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Abstract

Accurate localization of sensor nodes within precision agriculture applications is a critical component in Wireless Sensor Network
(WSN)-assisted Internet of Things (IoT) networks. The presence of environmental noise, terrain irregularities, and data anomalies
degrades the performance of the existing 3D localization techniques. This article presents a novel hybrid 3D localization scheme
that integrates Particle Swarm Optimization (PSO), Random Forest (RF)-based anomaly detection, and trilateration refinement to
enhance localization accuracy, energy efficiency, and scalability in smart agriculture (SA) environments. The proposed scheme
proceeds in three phases, i.e., initial node position estimation using RSSI-based path-loss modelling, machine learning (ML)-based
anomaly detection and filtering of Received Signal Strength Indicator (RSSI) data, and PSO-based global optimization followed
by trilateration for fine-tuning. Based on the simulation experiments for several scenarios, the proposed hybrid approach renders a
robust and scalable solution for accurate node localization in WSN-assisted IoT (WIoT) networks for smart agriculture. It attains
low localization errors at 1.2 meters, with energy consumption abridged to 8—10 J and computation time under 0.5 seconds, outdoing
the state-of-the-art.
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1. Introduction

The IoT and WSNs have merged to modernize the agriculture sector. These technologies enable humankind
to manage resources efficiently and collect real-time data to operate them efficiently. The WloT networks
are built of devices and sensor nodes, which are required to localize for efficient data transmission. Finding
the coordinates of the sensor node is called localization. Finding the exact location of the node is challenging
because of dynamic environmental conditions, high energy consumption due to inefficient resource usage
and the potential for node failure. This impacts efficient decision-making and results in high energy
consumption.

By accurately localizing the sensor node, various agricultural applications benefit from and are advanced
with technology. Applications like precision farming, pesticide usage and control, irrigation management
and automation, crop health monitoring, crop harvesting, and livestock management have become more
easily manageable if we apply the correct techniques for sensor node localization (Zhang et al., 2024).
Various environmental factors create problems and hindrances in accurately localizing the node's position.
These obstacles are sometimes some physical objects and occasionally extreme weather conditions. Such
issues impact the signal quality, such as multipath propagation and signal attenuation, resulting in high
energy consumption. The exhausted node dies soon and affects the overall performance of the network.
Hence, there occurs the requirement for advanced localization methods as conventional localization
techniques are not able to deal with the mentioned issues.

Finding the 3D location of sensor nodes in a WIoT network is much more challenging. Because of the
adverse environmental conditions, it becomes tough to find the exact distance among the nodes as the
obstacles create interference with the signal (Survase et al., 2024). Again, the effectiveness of traditional
localization schemes such as trilateration becomes weak when it is used for large-scale deployment, where
the noisy data and computation increase (Yinjun, 2024). To solve the mentioned issue, the proposed
approach has combined trilateration with an ML-based anomaly detection technique for localization, which
uses PSO for location estimation.

Once the data is gathered, it is not always perfect. It contains various anomalies. It is crucial to remove
those anomalies (Tan & Wong, 2024) and the RF technique is applied for the same. Further, we must refine
the location coordinates as they are initial estimates and lack the required precision. For this refinement,
we have used the trilateration technique and PSO algorithm for further enhancement to improve the location
estimation.

The proposed work is specifically developed for the 3D scenario of SA. This approach will improve the
localization accuracy, computational complexity and efficient usage of the resources for large-scale
environments (Wang et al., 2025). The proposed scheme is also capable of real-time monitoring of
agricultural resources and crops. The developed system is scalable, reliable, more accurate and energy-
efficient for the advanced applications of agriculture practices. This research is broadly oriented to dealing
with environmental noise issues in 3D agriculture scenarios and energy-efficient resource management by
combining PSO, RF-based anomaly detection, and trilateration techniques (Arjun et al., 2025).

This research introduces a novel localization approach that integrates three complementary methods: PSO
for generating initial position estimates, a random forest algorithm to detect and eliminate anomalous RSSI
readings, and trilateration for refining positional accuracy. The proposed approach works with a tri-layer
framework and effectively handles the noisy and dynamic environment. The designed approach can boost
the network's overall performance by enhancing localization accuracy and network reliability and
supporting scalability in the WloT-based SA environment.
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1.1 Research Contribution

The notable contribution to WIoT localization in SA is as follows:

(1) The proposed work develops a scheme that utilizes PSO to estimate the node position. We have used
RF anomaly detection and trilateration refinement to filter the noisy RSSI values for localization
accuracy.

(i1) The proposed work resolves the environmental noise and computational complexity, further enhancing
the localization accuracy in the changing environment of SA.

(iii) Combining anomaly detection and optimization techniques collectively ensures energy conservation
and computational efficiency for large-scale deployment in resource-constrained environments.

(iv) A hybrid approach that maintains scalability and is suitable for large-scale networks in innovative
agriculture applications achieved high localization accuracy.

1.2 Structure of the Article

The sections of the article are as follows: Section 1 is about the introduction of WloT, localization, ML
techniques and, SA and how they all are helpful when collaborated, Section 2 outlines the literature survey
for the proposed scheme. Section 3 produces the problem statement, while Section 4 presents the
methodology of the proposed scheme. Section 5 is about the mathematical model, followed by Section 6,
which discusses the simulation framework and parameters. Section 7 demonstrates the results and
discussions. Section 8 provides insight and implications of the proposed work. Section 9 concludes the
article along with the future scope.

2. Literature Survey

Integration of IoT with WSNs has completely transformed the world of agriculture by ensuring that the
environment is adequately monitored, tracking environmental conditions, collecting real-time data, and
making data-driven decisions. The precise location of the sensor nodes is essential here, as it allows other
activities to run efficiently within the network. In this work, we examined the methods and techniques
related to 3D localization in WIoT applications, which majorly target methods like metaheuristics,
trilateration, and ML methods for anomaly detection (Singh & Mittal, 2021).

