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Abstract  

This study numerically derived the higher order convergence for a class of singularly perturbed Fredholm integro differential 

equations with reaction diffusion and convection diffusion type problems. A non-standard finite difference approach is used to 

approximate the derivatives. The trapezoidal rule determines the integral term. The suggested numerical technique achieves a 

uniform convergence rate independently of the perturbation parameter. Implementing the Richardson extrapolation technique 

achieves a fourth order convergence rate for reaction diffusion type problems and a second order convergence rate for convection 

diffusion type problems. Specific numerical examples are provided to corroborate in practice the effectiveness of the theoretical 

findings. 
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1. Introduction  
The diffusion equation is a partial differential equation (PDE) that describes the behavior of a substance 

(e.g. heat, particles, or chemicals) as it spreads out over space and time due to random motion or 

concentration gradients. The standard form of the diffusion equation in one spatial dimension is (Crank, 

1975). 

𝑢𝑡 = 𝐷𝑢𝑥𝑥, 
 

where, 𝑢 = 𝑢(𝑥, 𝑡) is the concentration or temperature at a position 𝑥 and time 𝑡, 𝐷 is the positive diffusion 

coefficient. The diffusion equation is split into the reaction-diffusion equation and the convection-diffusion 

equation. 

 

The general form of the one-dimensional reaction-diffusion steady-state problems is, 
 

𝐷
𝑑2𝑢(𝑥)

𝑑𝑥2
+ 𝑅(𝑢) = 0, 

 

where, 𝑅(𝑢) is the reaction term. 
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The general form of the one-dimensional convection-diffusion steady-state problems is 

𝐷
𝑑2𝑢(𝑥)

𝑑𝑥2
− 𝑣

𝑑𝑢(𝑥)

𝑑𝑥
= 0, 

 

where, 𝑣 is the convection velocity. These types of diffusion equations have physical applications like 

chemical kinetics, population dynamics, biological pattern formation, fluid flow, and heat transfer. 

 
A differential equation where a small parameter multiplies the higher derivative term is typically called a 

singularly perturbed differential equations (SPDEs). The solutions to these equations have a very thin layer, 

referred to as either an interior layer or a boundary layer, depending on the location in the domain. SPDEs 

can be solved using various numerical methods, especially fitted mesh methods and fitted operator methods. 

Both approaches dealt with SPDEs in one and multidimensional problems (Govindarao and Mohapatra, 

2019; Sekar, 2023), also Das and Natesan (2017) solved parabolic singularly perturbed delay PDEs using 

a Shishkin mesh, addressing challenges associated with small perturbation and delay effects. Udupa et al. 

(2022) explored blood flow through a stenosed artery under body acceleration, employing a singular 

perturbation approach combined with Shishkin mesh discretization to simulate realistic physiological 

responses. Das and Natesan (2018) extended their earlier work by introducing a fractional-step higher-order 

method for 2𝐷 convection-diffusion parabolic problems, achieving improved accuracy on non-uniform 

meshes. Izadi and Yuzbasi (2022) proposed a hybrid numerical technique for parabolic singularly perturbed 

convection-diffusion problems, offering uniform convergence and improved treatment of boundary layers. 

Ansari et al. (2024) numerically solved the two small parameters singularly perturbed parabolic 

convection–diffusion–reaction problems and demonstrated significant performance improvements. Izadi 

and Zeidan (2022) developed a hybrid scheme for nonlinear diffusion equations, offering reliable 

convergence and accurate results even for stiff and nonlinear systems. Govindarao and Sekar (2023) 

numerically solved the RLC closed series circuit with small inductance values. Mohapatra et al. (2025) 

developed a numerical scheme for solving 2D time-dependent SPDE with improved accuracy and stability. 

Integro-differential equations (IDEs) have significance in various domains, including engineering, physics, 

and biology (Rahman, 2007). IDEs are categorized into two types based on their elements. Fredholm 

integro-differential equations (FIDEs), which contain integral components with a fixed range and Volterra 

integro-differential equations (VIDEs), which feature integral components constrained by specific 

variables. In the literature, there are many integro-differential models, here present a mathematical model 

of chemical reaction-diffusion processes that include the effects of a catalyst (Chadam and Yin, 1994). 
 

𝑢𝑡 −△ 𝑢 = 𝑎 ∫
Ω
𝐻(𝑢(. , 𝑦))𝑑𝑦, 𝑡 > 0, 𝑥 ∈ Ω ⊂ ℝ𝑑, 

 

with homogeneous Dirichlet or Neumann boundary conditions on ∂Ω . This type of model gave the 

motivation to construct singularly perturbed Fredholm integro-differential equations (SPFIDEs). 

 

Consider a class of linear second-order SPFIDEs of the form 
 

{
𝐿:= 𝐿1 + 𝐿2 = 𝑓(𝑥), 𝑥 ∈ (0,1) = Ω,

𝑧(0) = 𝐴, 𝑧(1) = 𝐵,
                                                                           (1) 

 

where, 𝐿1 = −𝜖𝑧
″(𝑥) + 𝑎(𝑥)𝑧′(𝑥) + 𝑏(𝑥)𝑧(𝑥) , 𝐿2 = 𝜆∫ 𝐾

1

0
(𝑥, 𝑠)𝑧(𝑠) 𝑑𝑠 , 0 < 𝜖 ≪ 1 . The functions 

𝑎(𝑥) ≥ 𝛼 > 0, 𝑏(𝑥) ≥ 𝛽 > 0 and 𝑓(𝑥) are differentiable functions, 𝐾(𝑥, 𝑠) is a kernel function, 𝐴, 𝐵 are 

constants, and 𝜆 is a given parameter. 
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Equation (1) is split into two types of problems. If the coefficient 𝑎(𝑥) = 0, it denotes the Reaction-

diffusion type problems and if 𝑎(𝑥) ≠ 0,  it is known as the Convection-diffusion type problems. In 

literature, Lange and Smith (1993) derived the existence and uniqueness of SPFIDEs. Amiraliyev et al. 

