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Abstract

This study numerically derived the higher order convergence for a class of singularly perturbed Fredholm integro differential
equations with reaction diffusion and convection diffusion type problems. A non-standard finite difference approach is used to
approximate the derivatives. The trapezoidal rule determines the integral term. The suggested numerical technique achieves a
uniform convergence rate independently of the perturbation parameter. Implementing the Richardson extrapolation technique
achieves a fourth order convergence rate for reaction diffusion type problems and a second order convergence rate for convection
diffusion type problems. Specific numerical examples are provided to corroborate in practice the effectiveness of the theoretical
findings.
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1. Introduction
The diffusion equation is a partial differential equation (PDE) that describes the behavior of a substance
(e.g. heat, particles, or chemicals) as it spreads out over space and time due to random motion or
concentration gradients. The standard form of the diffusion equation in one spatial dimension is (Crank,
1975).

Uy = Duy,,

where, u = u(x, t) is the concentration or temperature at a position x and time t, D is the positive diffusion
coefficient. The diffusion equation is split into the reaction-diffusion equation and the convection-diffusion
equation.

The general form of the one-dimensional reaction-diffusion steady-state problems is,

d?u(x)
D W + R(u) = 0,

where, R(u) is the reaction term.
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The general form of the one-dimensional convection-diffusion steady-state problems is
d?u(x)  du(x)
D —v =0,
dx? dx

where, v is the convection velocity. These types of diffusion equations have physical applications like
chemical kinetics, population dynamics, biological pattern formation, fluid flow, and heat transfer.

A differential equation where a small parameter multiplies the higher derivative term is typically called a
singularly perturbed differential equations (SPDEs). The solutions to these equations have a very thin layer,
referred to as either an interior layer or a boundary layer, depending on the location in the domain. SPDEs
can be solved using various numerical methods, especially fitted mesh methods and fitted operator methods.
Both approaches dealt with SPDEs in one and multidimensional problems (Govindarao and Mohapatra,
2019; Sekar, 2023), also Das and Natesan (2017) solved parabolic singularly perturbed delay PDEs using
a Shishkin mesh, addressing challenges associated with small perturbation and delay effects. Udupa et al.
(2022) explored blood flow through a stenosed artery under body acceleration, employing a singular
perturbation approach combined with Shishkin mesh discretization to simulate realistic physiological
responses. Das and Natesan (2018) extended their earlier work by introducing a fractional-step higher-order
method for 2D convection-diffusion parabolic problems, achieving improved accuracy on non-uniform
meshes. Izadi and Yuzbasi (2022) proposed a hybrid numerical technique for parabolic singularly perturbed
convection-diffusion problems, offering uniform convergence and improved treatment of boundary layers.
Ansari et al. (2024) numerically solved the two small parameters singularly perturbed parabolic
convection—diffusion—reaction problems and demonstrated significant performance improvements. Izadi
and Zeidan (2022) developed a hybrid scheme for nonlinear diffusion equations, offering reliable
convergence and accurate results even for stiff and nonlinear systems. Govindarao and Sekar (2023)
numerically solved the RLC closed series circuit with small inductance values. Mohapatra et al. (2025)
developed a numerical scheme for solving 2D time-dependent SPDE with improved accuracy and stability.
Integro-differential equations (IDEs) have significance in various domains, including engineering, physics,
and biology (Rahman, 2007). IDEs are categorized into two types based on their elements. Fredholm
integro-differential equations (FIDEs), which contain integral components with a fixed range and Volterra
integro-differential equations (VIDEs), which feature integral components constrained by specific
variables. In the literature, there are many integro-differential models, here present a mathematical model
of chemical reaction-diffusion processes that include the effects of a catalyst (Chadam and Yin, 1994).

U —Au= a(le(u(.,y))dy, t>0,x€cR?

with homogeneous Dirichlet or Neumann boundary conditions on €. This type of model gave the
motivation to construct singularly perturbed Fredholm integro-differential equations (SPFIDEs).
Consider a class of linear second-order SPFIDEs of the form

{ Li=L +L,=f(x), x€(01)=29, .
z(0) =4, z(1) =B, (1

where, L; = —ez"(x) + a(x)z'(x) + b(x)z(x), L, = lfolK (x,5)z(s)ds, 0 < € « 1. The functions

a(x) = a>0,b(x) = f > 0and f(x) are differentiable functions, K(x, s) is a kernel function, 4, B are
constants, and A is a given parameter.