2.1 Traditional Localization Methods

The localization methods can be classified into two broad categories: range-based and range-free. The
range-based method calculates the distance between two nodes using techniques like arrival time, angle of
arrival, and signal strength. The range-based method usually uses the trilateration approach, which
estimates the node's position by intersection points of spheres that move near the known location of three
or more reference nodes (Ahmad et al., 2024). Trilateration is a simple and intuitive method to calculate the
node position. Still, the dynamic behaviour of agriculture, noisy data, and physical distraction does not
allow the trilateration method to achieve precise location. On top of that, it relies entirely on exact location,
which is impossible with a large-scale set-up where distraction is quite possible in any format (Rose et al.,
2020).

Multilateration is the next upper version of trilateration, using more reference nodes to improve position
accuracy. However, it still suffers from physical distraction and huge computation problems in large-scale
areas. Additionally, these conventional methods face limitations with the dynamic behaviour of agriculture,
where parameters like soil moisture, rainfall, humidity, and temperature change rapidly, directly impacting
signal propagation (Malivert et al., 2023).
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2.2 Metaheuristics for Localization

To solve the drawbacks of the old localization methods, we have introduced advanced metaheuristic
optimization techniques, which will improve the efficiency and accuracy of the localization algorithm.
Metaheuristic methods are most popular because they adequately respond to WIoT networks. They can find
suboptimal solutions efficiently and optimize network parameters and complex search spaces (Khalil &
Saeed, 2024). PSO is the most popular optimization technique widely used for localization in WloT
networks. PSO is a population-based optimization technique that models the collective behaviour of
particles (agents) to identify optimal solutions within a search space (Mohammed et al., 2025).

Generally, PSO is used in localization algorithms for estimating the initial position of nodes, where it tries
to mitigate the noisy data and improves the accuracy of estimates (Lee et al., 2023). PSO is found very
suitable for reducing localization errors, but to improve accuracy further, it is essential to refine the errors
in some real-time scenarios combined with trilateration and PSO techniques, localization accuracy and
computational efficiency (Sattibabu et al., 2025).

2.3 Machine Learning for Anomaly Detection

Real-time applications like agriculture suffer from various challenges due to dynamic conditions. As these
factors impact the RSSI value, hampering the distance estimation, sole localization techniques are not
sufficient (Wagqas et al., 2025). Environmental noise increases the localization error and impacts the location
accuracy. The ML techniques provide advantages through clustering and classification techniques on
anomalous data to reduce localization error (Hassan & Alharbi, 2024). The RF technique is an appropriate
technique for anomaly detection in WIoT networks (Hnaien et al., 2025).

The RF technique identifies the underlying patterns by classifying the data points for efficient decision-
making. The classification is done by filtering noise from RSSI values. The RF model is trained using
historical data and contextual environmental factors. This classification and improvement enhance the
accuracy of distance estimation. The incorporation of ML techniques and localization algorithms is highly
capable of improving accuracy (Nacem et al., 2025). The integration of optimization techniques with ML
and localization techniques provides potential outcomes for localization in 3D environments (Yadav &
Sharma, 2023b).

2.4 Challenges in Smart Agriculture

The dynamic nature of the environment gives rise to many challenges to localization in WloT for Smart
SA. Factors such as physical obstructions, including trees, buildings, vegetation, and weather conditions,
can create obstacles and degrade the signal strength, leading to localization inaccuracy. Moreover, larger
agricultural land requires extensive monitoring, which adds more complexity for localization. Recent
research has shown that to resolve these larger-scale issues, multiple goal-driven approaches are designed
to work well in a resource-constrained and dynamic environment (Omari et al., 2024).

In a WIoT environment, the "Energy efficiency" parameter is crucial for sensor nodes regarding
localization. As IoT devices are battery-operated, energy consumption becomes the primary factor and has
become the most considered point for recent studies (Sowmya et al., 2025). A hybrid approach can resolve
these issues by combining metaheuristics, ML, and data filtering techniques. This combination can enhance
localization accuracy, handle the complexity of a larger network lifespan, and optimize energy usage.

Numerous studies on 3D Localization in WIoT for Smart Agriculture (SA) have incorporated multiple

methods that improve scalability, reduce energy consumption, and enhance accuracy (Saghib &
Lakshmikanth, 2025). Earlier methods like trilateration were widely used; however, they were not good
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enough to handle dynamic behaviour and noisy data. Metaheuristic techniques, such as PSO, have been
applied to refine node estimation but struggle to obtain optimal accuracy. Moreover, integrating machine
learning methods, particularly random forest-based anomaly detection, can help filter noisy data and
strengthen network reliability (Yadav & Sharma, 2023a).

We developed an optimized hybrid 3D scheme incorporating PSO, trilateration, and RF anomaly detection
techniques. This work is proposed to face the challenges raised by resource constraints, noise, and large-
scale deployment in SA. The fusion of ML with metaheuristics techniques tackles the issues like resource
constraints, scalability, and energy efficiency. Also, it enhances localization accuracy, a key requirement for
real-world IoT applications in agriculture. Table 1 overviews various localization techniques for SA in
WSN and IoT networks.

Table 1. Survey of hybrid 3D localization techniques for WIoT in smart agriculture.

& Sato, 2017)

method for location
estimation in a 3D
scenario using the
intersection of spheres
centred on known
reference nodes.

localization in WSNs, but
highlighted challenges due to
environmental noise.

interference, signal
distortion.

Method/Technique | Description Key findings/Contributions | Challenges addressed Application/Use case
Improved A novel trilateration Proposed a trilateration Environmental noise, Tested in indoor, outdoor,
Trilateration with approach enhanced with algorithm that utilizes anchor | anchor node uncertainty, and hall environments;
K-Means anchor node combination | node combinations and K- optimization of applicable to agriculture
Clustering (Luo et and K-Means clustering Means clustering to remove positioning accuracy in and loT-based intelligent
al., 2022) to reduce the positioning | significant errors and diverse environments. systems.

€ITOrS . improve accuracy in LOS

and NLOS environments.

Efficient A beacon-based Proposed a distributed Environmental noise, Accurate localization of
Trilateration distributed algorithm trilateration algorithm using efficient computation of blind nodes in WSNs for
Algorithm Based on | using RSS for 3D RSSI value to achieve 3D positions, reducing SA
RSS (Matharu & localization via accuracy in 3D localization. localization error.
Buttar, 2016) trilateration.
Trilateration (Paul A traditional range-based | Trilateration for node Environmental noise, Used in general WSNs for

various applications for
outdoor environments.