(2020) solved SPFIDEs with Shishkin mesh. Durmaz and Amiraliyev (2021) tackled the second-order 

reaction-diffusion SPFIDEs utilizing a fitted mesh and showed second-order convergence. In articles (Sekar 

et al., 2024; Sekar et al., 2025) successfully solved the second-order reaction-diffusion and convection-

diffusion SPFIDEs, respectively, applying a standard difference method for the derivative part and integral 

used by the trapezoidal rule of non-uniform meshes, also applying a post-processing method to increase the 

convergence rate. Govindarao et al. (2024) investigated the reaction-diffusion SPFIDEs with non-local 

boundaries and they succeeded in attaining a second-order convergence rate and also applying the 

extrapolation technique, a fourth-order convergence rate was obtained. Elango et al. (2025) solved the 

system of SPFIDE with a non-uniform mesh. 

 
Fitted mesh finite difference methods need experience with the layer’s position and size. Fulfilling this need 

might seem challenging at times. However, the fitted operator finite difference (FOFD) methods do not 

impose these requirements. Inspired by the previously discussed research, implementing the FOFD 

approach and the composite trapezoidal rule are effectively addressed in Equation (1). 

 

The objective of this article is to achieve a fourth and second-order convergence rate with Richardson 

extrapolation in reaction-diffusion and convection-diffusion SPFIDEs, respectively. Initially, the derivative 

part is handled using a non-standard finite difference (NSFD) scheme, while the trapezoidal rule is applied 

to an integral section of the uniform mesh. Afterwards, a post-processing technique implementing the 

convergence rate increases the second order to the fourth order in reaction-diffusion problems and order 

one to the second order in convection-diffusion problems. As a result, the global rate of convergence 

appears computationally. 

 

This article is organized like this, Section 2 shows the numerical discretization of reaction-diffusion and 

convection-diffusion SPFIDEs, and shows the solution bounds Section 3 explains the post-process method 

and improves the numerical solutions accuracy and the rate of convergence, Section 4 shows error estimates 

with the extrapolation technique, and Section 5 examines computational simulations for reaction-diffusion 

and convection-diffusion SPFIDEs, Section 6 shows the results and discussion of the comparison with and 

without the post-process method. 

 

Notations: In this study, 𝐶 stands for a generic positive constant that is independent of the mesh parameter 

(Δℎ)  and perturbation parameter (𝜖) . The space of real-valued functions that are continuously 

differentiable 𝑛  times on [0,1] is represented by the letter 𝐶𝑛([0,1]), ℜ = 𝑚𝑎𝑥
𝑥∈[0,1]

∫

1

0
|𝐾(𝑥, 𝑠)|𝑑𝑠  and 𝑧𝑖 =

𝑧(𝑥𝑖) indicate an approximation by the 𝑍𝑖. 
 

2. Numerical Discretization 

On [0,1], the uniform mesh step (Δℎ) is used to discretize the interval. Here (Δℎ):=
1

𝑁
 such that 𝑥𝑖 =

𝑖(Δℎ), where 𝑁 is the total number of sub-intervals. For each mesh point, Equation (1) becomes 
 

𝐿(Δℎ): = 𝐿1
(Δℎ)

+ 𝐿2
(Δℎ)

= 𝑓(𝑥𝑖),    𝑖 = 0,1,2,⋯𝑁                                                                                               (2) 

 

where, 
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𝐿1
(Δℎ)

= −𝜖𝑧″(𝑥𝑖) + 𝑎(𝑥𝑖)𝑧
′(𝑥𝑖) + 𝑏(𝑥𝑖)𝑧(𝑥𝑖),    

𝐿2
(Δℎ)

= 𝜆 ∫

1

0
𝐾(𝑥𝑖, 𝑠)𝑧(𝑠) 𝑑𝑠.    

 

 

Apply the NSFD method for the differential part (Lubuma and Patidar, 2007) in Equation (2), then, 
 

𝐿1
(Δℎ)

=

{
 
 

 
 −𝜖

𝑧𝑖−1 − 2𝑧𝑖 + 𝑧𝑖+1

𝜓𝑖
2

+ 𝑏(𝑥𝑖)𝑧(𝑥𝑖), if 𝑎(𝑥) = 0,

−𝜖
𝑧𝑖−1 − 2𝑧𝑖 + 𝑧𝑖+1

𝜙𝑖
2

+ 𝑎(𝑥𝑖)
𝑧𝑖 − 𝑧𝑖−1
Δℎ

+ 𝑏(𝑥𝑖)𝑧(𝑥𝑖), if 𝑎(𝑥) ≠ 0,

 

 

where, 𝜓𝑖
2 =

4

𝜌𝑖
2

2
(
𝜌𝑖(Δℎ)

2
), 𝜌𝑖 = (

𝑎𝑖

𝜖
)

1

2
, 𝜙𝑖

2 =
𝜖(Δℎ)

𝑎𝑖
((
𝑎𝑖(Δℎ)

𝜖
) − 1), 𝑎𝑖 =

𝑎𝑖+𝑎𝑖+1

2
, 𝑏𝑖 =

𝑏𝑖−1+𝑏𝑖+𝑏𝑖+1

3
. 

 

Apply the composite trapezoidal rule to determine the integral component (Kress, 1998) in Equation (2), 

then, 

𝐿2
(Δℎ)

= 𝜆∑𝜃𝑗

𝑁

𝑗=0

(Δℎ) 𝐾(𝑥𝑖 , 𝑠𝑗) 𝑧(𝑠𝑗), 

 

where, 𝜃𝑗 = {
1

2
for 𝑗 = 0,𝑁,

1 for 𝑗 = 1,2,3,⋯ , 𝑁 − 1.
 

