

A Multi-Operator Framework of Triangular Interval Type-2 Fuzzy Prioritized Aggregation in Expert Evaluation

Shilpa Devi

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India. E-mail: goyalshilpa209@gmail.com

Sukhveer Singh

Department of Mathematics, Graphic Era Hill University, Dehradun, India. E-mail: sukhveer.singh@thapar.edu

Ashok Singh Bhandari

Department of Mathematics, School of Basic and Applied Science, Shri Guru Ram Rai University, Dehradun, India. *Corresponding author*: ashoksbhandari@sgrru.ac.in

Mohit Kumar Kakkar

Chitkara University Institute of Engineering and Technology CUIET, Chitkara University, Rajpura, India. E-mail: mohit.kakkar@chitkara.edu.in

(Received on February 4, 2025; Revised on March 13, 2025 & July 29, 2025; Accepted on August 7, 2025)

Abstract

When many people and many factors are difficult due to uncertainty and ambiguous information, to make decisions in real situations. To address this, Fuzzy sets are used, of which interval type-2 fuzzy sets are particularly good at dealing with larger levels of uncertainty. In this paper, we set up a new concept called triangular interval type-2 fuzzy set. This is simple to work with and is still effective in presenting uncertainty. The main goal of this work is to develop new opportunities for combing information from different people using prioritized fuzzy aggregation operators. These include average, geometric and harmonic operators and they allow us to give importance not just to the criteria but also to the people making the decisions. It defines how these operators work, examine their properties and demonstrates how to apply them when making actual decisions. To prove the usefulness of our method. We apply it to a real-world example related to selecting the right decision in multi-criteria decision-making process. We also compare existing methods and show that these are better in terms of handling uncertainty and achieve more reliable results. In the future, this work can be extended to use fuzzy statements of the intuitionistic type and use them to apply a changing environment. On large scale, we can use these operators to make feasible decision with different priorities of experts and criteria in uncertain conditions.

Keywords- Fuzzy sets, Prioritized aggregation, Triangular interval type-2 fuzzy set, Multi-criteria decision-making.

Abbreviations

MAGDM Multi-Attribute Group Decision-Making

T2FS Type-2 Fuzzy Sets

IT2FS Interval Type-2 Fuzzy Sets

TIT2FS Triangular Interval Type-2 Fuzzy Sets

TIT2FPWAO Triangular Interval Type-2 Fuzzy Prioritized Weighted Aggregation Operator TIT2FPWGO Triangular Interval Type-2 Fuzzy Prioritized Weighted Geometric Operator TIT2FPWHO Triangular Interval Type-2 Fuzzy Prioritized Weighted Harmonic Operator

1. Introduction

In real-world problems, many mathematical models lack complete or exact information. To handle such uncertainties, fuzzy environments provide a robust framework for achieving reliable results. Fuzzy sets, introduced by Zadeh (1965), and interval type-2 fuzzy sets (IT2FSs), introduced by Atanassov and Gargov (1989), have been widely applied across various disciplines. These theories have proven effective in numerous decision-making processes. Xu and Zhao (2016) offer a comprehensive review of existing fuzzy decision-making theories and methods.

In multiple attribute group decision-making (MAGDM), it is essential to aggregate information from various sources to make informed decisions. Gupta and Anupam (2017), Wan and Dong (2020) worked on intuitionistic fuzzy problems. Gong (2013), Zamri et al. (2013) worked on interval type-2 fuzzy sets. Several methods exist for combining such data, as discussed by Beliakov et al. (2007), Calvo et al. (2012), and Xu (2003). One significant method is the aggregation operator (AO) known as the ordered weighted averaging (OWA) operator, introduced by Yager (1988). This operator provides a parameterized family of aggregation operations, including maximum, minimum, and average functions. Since its introduction, the OWA operator has attracted considerable attention and has been applied in various fields (Fodor et al., 1995; Bordogna et al., 1997; Chen et al., 2004; Merigó, 2011).

To extend the concept of OWA, Xu and Da (2002) and Xu and Yager (2006) introduced the ordered weighted geometric (OWG) operator, which focuses on the geometric mean. Furthermore, type-2 fuzzy sets (T2FSs), proposed by Zadeh (1975) as an extension of type-1 fuzzy sets (T1FSs), offer a more powerful approach to modeling uncertainty. A T2FS includes a primary membership function, a secondary membership function, and a footprint of uncertainty (FOU). Türksen (2002) highlighted the three-dimensional structure of T2FSs and the importance of FOU in managing vague and imperfect information in real-life applications.

T2FSs have attracted significant research interest for both theoretical and practical developments (Karnik and Mendel, 2001; Mitchell, 2005; Mendel, 2007; Aisbett et al., 2011) pointed out that the high computational complexity of T2FSs limits their practical use. To address decision-making problems under T2FSs, various authors have proposed different techniques. Wu and Mendel (2007) introduced a weighted average operator, while Lee and Chen (2008) proposed ranking and arithmetic operations. Mendel et al. (2006) developed an optimal representation for handling the uncertainty and complexity of T2FSs, going beyond crisp interval limitations noted by Chen et al. (2013).

The concept of IT2FSs was refined by Chen and Lee (2010), who also proposed a TOPSIS-based method for MAGDM problems. Jain et al. (2022) worked on defuzzification techniques. Further advancements were made by Chen et al. (2012) and De et al. (2020), who defined ranking formulas for IT2FSs. Kumar et al. (2023), and Qin and Liu (2014) explored critical decision-making issues under IT2FS settings. The concept of triangular interval type-2 fuzzy sets (TIT2FSs) was elaborated by Chiao (2011), Hagras and Wagner (2012), Hu et al. (2013), Qin and Liu (2014), Wang et al. (2012), Wang and Fan (2003), and Xu (2003), described fuzzy OWA (FOWA) operators, and Zhao et al. (2013) introduced techniques for solving fuzzy prioritized operators (POs) with applications in MAGDM. Wang and Liu (2012) developed the fuzzy-induced ordered weighted averaging (FIOWA) operators. Yager (2008, 2009) presented fuzzy prioritized weighted average (FPWA) and fuzzy prioritized weighted harmonic average (FPWHA) operators. Pathak et al. (2024), Tadic and Komatina (2025).

Many group decision methods using fuzzy logic usually assume that all criteria and all experts are equally important. However, this is rare in real life. Different criteria can have different importance, and some

expert opinions can have more weight than others. To better reflect these actual conditions, this paper presents new aggregation methods that allow for different levels of prioritization. These methods are based on the triangular interval type-2 fuzzy sets (TIT2FS) that is useful for dealing uncertainty and ambiguous information. We propose three new operators: TIT2F priorty weight average (TIT2FPWA), TIT2F weighted geometry (TIT2FPWG), and TIT2F weighted harmony (TIT2FPWH). These operators allow priority to be include in combination of information from various sources.

This paper is divided into several parts: First, we will explain the basic ideas and concepts related to the Type 2 Fuzzy Set and its triangular spacing format. Next, we'll hire new prioritized operators and explain how they work. These operators are then used to show how different criteria and experts can be used to solve key group decision problems. We'll also add detailed examples to show how the method actually works and compare it to existing methods. The final part of the paper summarizes the main results and proposes how this approach can be used in future research.

2. Preliminaries

This section, we explore the fundamental definition of concerning T2FSS, TIT2FSS, and numbers:

Definition 1. T2FS: A T2FS β in universe of discourse or defined, κ can be defined by a type-2 acceptance region or membership function $\mu_{\beta}(k,\xi)$ as following form:

$$\beta = \left\{ \left((k, \xi), \mu_{\beta}(k, \xi) \right) | \forall k \in \kappa, \forall \xi \in J_k \subset [0, 1] \right\}$$
 (1)

where, J_k defines an interval in [0,1].