Jacob, 2008)

that simulates particle
social behaviour to find
optimal positions.

impact of noisy
measurements.

high computational cost.

Hybrid PSO and FF | A hybrid approach that Proposed hybrid iterations localization errors, Environmental monitoring,
Algorithms combines PSO and (PSO + FF, GA + FF) to improving accuracy and surveillance, healthcare,
(Arul & Jebaselvi, Firefly Optimization to enhance localization efficiency, robustness in and other real-world WSN
2023) reduce localization accuracy and efficiency. complex environments. applications.
eITors.
PSO-ELM Combines PSO and ELM | Demonstrated that PSO-ELM | Noise in RSSI data, Indoor Localization for
(Wangqing et al., to optimize RSSI reduces localization mean improving accuracy of high-accuracy positioning
2024) fingerprinting error and improves fingerprint matching, in environments like smart
localization with PSO to | positioning accuracy. computational homes or warehouses.
enhance ELM. optimization.
PSO A metaheuristic PSO is applied for the initial Noisy measurements, Innovative agriculture
(Gopakumar & optimization algorithm position, minimizing the large-scale WSNs, and applications for large-scale

WSNs with the need for
accurate positioning.

Hybrid PSO and
Trilateration
(Fute et al., 2022)

A hybrid approach that
combines PSO with
trilateration to refine
initial estimates and
improve localization
accuracy in WSNs for
agriculture.

Demonstrated that combining
PSO with trilateration
improves the accuracy of 3D
localization.

Inaccurate initial
estimates are needed for
the iterative refinement
of positions.

Used in precision
agriculture where accurate
3D localization is required
for sensor placement.

RF for Anomaly
Detection
(Pachauri &
Sharma, 2015)

A ML technique for
detecting anomalies
RSSI values to mitigate
noisy data.

RF filters noisy RSSI values,
improving localization
reliability in dynamic
environments.

Noisy data, signal
distortion, outliers in
RSSI values.

Anomaly detection in SA is
used to reduce localization
errors and environmental
disturbances.
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Table 1 continued...

Energy-Efficient
localization
(Jawad et al., 2017)

Focusing on minimizing
energy consumption in
localization algorithms
to enhance the lifespan
of WSN nodes.

Proposed energy-efficient
localization techniques,
ensuring a balance between
accuracy and energy
consumption in large-scale
WSNS.

Energy consumption,
battery-powered nodes,
resource constraints in
SA.

Energy-efficient methods
in SA for large-scale
deployments of WSNs.

3D localization
with Metaheuristic

Use of advanced
metaheuristic algorithms

Metaheuristic algorithms for
3D localization show

Complex search spaces,
large-scale deployments,

3D localization in SA to
optimize sensor network

Localization for SA
(Singh et al., 2024)

algorithms for precise
Localization in

fusion technologies to
enhance localization

energy efficiency,
scalability, robustness in

Algorithms to solve the 3D positioning accuracy, ensuring accurate 3D placement and enhance
(Niranjan et al., localization problem, scalability, and localization. resource allocation.
2024) optimizing the search computational efficiency

space. improvements.
ML-Driven Integrating ML Explored ML techniques and | Localization accuracy, Applications in SA,

including precision
farming, livestock

Tripathi, 2022)

techniques to create
hybrid frameworks for
robust 3D localization in
agriculture.

accuracy and energy
efficiency in agricultural
environments.

agriculture. accuracy for real-time dynamic agricultural management, and crop
monitoring challenges. conditions. monitoring.
Hybrid Combining Proposed a hybrid approach Dynamic environments, Hybrid approaches in IoT-
Metaheuristics for metaheuristics (e.g., using PSO and Genetic large-scale deployments, | based SA to handle
SA PSO, Genetic Algorithms with ML for energy efficiency, and complex, dynamic
(Sharma & Algorithms) with ML localization, ensuring noise handling. environments and ensure

efficient operations.

data analytics.

environmental data.

Real time simulated a real-time Demonstrated an intelligent Resource optimization, Case study showcasing
agriculture agriculture application irrigation system that real-time monitoring, automated irrigation;
application for an automated automates water delivery automated control in relevant for validating
(Obaideen et al., irrigation scenario. based on real-time soil and agriculture. smart agriculture

2022) environmental data. localization frameworks.
Weighted Simulated a real-time Demonstrated an intelligent Resource optimization, Case study showcasing
Correction-Based smart agriculture system | irrigation system that real-time monitoring, automated irrigation;
Localization(Chang | for automated irrigation automates water delivery automated control in relevant for validating

et al., 2024) using IoT and sensor based on real-time soil and agriculture. smart agriculture

localization frameworks.

2.5 Identified Research Gaps

Although many advancements have been made in localization techniques and their application in WIoT for
monitoring agriculture, few gaps remain in this field. Existing methods cannot deliver accurate results in
dynamic, heterogeneous environments that fail to resolve real-time variations and interference. ML is used
for data analysis and error detection, but when ML is combined with the localization method, it gives more
benefits that remain unutilized. Hybrid approaches, such as integrating Conventional with ML and other
advanced techniques that could improve accuracy and adaptability, remain undiscovered and require
vertical drop.

Data transmission and processing require a large amount of energy consumption in the localization method,
so parameter energy efficiency is always a crucial challenge in WloT. Moreover, many algorithms suffer
from real-time processing capabilities, limiting their applicability in large-scale or dense sensor networks
and scalability. Specially designed localization methods for tracking activities such as pest detection, asset
tracking, and crop monitoring remain underdeveloped, even after they have their unique requirements. Prior
scholarly work has done much research in solving issues like localization accuracy, often overlooking other
critical factors like robustness to noise, computational time, and energy consumption. Moreover, studies
mainly depend upon simulations, which do not meet the requirement of real-world complexities like
dynamic obstacles and network obstructions. Recent studies have also shown that no deep attention has
been paid to the energy-efficient parameter, which is essential even after integrating with agricultural
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technologies like pest control and automated irrigation. To fulfil the modern demands for WloT, agricultural
activities must first resolve the prevailing issues and then design a robust technology fit for scalability,
sustainability, efficiency, and accuracy.

