terrains on simulation parameters and evaluation metrics. The table compares node 

density, noise levels, and topography, i.e., flat, hilly, and mixed terrains), the application of RF (for anomaly 

detection), PSO, and trilateration technique for localization by evaluating localization accuracy, energy 

consumption, and computational cost across three distinct simulation scenarios. It concludes that flat 

terrains achieve the highest localization accuracy and lowest computational cost, while hilly and mixed 

terrains are found more challenging due to their complexity.  
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Table 2. Simulation parameters. 
 

Parameter Description Values/Range 

N (Sensor Nodes) Total number of unknown sensor nodes randomly deployed in the 3D area 100–500 

m (Anchor Nodes) Total number of anchor nodes. 10-50 

Deployment Area 
Dimensions 

Width, height, and depth of the 3D deployment area 100 × 100 × 50 (arbitrary 
units) 

𝑝𝑟 (RSSI) Received Signal Strength Indicator values Varies based on signal 

attenuation 

𝜂 (Path-Loss Exponent) Path-loss exponent affecting signal attenuation 2.0–4.0 

PSO Parameters 

𝜔 Inertia weight for velocity control 0.5–1.0 

𝑐₁, 𝑐₂ Acceleration coefficients for cognitive and social components c₁ = 1.5, c₂ = 1.5 

Number of Particles (𝑘) Total number of particles initialized in the PSO 50–100 

Stopping Criteria Criteria for stopping PSO iterations Max 200 iterations or error 

threshold 

Algorithm 2 Inputs Optimized positions from PSO and corresponding anchor positions From Algorithm 1 

Evaluation Metrics 

Localization Error Metric Root Mean Square Error (RMSE) between actual and estimated positions Computed during evaluation 

Energy Consumption (𝐸) Energy consumed by the system during Localization Computed for sensor nodes 

Computational 

Performance 

Total iterations, convergence time, and computational cost Recorded during 

simulations 

 
 

Table 3. Comparison of simulation parameters and evaluation metrics across terrain types. 
 

Parameter Flat terrain Hilly terrain Mixed terrain 

Node Density High / Medium / Low 
(Adjustable) 

High / Medium / Low (Adjustable) High / Medium / Low (Adjustable) 

Noise Levels Low / Medium / High Medium / High Variable (depends on sub-terrain) 

Topography Uniform and level Varying elevation with obstructions Combination of flat and uneven 

surfaces 

RSSI Signal Reliability High Low Medium 

Localization Accuracy High (1.2 – 1.8 m) Low (2.5 – 3.9 m) Moderate (1.9 – 2.8 m) 

Energy Consumption (J) 8 – 10 10.5 – 13 9.5 – 12 

Computation Time (s) 0.25 – 0.35 0.45 – 0.7 0.35 – 0.5 

Impact on Performance Highly stable, suitable for real-
time precision 

Increased error and delay due to 
terrain effects 

Adaptive performance, depends on 
terrain layout 

 

6.1 Impact of Terrain Conditions on Localization Metrics 

The localization performance of WIoT networks is significantly affected by terrain conditions. In flat 

terrains, the signal propagation remains relatively uniform with minimal interference, resulting in high 

localization accuracy and reduced computation time. In contrast, hilly terrains introduce physical 

obstructions and variable elevation, which cause signal shadowing, multi-path fading, and increased RSSI 

fluctuations—leading to higher localization error, energy usage, and longer convergence time.  It performs 

moderately in the mixed terrain scenario. The results are based on node placement, density, and 

heterogeneity. The proposed scheme follows the approaches of anomaly detection and multiple refinement-

based trilateration techniques by consistently adapting to terrain-induced variability. Table 3 compares 

simulation parameters and evaluation metrics across terrain types to maintain stable accuracy across diverse 

agriculture scenarios. 

 

7. Results and Discussions 
The performance of the proposed scheme is evaluated by comparing it with DV-Hop (Distance Vector-Hop) 

and AMPLI (Anchor-Based Multipath Localization Improvement) methods in three agricultural scenarios, 

i.e. crop monitoring, pest detection and asset tracking. The work is implemented by applying the algorithms 

to synthetic data generated under different noise conditions. The trade-offs were explored to identify the 
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most appropriate solution for each scenario. The performance is evaluated based on the varying noise levels 

on the specified parameters, i.e., localization accuracy, energy efficiency, and computation time, as shown 

in Table 4. 

 
Table 4. Summary of the key metrics used. 