Moreover, the T2FS expressed as follows:

$$\beta = \int_{k \in \kappa} \int_{\xi \in J_k} \frac{\mu_\beta(k,\xi)}{(k,\xi)} = \int_{k \in \kappa} \frac{\left(\int_{\xi \in J_k} \frac{\mu_\beta(k,\xi)}{\xi}\right)}{k}.$$

where, J_k define as the primary membership function at κ , and $\int_{\xi \in J_k} \frac{\mu_{\beta}(k,\xi)}{\xi}$ shows as the second acceptance region or membership at κ . In the discrete cases, \int is changed by Σ .

Definition 2. (Interval-valued type-2 fuzzy set) involves representing the membership grades of each point in the domain as a crisp set confined within the interval [0,1].

Definition 3. (Footprint of uncertainty: FOU) The primary Acceptance region or memberships of T2FSS introduce uncertainty, which is encapsulated by a boundary region referred to as the FOU. Analytically, the FOU is defined as the union of all primary acceptance regions or memberships, denoted as $FOU(\beta) = \bigcup_{k \in K} J_k$.

Definition 4. Arithmetical operations on TIT2FNs: (Gong, 2015).

Let

$$\beta_1 = \langle \beta_1^{\bar{U}}, \beta_1^L \rangle = \langle \left(b_{11}^{\bar{U}}, b_{12}^{\bar{U}}, b_{13}^{\bar{U}}; h_1^{\bar{U}} \right), \left(b_{11}^{\bar{L}}, b_{12}^{\bar{L}}, b_{13}^{\bar{L}}; h_1^{\bar{L}} \right) \rangle,$$

$$\beta_2 = \langle \beta_2^{\bar{U}}, \beta_2^{\bar{L}} \rangle = \langle (b_{21}^{\bar{U}}, b_{22}^{\bar{U}}, b_{23}^{\bar{U}}; h_2^{\bar{U}}) (b_{21}^{\bar{L}}, b_{22}^{\bar{L}}, b_{23}^{\bar{L}}; h_2^{\bar{L}}) \rangle.$$

be two sets and k be a real positive number, then the arithmetic operations defined on set of TIT2FNs as follows:

• Addition:

$$\begin{split} \beta_{1} \oplus \beta_{2} &= \left(\beta_{1}^{\bar{U}}, \beta_{1}^{\bar{L}}\right) \oplus \beta_{2}^{\bar{U}}, \beta_{2}^{\bar{L}}) \\ &= \langle \left(b_{11}^{\bar{U}} + b_{21}^{\bar{U}}, b_{12}^{\bar{U}} + b_{22}^{\bar{U}}, b_{13}^{\bar{U}} + b_{23}^{\bar{U}}; min\left(h_{1}^{\bar{U}}, h_{2}^{\bar{U}}\right)\right), \left(b_{11}^{\bar{L}} + b_{21}^{\bar{L}}, b_{12}^{\bar{L}} + b_{22}^{\bar{L}}, b_{13}^{\bar{L}} + b_{23}^{\bar{U}}, b_{13}^{\bar{U}} + b_{23}^{\bar{U}}; min\left(h_{1}^{\bar{U}}, h_{2}^{\bar{U}}\right)\right) \rangle \end{split}$$

• Multiplication:

$$\begin{split} \beta_{1} \otimes \beta_{2} &= \left(\beta_{1}^{\bar{U}}, \beta_{1}^{\bar{L}}\right) \otimes \beta_{2}^{\bar{U}}, \beta_{2}^{\bar{L}}) \\ &= \langle \left(b_{11}^{\bar{U}} \times b_{21}^{\bar{U}}, b_{12}^{\bar{U}} \times b_{22}^{\bar{U}}, b_{13}^{\bar{U}} \times b_{23}^{\bar{U}}; min\left(h_{1}^{\bar{U}}, h_{2}^{\bar{U}}\right)\right), \left(b_{11}^{\bar{L}} \times b_{21}^{\bar{L}}, b_{12}^{\bar{L}} \times b_{22}^{\bar{L}}, b_{13}^{\bar{L}} \times b_{23}^{\bar{U}}; min\left(h_{1}^{\bar{U}}, h_{2}^{\bar{U}}\right)\right) \rangle \end{split}$$

Scalar Multiplication:

$$k\beta_1 = k(\beta_1^{\bar{U}}, \beta_1^{\bar{L}})
= (kb_{11}^{\bar{U}}, kb_{12}^{\bar{U}}, kb_{13}^{\bar{U}}; h_1^{\bar{U}}), (kb_{11}^{\bar{L}}, kb_{12}^{\bar{L}}, kb_{13}^{\bar{L}}; h_1^{\bar{L}})$$

• Power:

$$\begin{split} \beta_{1}^{k} &= \left(\beta_{1}^{\bar{U}}, \beta_{1}^{\bar{L}}\right)^{k} \\ &= \left(\left(b_{11}^{\bar{U}}\right)^{k}, \left(b_{12}^{\bar{U}}\right)^{k}, \left(b_{13}^{\bar{U}}\right)^{k}\right); h_{1}^{\bar{U}}), \left(\left(b_{11}^{\bar{L}}\right)^{k}, \left(b_{12}^{\bar{L}}\right)^{k}, \left(b_{13}^{\bar{L}}\right)^{k}; h_{1}^{\bar{L}}\right) \end{split}$$

Definition 5. If γ is a TIT2FNs $\gamma = \langle a, b, c \rangle$ then score value of β is:

$$S(\gamma) = \frac{a \oplus b \oplus c}{3}, S(\gamma) \in [0,1]$$
 (2)

Definition 6. (Prioritized weighted average (PWA) operator:) Let $R = \{R_1, R_2, ..., R_{\bar{n}}\}$ the collection of attributes is prioritized using a linear ordering $R_1 > R_2 > ... > R_{\bar{n}}$, where attribute R_j is considered to have a higher region of priority than R_k if j < k. Values $R_j(x)$ represents performance based any alternatives x under or below attribute R_j , and lies within the interval [0,1].

$$PWA(R_1, R_2, \cdots, R_{\{\bar{n}\}}) = \sum_{\bar{J}}^{\bar{n}} \frac{\tau_{\bar{J}}}{\sum_{\bar{l}}^{\bar{n}} \tau_{\bar{J}} R_{\bar{J}}}$$

$$\tag{3}$$

where,

$$\tau_{\bar{I}} = \prod_{k=1}^{\bar{I}-1} R_{\bar{I}}, \ (\bar{I} = 2, ..., \bar{n}), \tau_1 = 1.$$

3. TIT2 Fuzzy Prioritized Weighted Average Operators

The PA operators are utilized in some different situations where the input or defined arguments consist of precise data sets.

Definition 7. Let $\beta_i = \langle \beta_{i1}^U, \beta_{i1}^L \rangle = \langle \left(b_{i1}^{\bar{U}}, b_{i2}^{\bar{U}}, b_{i3}^{\bar{U}}; h_i^{\bar{U}} \right), \left(b_{i1}^{\bar{L}}, b_{i2}^{\bar{L}}, b_{i3}^{\bar{L}}; h_i^{\bar{L}} \right) \rangle$ be collection of TIT2FNs, then we define the operator as follows:

$$TIT2FPWA(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) = \bigoplus_{j=1}^{\bar{n}} \frac{\tau(\beta_j)}{\sum_{i=1}^{\bar{n}} \tau(\beta_j)} \beta_j$$
(4)

$$= \frac{\tau(\beta_1)}{\sum_{j=1}^{\bar{n}} \tau(\beta_j)} \beta_1 \bigoplus \frac{\tau(\beta_2)}{\sum_{j=1}^{\bar{n}} \tau(\beta_j)} \beta_2 \bigoplus \ldots \bigoplus \frac{\tau(\beta_j)}{\sum_{j=1}^{\bar{n}} \tau(\beta_j)} \beta_j$$

where, $\tau(\beta_j) = \prod_{k=1}^{j-1} S(\beta_k)(j=2,3,...,\bar{n}), \tau(\beta_1) = 1$ and $S(\beta_k)$ represented as the score value of β_k .

