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Abstract

The increasing adoption of Internet of Things (IoT) devices in smart healthcare systems has revolutionized real-time data collection
and processing, substantially improving healthcare delivery and operational efficiency. However, the sensitivity of medical data
and the resource limitations of IoT devices demand blockchain solutions that are secure, lightweight, and scalable. This paper
presents two core contributions: (1) Resource Efficiency-Driven Consensus (REDC), a machine learning—enhanced consensus
protocol tailored for healthcare IoT networks, and (2) Dynamic Lightweight Hashing (DLH), a cryptographic algorithm designed
for energy-constrained environments. REDC achieves up to 70% higher throughput, 43% Energy Efficiency (EE), and 25% lower
latency compared to Proof of Elapsed Work and Luck (POEWAL) in networks up to 100 nodes. DLH further enhances performance
by reducing hash attempts and energy use while maintaining strong collision resistance across 100,000 trials. Together, REDC and
DLH form a scalable and secure blockchain framework tailored for healthcare IoT.

Keywords- Internet of things, Healthcare, Blockchain, Resource efficiency-driven consensus (REDC), Machine learning, Resource
efficiency index, Scalability.

List of Abbreviations
Term Abbreviation
Artificial Intelligence Al
Attribute-Based Encryption ABE
Avalanche Effect AE
Byzantine Fault Tolerance BFT
Collision Resistance CR
Delegated Proof of Accessibility Consensus DPoAC
Delegated Proof of Stake DPoS
Dynamic Lightweight Hashing DLH
Electronic Health Record EHR
Energy Consumption J
Energy Efficiency EE
Entropy H
Federated Learning FL
Hash Computation Latency HCL
Hashing Energy Consumption HEC
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Improved Practical Byzantine Fault Tolerance IPBFT
Interplanetary File System IPFS
Internet of Things IoT
Internet of Vehicles IoV
Latency L
Lightweight Dada Consensus LDC
Lightweight Plenum Consensus Algorithm BLPCA
Practical Byzantine Fault Tolerance PBFT
Proof of Block and Trade PoBT
Proof of Elapsed Work and Luck PoEWAL
Proof of Evolutionary Model PoEM
Proof of Karma PoK
Proof of Stake PoS
Proof of Work PoW
Quality of Service QoS
Resource Efficiency Index REI
Resource Efficiency-Driven Consensus REDC
Rivest—-Shamir—Adleman RSA
Secure Cloud-Based Blockchain SCB2
Secure Hash Algorithm 256 SHA-256
Shamir Secret Sharing SSS
Transactions Per Second TPS

1. Introduction

Modern healthcare systems increasingly leverage advanced technologies, such as Artificial Intelligence
(Al), the Internet of Things (IoT), and Blockchain, to enhance patient care, streamline operations, and
enable real-time data analytics. In loT-enabled healthcare systems, patients' conditions are continuously
monitored with the help of wearable devices, sensors, and telemedicine platforms, and customized
treatment is offered (Bathula et al., 2024). This enables proactive chronic disease management and early
detection of health anomalies. With the increasing number of networked devices, the related security issues
have become a significant concern, including data breaches and unauthorized access (Bala et al., 2024).
Blockchain technology represents a potential solution to secure, decentralized, and transparent data
management in healthcare scenarios. Based on its tamper-resistant ledger and the distributed nature of the
technology, it is good for people to use health-sensitive information (e.g. electronic health records or sensor
data) where multiple actors need to access/share data among each other (Attaran, 2022). Beyond that first
advantage, protocol for traditional blockchain such as Proof of Work (POW) and Proof of Stake (POS) is
not capable to work seamlessly in healthcare IoT environment because they consume more energy than
typical health IoT devices capabilities and latency isn't super quick and adaptable to our real-time use. These
restrictions render them unfit for embedded devices and delay-sensitive applications such as patient
monitoring and diagnostics (Khor et al., 2021; Khan et al., 2022). The framework of high transaction
volume and rapidly changing network conditions seen in healthcare IoT systems necessitates the use of a
dedicated blockchain format to resolve these issues (Yaqoob et al., 2022).