2024 | Vol. 10, No. 6, 2025



Prince et al.: Richardson Extrapolation for Singularly Perturbed Fredholm Integro ... gfmsﬁgg

Equation (1) is split into two types of problems. If the coefficient a(x) = 0, it denotes the Reaction-
diffusion type problems and if a(x) # 0, it is known as the Convection-diffusion type problems. In
literature, Lange and Smith (1993) derived the existence and uniqueness of SPFIDEs. Amiraliyev et al.
(2020) solved SPFIDEs with Shishkin mesh. Durmaz and Amiraliyev (2021) tackled the second-order
reaction-diffusion SPFIDEs utilizing a fitted mesh and showed second-order convergence. In articles (Sekar
et al., 2024; Sekar et al., 2025) successfully solved the second-order reaction-diffusion and convection-
diffusion SPFIDEs, respectively, applying a standard difference method for the derivative part and integral
used by the trapezoidal rule of non-uniform meshes, also applying a post-processing method to increase the
convergence rate. Govindarao et al. (2024) investigated the reaction-diffusion SPFIDEs with non-local
boundaries and they succeeded in attaining a second-order convergence rate and also applying the
extrapolation technique, a fourth-order convergence rate was obtained. Elango et al. (2025) solved the
system of SPFIDE with a non-uniform mesh.

Fitted mesh finite difference methods need experience with the layer’s position and size. Fulfilling this need
might seem challenging at times. However, the fitted operator finite difference (FOFD) methods do not
impose these requirements. Inspired by the previously discussed research, implementing the FOFD
approach and the composite trapezoidal rule are effectively addressed in Equation (1).

The objective of this article is to achieve a fourth and second-order convergence rate with Richardson
extrapolation in reaction-diffusion and convection-diffusion SPFIDEs, respectively. Initially, the derivative
part is handled using a non-standard finite difference (NSFD) scheme, while the trapezoidal rule is applied
to an integral section of the uniform mesh. Afterwards, a post-processing technique implementing the
convergence rate increases the second order to the fourth order in reaction-diffusion problems and order
one to the second order in convection-diffusion problems. As a result, the global rate of convergence
appears computationally.

This article is organized like this, Section 2 shows the numerical discretization of reaction-diffusion and
convection-diffusion SPFIDEs, and shows the solution bounds Section 3 explains the post-process method
and improves the numerical solutions accuracy and the rate of convergence, Section 4 shows error estimates
with the extrapolation technique, and Section 5 examines computational simulations for reaction-diffusion
and convection-diffusion SPFIDEs, Section 6 shows the results and discussion of the comparison with and
without the post-process method.

Notations: In this study, C stands for a generic positive constant that is independent of the mesh parameter

(Ah) and perturbation parameter (€) . The space of real-valued functions that are continuously
1

differentiable n times on [0,1] is represented by the letter C™([0,1]), R = Tél[%)f] 1K (x,s)|ds and z;
x€[0,1]0

z(x;) indicate an approximation by the Z;.

2. Numerical Discretization
On [0,1], the uniform mesh step (Ah) is used to discretize the interval. Here (Ah): = % such that x; =
i(Ah), where N is the total number of sub-intervals. For each mesh point, Equation (1) becomes

L@R; = [ L 1B — rx), i =0,1,2,--N )

where,
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L = —ez" (x) + a(x)z' (x) + b(x)z(xy),

1
L8 = A[K (x;, 9)2(s) ds.
0

Apply the NSFD method for the differential part (Lubuma and Patidar, 2007) in Equation (2), then,
Zi1—2zi+z

—€ 2T bG)z(x),  if a(x) =0,
L@an) _ Wi
1 = _ _
Zi-1 —2Zi+ Zipy | ——=Zi —Zi-1 | :
—€ — + a(x;) + b(x;)z(x;), if a(x)#0,