Remark 1. Priority levels of combined arguments decrease to same or equal level or situation, operator simplifies to TIT2F weighted average operator:

$$TIT2FPWA(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) = (w_1\beta_1 \oplus w_2\beta_2 \oplus \cdots \oplus w_{\bar{n}}\beta_{\bar{n}})$$
(5)

Utilizing the law of operations TIT2FPWA, we can establish a theorem as follows:

Theorem 1. Let $\beta_i = \langle \beta_{i1}^{\bar{U}}, \beta_{i1}^{\bar{L}} \rangle = \langle (b_{i1}^{\bar{U}}, b_{i2}^{\bar{U}}, b_{i3}^{\bar{U}}; h_i^{\bar{U}}), (b_{i1}^{\bar{L}}, b_{i2}^{\bar{L}}, b_{i3}^{\bar{L}}; h_i^{\bar{L}}) \rangle$ constitutes TIT2FNs, after aggregating value by TIT2FPWA operator is also TIT2FN, and

TIT2FPWA(
$$\beta_1, \beta_2, \dots, \beta_{\bar{n}}$$
) = $\bigoplus_{i=1}^{\bar{n}} \frac{\tau_i}{\sum_{i=1}^{\bar{n}} \tau_i} \beta_i$.

$$= \langle \left(\bigoplus_{i=1}^{\bar{n}} \frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}} b_{i1}^{U}, \bigoplus_{i=1}^{\bar{n}} \frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}} b_{i2}^{U}, \bigoplus_{i=1}^{\bar{n}} \frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}} b_{i3}^{U}; \min_{i=1, \dots, \bar{n}} \{ h_{i}^{U} \} \right)$$

$$\left(\bigoplus_{i=1}^{\bar{n}} \frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}} b_{i1}^{L}, \bigoplus_{i=1}^{\bar{n}} \frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}} b_{i2}^{L}, \bigoplus_{i=1}^{\bar{n}} \frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}} b_{i3}^{L}; \min_{i=1, \dots, \bar{n}} \{ h_{i}^{L} \} \right) \rangle$$

$$(6)$$

where.

$$\tau_{i} = \prod_{k=1}^{i-1} S(\beta_{k}), i = 1, 2, \dots, \bar{n}, \tau_{1} = 1, S(\beta_{k})$$
(7)

is the estimated value of β_k .

Let $\beta_i = \langle \beta_i^U, \beta_i^L \rangle = \langle (b_{i1}^U, b_{i2}^U, b_{i3}^U; h_i^U), (b_{i1}^L, b_{i2}^L, b_{i3}^L; h_i^L) \rangle$ be a collection of TIT2FNs, $\tau_i = \prod_{k=1}^{i-1} S(\beta_k)$, $i = 1, 2, \dots, \bar{n}$, $\tau_1 = 1, S(\beta_k)$ is the expected value of $\beta_k = \langle \beta_k^U, \beta_k^L \rangle = \langle (b_{k1}^U, b_{k2}^U, b_{k3}^U; h_k^U), (b_{k1}^L, b_{k2}^L, b_{k3}^L; h_k^L) \rangle$. Then, from the above operator, it has been analyzed that for a collection of TIT2FNs, the proposed operator fulfills several properties of idempotency, boundedness, and monotonicity. These properties are described as follow:

Property 1. (Idempotency:) If all
$$\beta_j = \beta_0$$
 for all j then TIT2FN $(\beta_1, \beta_2, ..., \beta_{\bar{n}}) = \beta_0$ (8)

Proof: Since for all j, we have $\beta_j = \beta_0 = \langle (a_{01}^U, a_{02}^U, a_{03}^U; h_0^U)(a_{01}^L, a_{02}^L, a_{03}^L; h_0^L) \rangle$ then by Theorem 1, we get

$$\begin{split} \text{TIT2FPWA}(\beta_{1},\beta_{2},\ldots,\beta_{\bar{n}}) = & \quad \langle \left(\bigoplus_{j=1}^{\bar{n}} \frac{\tau_{0}a_{01}^{U}}{\sum_{j=1}^{\bar{n}}\tau_{0}}, \bigoplus_{j=1}^{\bar{n}} \frac{\tau_{0}a_{02}^{U}}{\sum_{j=1}^{\bar{n}}\tau_{0}}, \bigoplus_{j=1}^{\bar{n}} \frac{\tau_{0}a_{03}^{U}}{\sum_{j=1}^{\bar{n}}\tau_{0}} \right), \\ & \quad \left(\bigoplus_{j=1}^{\bar{n}} \frac{\tau_{0}a_{01}^{L}}{\sum_{j=1}^{\bar{n}}\tau_{0}}, \bigoplus_{j=1}^{\bar{n}} \frac{\tau_{0}a_{02}^{L}}{\sum_{j=1}^{\bar{n}}\tau_{0}}, \bigoplus_{j=1}^{\bar{n}} \frac{\tau_{0}a_{03}^{U}}{\sum_{j=1}^{\bar{n}}\tau_{0}} \right) \rangle \\ = & \quad \left(\left(\frac{\tau_{0}a_{01}^{U}}{\tau_{0}}, \frac{\tau_{0}a_{02}^{U}}{\tau_{0}}, \frac{\tau_{0}a_{03}^{U}}{\tau_{0}} \right), \left(\frac{\tau_{0}a_{01}^{L}}{\tau_{0}}, \frac{\tau_{0}a_{02}^{L}}{\tau_{0}}, \frac{\tau_{0}a_{03}^{L}}{\tau_{0}} \right) \right) \\ = & \quad \beta_{0}. \end{split}$$

Property 2. (Boundedness:) Let $\beta^- = \left\langle \left[\min_i a_{i1}^U, \min_i a_{i2}^U, \min_i a_{i3}^U, \min_i a_{i1}^L, \min_i a_{i2}^L, \min_i a_{i3}^L \right] \right\rangle$ and $\beta^+ = \left\langle \left[\min_i a_{i1}^U, \min_i a_{i2}^U, \min_i a_{i3}^L, \min_i a_{i2}^L, \min_i a_{i3}^L \right] \right\rangle$

 $\langle [\max_i a_{i1}^U, \max_i a_{i2}^U, \max_i a_{i3}^U, \max_i a_{i1}^L, \max_i a_{i1}^L, \max_i a_{i3}^L] \rangle \text{ then }$

$$\beta^{-} \le \text{TIT2FPWA}(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) \le \beta^{+}$$
 (9)

Proof: Since we can rewrite Equation (4):

TIT2FPWA(
$$\beta_1, \beta_2, \dots, \beta_{\bar{n}}$$
) = $\bigoplus_{i=1}^{\bar{n}} w_i \beta_i$.

where.

$$w_i = \frac{\tau_i \beta_i}{\sum_{i=1}^{\bar{n}} \tau_i}.$$

then we have $w_i \ge 0$, $(j = 1, 2, ..., \bar{n})$ and $\sum_{i=1}^{\bar{n}} w_i = 1$.