 

Lemma 2.1 Let 𝑧(𝑥𝑖) and 𝑍𝑖 be the functions of 𝐿1 and 𝐿1
(𝛥ℎ)

, then the bounds are  

(i) 𝑚𝑎𝑥
0≤𝑖≤𝑁

|𝑧(𝑥𝑖) − 𝑍𝑖| ≤ 𝐶(𝛥ℎ)
2 if 𝑎(𝑥) = 0, 

(ii) 𝑚𝑎𝑥
0≤𝑖≤𝑁

|𝑧(𝑥𝑖) − 𝑍𝑖| ≤ 𝐶(𝛥ℎ) if 𝑎(𝑥) ≠ 0. 

 

Proof. The proof of (i) can be found in (Munyakazi and Patidar, 2008) and (ii) can be found in (Lubuma 

and Patidar, 2007). 

 

Lemma 2.2 Let 𝑧(𝑥𝑖) and 𝑍𝑖 be the functions of 𝐿2 and 𝐿2
(𝛥ℎ)

, then the bound is 

i.e,  𝑚𝑎𝑥
0≤𝑥≤1

|𝑧(𝑥𝑖) − 𝑍𝑖| ≤ 𝐶(𝛥ℎ)
2. 

 

Proof. This Lemma is proved in two cases: 

Case (i): Reaction-diffusion (𝑎(𝑥) = 0). 

Let |𝜆| <
𝛽

ℜ
, then 

|𝐿2
(Δℎ)

(𝑧(𝑥𝑖) − 𝑍𝑖)| = |𝜆 ∫

1

0
𝐾(𝑥𝑖, 𝑠)𝑧(𝑠) 𝑑𝑠 − 𝜆∑𝜃𝑗

𝑁

𝑗=0

(Δℎ) 𝐾(𝑥𝑖, 𝑠𝑗) 𝑧(𝑠𝑗)| ,    

≤
1

12
|𝜆|(Δℎ)2 𝑚𝑎𝑥

0≤𝑥𝑖,𝑠≤1
|
∂2

∂𝑠2
[𝐾(𝑥𝑖, 𝑠)𝑧(𝑠)]| ,     

≤ 𝐶(Δℎ)2.     
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Then it follows that  

𝑚𝑎𝑥
0≤𝑥≤1

|𝑧(𝑥𝑖) − 𝑍𝑖| ≤ 𝐶(Δℎ)
2. 

 

Case (ii): Convection-diffusion (𝑎(𝑥) ≠ 0). 

Let |𝜆| <
𝛼

ℜ
, then 

|𝐿2
(Δℎ)

(𝑧(𝑥𝑖) − 𝑍𝑖)| = |𝜆 ∫

1

0
𝐾(𝑥𝑖, 𝑠)𝑧(𝑠) 𝑑𝑠 − 𝜆∑𝜃𝑗

𝑁

𝑗=0

(Δℎ) 𝐾(𝑥𝑖, 𝑠𝑗) 𝑧(𝑠𝑗)| ,    

≤
1

12
|𝜆|(Δℎ)2 𝑚𝑎𝑥

0≤𝑥𝑖,𝑠≤1
|
∂2

∂𝑠2
[𝐾(𝑥𝑖, 𝑠)𝑧(𝑠)]| ,     

≤ 𝐶(Δℎ)2.     

 

 

Then it follows that 

𝑚𝑎𝑥
0≤𝑥≤1

|𝑧(𝑥𝑖) − 𝑍𝑖| ≤ 𝐶(Δℎ)
2. 

 

Theorem 2.3 Let 𝑧(𝑥𝑖) and 𝑍𝑖 be the solutions of Equation (1) and Equation (2), then 

𝑠𝑢𝑝
0<𝜖≤1 

𝑚𝑎𝑥
0≤𝑖≤𝑁

|𝑧(𝑥𝑖) − 𝑍𝑖| ≤ 𝐶(𝛥ℎ)2 if 𝑎(𝑥) = 0,   

𝑠𝑢𝑝
0<𝜖≤1 

𝑚𝑎𝑥
0≤𝑖≤𝑁

|𝑧(𝑥𝑖) − 𝑍𝑖| ≤ 𝐶(𝛥ℎ) if 𝑎(𝑥) ≠ 0.   
 

 

Proof. By applying Lemmas 2.1 and 2.2, it follows. 

 

3. Post-process Method  
The Richardson extrapolation improves the numerical solution accuracy and the rate of convergence (Zlatev 

et al., 2017). Let the meshes Ω
𝑁
= {𝑥𝑖}, 𝑥0 = 0, 𝑥𝑁 = 1, Δℎ = (𝑥𝑖 − 𝑥𝑖−1) and Ω

2𝑁
= {𝑥𝑖}, 𝑥0 = 0, 𝑥𝑁 =

1, (𝑥𝑖 − 𝑥𝑖−1) = Δℎ = Δℎ/2 . The discrete Equation (2) is initially solved in the NSFD method and 

composite trapezoidal rule with uniform mesh Ω
𝑁

, Ω
2𝑁

. 

 

Let 𝑍𝑖 and 𝑍𝑖 be the solutions of 𝐿(Δℎ), 𝐿(Δℎ) with the meshes Ω
𝑁

 and Ω
2𝑁

, respectively. 

 

Now take reaction-diffusion type (𝑎(𝑥) = 0) problems then Theorem 2.3 gives 

|𝑧𝑖 − 𝑍𝑖| ≤ 𝐶(Δℎ)
2, 𝑖 = 1,⋯ , 𝑁 − 1,     

|𝑧𝑖 − 𝑍𝑖| ≤ 𝐶(Δℎ/2)
2, 𝑖 = 1,⋯ ,2𝑁 − 1.    