This study addresses a real-time, resource-aware blockchain consensus protocol and lightweight
cryptographic hashing method optimized for constrained healthcare IoT systems, where high Energy
Efficiency (EE), security, and low-latency validation are critical. The key contributions include: (i) a
machine learning—based consensus algorithm named Resource Efficiency-Driven Consensus (REDC) that
dynamically tunes mining parameters via the Resource Efficiency Index (REI); (ii)) a composite
performance evaluation method that weights latency, energy, and mining difficulty to enhance node
selection; (iii) integration of an e-greedy tuner to optimize consensus timing based on historical feedback;
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(iv) introduction of Dynamic Lightweight Hashing (DLH), a lightweight cryptographic solution that
balances security with reduced computational cost; and (v) real-time simulation results showing that REDC
reduces block time by up to 25%, energy consumption by 43%, and latency by 20% when compared to
existing models such as POEWAL (Raghav et al., 2020), across varying network sizes (10-100 nodes).

The rest of this paper is organized as follows: Section 2 reviews related works and presents the current
issues of blockchain-based healthcare systems. Section 3 describes the system architecture and detailed
design of the REDC framework, including its lightweight cryptographic component. Section 4 discusses
performance evaluation under real-time conditions through comparative analysis with traditional consensus
mechanisms and hashing algorithms. Section 5 concludes the paper and outlines directions for future
research.

2. Related Work

Newer blockchain consensus methods are working to solve this IoT challenge, specifically in the smart
healthcare systems areas. For instance, Proof-of-Work (PoW) have been widely used in traditional context
to provided data integrity and security for decentralized systems with large-scale size while it still unsuitable
for IoT equipment due to high-energy consumption and computational requirements (Maadallah et al.,
2025). Because of these limitations, Raghav et al. (2020) proposed POEWAL, it is a lightweight and
probabilistic consensus mechanism designed for IoT applications. The reduced energy and latency
consumption, in turn, provides nodes with equal opportunity to participate in the consensus process by
dispensing with the high computational burden of PoW. The authors also have evaluated the basics
performance factors, namely energy consumption, consensus time and network delay in which this
PoEWAL protocol was proved to be an effective replacement towards a resource-constraint environment.

In the meantime, behaviour-based consensus models have been introduced to enhance fairness and
decentralization. Biswas et al. (2023) came up with a concept named Proof of Karma (PoK) consensus
mechanism to rate nodes on the basis of past reputation and behavior. The block producers are either
rewarded for their service (if serving in an honourable manner) or are punished (or have their reward zeroed
out) if behaving malignly, by a reputation-based algorithm that rewards and/or punishes old and new nodes
through honest participation versus malignant behaviour. That takes the burden away from having to make
these leader elections and makes it more scalable. This work also considered the two key performance
metrics in terms of calculating block verification time and communication overhead thereby enabling low
latency, high throughput properties.

To achieve greater adaptability and efficiency, Zhao et al. (2023) created a progressive machine learning
based evolutionary consensus protocol, Proof of Evolutionary Modeling (PoEM), which leverages machine
learning in consensus determinations. This inventive methodology, POEM, educates itself from real world
operations and dynamically modifies consensus parameters, considerably boosting performance while
reducing computational costs. The iterative process has PoEM models constantly self-training and
parameter tuning based on metrics such as energy efficiency, block times, and system latency. Experimental
evaluations revealed that POEM can converge more rapidly and use less energy than static consensus
mechanisms. Elsewhere, Biswas et al. (2020) introduced another lightweight consensus algorithm, Proof
of Block and Trade (PoBT), tailored for scalable IoT business blockchains. By streamlining transaction
validation steps, PoBT preserves computation time and memory overhead. Experimental results from PoBT
emphasized improvements in throughput and lower delay, indicating that PoBT is tailored for environments
with high transaction volumes. Many of the performance metrics measured in these studies, like energy
used per block, hashing attempts, latency, and throughput, are pivotal for comparing the various consensus
algorithms that may be suitable for IoT scenarios. Kanagasankari and Vallinayagi (2024) proposed
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Improved Practical Byzantine Fault Tolerance (IPBFT) consensus, integrated with Rivest—Shamir—
Adleman (RSA) cryptography specifically for healthcare Electronic Health Records (EHRs) on a
Hyperledger Fabric blockchain. This work covers blockchain-based healthcare frameworks while stating
the drawbacks, like high communication overhead and the need for efficient consensus algorithms in
Practical Byzantine Fault Tolerance (PBFT). Numerous works highlight the importance of cryptographic
strategies like RSA and Attribute-based Encryption (ABE) in preventing access and privacy threats within
the healthcare domain. The authors discuss previously developed models for blockchain scalability, privacy
policies, and off-chain storage approaches, concluding that IPBFT leveraging RSA encryption is more
efficient, secure, and fault-tolerant than traditional PBFT systems.