Take a_i , Denote:

$$\min_{i} \{a_{i1}^{U} | i = 1, 2, \cdots, \bar{n}\} = (a_{i1}^{U})_{\min}$$

$$\max_{i} \{a_{i1}^{U} | i = 1, 2, \cdots, \bar{n}\} = (a_{i1}^{U})_{\max}$$

By equation the following holds:

$$(a_{i1}^{U})_{\min} = \bigoplus_{i=1}^{\bar{n}} w_i (a_{i1}^{U})_{\min} \leq \bigoplus_{i=1}^{\bar{n}} w_i a_i \leq \bigoplus_{i=1}^{\bar{n}} w_i (a_{i1}^{U})_{\max} = (a_{i1}^{U})_{\max}$$

Similarly, we have

$$\left(a_{i1}^{U}\right)_{\min} \leq \bigoplus_{i=1}^{\bar{n}} w_{i} b_{i} \leq \left(a_{i1}^{U}\right)_{\min}, \left(a_{i1}^{U}\right)_{\max} \leq \bigoplus_{i=1}^{\bar{n}} w_{i} \left(a_{i2}^{U}\right) \leq \left(a_{i2}^{U}\right)_{\max},$$

$$\left(a_{i3}^{U}\right)_{\min} \leq \bigoplus_{i=1}^{\bar{n}} w_{i}\left(a_{i3}^{U}\right) \leq \left(a_{i3}^{U}\right)_{\max}, \left(a_{i2}^{L}\right)_{\min} \leq \bigoplus_{i=1}^{\bar{n}} w_{i}\left(a_{i2}^{L}\right) \leq \left(a_{i2}^{L}\right)_{\max},$$

$$\left(a_{i3}^L\right)_{\min} \leq \bigoplus_{i=1}^{\bar{n}} w_i\left(a_{i3}^L\right) \leq \left(a_{i3}^L\right)_{\max}.$$

$$\min_{i}\{\beta_{i} \ \middle| \ i=1,2,\cdots,\bar{n}\} \leq \mathsf{TIT2FPWA}(\beta_{1},\beta_{2},\cdots,\beta_{\bar{n}}) \leq \max_{i}\{\beta_{i} \ \middle| \ i=1,2,\cdots,\bar{n}\}$$

Property 3. Let β_i and β_i' , $(i = 1, 2, ..., \bar{n})$ be the collections of two different TIT2FNs such that $\beta_i \leq \beta_i'$ for all i, then we have

$$TIT2FN(\beta_1, \beta_2, \dots, \beta_{\bar{n}}) \le TIT2FN(\beta_1', \beta_2', \dots, \beta_{\bar{n}}')$$

$$\tag{10}$$

4. TIT2F Prioritized Weighted Geometric (TIT2FPWG) Operator

Definition 8. The weighted geometric operator of TIT2FN:

Collection of TIT2FNs,

$$\beta_i = \langle \beta_i^U, \beta_i^L \rangle = \langle \left(b_{i1}^U, b_{i2}^U, b_{i3}^U; h_i^U\right), \left(b_{i1}^L, b_{i2}^L, b_{i3}^L; h_i^L\right) \rangle, i = 1, 2, \cdots, \bar{n}.$$

TIT2FPWG operator is defined as follows:

$$TIT2FPWG(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) = \bigotimes_{i=1}^{\bar{n}} \beta_i^{\frac{c_i}{\sum_{i=1}^{\bar{n}} \tau_i}}$$

$$\tag{11}$$

$$= \langle (\bigotimes_{i=1}^{\bar{n}} (b_{i1}{}^{U})^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} (b_{i2}{}^{U})^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} (b_{i3}{}^{U})^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}; \min_{i=1,\cdots,\bar{n}} \{h_{i}^{U}\}),$$

$$(\bigotimes_{i=1}^{\bar{n}} (b_{i1}{}^{L})^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} (b_{i2}{}^{L})^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} (b_{i3}{}^{L})^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}; \min_{i=1,\cdots,\bar{n}} \{h_{i}^{L}\}) \rangle$$

where, $\tau_i = \prod_{k=1}^{i-1} S(\beta_k)$, $i=1,2,\cdots$, \bar{n} , $\tau_1=1$, $S(\beta_k)$ is achieved value of β_k .

Remark 2. When the priority levels of the combined arguments equalize, the TIT2FPWG operator transforms into the TIT2F Weighted Geometric operator.

$$TIT2FPWG(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) = \beta^{w_1} \otimes \beta^{w_2} \otimes \cdots \otimes \beta^{w_{\bar{n}}}$$

$$(12)$$

Utilizing the laws of operations TIT2FNs, we can establish a theorem as follows:

Theorem 2. Let $\beta_i = \langle \beta_i^U, \beta_i^L \rangle = \langle (b_{i1}^U, b_{i2}^U, b_{i3}^U, b_{i1}^U), (b_{i1}^L, b_{i2}^L, b_{i3}^L, b_{i1}^L) \rangle$, $i = 1, 2, \dots, \bar{n}$, which is aggregation of TIT2FNs, after aggregate by TIT2FPWG operator is also a TIT2FNs, and

$$TIT2FPWG(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) = \bigotimes_{i=1}^{\bar{n}} \beta_i^{\frac{\tau_i}{\sum_{i=1}^{\bar{n}} \tau_i}}$$

$$(13)$$

$$= \langle \left(\bigotimes_{i=1}^{\bar{n}} \left(b_{i1}^{U} \right)^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} \left(b_{i2}^{U} \right)^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} \left(b_{i3}^{U} \right)^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}; \min_{i=1,\cdots,\bar{n}} \{ h_{i}^{U} \} \right), \\ \left(\bigotimes_{i=1}^{\bar{n}} \left(b_{i1}^{L} \right)^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} \left(b_{i2}^{L} \right)^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}, \bigotimes_{i=1}^{\bar{n}} \left(b_{i3}^{L} \right)^{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}; \min_{i=1,\cdots,\bar{n}} \{ h_{i}^{L} \} \right) \rangle.$$

where, $\tau_i = \prod_{k=1}^{i-1} S(\beta_k)$, $i = 1, 2, \dots, \bar{n}$, $\tau_1 = 1, S(\beta_k)$ is the extimated value of β_k .

Proof. We prove this theorem by mathematical induction on \bar{n} same as Theorem 1.

Let $\beta_i = \langle \beta_i^U, \beta_i^L \rangle = \langle \left(b_{i1}^U, b_{i2}^U, b_{i3}^U; h_i^U \right), \quad \left(b_{i1}^L, b_{i2}^L, b_{i3}^L; h_i^L \right) \rangle$ be a collection of TIT2FNs, $T_i = \prod_{k=1}^{i-1} S\left(\beta_k\right), i = 1, 2, \cdots, \bar{n}, \tau_1 = 1, S(\beta_k)$ is the defined or achieved results $\beta_k = \langle \beta_k^U, \beta_k^L \rangle = \langle \left(b_{k1}^U, b_{k2}^U, b_{k3}^U; h_k^U \right), \quad \left(b_{k1}^L, b_{k2}^L, b_{k3}^L; h_k^L \right) \rangle$. Then, from the above operator, it has been analyzed that for a collection of TIT2FNs, the proposed operator fulfills several of the properties of idempotency, boundedness, and monotonicity. These properties are described as follows:

Property 4. (Idempotency) If all
$$\beta_j = \beta_0$$
 for all j then TIT2FPWG $(\beta_1, \beta_2, ..., \beta_{\bar{n}}) = \beta_0$ (14)

Property 5. (Boundedness) Let $\beta^- = \left\langle \left[\min_i a_{i1}^U, \min_i a_{i2}^U, \min_i a_{i3}^U, \min_i a_{i1}^L, \min_i a_{i2}^L, \min_i a_{i3}^L \right] \right\rangle$ and $\beta^+ = \left\langle \left[\max_i a_{i1}^U, \max_i a_{i2}^U, \max_i a_{i3}^U, \max_i a_{i1}^L, \max_i a_{i1}^L, \max_i a_{i3}^L \right] \right\rangle$ then $\beta^- \leq \text{TIT2FPWG}(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) \leq \beta^+$ (15)

Property 6. (Monotonicity) Let β_i and β_i' , $(i = 1, 2, ..., \bar{n})$ is the collections of two different TIT2FNs such that $\beta_i \leq \beta_i'$ for all i, then we have

$$TIT2FN(\beta_1, \beta_2, \dots, \beta_{\bar{n}}) \le TIT2FN(\beta_1', \beta_2', \dots, \beta_{\bar{n}}')$$

$$\tag{16}$$

5. TIT2F Prioritized Weighted Harmonic Average Operator

On the basis of and harmonic average, the authors define TIT2FPWHA operator as follows:

Definition 9. The weighted harmonic operator of TIT2FN:

Collection of TIT2FNs,

$$\beta_{i} = \langle \beta_{i}^{U}, \beta_{i}^{L} \rangle = \langle (b_{i1}^{U}, b_{i2}^{U}, b_{i3}^{U}; h_{i}^{U}), (b_{i1}^{L}, b_{i2}^{L}, b_{i3}^{L}; h_{i}^{L}) \rangle, i = 1, 2, \dots, \bar{n},$$

The TIT2FPWHA operator is defined as follows:

$$TIT2FPWHA(\beta_{1}, \beta_{2}, \cdots, \beta_{\bar{n}}) = (\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\bar{\tau}_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{\beta_{i}})^{-1} = \frac{1}{\frac{\bar{\tau}_{1}}{\sum_{i=1}^{\bar{n}} \tau_{i}} \frac{\bar{\tau}_{2}}{\beta_{2}} \oplus \cdots \oplus \frac{\bar{\tau}_{\bar{n}}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{\beta_{\bar{n}}}}$$
(17)

where, $\tau_i = \prod_{k=1}^{i-1} S(\beta_k), i = 1, 2, \dots, \bar{n}, \tau_1 = 1, S(\beta_k)$ is the expected value of $\beta_k = \langle \beta_k^U, \beta_k^L \rangle = \langle (b_{k1}^U, b_{k2}^U, b_{k3}^U, b_{k3}^U, b_{k2}^L, b_{k3}^L, b_{k3}^L, b_{k3}^L, b_{k3}^L \rangle$.