 

Therefore, 𝑧𝑖 − 𝑍𝑖 = 𝐶(Δℎ)
2 + 𝑅𝑁(𝑥𝑖), ∀𝑥𝑖 ∈ Ω

𝑁
 and 𝑧𝑖 − 𝑍𝑖 = 𝐶(Δℎ/2)

2 + 𝑅2𝑁(𝑥𝑖), ∀𝑥𝑖 ∈ Ω
2𝑁
, where 

the remainders, 𝑅𝑁(𝑥𝑖) and 𝑅2𝑁(𝑥𝑖) are in 𝒪((Δℎ)2). Removing 𝒪((Δℎ)2) is necessary, hence using the 

following expression to get higher order (𝑧𝑖 − 𝑍𝑖) − 4(𝑧𝑖 − 𝑍𝑖) = 𝑅𝑁(𝑥𝑖) − 4𝑅2𝑁(𝑥𝑖), ∀𝑥𝑖 ∈ Ω
𝑁
. 

 

Therefore, the post-process method formula is, 

𝑍𝑖
𝑒𝑥𝑝
:=

4𝑍𝑖 − 𝑍𝑖
3

, 𝑖 = 1,⋯ , 𝑁 − 1. 

 

Similarly, convection-diffusion type (𝑎(𝑥) ≠ 0) implies that 
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𝑧𝑖 − 𝑍𝑖 = 𝐶(Δℎ) + 𝑅𝑁(𝑥𝑖), ∀𝑥𝑖 ∈ Ω
𝑁

 and 𝑧𝑖 − 𝑍𝑖 = 𝐶(Δℎ/2) + 𝑅2𝑁(𝑥𝑖), ∀𝑥𝑖 ∈ Ω
2𝑁
, 

 

where, the remainders, 𝑅𝑁(𝑥𝑖) and 𝑅2𝑁(𝑥𝑖) are in 𝒪((Δℎ)). Hence, 𝑧𝑖 − (2𝑍𝑖 − 𝑍𝑖) = 𝒪((Δℎ)), ∀𝑥𝑖 ∈

Ω
𝑁
, in the post-process method, using this formula, 

 

𝑍𝑖
𝑒𝑥𝑝
: = 2𝑍𝑖 − 𝑍𝑖 , 𝑖 = 1,⋯ , 𝑁 − 1. 

 

4. Error Estimate after Extrapolation 
Here, 𝑧(𝑥𝑖) is the continuous solution and 𝑍𝑒𝑥𝑝(𝑥𝑖) is the Richardson extrapolation method solution for 

each mesh point of the problem (1). The solution is split into the differential part and an integral part and 

then the error estimation follows like 

|𝐿(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)| = |𝐿1
(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖) + 𝐿2

(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)|. 

 

Now the error bound with extrapolation follows that 

 

Theorem 4.1 Let 𝑧𝑖 be the solution of 𝐿 and 𝑍𝑖
𝑒𝑥𝑝
, 𝑖 = 0,1,⋯ , 𝑁 be the Richardson extrapolation method 

solution of 𝐿(𝛥ℎ) with 𝑧0 = 𝑍0
𝑒𝑥𝑝

= 𝐴 and 𝑧𝑁 = 𝑍𝑁
𝑒𝑥𝑝

= 𝐵, then 

 

(𝑖)  𝑠𝑢𝑝
0<𝜖≤1 

𝑚𝑎𝑥
0<𝑖≤𝑁

|𝑧𝑖 − 𝑍𝑖
𝑒𝑥𝑝
| ≤ 𝐶(𝛥ℎ)4, if 𝑎(𝑥) = 0,   

(𝑖𝑖)  𝑠𝑢𝑝
0<𝜖≤1 

𝑚𝑎𝑥
0<𝑖≤𝑁

|𝑧𝑖 − 𝑍𝑖
𝑒𝑥𝑝
| ≤ 𝐶(𝛥ℎ)2, if 𝑎(𝑥) ≠ 0.   

 

 

Proof. The error bound appears in the form. 

|𝐿(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)| = |𝐿1
(Δℎ)

(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖) + 𝐿2
(Δℎ)

(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)| . 

 

If 𝑎(𝑥) = 0, then the differential part 𝐿1 operator bound is |𝐿1
(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)| ≤ 𝐶(Δℎ)

4. 

 

The proof of this bound is provided in (Munyakazi and Patidar, 2008). 

 

If 𝑎(𝑥) ≠ 0, then the differential part 𝐿1 operator bound is |𝐿1
(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)| ≤ 𝐶(Δℎ)

2. 

 

The proof of this bound is provided in (Lubuma and Patidar, 2007). 

 

 
Now, to prove the error bound of the operator 𝐿2. By Theorem 2.3 gives 

𝐿2
(Δℎ)(𝑧 − 𝑍)(𝑥𝑖) ≤ 𝐶(Δℎ)

2, for 𝑥𝑖 ∈ Ω
𝑁
,  

𝐿2
(Δℎ)

(𝑧 − 𝑍)(𝑥𝑖) ≤ 𝐶(Δℎ)
2, for 𝑥𝑖 ∈ Ω

2𝑁
. 

 

 

From the extrapolation formula of the reaction-diffusion case 

(𝐿2
(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)) =

4

3
(𝐿2

(Δℎ)
(𝑧 − 𝑍)(𝑥𝑖)) −

1

3
(𝐿2
(Δℎ)(𝑧 − 𝑍)(𝑥𝑖)) . 