Despite recent progress in WIoT localization techniques, several research gaps persist. Existing methods
lack robustness against environmental noise, dynamic obstacles, and terrain variation—conditions
commonly encountered in real-world agricultural deployments. Many models fail to simultaneously
optimize for localization accuracy, energy consumption, and computational complexity. Furthermore, while
ML has shown promise for anomaly detection, its integration with optimization-based localization
techniques remains underutilized. Hybrid solutions involving data-driven filtering and metaheuristic
optimization are still in early stages of development. There is also a lack of practical implementations that
validate simulation models through field trials in diverse topographical conditions. Our proposed
framework addresses these shortcomings by introducing a three-layered hybrid model tailored for SA’s
unique challenges.

3. Problem Statement

For innovative agriculture applications, monitoring the environment and collecting accurate real-time data
are necessary. It is challenging to calculate the precise location of the node in such scenarios. The
environmental noise affects the RSSI value, resulting in low accuracy. Conventional localization techniques
have low performance as they have high computation costs. The traditional methods are also less suitable
for large WIoT networks and are less efficient in managing energy consumption during data transmission
among the nodes. Most of the time, the data collected through the WloT nodes are erroneous. Removing or
mitigating anomalies is crucial for efficient localization via position estimation. To address the challenges
of anomalies, localization error, and energy consumption, we proposed a hybrid optimized 3D localization
scheme in a WIoT network for SA.

4. Methodology of Proposed Work
Figure 1 shows the methodology of the proposed scheme, which proceeds in the following steps:

(i) Data Acquisition: The RSSI values are acquired through sensor nodes along with timestamps and
provided as the input for the following process for location estimation.

(ii) Localization Techniques: The PSO and trilateration techniques are used to estimate the location of the
nodes, minimize the location error, and refine the estimated position.

(iii) Anomaly Detection: The RF reduces anomalies in the RSSI data. These anomalies are generated by
environmental noise and hardware failures. The process of anomaly detection is essential as it enhances
Localization accuracy because erroneous inputs are highly prone to increasing errors.

(iv) Evaluation: The proposed scheme is evaluated using parameters viz localization error, energy
consumption, scalability and convergence time in three scenarios of SA: crop monitoring, pest
detection, and asset tracking.

Data Collection Anomaly Detection Optimization Refined Position
(RSSI, Timestamps) (ML-Random Forest) (PSO) ‘ (Trilateration)

Figure 1. Proposed methodology.

In the PSO optimization process, the initial positions of unknown sensor nodes are assigned using a uniform
random distribution within the defined 3D space. This approach ensures that the particles are systematically
spread across the search space as the optimization begins. It also enhances the likelihood of converging
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toward the global optimum. To prevent particles from moving outside the valid region, boundary constraints
are applied during iterations. To balance exploration and algorithmic simplicity, we didn’t use heuristic-
based initialization, as uniform random seeding can balance it.

We selected the RF algorithm for anomaly detection as it is robust and efficient in handling noisy, non-
linear, and high-dimensional RSSI data. Unlike other classifiers like Support Vector Machines (SVM), K-
Nearest Neighbors (KNN), or decision trees, RF minimizes overfitting through ensemble averaging,
requires minimal hyperparameter tuning, and provides high classification accuracy for noisy input data.
Due to the feature of fast inference, the RF algorithm is also suitable for real-time loT applications in SA.
Its feature importance capability further helps in understanding environmental factors contributing to
anomalies.

This study operates under several practical assumptions, including the static position of sensor nodes after
deployment and prior knowledge of the path-loss exponent for each terrain type. The RSSI values are
modelled using Gaussian noise to simulate environmental interference. In real-world deployments, factors
such as terrain heterogeneity, multi-path propagation, node hardware variation, and synchronization delays
may introduce additional uncertainties. These aspects will be explored in future field implementations to
further validate the model’s performance.

5. Mathematical Model for Hybrid Optimized 3D Localization Scheme

The mathematical model for the proposed scheme has three key components—data acquisition and anomaly
detection, optimization, and refinement. The data is gathered from the WIoT nodes deployed in the network.
These nodes include the unknown and anchor nodes (whose location is known). The data includes the
anchor nodes' location, RSSI value, transmission power, and environmental parameters. PSO is applied to
estimate the unknown node’s position, which minimizes the error between calculated and estimated
distances. Applying the ability of local exploitation and global exploration, PSO refines potential solutions
effectively. This quality makes it more suitable for implementing agricultural scenarios with many sensor
nodes.

Anomaly detection is incorporated using a RF classifier to improve dependability. It identifies and
eliminates the anomalous RSSI values caused by environmental factors like noise, sensor interference, and
malfunctioning. The preprocessing step of anomaly detection provides only legitimate data as input to the
localization algorithms. A closed-form geometric technique, i.e., trilateration, is used to refine the estimated
positions after removing the anomalous data. This refinement is done by calculating the distance of nodes
and the position of the anchor nodes. The proposed approach provides high accuracy because PSO is used
for broad optimization and trilateration for fine-tuning.

The input parameters are the position of the anchor nodes and the distance to the anchor nodes. (x;, y;, z;),
is the anchor nodes’ position, where i = 1,2, ..., m, where, m is the number of anchor nodes. Equation (1)

calculates the distance to Anchor Nodes (d;):
pt—pPr

d; = 1010-n (1)

where, p; is Transmission power (dBm), p, is the RSSI value from anchor node i, and n is the Path-loss
exponent (environment-dependent).

Equation (2) calculates the objective function. The objective is to minimize the error between the measured
distances (d;) and the estimated distances (d;):
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E(®9,2) =32 & -x)2+ @ —y)? + (2 —2)? - dy)? )
where, (X, 9, 2) is the estimated position of the unknown node.

PSO is applied as an optimization technique whose goal is to minimize the objective function value, i.e.,
E(X,9,2).

Equation (3) calculates the value of velocity update:

UI§+1 = w. vﬁ + cq1.17. (szzest - xzt)) + Cy.75. (Gbest - xItJ) (3)

The position update is calculated from Equation (4)
xptt = xb + vt (4)

where, w is inertia weight, ¢; and ¢, are cognitive and social coefficients, 1y and r, are random values in
[0,1], and Py, Gpest are the Best-known positions for the particle and globally.