Remark 3. When the priority levels of the combined arguments equalize, the TIT2FPWHA operator transforms into TIT2F Weighted harmonic operator.

$$TIT2FPWHA(\beta_1, \beta_2, \cdots, \beta_{\bar{n}}) = \frac{1}{\frac{w_1}{\beta_1} \oplus \frac{w_2}{\beta_2} \oplus \cdots \oplus \frac{w_{\bar{n}}}{\beta_{\bar{n}}}}$$

$$(18)$$

Utilizing the law of operations TIT2FNs, we can establish a theorem as follows:

Theorem 3. Let $\beta_i = \langle \beta_i^U, \beta_i^L \rangle = \langle (b_{i1}^U, b_{i2}^U, b_{i3}^U, b_{i1}^U), (b_{i1}^L, b_{i2}^L, b_{i3}^L; h_i^L) \rangle$, $i = 1, 2, \dots, \bar{n}$, which is a collection of TIT2FNs, after aggregating by TIT2FPWHA is TIT2FNs:

$$TIT2FPWHA(\beta_{1},\beta_{2},\cdots,\beta_{\bar{n}}) = \left(\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{\beta_{i}}\right)^{-1}$$

$$= \left\langle \left[\left(\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{b_{i1}^{U}}\right)^{-1}, \left(\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{b_{i2}^{U}}\right)^{-1}, \left(\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{b_{i3}^{U}}\right)^{-1}; \min_{i=1,\cdots,\bar{n}} \{h_{i}^{U}\}\right),$$

$$\left(\left(\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{b_{i1}^{L}}\right)^{-1}, \left(\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{b_{i2}^{L}}\right)^{-1}, \left(\bigoplus_{i=1}^{\bar{n}} \frac{\frac{\tau_{i}}{\sum_{i=1}^{\bar{n}} \tau_{i}}}{b_{i3}^{L}}\right)^{-1}; \min_{i=1,\cdots,\bar{n}} \{h_{i}^{L}\}\right)\right)$$

where, $\tau_i = \prod_{k=1}^{i-1} S(\beta_k), i = 1, 2, \cdots, \bar{n}, \tau_1 = 1, S(\beta_k)$ is the expected value of $\beta_k = \langle \beta_k^U, \beta_k^L \rangle = \langle (b_{k1}^U, b_{k2}^U, b_{k3}^U; h_k^U), (b_{k1}^L, b_{k2}^L, b_{k3}^L; h_k^L) \rangle$.

Proof. Similarly as Theorem 1

Let $\beta_i = \langle \beta_i^U, \beta_i^L \rangle = \langle (b_{i1}^U, b_{i2}^U, b_{i3}^U; h_i^U), (b_{i1}^L, b_{i2}^L, b_{i3}^L; h_i^L) \rangle$ be a collection of TIT2FNs, $\tau_i = \prod_{k=1}^{i-1} S(\beta_k), i = 1, 2, \dots, \bar{n}, \tau_1 = 1, S(\beta_k)$ is achieved results of $\beta_k = \langle \beta_k^U, \beta_k^L \rangle = \langle (b_{k1}^U, b_{k2}^U, b_{k3}^U; h_k^U), h_{k2}^U, h_{k3}^U; h_k^U \rangle$

 $(b_{k1}^L, b_{k2}^L, a_{k3}^L; h_k^L)$. Then, from the above operator, it has been analyzed that a collection of TIT2FNs, fulfills several essential properties, including idempotence, boundedness, and monotonicity. These properties are described as follows:

Property 7. (Idempotency) If all
$$\beta_j = \beta_0$$
 for all j then TIT2FPWHA $(\beta_1, \beta_2, ..., \beta_{\bar{n}}) = \beta_0$ (20)

Property 8. (Boundedness) Let $\beta^- = \left\langle \left[\min_{i} a_{i1}^U, \min_{i} a_{i2}^U, \min_{i} a_{i3}^U, \min_{i} a_{i1}^L, \min_{i} a_{i2}^L, \min_{i} a_{i3}^L \right] \right\rangle$ and $\beta^+ = \left\langle \left[\max_{i} a_{i1}^U, \max_{i} a_{i2}^U, \max_{i} a_{i3}^U, \max_{i} a_{i1}^L, \max_{i} a_{i3}^L \right] \right\rangle$ then

$$\beta^{-} \le \text{TIT2FPWHA}(\beta_1, \beta_2, \dots, \beta_{\bar{n}}) \le \beta^{+}$$
 (21)

Property 9. (Monotonicity) Let β_i and β_i' , $(i = 1, 2, ..., \bar{n})$ which is aggregation of two different TIT2FNs s.t. $\beta_i \leq \beta_i'$ for all i, then we have

$$TIT2FN(\beta_1, \beta_2, \dots, \beta_{\bar{n}}) \le TIT2FN(\beta_1', \beta_2', \dots, \beta_{\bar{n}}')$$

$$\tag{22}$$

7. MAGDM Based on Proposed Operator

Basis of this particular section, the authors represent a technique to tackle FMAGDM examples as well as problems by using an IT2F framework. Consider a set Y repenting criteria or alternatives and a set F comprising an attribute as well as, where $Y = \{y_1, y_2, \cdots, y_{\bar{n}}\}$ and $\bar{F} = \{\bar{f}_1, \bar{f}_2, \cdots, \bar{f}_{\bar{m}}\}$. Consider l decision makers (D-Ms), denoted as $\hat{D}_1, \hat{D}_2, \cdots, \hat{D}_l$. Let $Q^k = (\Gamma_{ij}^k)_{\bar{n} \times \bar{m}}$ which are defined as IT2F decision matrix where Γ_{ij}^k is an IT2IFS, which defined by the decision maker (DM) \hat{D}_k for alternatives x_i concerning the attribute \bar{f}_j . When it comes to options, you can break them down into two kinds: ones that bring benefits and ones that cost. Essentially, the attributes group \bar{F} can be split into two parts \bar{F}_1 and \bar{F}_2 . In \bar{F}_1 , you have the good stuff, and in \bar{F}_2 , you have the expensive stuff. They don't overlap ($\bar{F}_1 \cap \bar{F}_2 = \emptyset$), but together they make up all of \bar{F} ($\bar{F}_1 \cup \bar{F}_2 = \bar{F}$). To make fair decisions, the scorecard Q^k needs to be made even unless everything in \bar{F}_j ($j = 1,2,\ldots,\bar{m}$) falls under the same category. This study uses a standard formula to even out the playing field with a balanced scorecard called Q^k .

$$\Gamma_{ij}^{k} = \begin{cases} \Gamma_{ij}^{k}; j \in \bar{F}_{1} \\ \left(\Gamma_{ij}^{k}\right)^{c}; j \in \bar{F}_{2} \end{cases}$$
(23)

The complement of (Γ_{ij}^k) denoted as $(\Gamma_{ij}^k)^c$. Hence, we established a normalized decision matrix Q^k .