 

Then, after simplification, it implies that 
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|𝐿2
(Δℎ)

(𝑧 − 𝑍𝑒𝑥𝑝)| ≤ 𝐶(Δℎ)4. 
 

Similarly, the extrapolation formula for the convection-diffusion case 

(𝐿2
(Δℎ)

(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)) = 2 (𝐿2
(Δℎ)

(𝑧 − 𝑍)(𝑥𝑖)) − (𝐿2
(Δℎ)(𝑧 − 𝑍)(𝑥𝑖)). 

 

Then, it implies 

|𝐿2
(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)| ≤ 𝐶(Δℎ)2. 

 

Combine 𝐿1 bound and 𝐿2 bound 

𝑚𝑎𝑥
1≤𝑖≤𝑁

|𝐿(Δℎ)(𝑧 − 𝑍𝑒𝑥𝑝)(𝑥𝑖)| ≤ {
𝐶(Δℎ)4, (𝑎(𝑥) = 0),

𝐶(Δℎ)2, (𝑎(𝑥) ≠ 0).
                                                                                (3) 

 

Now apply the uniform stability (Munyakazi and Patidar, 2008) in Equation (3), then 

𝑚𝑎𝑥
1≤𝑖≤𝑁

|𝑧𝑖 − 𝑍𝑖
𝑒𝑥𝑝
| ≤ {

𝐶(Δℎ)4,  for 𝑎(𝑥) = 0,

𝐶(Δℎ)2,  for 𝑎(𝑥) ≠ 0.
 

 

Then follows 

𝑠𝑢𝑝
0<𝜖≤1 

𝑚𝑎𝑥
0<𝑖≤𝑁

|𝑧𝑖 − 𝑍𝑖
𝑒𝑥𝑝
| ≤ {

𝐶(Δℎ)4,  for 𝑎(𝑥) = 0,

𝐶(Δℎ)2,  for 𝑎(𝑥) ≠ 0.
   

 

5. Computational Simulations 
The developed method, according to theoretical analysis, exhibits a uniform convergence rate with the 

perturbation parameter 𝜖. Numerical computations were performed to evaluate the efficiency of the current 

methodology, utilizing the given instance. 

 
Example 5.1 Consider the example in the format of Equation (1) 
 

𝑎(𝑥) ≡ 0, 𝑏(𝑥) = (1 + 𝑥(1 − 𝑥)), 𝜆 = 1, 𝐾(𝑥, 𝑠) = 𝑥,   

𝑓(𝑥) = 𝑒
−
1+𝑥

√𝜖 [𝑒
1

√𝜖(−(𝑥 − 1)2𝑥 + 2√𝜖) + 𝑒
2𝑥

√𝜖((𝑥 − 1)𝑥2 + 2√𝜖)   

  +𝑒
𝑥

√𝜖 (−2𝜖 + 𝑒
1

√𝜖(2 + 𝑥 − 𝑥2 − 2√𝜖 + 2𝜖))],   

𝑧(0) = 0, 𝑧(1) = 0.   

 

 

 
Example 5.2 Consider the example in the format of Equation (1) 

𝑎(𝑥) = 1 −
𝑥2

2
, 𝑏(𝑥) = 0, 𝜆 =

1

4
, 𝐾(𝑥, 𝑠) = 𝑥, 𝑓(𝑥) = 1,    

𝑧(0) = 0, 𝑧(1) = 0.     
 

 

Example 5.3 Consider the example in the format of Equation (1) 

𝑎(𝑥) = (
𝑥 + 1

2
), 𝑏(𝑥) = 2(1 + 𝑥), 𝜆 =

1

2
, 𝐾(𝑥, 𝑠) = 𝑥 + 𝑠, 𝑓(𝑥) = (1 −

𝑥

2
)(3 − 𝑥),    

𝑧(0) = 0, 𝑧(1) = 0.     
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Exact solution of Example 5.1 is 𝑧(𝑥) = 1 + (𝑥 − 1)𝑒
−
𝑥

√𝜖 − 𝑥𝑒
−
(1−𝑥)

√𝜖 . Before extrapolation, the error 

estimate is 𝐸𝜖
𝑁 = 𝑚𝑎𝑥

𝑖
|𝑧(𝑥𝑖) − 𝑍𝑖|, where 𝑧(𝑥𝑖) is the exact solution and 𝑍𝑖 is an approximation solution, 

and Example 5.2 and Example 5.3 do not possess exact solutions. Consequently, an error estimate is 

followed by a double mesh error analysis. The error obtained by 
 
 

𝐸𝜖
𝑁 = 𝑚𝑎𝑥

𝑖
|𝑍𝑖
𝜖,𝑁 − 𝑍

∼

𝑖
𝜖,2𝑁|, 

 

where, 𝑍
∼

𝑖
𝜖,2𝑁

 is the Computational solution of the associated approach on the 2𝑁 points.  

 
After extrapolation, the error estimation of Example 5.1 is 
 

𝐸𝜖
𝑁 = 𝑚𝑎𝑥

𝑖
|𝑧(𝑥𝑖) − 𝑍𝑖

𝑒𝑥𝑝
|, 

 

where, 𝑧(𝑥𝑖) is an exact solution and 𝑧𝑖
𝑒𝑥𝑝

 is an approximation solution after extrapolation is applied, 

Example 5.2 and Example 5.3 error estimation is 

𝐸𝜖
𝑁 = 𝑚𝑎𝑥

𝑖
|𝑍𝑖
𝑒𝑥𝑝,𝑁

− 𝑍
∼

𝑖
𝑒𝑥𝑝,2𝑁

|. 

 

The convergence rate is defined by 𝑅𝜖
𝑁 = log2 (

𝐸𝜖
𝑁

𝐸𝜖
2𝑁). The computed 𝜖 −uniform pointwise maximum error 

𝐸𝑁 = 𝑚𝑎𝑥
𝜖
𝐸𝜖
𝑁 and also define the 𝜖 −uniform rate of convergence as 𝑅𝑁 = log2 (

𝐸𝑁

𝐸2𝑁
). 