 

Method Localization accuracy (Mean 

error) 

Energy efficiency 

(Power consumption) 

Computation time Resilience to noise 

Hybrid Method with ML Lowest error (1.2-3.0 meters) Higher  Higher computation time Most resilient 

DV-Hop Higher error (2.0-4.2 meters) Low  Low computation time Sensitive to noise 

AMPLI Moderate error (1.8-3.9 meters) Low  Low computation time Moderate noise 

sensitivity 

 
Table 5 shows that at varying noise levels of 5%, 10%, 15%, and 20%, the proposed hybrid method with 

ML continuously showed the lowest mean localization error (MLE), with the resulting values of 1.2m, 

1.7m, and 2.3m, respectively. Meanwhile, the DV-Hop approach has high localization errors with MLE 

values of 2.0 m, 2.8 m, 3.6 m, and 4.2 m at different noise levels. The AMPLI approach has moderate 

localization error, i.e., 1.8 m at 5% noise to 3.9 m at 20% noise. State-of-the-art techniques are found to be 

less energy-efficient than the proposed energy efficiency parameter scheme. The proposed hybrid method 

with ML is faster in computing time compared to state-of-the-art approaches.  

 

To validate the consistency of the proposed approach, statistical analysis was conducted over 30 

independent runs for each application scenario. As shown in Table 5, the low standard deviations and 

narrow 95% confidence intervals across all cases confirm the reliability and robustness of the hybrid with 

ML model under varying agricultural conditions. 

 
Table 5. Evaluation of performance metrics across various scenarios. 

 

Scenario Method Localization error 

(m) 

Standard 

deviation (m) 

95% Confidence 

interval (m) 

Energy 

(J) 

Computation time 

(s) 

Crop 

Monitoring 

Hybrid with 

ML 

1.20 0.10 [1.16, 1.24] 9 0.34 

DV-Hop 2.00 N/A N/A 11 0.50 

AMPLI 1.81 N/A N/A 10.5 0.45 

Pest Detection Hybrid with 

ML 

1.70 0.13 [1.64, 1.76] 10 0.50 

DV-Hop 2.80 N/A N/A 13 0.70 

AMPLI 2.40 N/A N/A 12 0.65 

Asset 

Tracking 

Hybrid with 

ML 

1.80 0.11 [1.76, 1.84] 8 0.25 

DV-Hop 3.00 N/A N/A 10.5 0.40 

AMPLI 2.60 N/A N/A 9.8 0.35 

 

The simulations have been performed on three agriculture scenarios: asset tracking, pest detection, and crop 

monitoring. Compared to state-of-the-art localization approaches, the proposed scheme outperforms all 

three scenarios. 

 

These results highlight the trade-off between accuracy, energy consumption, and computation time. The 

Hybrid scheme with ML offers the best localization accuracy. Still, it comes with the cost of higher energy 

consumption and longer computation time, making it ideal for scenarios where precision is critical. 

Meanwhile, state-of-the-art equipment is more suitable for applications where energy efficiency and speed 

are prioritized over accuracy, especially in environments with minimal noise. The choice of method 



Singh et al.: Hybrid Optimized 3D Localization for WSN-Assisted IoT Networks in Smart … 
 

 

1982 | Vol. 10, No. 6, 2025 

ultimately depends on the application's specific requirements, including the desired balance between 

accuracy, energy consumption, and real-time performance, as shown in Figure 2. 

 

 
 

Figure 2. Accuracy vs. noise level. 

 

The simulations have been performed on three different agriculture scenarios: asset tracking, pest detection, 

and crop monitoring. Compared to state-of-the-art localization approaches, the proposed scheme 

outperforms all three scenarios. 

 

For the automated irrigation feature of SA, it is crucial to deploy the sensor nodes precisely to implement 

compelling crop monitoring scenarios. Figure 3 demonstrates that the proposed scheme results in the lowest 

computation time (0.34s), localization error (1.2 m), and energy consumption (9 J). AMPLI approach has 

moderate performance with a computation time of 0.45 s, localization error of 1.81 m, energy consumption 

of 10.5 J. DV-Hop has highest computation time of 0.5 s, localization error (2.0 m), and energy consumption 

of 11 J. 

 
 

Figure 3. Performance evaluation across crop monitoring. 
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The hybrid with ML scheme outperforms the other methods for the pest detection scenario (where real-time 

tracking and anomaly detection are critical). Figure 4 demonstrates that the proposed scheme also 

outperforms this scenario with low energy consumption (10 J), localization error (1.7 m), and computation 

time (0.5 s). At the same time, DV-Hop has the most significant localization error (2.8 m), energy 

consumption (13 J), and computation time (0.7). The AMPLI trails the proposed scheme, having a moderate 

localization error (2.4 m), energy consumption (12 J), and computation time (0.65). 

 

 
 

Figure 4. Performance evaluation across pest detection. 

 

Figure 5 shows that the proposed scheme outperforms the asset tracking scenario, achieving the lowest 

values for energy consumption (8 J), computation time (0.25 s), and localization error (1.8 m). Both AMPLI 

and DV-Hop are less effective compared to the proposed scheme. AMPLI has moderate performance with 

a localization error (2.6 m), energy consumption (9.8 J), and computation time (0.35 s). In comparison, DV-

Hop has the highest localization error (3.0 m), energy consumption (10.5 J), and computation time (0.5 s). 
 