Step 1: Compute the values of $\tau_{ij}^k(k=1,2,\cdots,t)$ as follows:

$$\tau_{ij}^{(k)} = \prod_{i=1}^{j-1} S(\beta_k), j = 1, 2, \dots, \bar{n}, \tau_1 = 1$$
(24)

Step 2: Aggregate TIT2FNs $p_{ij}^k (i=1,2,\cdots,\bar{m};j=1,2,\cdots,\bar{n})$ for every alternative $P^k (k=1,2,\cdots,t)$ by the proposed TIT2FPWA operator.

Step 3: Compute the values of
$$\tau_{ij} (i = 1, 2, \dots, \bar{m}; j = 2, \dots, \bar{n})$$

 $\tau_{ij} = \prod_{i=1}^{j-1} S(P^{(k)}), j = 1, 2, \dots, \bar{n}, \tau_1 = 1$ (25)

Step 4: Aggregate all TIT2FNs $p_{ij}'s(j=2,\cdots,\bar{n})$ for each option by the TIT2FPWA or TIT2FPWG or TIT2FPWH operator.

Step 5: By using Equation (2) we get the score value for each $S(\beta_i)$, $(i = 1, 2, \dots, \bar{n})$.

Step 6: Calculate rank the alternatives Γ_i , $(i=1,2,\dots,\bar{n})$ according to their score values, $S(\beta_i)(i=1,2,\dots,\bar{n})$ representing the overall fuzzy preference values p_i and then select the best alternatives.

8. Numerical Example

Basis of the section, an illustration affects Fuzzy MAGDM process major of the defined way. **Table 1** and **Table 2** shows the linguistic conditions "Totally Agree" (TA), "Agree" (A), "Moderate Agree" (MA), "Moderate" (MD), "Disagree" (D), "Totally Disagree" (TD). Consider a production company facing the challenge of identifying the optimal supplier globally for one of its components used in assembly.

Three global suppliers, denoted as Y_1 , Y_2 and Y_3 are under evaluation across four attributes:

 \bar{f}_1 : for product quality,

 f_2 : for safety concerns,

 \bar{f}_3 : for supplier performance, and

 \bar{f}_4 : for supplier's concept

Whose weight vector w = (0.3,0.15,0.2,0.35). An expert group was developed which consists of three experts D_1, D_2 and D_3 (whose weight vector is k = (0.3,0.45,0.25)) from each strategic decision area. The experts D_1, D_2 and D_3 apply the linguistic terms appear in **Table 3** to present the features of the global best suppliers Y_1, Y_2 and Y_3 for various attributes f_i (i = 1,2,3,4), listed in **Table 3**.

Considering that the attributes are the benefit attributes except for the attribute \bar{f}_2 (risk factor), then based on the **Table 3**, the decision matrices $Q^k = \left(\Gamma_{ij}^k\right)_{3\times 4}$ can be updated to the following normalized matrices respectively, listed in **Table 4**.

Based on **Table 3**, we utilize Definition 4 to aggregate all individual normalized interval type-2 fuzzy decision matrix $Q^k = (\Gamma_{ij}^k)_{3\times 4}$ into a collective normalized interval type-2 fuzzy decision matrix $Q = (\Gamma_{ij})_{3\times 4}$ shown as follows:

$$Q = \begin{bmatrix} & \bar{f}_1 & \bar{f}_2 & \bar{f}_3 & \bar{f}_4 \\ y_1 & B_{11} & B_{12} & B_{13} & B_{14} \\ y_2 & B_{21} & B_{22} & B_{23} & B_{24} \\ y_3 & B_{31} & B_{32} & B_{33} & B_{34} \end{bmatrix}$$

Table 1. Linguistic terms for membership.

Linguistic terms	Interval type-2 fuzzy sets (PMF, SMF)
Totally Disagree (TD)	[(0.0,0.0,0.1;1.0,1.0);(0.0,0.0,0.05;0.9,0.9)]
Disagree(D)	[(0.0,0.1,0.3;1.0,1.0);(0.05,0.1,0.2;0.9,0.9)]
Moderate Disagree (MD)	[(0.1,0.3,0.5;1.0,1.0);(0.2,0.3,0.40;0.9,0.9)]
Moderate (M)	[(0.3,0.5,0.7;1.0,1.0);(0.40,0.5,0.6;0.9,0.9)]
Moderate Agree (MA)	[(0.5,0.7,0.9;1.0,1.0);(0.6,0.7,0.80;0.9,0.9)]
Agree (A)	[(0.7,0.9,1.0;1.0,1.0);(0.8,0.9,0.95;0.9,0.9)]
Totally Agree (TA)	[(0.9,1.0,1.0;1.0,1.0); (0.95,1.0,1.0;0.9,0.9)]

Attributes	Alternatives	Decision Makers
	y_1	MA A MA
Product Quality	y_2	A MA A
(f_1)	y_3	TA A MA
Risk Factor	y ₁	M TA A
(f_2)	y_2	MA A TA
	y_3	TA TAA
Services of	y_1	TA A A
Supplier	y_2	A TA TA
(f_3)	y_3	M MA MA
Supplier	y_1	TA A A
Profile	y_2	A TA A
(f_A)	v_2	A TA TA

Table 2. Ranking values of alternatives of the three decision-makers.

$$\begin{split} &\Gamma_{11} = \langle (0.5900, 0.7900, 0.9450; 1), (0.6900, 0.7900, 0.8675; 0.9) \rangle \\ &\Gamma_{12} = \langle (0.0000, 0.0550, 0.2100; 1), (0.0275, 0.0550, 0.1325; 0.9) \rangle \\ &\Gamma_{13} = \langle (0.7600, 0.9300, 1.0000; 1), (0.8450, 0.9300, 0.9650; 0.9) \rangle \\ &\Gamma_{14} = \langle (0.7600, 0.9300, 1.0000; 1), (0.8450, 0.9300, 0.9650; 0.9) \rangle \\ &\Gamma_{21} = \langle (0.6100, 0.8100, 0.9550; 1), (0.7100, 0.8100, 0.8825; 0.9) \rangle \\ &\Gamma_{22} = \langle (0.0300, 0.1350, 0.3100; 1), (0.0825, 0.1350, 0.2225; 0.9) \rangle \\ &\Gamma_{23} = \langle (0.8400, 0.9700, 1.0000; 1), (0.9050, 0.9700, 0.9850; 0.9) \rangle \\ &\Gamma_{24} = \langle (0.7900, 0.9450, .9725; 1), (0.8675, 0.9450, 1.0000; 0.9) \rangle \\ &\Gamma_{31} = \langle (0.7100, 0.8800, 0.9750; 1), (0.7950, 0.8800, 0.9275; 0.9) \rangle \\ &\Gamma_{32} = \langle (0.04400, 0.6400, 0.8400; 1), (0.5400, 0.6400, 0.7400; 0.9) \rangle \\ &\Gamma_{33} = \langle (0.8400, 0.9700, 1.0000; 1), (0.9050, 0.9700, 0.9850; 0.9) \rangle \end{split}$$

Table 3. Normalized values of alternatives of the three decision-makers.