 

6. Result Discussion 
▪ For various values of ϵ, a numerical and exact solution of Example 5.1 is plotted in Figure 1 this figure 

shows that if 𝜖 is very small, the layer attains the boundary of  𝑥 = 0 and 𝑥 = 1. 

▪ Figure 2 and Figure 3 shows computational solutions of various ϵ of Example 5.2 and Example 5.3. 

These figures indicate that when ϵ diminishes, a layer emerges around 𝑥 = 1. 

▪ Figure 4 illustrates the error plot of Example 5.1 without extrapolation, while Figure 5 displays the 

error plot with extrapolation.  These plots illustrate the highest pointwise error at the boundary layers of 

𝑥 = 0 and 𝑥 = 1. 

▪ Similarly, Figure 6 displays the error plot of Example 5.2 without extrapolation, while Figure 7 exhibits 

the error plot with extrapolation.  These pictures illustrate the maximum pointwise error at the layer 

boundary of x = 1. 

▪ Table 1, Table 3, and Table 5 display the maximum pointwise error and convergence order for Example 

5.1, Example 5.2, and Example 5.3 without extrapolation, with Table 1 indicating a maximum 

convergence of second-order convergence for each 𝜖 value. Table 3 and Table 5 demonstrate first-order 

convergence. 

▪ Similarly, Table 2, Table 4, and Table 6 shows the maximum pointwise error and convergence order 

for Example 5.1, Example 5.2, and Example 5.3 with post-processing, with Table 2 presenting the 

fourth-order convergence, Table 4 and Table 6 showing second-order convergence for each ϵ value. 

▪ All the tables indicate that as the values of 𝑁 increase, the error decreases and the rate of convergence 

approaches the theoretically predicted value. 

▪ Table 7, Table 8 and Table 9 present a comparison of the 𝜖 −uniform maximum errors and convergence 

rates before and after extrapolation. 
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▪ Figure 8 and Figure 10 plot the numerical convergence rates on a log-log scale, providing a graphical 

representation of Example 5.1 and Example 5.2 before extrapolation, while Figure 9 and Figure 11 

show the corresponding plots after extrapolation.  

▪ A log-log plot is a graphical representation where both the horizontal and vertical axes are on a 

logarithmic scale. This plot is particularly useful for identifying power-law relationships of the rate of 

convergence, as straight lines on a log-log plot indicate a consistent rate of error reduction with mesh 

refinement. 

 
 

 

 

 

  

 

Figure 1. Comparison solution plots for example 5.1 with 𝑁 = 64. 

 

 

 
 

Figure 2. Solution plots of example 5.2 with corresponding values of 𝜖. 
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Figure 3. Solution plots of example 5.3 with corresponding values of 𝜖. 

 

 

 
 

Figure 4. Error plot of example 5.1 before extrapolation, corresponding to the values of 𝜖. 

 

 

 
 

Figure 5. Error plot of example 5.1 after extrapolation, corresponding to the values of 𝜖. 
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Figure 6. Error plot of example 5.2 before extrapolation, corresponding to the values of ϵ. 

 

 

 
 

Figure 7. Error plot of example 5.2 after extrapolation, corresponding to the values of ϵ. 

 

 
Table 1. 𝐸𝜖

𝑁 and 𝑅𝜖
𝑁 of example 5.1. 

 

 Number of mesh 𝑁 

𝜖 ↓ 32  64  128  256  512  1024  

2−2 1.2354e-4 3.0905e-5 7.7256e-6 1.9313e-6 4.8283e-7 1.2071e-7  

 1.9990  2.0001  2.0000  2.0000  2.0000  1.9992 

2−4 4.2340e-4 1.0580e-4 2.6447e-5 6.6116e-6 1.6529e-6 4.1323e-7  

 2.0007  2.0002  2.0000  2.0000  2.0000  2.0001 

2−6 8.7423e-4 2.1858e-4 5.4661e-5 1.3665e-5 3.4164e-6 8.5409e-7  

 1.9998  1.9996  2.0000  2.0000  2.0000  2.0000  

2−8 1.6293e-3 4.0852e-4 1.0220e-4 2.5555e-5 6.3891e-6 1.5973e-6  

 1.9958  1.9991  1.9996  2.0000  2.0000  2.0000  

2−14 1.1516e-2 3.3219e-3 8.6581e-4 2.1894e-4 5.4907e-5 1.3737e-5  

 1.7936  1.9399  1.9835  1.9955  1.9989  1.9997  

2−16 1.5904e-2 5.8283e-3 1.6859e-3 4.4024e-4 1.1144e-4 2.7945e-5  

 1.4482  1.7896  1.9372  1.9820  1.9956  1.9989  



Prince et al.: Richardson Extrapolation for Singularly Perturbed Fredholm Integro … 
 

 

2034 | Vol. 10, No. 6, 2025 

Table 2. 𝐸𝜖
𝑁 and 𝑅𝜖

𝑁 of example 5.1 with extrapolation. 
 

 

 

 

 

Table 3. 𝐸𝜖
𝑁 and 𝑅𝜖

𝑁 of example 5.2. 
 