¢? Ah

where,w_L?:éz (pL(Ah)),p _( ) E e(ﬁih) ((w) 1) _ Qitaip by = bi1+bi*bisy

12 2 € 2 3

=

Apply the composite trapezoidal rule to determine the integral component (Kress, 1998) in Equation (2),
then,

N
o0 ’12 0; (AR) K (x;,5)) 2(s)),
=0

2 forj=0,N,

where, 0; —{
1 forj=123- ,N—1

Lemma 2.1 Let z(x;) and Z; be the functions of L, and L(lAh), then the bounds are
(i) max|z(x) —Z| < CARM?* i a(x) =0,

<is<
(i) max|z(x;) — Z;| < C(4h) if a(x) # 0.

<is<

Proof. The proof of (i) can be found in (Munyakazi and Patidar, 2008) and (ii) can be found in (Lubuma
and Patidar, 2007).

Lemma 2.2 Let z(x;) and Z; be the functions of L, and L(ZM), then the bound is
ie, ggaxl/z(xl-)—Zi/S C(Ah)>.
sx<

Proof. This Lemma is proved in two cases:
Case (i): Reaction diffusion (a(x) = 0).

Let 1] < , then

) N
15" (20c) = 2| = |AK (xi,9)2(s) ds—ﬂzé’j (BR) K (xiy 1) 2(s7)|
|
SEW(Ah)ZOzCLax a—[K(xuS)Z(S)]

< C(AR)2.
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Then it follows that
gnaxllz(xi) —Z;| < C(ah)?.
<XxX<

Case (ii): Convection-diffusion (a(x) # 0).
Let |4] < % then

N
1
L& (2 (x) — 20)| = A(I)K(xi,s)z(s) ds —AZ 6, (Ah) K (x1,5)) 2(s7)|
j=0
62
< — 2 :
Ill(Ah) oJAX 1552 [K (xi, $)z(s)]|,
< C(Ah)z.
Then it follows that

N_ 7. 2
grslgsacllz(xl) Zi| < C(Ah)~.

Theorem 2.3 Let z(x;) and Z; be the solutions of Equation (1) and Equation (2), then
sup max|z(x;) — Z;| < C(4h)? if a(x) =0,

0<es1 0sisN

sup maxlz(x) Z;| <C(4h) if a(x) #0.

0<es1 0sisN

Proof. By applying Lemmas 2.1 and 2.2, it follows.

3. Post-process Method

The Richardson extrapolation improves the numerical solution accuracy and the rate of convergence (Zlatev
—N —2N . — —

et al., 2017). Let the meshes Q = {x;},xg = 0,xy = 1,Ah = (x; —x;_1) and Q = {x;},xo =0,xy =

1,(X; — X;_1) = Ah = Ah/2. The discrete Equation (2) is initially solved in the NSFD method and

—N —2N
composite trapezoidal rule with uniform mesh Q0 , Q

= . — —N 2N .
Let Z; and Z; be the solutions of L(AM), L(AM) with the meshes & and Q , respectively.

Now take reaction-diffusion type (a(x) = 0) problems then Theorem 2.3 gives
|z; — Z;| < C(AR)?, i=1,-,N—1,
|z; — Z;] < C(AR/2)?, i=1,- 2N —1.

—N — —2N
Therefore, z; — Z; = C(Ah)? + Ry(x;),Vx; € Q and z; — Z; = C(Ah/2)? + R,y (X)), Vx; € Q , where
the remainders, Ry (x;) and R,y (X;) are in O((Ah)?). Removing O((Ah)?) is necessary, hence using the

— —N
following expression to get higher order (z; — Z;) — 4(z; — Z;) = Ry(x;) — 4Ron(x;),VXx; EQ .

Therefore, the post-process method formula is,
47; — Z;
exp,
2=

Similarly, convection-diffusion type (a(x) # 0) implies that
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—N — —2N
Zi — Zi = C(Ah) + RN(xi), in € and Zi — Zi = C(Ah/Z) + RZN(Yi)!vxi e ,

where, the remainders, Ry (x;) and R,y (X;) are in O((Ah)). Hence, z; — (2Z; — Z;) = O((Ah)), Vx; €
—N
Q1 , in the post-process method, using this formula,

7P =27,—-7; i=1,,N—1.