Attributes	Alternatives	Decision Makers
	y_1	MA A MA
Product Quality	y_2	A MA A
(f_1)	y_3	TA A MA
Risk Factor	y_1	M TD D
(f_2)	y_2	MD D TD
	y_3	TD TD D
Services of	y_1	TA A A
Supplier	y_2	A TA TA
(f_3)	y_3	M MA MA
Supplier	y_1	TA A A
Profile	y_2	A TA A
(f_4)	y_3	A TA TA

• After using Equation (23) for normalization, then utilize Equations (6) and (7) to calculate the $\tau_{ii}^{(1)}, \tau_{ii}^{(2)}, \tau_{ii}^{(3)}$

$$\tau_{ij}^{(2)} = \begin{bmatrix} 0.7750 & 0.1983 & 0.8967 & 0.8967 \\ 0.7917 & 0.1583 & 0.9367 & 0.9117 \\ 0.8550 & 0.0417 & 0.6400 & 0.9367 \end{bmatrix}$$

$$\tau_{ij}^{(3)} = \begin{bmatrix} 0.6064 & 0.0385 & 0.8190 & 0.8190 \\ 0.6340 & 0.0239 & 0.8930 & 0.8463 \\ 0.7417 & 0.0023 & 0.4096 & 0.8930 \end{bmatrix}$$

- Utilize the informative decision in matrix P^k , and operator for aggregate all individual decision matrices.
- Calculating the values of τ_{ij} (i = 1, 2, ..., m, j = 2, ..., n) as follows:

$$\tau_{ij} = \begin{bmatrix} 1.0000 & 0.2479 & 0.3458 & 0.0896 \\ 1.0000 & 0.2509 & 0.5145 & 0.1360 \\ 1.0000 & 0.2607 & 0.2879 & 0.0615 \end{bmatrix}$$

- To consolidate all triangular fuzzy preference values $p_{ij}(j = 1,2,...,n)$ into a unified measure, employ the fuzzy prioritized weighted Aggregation operator (FPAWO), Calculate $p_i(i = 1,2,...,m)$.
 - $p_1 = \langle \{0.1548, 0.2432, 0.8568\} \rangle$
 - $p_2 = \langle \{0.1697, 0.2952, 1.0000\} \rangle$
 - $p_3 = \langle \{0.1545, 0.2209, 0.7884\} \rangle$
- Calculating the valuables TIT2FPWA expectations $S(p_i)$.
 - $S(p_1) = 0.4182$, $S(p_2) = 0.4908$, $S(p_3) = 0.3879$.
- Calculating the valuables based on TIT2FPWG expectations $S(p_i)$.
 - $S(p_1) = 0.3604$, $S(p_2) = 0.3948$, $S(p_3) = 0.2993$.
- Calculating the valuables TIT2FPWH expectations $S(p_i)$.
 - $S(p_1) = 0.5019$, $S(p_2) = 0.5689$, $S(p_3) = 0.4676$.
- Rank all a different choosing $\Gamma_i(i=1,2,3)$ in agreeance with the scoring numbers $S(p_i)(i=1,2,3)$ of all-embracing fuzzy preference values p_i . Therefore, the ranking order of the four alternatives is $\Gamma_2 > \Gamma_1 > \Gamma_3$ and found that Γ_2 is the most desirable one while Γ_3 is the least one.

9. Comparative Study

To compare the performance of the suggested methods with certain pre-existing methods, comparative studies have been conducted. These studies evaluate the existing operators based on averaging methods by Chen and Lee (2010), Gong (2013, 2015), Lee and Chen (2008), Hu et al. (2013), Wang (2012), & Zamri et al. (2013) and the outcomes connected to it have been display in **Table 4**.

Method	Score values	Order of alternatives
Gong (2015)	[0.2887, 0.4896, 0.2218]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
Chen (2010)	[0.6212, 0.8383, 0.5405]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
Hu (2013)	[0.3250, 0.4036, 0.2715]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
Gong (2013)	[0.3590, 0.4773, 0.1667]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
Zamri (2013)	[0.4997, 0.4999, 0.4995]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
Chen (2013)	[4.0059, 4.1068, 3.8871]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
Lee (2008)	[0.6100, 0.8700, 0.3100]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
Wang (2012)	[8.8892, 9.0788, 8.3035]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
	Proposed Method	
TIT2FPWA	[0.4182, 0.4908, 0.3879]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
TIT2FPWG	[0.3604, 0.3948, 0.2993]	$\Gamma_2 > \Gamma_1 > \Gamma_3$
TIT2FPWH	[0.5019, 0.5689, 0.4676]	$\Gamma_{\alpha} > \Gamma_{\epsilon} > \Gamma_{\alpha}$

Table 4. Comparative analysis.

10. Discussion

The comparison showed in **Table 4** that the proposed TIT2FPWA, TIT2FPWG, and TIT2FPWH methods provided stable and reliable results when we compare with existing approaches. All methods has same ranking of alternatives: $\Gamma_2 > \Gamma_1 > \Gamma_3$, which confirms validity of the proposed models. The proposed methods generate more balanced and moderate results. This suggests that our approach handles uncertainty more effectively and reflects decision-makers preferences more realistically. Based on the comparative results, it is clear that the proposed methods perform equally well or better than existing ones. Therefore, they can be considered as a strong and useful alternative for solving complex mutlicriteria decision-making problems in uncertain environments.

11. Conclusion

This study compared the proposed methods—TIT2FPWA, TIT2FPWG, and TIT2FPWH—with several existing techniques used in multi-criteria decision-making (MCDM). All methods, including existing ones, give the same ranking results, ensuring consistency in decision outcomes. These proposed methods generate more balanced and realistic score values, which better capture the uncertainty and vagueness in multi-criteria decision making problems. These operators that allow us to give importance to each expert and factor using the weight vectors. Therefore, these methods can be considered as practical and effective alternatives to traditional aggregation techniques for solving complex multi-criteria group decision-making problems under uncertainty. In the future these contributions can expand further to develop smarter and powerful tools that help decision-makers in handling complicated situations with more ease and understanding.

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors would like to thank the editor and anonymous reviewers for their comments that help improve the quality of this work.

AI Disclosure

The author(s) declare that no assistance is taken from generative AI to write this article.

References

- Aisbett, J., Rickard, J.T., & Morgenthaler, D. (2011). Multivariate modeling and type-2 fuzzy sets. *Fuzzy Sets and Systems*, 163(1), 78-95. https://doi.org/10.1016/j.fss.2010.10.001.
- Atanassov, K., & Gargov, G. (1989). Interval-valued intuitionistic fuzzy sets. *Fuzzy Sets and Systems*, 31(3), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4.
- Beliakov, G., Pradera, A., & Calvo, T. (2007). *Aggregation functions: A guide for practitioners*. Springer, Berlin, Heidelberg. ISBN: 978-3-540-73721-6. https://doi.org/10.1007/978-3-540-73721-6.
- Bordogna, G., Fedrizzi, M., & Pasi, G. (1997). A linguistic modeling of consensus in group decision making based on OWA operators. *IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans,* 27(1), 126-133. https://doi.org/10.1109/3468.553232.
- Calvo, T., Mayor, G., & Mesiar, R. (2012). Aggregation operators: new trends and applications. Physica-Verlag, Heidelberg, New York. ISBN: 978-3-7908-1468-7.