 Number of mesh 𝑁 

𝜖 ↓ 32  64  128  256  512  1024  

2−2 4.0824e-4 2.2201e-4 1.1570e-4 5.8984e-5 2.9779e-5 1.4960e-5  

 0.8788  0.9402  0.9720  0.9860  0.9931  0.9966 

2−4 2.3835e-3 1.0806e-3 5.1460e-4 2.5100e-4 1.2394e-4 6.1582e-5  

 1.1413  1.0703  1.0358  1.0180  1.0091  1.0045 

2−6 6.0606e-3 2.5298e-3 1.1418e-3 5.4123e-4 2.6326e-4 1.2980e-4  

 1.2604  1.1478  1.0769  1.0397  1.0202  1.0101 

2−8 1.1940e-2 4.6924e-3 1.9143e-3 8.3289e-4 3.8429e-4 1.8406e-4  

 1.3474  1.2935  1.2006  1.1159  1.0621  1.0321  

2−14 1.3449e-2 6.8085e-3 3.4254e-3 1.7180e-3 8.6021e-4 4.2625e-4  

 0.9820  0.9911  0.9955  0.9980  1.0130  1.1134  

2−16 1.3449e-2 6.8085e-3 3.4254e-3 1.7180e-3 8.6033e-4 4.3049e-4  

 0.9820  0.9911  0.9955  0.9978  0.9989  0.9996  

2−18 1.3449e-2 6.8085e-3 3.4254e-3 1.7180e-3 8.6033e-4 4.3049e-4  

 0.9820  0.9911  0.9955  0.9978  0.9989  0.9994  

 

 

 

 

Table 4. 𝐸𝜖
𝑁 and 𝑅𝜖

𝑁 of example 5.2 with extrapolation. 
 

 Number of mesh 𝑁 

𝜖 ↓ 16  32  64  128  256  512  

2−2 2.1609e-4 5.1770e-5 1.2670e-5 3.1340e-6 7.7925e-7 1.9433e-7  

 2.0615  2.0307  2.0153  2.0079  2.0036   

2−4 1.3368e-3 3.1912e-4 7.8034e-5 1.9281e-5 4.7900e-6 1.1938e-6  

 2.0666  2.0319  2.0169  2.0091  2.0045   

2−6 5.3708e-3 1.4218e-3 3.6705e-4 9.1432e-5 2.2759e-5 5.6755e-6  

 1.9175  1.9536  2.0052  2.0063  2.0036   

2−8 3.9338e-3 2.6397e-3 1.2957e-3 3.6503e-4 9.7428e-5 2.4489e-5  

 0.5755  1.0267  1.8276  1.9056  1.9922   

2−14 2.4172e-3 6.4548e-4 1.6689e-4 4.2437e-5 1.0923e-5 1.0603e-5  

 1.9049  1.9515  1.9755  1.9580  0.0429   

2−16 2.4172e-3 6.4548e-4 1.6689e-4 4.2437e-5 1.0700e-5 2.6866e-6  

 1.9049  1.9515  1.9755  1.9877  1.9938   

2−18 2.4172e-3 6.4548e-4 1.6689e-4 4.2437e-5 1.0700e-5 2.6865e-6  

 1.9049  1.9515  1.9755  1.9877  1.9938   

 

 Number of mesh 𝑁 

𝜖 ↓ 16  32  64  128  256  512  

2−2 2.7105e-7 1.6982e-8 1.0624e-9 6.6466e-11 4.4404e-12 3.4666e-12  

 3.9965  3.9985  3.9986  3.9038  0.3572   

2−4 1.3601e-6 8.6008e-8 5.3889e-9 3.3748e-10 2.4256e-11 8.6880e-12  

 3.9831  3.9964  3.9971  3.7984  1.4812   

2−6 7.7453e-6 5.2408e-7 3.3046e-8 2.0698e-9  1.3133e-10 8.5916e-12  

 3.8855  3.9872  3.9969  3.9782  3.9342   

2−8 5.2708e-5 3.7730e-6 2.5147e-7 1.5856e-8  9.9520e-10 6.2487e-11  

 3.8042  3.9072  3.9873  3.9939  3.9934   

2−14 4.1424e-3 5.9042e-4 5.1243e-5 6.7052e-6  4.7614e-7  3.1102e-8  

 2.8107  3.5263  2.9340  3.8158  3.9363   

2−16 8.0355e-3 2.2143e-3 3.0519e-4 2.6384e-5  3.3600e-6  2.3841e-7  

 1.8595  2.8591  3.5320  2.9731  3.8170   
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Table 5. 𝐸𝜖
𝑁 and 𝑅𝜖

𝑁 of example 5.3. 
 

 Number of mesh 𝑁 

𝜖 ↓ 32  64  128  256  512  1024  

2−2 
1.5030e-3 

1.2897  

6.1479e-4 

1.1663  

2.7393e-4 

1.089  

1.2877e-4 

1.0462  

6.2357e-5 

1.0236  

3.0673e-5  

1.0119 

2−4 
5.9033e-3 

1.4053  
2.2288e-3 

1.2511  
9.3637e-4 

1.1427  
4.2410e-4 

1.0764  
2.0111e-4 

1.0396  
9.7837e-5  

1.0202 

2−6 
1.8899e-2 

1.6105  

6.1894e-3 

1.4649  

2.2421e-3 

1.3043  

9.0790e-4 

1.1787  

4.0106e-4 

1.0978  

1.8739e-4  

1.0513  

2−8 
4.8675e-2 

1.5149  
1.7032e-2 

1.6572  
5.4001e-3 

1.5807  
1.8054e-3 

1.4237  
6.7296e-4 

1.2696  
2.7912e-4  

1.1554  

2−14 
5.8936e-2 

0.9307  

3.0918e-2 

0.9633  

1.5857e-2 

0.9816  

8.0301e-3 

0.9911  

4.0399e-3 

1.0275  

1.9818e-3  

1.2503  

2−16 
5.8936e-2 

0.9307  

3.0918e-2 

0.9633  

1.5857e-2 

0.9816  

8.0301e-3 

0.9907  

4.0411e-3 

0.9953  

2.0271e-3  

0.9981  

 
 

 

 

Table 6. 𝐸𝜖
𝑁 and 𝑅𝜖

𝑁 of example 5.3 with extrapolation. 