4

4. Error Estimate after Extrapolation

Here, z(x;) is the continuous solution and Z*P (x;) is the Richardson extrapolation method solution for
each mesh point of the problem (1). The solution is split into the differential part and an integral part and
then the error estimation follows like

|LAD (7 — ZeP) ()| = |LM (2 = 292) () + L3 (2 = 297) ().
Now the error bound with extrapolation follows that

Theorem 4.1 Let z; be the solution of L and Zl-e *P i =0,1,--, N be the Richardson extrapolation method
solution of LA™ with z, = ngp =Aand zy = Zexp B, then

(i) sup max|zl Z7P| < Ccah)*, if a(x) =0,

0<e<1 0<isN
(i) sup max |z; — Z7P| < C(4h)?%  if a(x) #0.

0<e<1 0<isN
Proof. The error bound appears in the form.

LA (z — 229) ()| = L™ @ = 2% () + LG @ ~ Z7) (o).

If a(x) = 0, then the differential part L, operator bound is |L(1Ah) (z—-2Z exp)(xi)| < C(Ah)*.
The proof of this bound is provided in (Munyakazi and Patidar, 2008).
If a(x) # 0, then the differential part L, operator bound is |L(1Ah) (z—-2Z exp)(xi)| < C(Ah)2.

The proof of this bound is provided in (Lubuma and Patidar, 2007).

Now, to prove the error bound of the operator L,. By Theorem 2.3 gives

L8Pz - 2)(x) < C(AR)?, for % EQ,
—_ J— —2N
1P (2 = Z)(x) < C(BR)2, for x €Q .

From the extrapolation formula of the reaction-diffusion case

(L(ZAh) (z — Zexp)(xl)) 4 (L(Ah)(z — Z)(xl)> - _<L(Ah) (z — Z)(xl)>

Then, after simplification, it implies that
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1L (2 — ze%2)| < C(AR)*.

Similarly, the extrapolation formula for the convection-diffusion case

(1@ - zo)) = 2 (157 - D) - (187 (2 - D)

Then, it implies
1L (2 — 29%P)| < C(AR)2.

Combine L; bound and L, bound

max |L(Ah)(z _ Zexp)(xi)| < {C(Ah)‘l’ (a(x) = 0),

1si=N C(Ah)?,  (a(x) # 0). )

Now apply the uniform stability (Munyakazi and Patidar, 2008) in Equation (3), then
C(An)*,  for a(x) =0,

_ gexp <{
Iz =2 S 0?2, for a(e) #0.

1<i<N

Then follows
C(Ah)*, for a(x) =0,

R Al s{
Sup MAX\Z = 2 S0 an)?, for a(x) 0.

0<es1 0<i=N

5. Computational Simulations

The developed method, according to theoretical analysis, exhibits a uniform convergence rate with the
perturbation parameter €. Numerical computations were performed to evaluate the efficiency of the current
methodology, utilizing the given instance.

Example 5.1 Consider the example in the format of Equation (1)

ax)=0,b(x) =1 +x(1—x)),A=1,K(x,s) =x,
1+x 1 2x

f@) = e Ve [eVe(=(x — 1)%x + 2e) + eVe((x — 1)x? + 2e)
x 1
+eVe (—26 +eVe(2+x—x%—2Ve+ 26))],
z(0) =0,z(1) = 0.

Example 5.2 Consider the example in the format of Equation (1)
2

a(x) = 1 —%,b(x) —0,1= %,K(x,s) — X f) =1,
z(0)=0,z(1) = 0.