After PSO optimization, the solution is refined using closed-form trilateration as Equation (5):

X = (ATA)"1ATh (5)

A is a matrix derived from anchor node coordinates, b is a vector of distances d; , and X = (&,9,2)7 is the
refined position.

Before optimization, anomalous RSSI values are filtered using a RF classifier as in Equation (6):

y = f(X;0) (6)

where, X is the feature vector from RSSI data, 6 is the parameters of the trained RF model, y € {0,1} is the
indicator of valid (1) or anomalous (0) data. Anomalous RSSI values are excluded, ensuring robust
optimization.

The localization accuracy is the estimated position is calculated as Equation (7):
1 — — _
Error = ¥i V& — %)% + O —y)? + (4 — 2)° 7)

where, n is the number of test nodes.

Total energy consumption is measured as Equation (8):
Econsumea = ?:1 P, T; ®)

P; is the power consumed, and T; is the time for computation. Computational cost is measured as the total
number of iterations and time required for PSO convergence.

Algorithm 1: Data Processing and Optimization Using PSO

Input:
N: Total number of sensor nodes
m: Total number of anchor nodes
(x;,¥;,2Z;): Anchor node position fori =1, ..., m
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pr: Received Signal Indicator (RSSI) values
p:: Transmission power of node
7n: Path-loss exponent
PSO parameters: w, ¢4, ¢y
Begin
Step A: Data Acquisition
Al. Initialize Sensor Node Locations (N, Width, Height, Depth):
Randomly initialize the position of N unknown nodes:
{(x Yi'Zi)}?’:l
A2. Compute_Distance (d;):
For each anchornodei =1, ...,m
pt—prli]
| di =10 10=n
End For
Step B: Anomaly Detection
B1. Filter_Anomalous_RSSI _data (B,.):
Use a Random Forest Classifier
Extract features from RSSI data:
X = [P.,variamce, mean, RSSI trend]
Classify anomalies using the model:
y=f(X;6)
Fori=1,..,m
Ify=0
Mark P,[i] as anomalous and exclude it
End if
End for
Step C: Particles Swarm Optimization (PSO)
C1. Initialize_Particles
Initialize k particles with random position (X, ¥y, Zp)
Assign random velocities (v, vy, v,)
C2. Compute_Initial_Fitness (E):
For each particle p = 1, ..., k:
By = ST |5 = 307 + 0p = 907 + (25 = 207 = d)?
End For
C3. Iterative_Optimization (A, B, Y, n, 1):
While stopping criteria not met (maximum iteration/threshold)
For each particlep = 1, ..., k:
Update Velocity:
Vit = w.vf + cp.11. (PR, — x5) + 2. 70 (Gpest — X})
Update Position:
x,ﬁ“ = xt + U£+1
End For
Re-evaluate fitness E), for each particle
Update Py, and Gyt

End
Output: Optimized position of unknown nodes via PSO
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Algorithm 2: Trilateration Refinement and Evaluation

Input:
Optimized position form Algorithm 1
Anchor position (x;, y;, Z;)
Distances d;

Begin
Step A: Trilateration Refinement
Al. Linearize Distance Equations:
For each anchornodei =1, ..,m
| k= x)? + -y + (z—z)? = d}

End For
A2. Matrix Representation
Define:
2(x; —x1) 2072 —y1) 2(z2—z)
A= : : :
20tm —x1) 20¥m —y1) 2(zm —2z1)
df —di —xf +x —yf +yi -z} +73
b= :

df —diy —xf +xp —yf +ym — 2 + 7
A3. Refine Position Using Trilateration
Compute:
X =(ATA)"ATh
Where X = (X,9,2)"
Step B: Evaluation
B1. Compute Localization Error:
Compute the average localization error:

1 A ~ ~
. Error = ﬁzyzl\/(xj —x)?+ @ —y)* + (& — z)?

B2. Compute Energy Consumption:
Fvaluate energy consumed by the system:
Econsumea = Ziv=1 P.T;
B3. Record Computational Performance:
Log the total iterations, convergence time, and computational cost.

End
Qutput: Final refined positions, localization error, and system energy consumption.

Algorithm 1 outlines the process to address the issues raised by environmental noise and computational
efficiency by incorporating data preprocessing and optimization techniques. The RF technique is applied
for anomaly detection. It ensures the reliability of RSSI data by filtering out noise and erroneous values to
improve the quality of input data for the localization process. Afterwards, the PSO technique estimates the
positions of unknown sensor nodes by reducing the error between calculated and estimated distances. The
iterative nature of the PSO technique balances exploration and exploitation, which makes it well-suited for
large-scale WloT networks.
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Algorithm 2 refines the estimated positions after the localization of unknown nodes from PSO using
trilateration and closed-form geometric computations to improve accuracy. The linearized distance
equations amend any deviations introduced in the optimization phase. Evaluating localization error and
energy consumption shows the precision and feasibility of the proposed approach for WIoT networks for
agricultural scenarios. Maintaining energy efficiency, this refinement phase ensures robust performance in
noisy or complex environments. Combining deterministic refinement with heuristic optimization, the
proposed hybrid algorithm ensures scalability and precision.

The computational complexity of the proposed hybrid model depends on three components: PSO-based

position estimation, RF-based anomaly detection, and trilateration refinement.

e The time complexity of PSO algorithm is O(P X I), where P is the number of particles and I is the
number of iterations required for convergence.

e RF-based anomaly detection is performed once during preprocessing and is parallelizable. The
complexity of RF anomaly detection model is O(T - F - log F), where T is the number of trees and F is
the number of features.

e The trilateration refinement has a complexity of 0(n®), where n is the number of anchor nodes. IS
involves a system of linear equations using matrix operation.

The combined approach remains efficient and scalable for medium- to large-scale deployments, mainly due
to PSO’s global convergence behaviour and the one-time RF preprocessing.