 
 

Figure 5. Performance evaluation across asset tracking. 
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Figure 6 visualizes the distribution of the unknown and anchor nodes in the 3D WIoT Node network. 

Unknown sensor nodes and anchor nodes are deployed randomly in a 3D terrain. The anchor nodes are 

represented by green stars (*), and unknown sensor nodes are represented by red circles (o). Figure 7 

demonstrates the outcome of the localization process after implementing the proposed scheme. In this 

figure, the blue triangles (∆) show the nodes after the position is estimated. 

 

 
 

Figure 6. 3D WIoT node distribution. 

 

 

 

 
 

Figure 7. Location estimation through proposed algorithm. 
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The proposed hybrid localization scheme demonstrates strong scalability for high-density WSN 

deployments. In simulations, we performed an evaluation that involved up to 500 unknown sensor nodes. 

The proposed system maintained stable localization accuracy with only a moderate increase in computation 

time. Using parallelizable modules, such as PSO for position estimation and RF for anomaly detection, the 

framework can efficiently adapt to larger networks, making the model suitable for large-scale SA scenarios 

that demand accurate, energy-efficient localization over extended areas. 
 

8. Insight and Implications 
The proposed hybrid optimized method for 3D localization in the WIoT network for SA provides intelligent 

support to the farming system and enables modern farming. The hybrid scheme improves localization 

accuracy by dealing with adverse environmental conditions and noises. The RF method refines the 

erroneous data from the RSSI values. Another important factor is to create a sufficient balance between 

energy efficiency and computational cost. The PSO method is compelling because it reduces energy and 

computational costs. This makes the infrastructure suitable for real-time applications because these 

applications, like automated irrigation systems or precision farming tools, require low energy and fast 

processing for data. This approach can accommodate terrain variations, demonstrating its adaptability, but 

it can impact signal propagation and localization accuracy in outdoor agriculture settings.  

 

This work is significant for precision agriculture, where locating the nodes exactly is critical because exact 

location plays a key role in applications like pest control, automated irrigation, and soil monitoring. By 

enhancing the accuracy, the approach can target the task quickly and efficiently; ultimately resources can 

be optimized and waste can be reduced. Additionally, improved efficiency makes the real-time applications 

work better, like tracking pests rapidly and making the system more autonomous. The solution can be cost-

effective because it works well on large-scale agricultural land and improves energy efficiency and 

computational cost, simultaneously reducing cost and increasing the lifespan of the IoT infrastructure. 

 

The proposed scheme offers considerable economic and commercial benefits. Improved localization 

enables more accurate deployment of sensors for tasks like irrigation, equipment monitoring, and pest 

control, which directly translates to optimized resource utilization and reduced operational costs. From a 

commercial standpoint, this model can be integrated into smart farming systems, offering scalable and cost-

effective solutions for agritech startups and agricultural automation companies. The reduced energy 

footprint and higher accuracy also extend the lifespan of deployed networks, making the solution viable for 

commercial deployments in large-scale agriculture. 

 

9. Conclusion and Future Scope 
This paper presents a three-stage Hybrid Optimized 3D Localization scheme, including PSO, RF and 

trilateration techniques in WIoT networks for SA to address the issues of energy consumption, 

computational costs, and inaccurate localization error. The combination of PSO and RF provides high 

accuracy compared to state-of-the-art techniques. The RF-based is used for anomaly detection and can filter 

inaccurate sensor data by handling the environment's noisy data and dynamic behaviour. The PSO algorithm 

estimates the initial node location. Afterwards, the trilateration technique is used to refine the estimated 

positions.  

 

Unlike existing localization methods that typically rely on standalone approaches—either optimization, 

geometric, or ML techniques—our proposed work integrates all three into a unified hybrid model. This tri-

layered framework is distinctly designed to handle dynamic environmental noise, resource constraints, and 

the demand for real-time data accuracy. This sets our work apart by offering a comprehensive and scalable 

solution tailored for SA, a domain where no single method has previously been sufficient to meet all 
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operational requirements. The results validate that our hybrid scheme outperforms DV-Hop and AMPLI 

methods, achieving localization errors as low as 1.2 meters, energy consumption of 8–10 J, and computation 

times under 0.5 seconds across three practical agricultural scenarios. 

 

The current implementation is simulation-based and tested on synthetic datasets. Future work will focus on 

real-world field deployments and extension to extreme terrains. Moreover, integrating communication 

protocols such as LPWAN or 5G and exploring reinforcement learning for adaptive optimization could 

further enhance performance. The methodology can also be extended to smart city infrastructure, livestock 

tracking, and environmental disaster monitoring. 
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