Example 5.3 Consider the example in the format of Equation (1)
x+1 1 x
a(x) = (T),b(x) =2(14+x),A= E,K(x,s) =x+s,f(x)=(1 _E)(B —X),
z(0) =0,z(1) = 0.
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_x _1-x
Exact solution of Example 5.1 is z(x) =1+ (x — 1)e Ve —xe Ve . Before extrapolation, the error
estimate is EY = max|z(x;) — Z;|, where z(x;) is the exact solution and Z; is an approximation solution,
L

and Example 5.2 and Example 5.3 do not possess exact solutions. Consequently, an error estimate is
followed by a double mesh error analysis. The error obtained by

&N _ €2N
EN =max|Z;" — 7777,
L

€,2N

where, Z;

is the Computational solution of the associated approach on the 2N points.

After extrapolation, the error estimation of Example 5.1 is

EN = miaxlz(xi) -z,

where, z(x;) is an exact solution and Zf *P is an approximation solution after extrapolation is applied,

Example 5.2 and Example 5.3 error estimation is

exp,N _ ~exp,ZN
Z Z :

EN = max
L

. EN . S .
The convergence rate is defined by RY = log, (Eﬁ) The computed € —uniform pointwise maximum error
€

. EN
EN = maxEY and also define the € —uniform rate of convergence as R¥ = log, (EW)
€

6. Result Discussion

» For various values of €, a numerical and exact solution of Example 5.1 is plotted in Figure 1 this figure
shows that if € is very small, the layer attains the boundary of x = 0 and x = 1.

» Figure 2 and Figure 3 shows computational solutions of various € of Example 5.2 and Example 5.3.
These figures indicate that when € diminishes, a layer emerges around x = 1.

= Figure 4 illustrates the error plot of Example 5.1 without extrapolation, while Figure 5 displays the
error plot with extrapolation. These plots illustrate the highest pointwise error at the boundary layers of
x=0andx = 1.

» Similarly, Figure 6 displays the error plot of Example 5.2 without extrapolation, while Figure 7 exhibits
the error plot with extrapolation. These pictures illustrate the maximum pointwise error at the layer
boundary of x = 1.

= Table 1, Table 3, and Table 5 display the maximum pointwise error and convergence order for Example
5.1, Example 5.2, and Example 5.3 without extrapolation, with Table 1 indicating a maximum
convergence of second-order convergence for each € value. Table 3 and Table 5 demonstrate first-order
convergence.

= Similarly, Table 2, Table 4, and Table 6 shows the maximum pointwise error and convergence order
for Example 5.1, Example 5.2, and Example 5.3 with post-processing, with Table 2 presenting the
fourth-order convergence, Table 4 and Table 6 showing second-order convergence for each € value.

= All the tables indicate that as the values of N increase, the error decreases and the rate of convergence
approaches the theoretically predicted value.

= Table 7, Table 8 and Table 9 present a comparison of the € —uniform maximum errors and convergence
rates before and after extrapolation.
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= Figure 8 and Figure 10 plot the numerical convergence rates on a log-log scale, providing a graphical
representation of Example 5.1 and Example 5.2 before extrapolation, while Figure 9 and Figure 11
show the corresponding plots after extrapolation.

A log-log plot is a graphical representation where both the horizontal and vertical axes are on a
logarithmic scale. This plot is particularly useful for identifying power-law relationships of the rate of

convergence, as straight lines on a log-log plot indicate a consistent rate of error reduction with mesh
refinement.

e=2F €= 2—12
1 T
08¢t
—~ 0-6 [
G
N 041
0.2 =s=Numerical Solution i :
““§ |= Exact Solution \ 02] [==Numerical S_olutlon
== Exact Solution
0 : 0 ‘
0 0.5 1 0 05 1
€T :C.

Figure 1. Comparison solution plots for example 5.1 with N = 64.

1 —— =272

—— = 274

0.8 | —— = —6

/;2\0_6 - —— =28

o2
04t
0.2t
0 L
0 0.5 1
x

Figure 2. Solution plots of example 5.2 with corresponding values of €.

2031 | Vol. 10, No. 6, 2025



Prince et al.: Richardson Extrapolation for Singularly Perturbed Fredholm Integro ...

Ram Arti
Publishers

2
1.5
S
« —— = 272
——c = 2%
0.5 ——e =26
——c=28
0

0 0.2 0.4 0.6 0.8
X

Figure 3. Solution plots of example 5.3 with corresponding values of €.