6. Simulation Framework and Parameters

The simulation environment was developed using a combination of software tools. The RF classifier for
anomaly detection was implemented using Python’s Scikit-learn library. The PSO algorithm and
trilateration refinement were simulated using MATLAB for matrix-based optimization. Visualization and
performance  graphs  were  generated using Seaborn and  Matplotlib  in  Python.
The input RSSI data were synthetically generated, simulating varying terrain and noise conditions. While
no real-world dataset was used, the complete simulation code and synthetic data generation scripts are
available upon request for academic use.

Three primary simulation scenarios are considered: crop monitoring, pest detection, and asset tracking.
These tools enable the implementation of algorithms for data processing and anomaly detection to simulate
WIoT and visualize sensor data in agricultural environments. Sensor nodes observe the soil moisture level,
temperature, and humidity across a large field to monitor the crop. The purpose is to achieve high
localization accuracy to deploy an automated irrigation system. For pest detection, the sensor nodes track
the pattern of pest movement in greenhouses to provide real-time location data for effective measurement
of direct pest control. Asset tracking is done by implanting IoT devices on agricultural machinery to
optimize resource usage through precise positional tracking.

The simulation incorporates parameters like sensor nodes, anchor nodes, deployment area dimensions,
RSSI value, and path-loss exponent. The number of unknown sensor nodes (N) ranges from 100 to 500,
while anchor nodes (m) vary between 10 and 50. We considered a 3D space with dimensions 100 x 100 x
50 arbitrary units as the deployment area. The RSSI value (p,-) has a range from 2.0 to 4.0. The value
depends on signal attenuation and gets impacted by the path-loss exponent (7). The inertia weight (w) is
taken within the range of 0.5 to 1.0 for PSO parameters. Each of the acceleration coefficients (k4, k) is set
to 1.5. The stopping criteria or PSO algorithm is defined as a maximum of 200 iterations or an error
threshold. Here, the number of particles (k) have range between 50 to 100.
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The inertia weight and acceleration coefficients are crucial for balancing exploration and exploitation in the
PSO algorithm. The inertia weight is set between 0.5 and 1.0 because this range allows the particles to
explore the solution space broadly during the initial iterations. The task focuses on exploitation as the
algorithm converges by broadly exploring the search space. It also improves convergence stability and
solution quality. The acceleration coefficients are chosen based on standard practices to balance the
cognitive and social components equally. The cognitive components are individual experiences, while the
social cognitive are the swarm experience components. The choice of moderate values saves from
premature convergence by ensuring that particles are influenced adequately by both personal and global
best solutions.

In the simulation, Additive White Gaussian Noise (AWGN) is introduced into the RSSI values to simulate
signal degradation. Environmental interference, sensor hardware variation, and multipath fading are some
reasons for the signal degradation. The noise acquires a zero-mean Gaussian distribution with varying
standard deviations to represent different noise levels, i.e. 5%, 10%, 15%, and 20%. This modelling closely
approximates real-world RSSI fluctuations and allows performance evaluation of the localization algorithm
under controlled noisy conditions.

The simulation assumes perfect time synchronization between sensor and anchor nodes. This assumption
simplifies modeling and allows the evaluation of localization performance without introducing timing-
induced biases. While synchronization discrepancies can affect real-world RSSI-based methods, our
framework focuses on handling signal strength variability. Future implementations will consider
synchronization errors and propose timing-resilient enhancements

The simulation framework employs two main algorithms, i.e., "Data Processing and Optimization Using
PSO” and “Trilateration Refinement and Evaluation”. Algorithm 1 begins with data acquisition by
initializing sensor node locations and computing distances among nodes using RSSI values. Anomalous
RSSI data is filtered out by using a RF Classifier. Afterwards, the PSO technique is applied to optimize the
positions of unknown sensor nodes. Through iterative updates of particle velocities and positions, the
position of unknown nodes is optimized by evaluating fitness at each step till meeting the stopping criteria.
To refine the positions of the nodes estimated by Algorithm 1, Algorithm 2 takes place. Algorithm 2
linearizes the distance equations to represent them as a matrix to calculate refined positions. The evaluation
phase calculates localization error using root mean square error (RMSE) and consumed energy and logs
computational performance metrics.

Evaluation metrics, including localization error, energy consumption, and computational performance, are
used to test the scheme's performance. Localization accuracy is measured by calculating the RMSE between
actual and estimated positions. Energy consumption evaluates the efficiency of the system, and
computational performance metrics provide the count of total iterations, convergence time, and
computational cost. Table 2 summarizes the key parameters and their respective values/ranges for
simulating the hybrid localization framework described in the algorithms. Table 3 provides an overview of
the effect of various terrains on simulation parameters and evaluation metrics. The table compares node
density, noise levels, and topography, i.e., flat, hilly, and mixed terrains), the application of RF (for anomaly
detection), PSO, and trilateration technique for localization by evaluating localization accuracy, energy
consumption, and computational cost across three distinct simulation scenarios. It concludes that flat
terrains achieve the highest localization accuracy and lowest computational cost, while hilly and mixed
terrains are found more challenging due to their complexity.
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Table 2. Simulation parameters.
Parameter Description Values/Range
N (Sensor Nodes) Total number of unknown sensor nodes randomly deployed in the 3D area 100-500
m (Anchor Nodes) Total number of anchor nodes. 10-50
Deployment Area Width, height, and depth of the 3D deployment area 100 x 100 x 50 (arbitrary
Dimensions units)
pr (RSSI) Received Signal Strength Indicator values Varies based on signal
attenuation
71 (Path-Loss Exponent) Path-loss exponent affecting signal attenuation 2.04.0
PSO Parameters
w Inertia weight for velocity control 0.5-1.0
C1,C2 Acceleration coefficients for cognitive and social components ci=15c=15
Number of Particles (k) Total number of particles initialized in the PSO 50-100
Stopping Criteria Criteria for stopping PSO iterations Max 200 iterations or error
threshold
Algorithm 2 Inputs Optimized positions from PSO and corresponding anchor positions From Algorithm 1
Evaluation Metrics
Localization Error Metric | Root Mean Square Error (RMSE) between actual and estimated positions Computed during evaluation
Energy Consumption (E) | Energy consumed by the system during Localization Computed for sensor nodes
Computational Total iterations, convergence time, and computational cost Recorded during
Performance simulations

Table 3. Comparison of simulation parameters and evaluation metrics across terrain types.