 
 Number of mesh 𝑁 

𝜖 ↓ 16  32  64  128  256  512  
2−2 1.2765e-3 

2.0021  
3.1868e-4 

2.0017  
7.9575e-5 

2.0017  
1.9870e-5 

2.0010  
4.9642e-6 

2.0005  
1.2406e-6  

2.0004 
2−4 5.9039e-3 

1.9725  
1.5044e-3 

1.9960  
3.7714e-4 

2.0003  
9.4268e-5 

2.0007  
2.3556e-5 

2.0005  
5.8869e-6  

2.0003 
2−6 2.1482e-2 

1.6972  
6.6248e-3 

1.9258  
1.7436e-3 

1.9825  
4.4122e-4 

1.9962  
1.1060e-4 

1.9993  
2.7663e-5  

2.0000  
2−16 1.0849e-2 

1.7825  
3.1537e-3 

1.8980  
8.4619e-4 

1.9458  
2.1964e-4 

1.9729  
5.5949e-5 

1.9864  
1.4120e-5  

2.3011  
2−18 1.0849e-2 

1.7825  
3.1537e-3 

1.8980  
8.4619e-4 

1.9458  
2.1964e-4 

1.9729  
5.5949e-5 

1.9864  
1.4120e-5  

1.9932  
2−20 1.0849e-2 

1.7825  
3.1537e-3 

1.8980  
8.4619e-4 

1.9458  
2.1964e-4 

1.9729  
5.5949e-5 

1.9864  
1.4120e-5  

1.9932  
 

 

 
 

Table 7. 𝜖 −uniform maximum error and convergence rate 𝐸𝑁 , 𝑅𝐸  for example 5.1. 
 

Number of mesh 𝑁 

  32  64  128  256  512  

 𝐸𝑁 1.8459e-2 8.0736e-3 2.9338e-3 8.4972e-4 2.2261e-4 

Before extrapolation 𝑅𝐸 1.1930  1.4604  1.7877  1.9325  1.9830  

 𝐸𝑁 4.2808e-3 1.1443e-3 1.5734e-4 1.3386e-5 1.6820e-6 

After extrapolation  𝑅𝐸 1.9034  2.8625  3.5551  2.9925  3.8176  

 

 
 

 

Table 8. 𝜖 −uniform maximum error and convergence rate 𝐸𝑁 , 𝑅𝐸  for example 5.2. 
 

 Number of mesh 𝑁 

 32  64  128  256  512  

Before 
extrapolation 

𝐸𝑁 

𝑅𝐸 

1.3449e-2 
0.9820  

6.8085e-3 
0.9911  

3.4254e-3 
0.9955  

1.7180e-3 
0.9978  

8.6033e-4 
0.9989  

After 

extrapolation  
𝐸𝑁 

𝑅𝐸 

2.6397e-3 

1.0266  

1.2957e-3 

1.8276  

3.6503e-4 

1.9056  

9.7428e-5 

1.9922  

2.4489e-5 

1.9994  

 

 



Prince et al.: Richardson Extrapolation for Singularly Perturbed Fredholm Integro … 
 

 

2036 | Vol. 10, No. 6, 2025 

Table 9. 𝜖 −uniform maximum error and convergence rate 𝐸𝑁 , 𝑅𝐸  for example 5.3. 
 

 Number of mesh 𝑁 

 32  64  128  256  512  

Before 

extrapolation 

𝐸𝑁 

𝑅𝐸 

5.8936e-2 

0.9307  

3.0918e-2 

0.9633  

1.5857e-2 

0.9816  

8.0301e-3 

0.9907  

4.0411e-3 

0.9953  

After 
extrapolation  

𝐸𝑁 

𝑅𝐸 

6.6248e-3 

1.9258  

1.7436e-3 

1.9825  

4.4122e-4 

1.9961  

1.1060e-4 

1.9993  

2.7663e-5 

1.9999  

 

 

 

 

Figure 8. Log-log plots of example 5.1 before extrapolation with corresponding to various values of 𝜖. 

 

 

 

 
 

Figure 9. Log-log plots of example 5.1 after extrapolation with corresponding to various values of 𝜖. 
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Figure 10. Log-log plots of example 5.2 before extrapolation with corresponding to various values of 𝜖. 

 

 

 
 

Figure 11. Log-log plots of example 5.2 after extrapolation with corresponding to various values of 𝜖. 

 

 

7. Conclusion 
This article addresses the solution of a second-order Fredholm integro-differential equation both 

theoretically and numerically. A non-standard finite difference method is employed for the differential part, 

while the trapezoidal rule is used to approximate the integral term on a uniform mesh. The numerical 

analysis shows that singularly perturbed Fredholm integro-differential equations exhibit uniform 

convergence of order one for convection-diffusion types and order two for reaction-diffusion types. Upon 

applying a post-processing technique, the convergence rate improves from first to second order when 

𝑎(𝑥) ≠ 0, and from second to fourth order when a 𝑎(𝑥) = 0 in Equation (1). Theoretical findings are 

validated through numerical experiments, which confirm the predicted rates. The post-processing approach 

significantly enhances accuracy and enables higher-order convergence, marking a noteworthy advancement 

in this research area. The key contributions of this work are as follows: 
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▪ Modelling layer behavior within the solution using a uniform mesh, demonstrating the accurate 

resolution of boundary layers through appropriate numerical techniques. 

▪ Efficient application of the non-standard finite difference method for differential terms and the 

trapezoidal rule for integral components in solving SPFIDEs. 

▪ Enhanced convergence rates to second and fourth order through Richardson extrapolation, marking a 

significant advancement over previous approaches. 
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