2 %1073
1.5 — — 2*10
55 ——C — 2_12
=1
5
0.5
0 "
0 0.5 1
X

Figure 4. Error plot of example 5.1 before extrapolation, corresponding to the values of €.

%107

1.5

° Error

5

0

0 0.5 T 1

Figure 5. Error plot of example 5.1 after extrapolation, corresponding to the values of €.
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Error

0 0.2 0.4 0.6 0.8 1

Figure 6. Error plot of example 5.2 before extrapolation, corresponding to the values of €.

-3
1.5 x10 . . . .
—— — 2_8
1}t
—
o
=
=
05¢
O :
0 0.2 0.4 0.6 0.8 1

x

Figure 7. Error plot of example 5.2 after extrapolation, corresponding to the values of €.

Table 1. EY and RY of example 5.1.

Number of mesh N
el 32 64 128 256 512 1024
272 1.2354¢-4 3.0905¢e-5 7.7256e-6 1.9313e-6 4.8283e-7 1.2071e-7
1.9990 2.0001 2.0000 2.0000 2.0000 1.9992
274 4.2340e-4 1.0580e-4 2.6447e-5 6.6116e-6 1.6529¢-6 4.1323e-7
2.0007 2.0002 2.0000 2.0000 2.0000 2.0001
276 8.7423e-4 2.1858¢-4 5.4661e-5 1.3665¢-5 3.4164e-6 8.5409¢-7
1.9998 1.9996 2.0000 2.0000 2.0000 2.0000
278 1.6293e-3 4.0852¢e-4 1.0220e-4 2.5555e-5 6.3891e-6 1.5973e-6
1.9958 1.9991 1.9996 2.0000 2.0000 2.0000
2714 1.1516e-2 3.3219e-3 8.6581e-4 2.1894e-4 5.4907e-5 1.3737e-5
1.7936 1.9399 1.9835 1.9955 1.9989 1.9997
2716 1.5904e-2 5.8283e-3 1.6859¢-3 4.4024¢-4 1.1144¢-4 2.7945¢e-5
1.4482 1.7896 1.9372 1.9820 1.9956 1.9989
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Table 2. EY and RY of example 5.1 with extrapolation.
Number of mesh N
el 16 32 64 128 256 512
272 2.7105e-7 1.6982¢-8 1.0624¢-9 6.6466¢-11 4.4404¢-12 3.4666¢-12
3.9965 3.9985 3.9986 3.9038 0.3572
274 1.3601e-6 8.6008e-8 5.3889¢-9 3.3748e-10 2.4256e-11 8.6880e-12
3.9831 3.9964 3.9971 3.7984 1.4812
276 7.7453e-6 5.2408e-7 3.3046e-8 2.0698e-9 1.3133e-10 8.5916e-12
3.8855 3.9872 3.9969 3.9782 3.9342
278 5.2708e-5 3.7730e-6 2.5147e-7 1.5856e-8 9.9520e-10 6.2487e-11
3.8042 3.9072 3.9873 3.9939 3.9934
2714 4.1424¢-3 5.9042¢-4 5.1243e-5 6.7052¢-6 4.7614e-7 3.1102e-8
2.8107 3.5263 2.9340 3.8158 3.9363
2716 8.0355¢-3 2.2143¢-3 3.0519¢-4 2.6384e-5 3.3600e-6 2.3841e-7
1.8595 2.8591 3.5320 2.9731 3.8170
Table 3. EY and RY of example 5.2.
Number of mesh N
el 32 64 128 256 512 1024
272 4.0824¢-4 2.2201e-4 1.1570e-4 5.8984e-5 2.9779e-5 1.4960e-5
0.8788 0.9402 0.9720 0.9860 0.9931 0.9966
27 2.3835e-3 1.0806e-3 5.1460e-4 2.5100e-4 1.2394e-4 6.1582¢e-5
1.1413 1.0703 1.0358 1.0180 1.0091 1.0045
276 6.0606e-3 2.5298¢-3 1.1418e-3 5.4123e-4 2.6326e-4 1.2980e-4
1.2604 1.1478 1.0769 1.0397 1.0202 1.0101
278 1.1940e-2 4.6924e-3 1.9143e-3 8.3289¢-4 3.8429e-4 1.8406e-4
1.3474 1.2935 1.2006 1.1159 1.0621 1.0321
2714 1.3449¢-2 6.8085¢-3 3.4254¢-3 1.7180e-3 8.6021e-4 4.2625¢e-4
0.9820 0.9911 0.9955 0.9980 1.0130 1.1134
2716 1.3449e-2 6.8085¢e-3 3.4254e-3 1.7180e-3 8.6033e-4 4.3049¢-4
0.9820 0.9911 0.9955 0.9978 0.9989 0.9996
2718 1.3449¢-2 6.8085¢-3 3.4254¢-3 1.7180e-3 8.6033¢-4 4.3049¢-4
0.9820 0.9911 0.9955 0.9978 0.9989 0.9994
Table 4. EY and RY of example 5.2 with extrapolation.
Number of mesh N
el 16 32 64 128 256 512