Parameter Flat terrain Hilly terrain Mixed terrain
Node Density High / Medium / Low High / Medium / Low (Adjustable) High / Medium / Low (Adjustable)
(Adjustable)

Noise Levels

Low / Medium / High Medium / High

Variable (depends on sub-terrain)

Topography Uniform and level Varying elevation with obstructions Combination of flat and uneven
surfaces

RSSI Signal Reliability | High Low Medium

Localization Accuracy High (1.2 - 1.8 m) Low (2.5-39m) Moderate (1.9 —2.8 m)

Energy Consumption (J) | 8 —10 10.5-13 9.5-12

Computation Time (s) 0.25-0.35 045-0.7 0.35-0.5

Impact on Performance

Highly stable, suitable for real-
time precision

Increased error and delay due to
terrain effects

Adaptive performance, depends on
terrain layout

6.1 Impact of Terrain Conditions on Localization Metrics

The localization performance of WIoT networks is significantly affected by terrain conditions. In flat
terrains, the signal propagation remains relatively uniform with minimal interference, resulting in high
localization accuracy and reduced computation time. In contrast, hilly terrains introduce physical
obstructions and variable elevation, which cause signal shadowing, multi-path fading, and increased RSSI
fluctuations—leading to higher localization error, energy usage, and longer convergence time. It performs
moderately in the mixed terrain scenario. The results are based on node placement, density, and
heterogeneity. The proposed scheme follows the approaches of anomaly detection and multiple refinement-
based trilateration techniques by consistently adapting to terrain-induced variability. Table 3 compares
simulation parameters and evaluation metrics across terrain types to maintain stable accuracy across diverse
agriculture scenarios.

7. Results and Discussions

The performance of the proposed scheme is evaluated by comparing it with DV-Hop (Distance Vector-Hop)
and AMPLI (Anchor-Based Multipath Localization Improvement) methods in three agricultural scenarios,
i.e. crop monitoring, pest detection and asset tracking. The work is implemented by applying the algorithms
to synthetic data generated under different noise conditions. The trade-offs were explored to identify the
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most appropriate solution for each scenario. The performance is evaluated based on the varying noise levels
on the specified parameters, i.e., localization accuracy, energy efficiency, and computation time, as shown
in Table 4.

Table 4. Summary of the key metrics used.

Method Localization accuracy (Mean Energy efficiency Computation time Resilience to noise
error) (Power consumption)
Hybrid Method with ML | Lowest error (1.2-3.0 meters) Higher Higher computation time Most resilient
DV-Hop Higher error (2.0-4.2 meters) Low Low computation time Sensitive to noise
AMPLI Moderate error (1.8-3.9 meters) | Low Low computation time Moderate noise
sensitivity

Table 5 shows that at varying noise levels of 5%, 10%, 15%, and 20%, the proposed hybrid method with
ML continuously showed the lowest mean localization error (MLE), with the resulting values of 1.2m,
1.7m, and 2.3m, respectively. Meanwhile, the DV-Hop approach has high localization errors with MLE
values of 2.0 m, 2.8 m, 3.6 m, and 4.2 m at different noise levels. The AMPLI approach has moderate
localization error, i.e., 1.8 m at 5% noise to 3.9 m at 20% noise. State-of-the-art techniques are found to be
less energy-efficient than the proposed energy efficiency parameter scheme. The proposed hybrid method
with ML is faster in computing time compared to state-of-the-art approaches.

To validate the consistency of the proposed approach, statistical analysis was conducted over 30
independent runs for each application scenario. As shown in Table 5, the low standard deviations and
narrow 95% confidence intervals across all cases confirm the reliability and robustness of the hybrid with
ML model under varying agricultural conditions.

Table 5. Evaluation of performance metrics across various scenarios.

Scenario Method Localization error Standard 95% Confidence Energy Computation time

(m) deviation (m) interval (m) (@) (s)

Crop Hybrid with 1.20 0.10 [1.16, 1.24] 9 0.34
Monitoring ML

DV-Hop 2.00 N/A N/A 11 0.50

AMPLI 1.81 N/A N/A 10.5 0.45

Pest Detection | Hybrid with 1.70 0.13 [1.64, 1.76] 10 0.50
ML

DV-Hop 2.80 N/A N/A 13 0.70

AMPLI 2.40 N/A N/A 12 0.65

Asset Hybrid with 1.80 0.11 [1.76, 1.84] 8 0.25
Tracking ML

DV-Hop 3.00 N/A N/A 10.5 0.40

AMPLI 2.60 N/A N/A 9.8 0.35

The simulations have been performed on three agriculture scenarios: asset tracking, pest detection, and crop
monitoring. Compared to state-of-the-art localization approaches, the proposed scheme outperforms all
three scenarios.

These results highlight the trade-off between accuracy, energy consumption, and computation time. The
Hybrid scheme with ML offers the best localization accuracy. Still, it comes with the cost of higher energy
consumption and longer computation time, making it ideal for scenarios where precision is critical.
Meanwhile, state-of-the-art equipment is more suitable for applications where energy efficiency and speed
are prioritized over accuracy, especially in environments with minimal noise. The choice of method
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ultimately depends on the application's specific requirements, including the desired balance between
accuracy, energy consumption, and real-time performance, as shown in Figure 2.

Localization Error vs. Noise Level

4.0 4 —®— Hybrid Method with ML
DV-Hop
8- AMFLU

3.5

3.01

254

Mean Localization Error (m)

2.0+

151

6 8 10 12 14 16 18 20
Noise Level (%)

Figure 2. Accuracy vs. noise level.

The simulations have been performed on three different agriculture scenarios: asset tracking, pest detection,
and crop monitoring. Compared to state-of-the-art localization approaches, the proposed scheme
outperforms all three scenarios.

For the automated irrigation feature of SA, it is crucial to deploy the sensor nodes precisely to implement
compelling crop monitoring scenarios. Figure 3 demonstrates that the proposed scheme results in the lowest
computation time (0.34s), localization error (1.2 m), and energy consumption (9 J). AMPLI approach has
moderate performance with a computation time of 0.45 s, localization error of 1.81 m, energy consumption
of 10.5 J. DV-Hop has highest computation time of 0.5 s, localization error (2.0 m), and energy consumption
of 11 J.