- Chen, H.Y., Liu, C.L., & Sheng, Z.H. (2004). Induced ordered weighted harmonic averaging (IOWHA) operator and its application to combination forecasting method. *Chinese Journal of Management Science*, 12(5), 35-40.
- Chen, S.M., & Lee, L.W. (2010). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. *Expert Systems with Applications*, 37(4), 2790-2798. https://doi.org/10.1016/j.eswa.2009.09.012.
- Chen, S.M., Yang, M.W., Lee, L.W., & Yang, S.W. (2012). Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. *Expert Systems with Applications*, 39(5), 5295-5308. https://doi.org/10.1016/j.eswa.2011.11.008.
- Chen, T.Y., Chang, C.H., & Lu, J.F.R. (2013). The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. *European Journal of Operational Research*, 226(3), 615-625. https://doi.org/10.1016/j.ejor.2012.11.038.
- Chiao, K.P. (2011). Multiple criteria group decision making with triangular interval type-2 fuzzy sets. In *Proceedings of the IEEE International Conference on Fuzzy Systems* (pp. 2575-2582). IEEE. Taipei, Taiwan. https://doi.org/10.1109/fuzzy.2011.6007590.
- De, A., Kundu, P., Das, S, & Kar, S. (2020). Ranking method based on interval type-2 fuzzy sets for multiple attribute group decision making. *Soft Computing*, 24(1), 131-154. https://doi.org/10.1007/s00500-019-04285-9.
- Fodor, J., Marichal, J.L., & Roubens, M. (1995). Characterization of the ordered weighted averaging operators. *IEEE Transactions on Fuzzy Systems*, 3(2), 236-240. https://doi.org/10.1109/91.388176.
- Gong, Y. (2013). Fuzzy multi-attribute group decision-making method based on interval type-2 fuzzy sets and applications to global supplier selection. *International Journal of Fuzzy Systems*, 15(4), 392-400.
- Gong, Y. (2015). Multi-attribute group decision-making method based on geometric Bonferroni mean operator of trapezoidal interval type-2 fuzzy numbers. *Computers & Industrial Engineering*, 81, 167-176. https://doi.org/10.1016/j.cie.2014.12.030.
- Gupta, G., & Anupam, K. (2017). An efficient method for solving intuitionistic fuzzy transportation problem of type-2. *International Journal of Applied and Computational Mathematics*, *3*, 3795-3804. https://doi.org/10.1007/s40819-017-0326-4.
- Hagras, H., & Wagner, C. (2012). Towards the widespread use of type-2 fuzzy logic systems in real-world applications. *IEEE Computational Intelligence Magazine*, 7(3), 14-24. https://doi.org/10.1109/mci.2012.2200621.
- Hu, J., Zhang, Y., Chen, X., & Liu, Y. (2013). Multi-criteria decision-making method based on possibility degree of interval type-2 fuzzy number. *Knowledge-Based Systems*, 43, 21-29. https://doi.org/10.1016/j.knosys.2012.11.007.
- Jain, D., Sharma, S. K., & Dhiman, P. (2022). Comparative analysis of defuzzification techniques for fuzzy output. *Journal of Algebraic Statistics*, 13(2), 874-882.
- Karnik, N.N., & Mendel, J.M. (2001). Operations on type-2 fuzzy sets. *Fuzzy Sets and Systems*, *122*(2), 327-348. https://doi.org/10.1016/S0165-0114(00)00079-8.
- Kumar, M., Biswas, S., Kar, S., Bozanic, D., & Puska, A. (2023). An interval type-2 fuzzy decision-making framework for exploring critical issues for the sustenance of the tea industry. *Axioms*, *12*(10), 986. https://doi.org/10.3390/axioms12100986.
- Lee, L.W., & Chen, S.M. (2008). A new method for fuzzy multiple attributes group decision-making based on the arithmetic operations of interval type-2 fuzzy sets. In *Proceedings of the 2008 International Conference on Machine Learning and Cybernetics* (Vol. 6, pp. 3084-3089). IEEE. Kunming, China. https://doi.org/10.1109/icmlc.2008.4620938.

- Mendel, J.M. (2007). Type-2 fuzzy sets and systems: an overview. *IEEE Computational Intelligence Magazine*, 2(1), 20-29. https://doi.org/10.1109/mci.2007.380672.
- Mendel, J.M., John, R.I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. *IEEE Transactions on Fuzzy Systems*, 14(6), 808-821. https://doi.org/10.1109/tfuzz.2006.879986.
- Merigó, J.M. (2011). A unified model between the weighted average and the induced OWA operator. *Expert Systems with Applications*, 38(9), 11560-11572. https://doi.org/10.1016/j.eswa.2011.03.034.
- Mitchell, H.B. (2005). Pattern recognition using type-II fuzzy sets. *Information Sciences*, 170(2-4), 409-418. https://doi.org/10.1016/j.ins.2004.02.027.
- Pathak, R., Soni, B., Muppalaneni, N.B., & Mishra, A.R. (2024). Multi-criteria group decision-making method based on Einstein power operators, distance measure, additive ratio assessment and interval-valued q-rung Ortho pair fuzzy sets. *Granular Computing*, 9(1), 1-14. https://doi.org/10.1007/s41066-023-00430-w.
- Qin, J., & Liu, X. (2014). Frank aggregation operators for triangular interval type-2 fuzzy set and its application in multiple attribute group decision making. *Journal of Applied Mathematics*, 2024(1), 1-24. Article 923213. https://doi.org/10.1155%2f2014%2f923213.
- Tadić, D., & Komatina, N. (2025). A hybrid interval Type-2 fuzzy DEMATEL-MABAC approach for strategic failure management in automotive manufacturing. *Journal of Engineering Management and Systems Engineering*, 4(1), 21-38. https://doi.org/10.56578/jemse040102.
- Türkşen, I.B. (2002). Type-2 representation and reasoning for CWW. Fuzzy Sets and Systems, 127(1), 17-36. https://doi.org/10.1016/s0165-0114(01)00150-6.
- Wan, S., & Dong, J. (2020). A new method for Atanassov's interval-valued intuitionistic fuzzy MAGDM with incomplete attribute weight information. In: Wang, J., Zhou, L., & Wang, H. (eds) *Decision-Making Theories and Methods Based on an Interval-Valued Intuitionistic Fuzzy Set* (pp. 37-69). Springer, Singapore. https://doi.org/10.1007/978-981-15-1521-7_2.
- Wang, W., & Liu, X. (2012). Intuitionistic fuzzy information aggregation using Einstein operations. *IEEE Transactions on Fuzzy Systems*, 20(5), 923-938. https://doi.org/10.1109/tfuzz.2012.2189405.
- Wang, W., & Liu, X. (2012). Intuitionistic fuzzy information aggregation using Einstein operations. *IEEE Transactions on Fuzzy Systems*, 20(5), 923-938.
- Wang, W., Liu, X., & Qin, Y. (2012). Multi-attribute group decision-making models under interval type-2 fuzzy environment. *Knowledge-Based Systems*, *30*, 121-128. https://doi.org/10.1016/j.knosys.2012.01.005.
- Wang, X.R., & Fan, Z.P. (2003). Fuzzy ordered weighted averaging operator and its applications. *Fuzzy Systems and Mathematics*, 17(4), 67-72.
- Wu, D., & Mendel, J.M. (2007). Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. *IEEE Transactions on Fuzzy Systems*, 15(6), 1145-1161. https://doi.org/10.1109/tfuzz.2007.896325.
- Xu, Z. (2003). A priority method for triangular fuzzy number complementary judgement matrix. Systems Engineering-Theory and Practice, 23(10), 1-13.
- Xu, Z., & Yager, R.R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. *International Journal of General Systems*, 35(4), 417-433. https://doi.org/10.1080/03081070600574353.
- Xu, Z., & Zhao, N. (2016). Information fusion for intuitionistic fuzzy decision making: an overview. *Information Fusion*, 28, 10-23. https://doi.org/10.1016/j.inffus.2015.07.001.
- Xu, Z.S., & Da, Q.L. (2002). The ordered weighted geometric averaging operators. *International Journal of Intelligent Systems*, 17(7), 709-716. https://doi.org/10.1002/int.10045.
- Yager, R.R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. *IEEE Transactions on Systems, Man, and Cybernetics*, 18(1), 183-190. https://doi.org/10.1109/21.87068.

- Yager, R.R. (2008). Prioritized aggregation operators. *International Journal of Approximate Reasoning*, 48(1), 263-274. https://doi.org/10.1016/j.ijar.2007.08.009.
- Yager, R.R. (2009). Prioritized OWA aggregation. Fuzzy Optimization and Decision Making, 8(3), 245-262. https://doi.org/10.1007/s10700-009-9063-4.
- Zadeh, L.A. (1965). Fuzzy sets. *Information and Control*, 8(3), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. *Information Sciences*, 8(3), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5.
- Zamri, N., Abdullah, L., Hitam, M.S., Noor, N.M.M., & Jusoh, A. (2013). A novel hybrid fuzzy weighted average for MCDM with interval triangular type-2 fuzzy sets. *WSEAS Transactions on Systems*, 12(4), 212-228.
- Zhao, X., Lin, R., & Wei, G. (2013). Fuzzy prioritized operators and their application to multiple attribute group decision making. *Applied Mathematical Modelling*, 37(7), 4759-4770. https://doi.org/10.1016/j.apm.2012.09.048.

Original content of this work is copyright © Ram Arti Publishers. Uses under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

Publisher's Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps and institutional affiliations.