272 2.1609¢-4 5.1770e-5 1.2670e-5 3.1340e-6 7.7925e-7 1.9433e-7
2.0615 2.0307 2.0153 2.0079 2.0036
274 1.3368¢-3 3.1912e-4 7.8034e-5 1.9281e-5 4.7900e-6 1.1938e-6
2.0666 2.0319 2.0169 2.0091 2.0045
276 5.3708¢-3 1.4218e-3 3.6705¢-4 9.1432¢-5 2.2759¢-5 5.6755e-6
1.9175 1.9536 2.0052 2.0063 2.0036
278 3.9338e-3 2.6397e-3 1.2957e-3 3.6503e-4 9.7428e-5 2.4489e-5
0.5755 1.0267 1.8276 1.9056 1.9922
2714 2.4172e-3 6.4548¢-4 1.6689¢-4 4.2437e-5 1.0923e-5 1.0603e-5
1.9049 1.9515 1.9755 1.9580 0.0429
2716 2.4172e-3 6.4548¢e-4 1.6689¢-4 4.2437e-5 1.0700e-5 2.6866¢e-6
1.9049 1.9515 1.9755 1.9877 1.9938
2718 2.4172e-3 6.4548¢-4 1.6689¢-4 4.2437e-5 1.0700e-5 2.6865¢e-6
1.9049 1.9515 1.9755 1.9877 1.9938
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Table 5. EY and RY of example 5.3.
Number of mesh N
el 32 64 128 256 512 1024
22 1.5030e-3 6.1479¢-4 2.7393e-4 1.2877e-4 6.2357e-5 3.0673e-5
1.2897 1.1663 1.089 1.0462 1.0236 1.0119
o4 5.9033e-3 2.2288e-3 9.3637e-4 4.2410e-4 2.0111e-4 9.7837e-5
1.4053 1.2511 1.1427 1.0764 1.0396 1.0202
26 1.8899¢-2 6.1894e-3 2.2421e-3 9.0790e-4 4.0106e-4 1.8739¢-4
1.6105 1.4649 1.3043 1.1787 1.0978 1.0513
-8 4.8675e-2 1.7032e-2 5.4001e-3 1.8054e-3 6.7296¢e-4 2.7912e-4
1.5149 1.6572 1.5807 1.4237 1.2696 1.1554
2-14 5.8936e-2 3.0918e-2 1.5857e-2 8.0301e-3 4.0399¢-3 1.9818e-3
0.9307 0.9633 0.9816 0.9911 1.0275 1.2503
216 5.8936e-2 3.0918e-2 1.5857e-2 8.0301e-3 4.0411e-3 2.0271e-3
0.9307 0.9633 0.9816 0.9907 0.9953 0.9981
Table 6. EY and RY of example 5.3 with extrapolation.
Number of mesh N
el 16 32 64 128 256 512
272 1.2765e-3 3.1868e-4 7.9575e-5 1.9870e-5 4.9642¢-6 1.2406e-6
2.0021 2.0017 2.0017 2.0010 2.0005 2.0004
274 5.9039¢-3 1.5044¢-3 3.7714e-4 9.4268e-5 2.3556e-5 5.8869¢-6
1.9725 1.9960 2.0003 2.0007 2.0005 2.0003
27 2.1482¢-2 6.6248¢-3 1.7436¢-3 4.4122¢-4 1.1060e-4 2.7663e-5
1.6972 1.9258 1.9825 1.9962 1.9993 2.0000
2716 1.0849¢-2 3.1537e-3 8.4619e-4 2.1964¢-4 5.5949e-5 1.4120e-5
1.7825 1.8980 1.9458 1.9729 1.9864 2.3011
2718 1.0849¢-2 3.1537e-3 8.4619e-4 2.1964¢-4 5.5949e-5 1.4120e-5
1.7825 1.8980 1.9458 1.9729 1.9864 1.9932
2720 1.0849¢-2 3.1537e-3 8.4619e-4 2.1964e-4 5.5949e-5 1.4120e-5
1.7825 1.8980 1.9458 1.9729 1.9864 1.9932
Table 7. € —uniform maximum error and convergence rate EV, RE for example 5.1.
Number of mesh N
32 64 128 256 512
EN 1.8459¢-2 8.0736e-3 2.9338e-3 8.4972e-4 2.2261e-4
Before extrapolation RE 1.1930 1.4604 1.7877 1.9325 1.9830
EN 4.2808e-3 1.1443e-3 1.5734e-4 1.3386e-5 1.6820e-6
After extrapolation RE 1.9034 2.8625 3.5551 2.9925 3.8176
Table 8. € —uniform maximum error and convergence rate EV, RE for example 5.2.
Number of mesh N
32 64 128 256 512
Before EN 1.3449¢-2 6.8085¢-3 3.4254e-3 1.7180e-3 8.6033e-4
extrapolation RE 0.9820 0.9911 0.9955 0.9978 0.9989
After EN 2.6397e-3 1.2957e-3 3.6503e-4 9.7428e-5 2.4489¢-5
extrapolation RE 1.0266 1.8276 1.9056 1.9922 1.9994
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Table 9. € —uniform maximum error and convergence rate EV, RE for example 5.3.
Number of mesh N
32 64 128 256 512