Crop Monitoring

Localization Error (m)
Energy (J)
= Time (s)
10
8
3
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2
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Hybrid with ML DV-Hop AMPLI

Figure 3. Performance evaluation across crop monitoring.
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The hybrid with ML scheme outperforms the other methods for the pest detection scenario (where real-time
tracking and anomaly detection are critical). Figure 4 demonstrates that the proposed scheme also
outperforms this scenario with low energy consumption (10 J), localization error (1.7 m), and computation
time (0.5 s). At the same time, DV-Hop has the most significant localization error (2.8 m), energy
consumption (13 J), and computation time (0.7). The AMPLI trails the proposed scheme, having a moderate
localization error (2.4 m), energy consumption (12 J), and computation time (0.65).

Pest Detection

Localization Error (m)
Energy ())
12 1 == Time (s)

104

Values

0 - m .

Hybrid with ML DV-Hop AMPLI

Figure 4. Performance evaluation across pest detection.

Figure 5 shows that the proposed scheme outperforms the asset tracking scenario, achieving the lowest
values for energy consumption (8 J), computation time (0.25 s), and localization error (1.8 m). Both AMPLI
and DV-Hop are less effective compared to the proposed scheme. AMPLI has moderate performance with
a localization error (2.6 m), energy consumption (9.8 J), and computation time (0.35 s). In comparison, DV-
Hop has the highest localization error (3.0 m), energy consumption (10.5 J), and computation time (0.5 s).

Asset Tracking
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Figure 5. Performance evaluation across asset tracking.
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Figure 6 visualizes the distribution of the unknown and anchor nodes in the 3D WIoT Node network.
Unknown sensor nodes and anchor nodes are deployed randomly in a 3D terrain. The anchor nodes are
represented by green stars (*), and unknown sensor nodes are represented by red circles (o). Figure 7
demonstrates the outcome of the localization process after implementing the proposed scheme. In this

figure, the blue triangles (A) show the nodes after the position is estimated.

3D Localization using PSO and Trilateration

% Anchor Nodes
+ Unknown Nodes

Z-axis (Depth)

Figure 6. 3D WIoT node distribution.

3D Localization using PSO and Trilateration
Y Anchor Nodes
® Unknown Nodes
4 Estimated Positions

Z-axis (Depth)

Figure 7. Location estimation through proposed algorithm.
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The proposed hybrid localization scheme demonstrates strong scalability for high-density WSN
deployments. In simulations, we performed an evaluation that involved up to 500 unknown sensor nodes.
The proposed system maintained stable localization accuracy with only a moderate increase in computation
time. Using parallelizable modules, such as PSO for position estimation and RF for anomaly detection, the
framework can efficiently adapt to larger networks, making the model suitable for large-scale SA scenarios
that demand accurate, energy-efficient localization over extended areas.

8. Insight and Implications

The proposed hybrid optimized method for 3D localization in the WIoT network for SA provides intelligent
support to the farming system and enables modern farming. The hybrid scheme improves localization
accuracy by dealing with adverse environmental conditions and noises. The RF method refines the
erroneous data from the RSSI values. Another important factor is to create a sufficient balance between
energy efficiency and computational cost. The PSO method is compelling because it reduces energy and
computational costs. This makes the infrastructure suitable for real-time applications because these
applications, like automated irrigation systems or precision farming tools, require low energy and fast
processing for data. This approach can accommodate terrain variations, demonstrating its adaptability, but
it can impact signal propagation and localization accuracy in outdoor agriculture settings.

This work is significant for precision agriculture, where locating the nodes exactly is critical because exact
location plays a key role in applications like pest control, automated irrigation, and soil monitoring. By
enhancing the accuracy, the approach can target the task quickly and efficiently; ultimately resources can
be optimized and waste can be reduced. Additionally, improved efficiency makes the real-time applications
work better, like tracking pests rapidly and making the system more autonomous. The solution can be cost-
effective because it works well on large-scale agricultural land and improves energy efficiency and
computational cost, simultaneously reducing cost and increasing the lifespan of the [oT infrastructure.

The proposed scheme offers considerable economic and commercial benefits. Improved localization
enables more accurate deployment of sensors for tasks like irrigation, equipment monitoring, and pest
control, which directly translates to optimized resource utilization and reduced operational costs. From a
commercial standpoint, this model can be integrated into smart farming systems, offering scalable and cost-
effective solutions for agritech startups and agricultural automation companies. The reduced energy
footprint and higher accuracy also extend the lifespan of deployed networks, making the solution viable for
commercial deployments in large-scale agriculture.

9. Conclusion and Future Scope

This paper presents a three-stage Hybrid Optimized 3D Localization scheme, including PSO, RF and
trilateration techniques in WIoT networks for SA to address the issues of energy consumption,
computational costs, and inaccurate localization error. The combination of PSO and RF provides high
accuracy compared to state-of-the-art techniques. The RF-based is used for anomaly detection and can filter
inaccurate sensor data by handling the environment's noisy data and dynamic behaviour. The PSO algorithm
estimates the initial node location. Afterwards, the trilateration technique is used to refine the estimated
positions.

Unlike existing localization methods that typically rely on standalone approaches—either optimization,
geometric, or ML techniques—our proposed work integrates all three into a unified hybrid model. This tri-
layered framework is distinctly designed to handle dynamic environmental noise, resource constraints, and
the demand for real-time data accuracy. This sets our work apart by offering a comprehensive and scalable
solution tailored for SA, a domain where no single method has previously been sufficient to meet all
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operational requirements. The results validate that our hybrid scheme outperforms DV-Hop and AMPLI
methods, achieving localization errors as low as 1.2 meters, energy consumption of 8—10 J, and computation
times under 0.5 seconds across three practical agricultural scenarios.

The current implementation is simulation-based and tested on synthetic datasets. Future work will focus on
real-world field deployments and extension to extreme terrains. Moreover, integrating communication
protocols such as LPWAN or 5G and exploring reinforcement learning for adaptive optimization could
further enhance performance. The methodology can also be extended to smart city infrastructure, livestock
tracking, and environmental disaster monitoring.
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