Before EN 5.8936e-2 3.0918e-2 1.5857e-2 8.0301e-3 4.0411e-3
extrapolation RE 0.9307 0.9633 0.9816 0.9907 0.9953

After EN 6.6248¢-3 1.7436e-3 4.4122¢-4 1.1060e-4 2.7663e-5
extrapolation RE 1.9258 1.9825 1.9961 1.9993 1.9999
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Figure 8. Log-log plots of example 5.1 before extrapolation with corresponding to various values of €.
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Figure 9. Log-log plots of example 5.1 after extrapolation with corresponding to various values of €.
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Figure 10. Log-log plots of example 5.2 before extrapolation with corresponding to various values of €.
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Figure 11. Log-log plots of example 5.2 after extrapolation with corresponding to various values of €.

7. Conclusion

This article addresses the solution of a second-order Fredholm integro-differential equation both
theoretically and numerically. A non-standard finite difference method is employed for the differential part,
while the trapezoidal rule is used to approximate the integral term on a uniform mesh. The numerical
analysis shows that singularly perturbed Fredholm integro-differential equations exhibit uniform
convergence of order one for convection-diffusion types and order two for reaction-diffusion types. Upon
applying a post-processing technique, the convergence rate improves from first to second order when
a(x) # 0, and from second to fourth order when a a(x) = 0 in Equation (1). Theoretical findings are
validated through numerical experiments, which confirm the predicted rates. The post-processing approach
significantly enhances accuracy and enables higher-order convergence, marking a noteworthy advancement
in this research area. The key contributions of this work are as follows:
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= Modelling layer behavior within the solution using a uniform mesh, demonstrating the accurate
resolution of boundary layers through appropriate numerical techniques.

= Efficient application of the non-standard finite difference method for differential terms and the
trapezoidal rule for integral components in solving SPFIDE:s.

= Enhanced convergence rates to second and fourth order through Richardson extrapolation, marking a
significant advancement over previous approaches.
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