Li et al. (2021) explored a lightweight consensus mechanism and a storage optimization scheme using RS
erasure codes, which alleviates the storage burden on resource-constrained devices. This idea has optimized
the consensus process while ensuring the blockchain ledger is stored in a space-saving way without
affecting data recoverability. Similarly, Zhang et al. (2020) proposed Lightweight Data Consensus (LDC),
primarily focused on minimizing communication overhead and energy consumption for industrial IoT
applications, efficiently achieving low-latency consensus by reducing hash computations. Moreover,
Bamakan et al. (2020) gave a highly detailed performance analysis of the significantly studied and
commonly used blockchain consensus algorithms based on diverse metrics, including throughput, mining
profitability, decentralization, and attack susceptibility. Their comprehensive analysis provided valuable
insights into the strengths and weaknesses of different approaches and pointed towards the necessity of
adaptive, lightweight protocols that are application domain-specific, such as for healthcare.

Narsimhulu et al. (2024) presented an intelligent Federated Learning route optimization protocol in green
and sustainable loT-connected Internet of Vehicles (IoV) environments. They have proposed a solution for
real-time traffic rerouting, vehicle demand prediction, and communication-induced delays. They have
matched Federated Learning (FL) with cluster-based vehicle communication and location estimation
models. Similarly, Gupta et al. (2024) presented a Secure Cloud-Based Blockchain (SCB2) model for
securely storing high-volume sensor data through blockchain, 10T, and cloud computing, and saving storage
through indexed references in the blockchain blocks. Comparing their permissioned blockchain system
(Fabric over Ethereum) to the Baseline system, they showed better security and efficiency under realistic
operational stress. Both projects try to address domain-specific issues through an intelligent, scalable, and
secure architecture.

Haque et al. (2024) introduced a scalable blockchain-enabled architecture for efficient [oT data processing
with Delegated Proof of Stake (DPoS) as a lightened consensus approach. Their protocol deals with the
performance and scalability concerns in large-scale IoT settings by relying on a small set of trusted
delegates to validate transactions, thus ensuring the consumption of minimum infrastructure resources and
a low latency time. The platform combines the Interplanetary File System (IPFS) for decentralized storage.
It employs a Docker-based simulation to simulate throughput, latency, and resource consumption on
networks of 500 to 20000 devices. Test results demonstrate that DPoS is superior to PoS, and when
processing queries, in good performance conditions, the latency of DPoS is less than 0.976 ms, and the
throughput is high enough, which allows its application in real-time and healthcare. In line with this
practical work, Sahraoui and Bachir (2025) thoroughly reviewed lightweight consensus mechanisms for
the Internet of Blockchain Things (IoBT). They classify consensus protocols based on the operational,
security, and Al features, and stress upon constraint-aware and Quality of Service (QoS) -driven designs
for IoT scenarios. They further analysed Al-based block validation and shared opinions on consensus
models that could be decentralized, efficient, and secure under the resource limitations of IoT networks.
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Mehmood et al. (2025) introduced the Lightweight Plenum consensus algorithm (BLPCA) protocol
developed on top of the Hyperledger Indy blockchain, tailored for secure, low-cost socio-economic
applications, namely taxation and public service funding. BLPCA utilizes Byzantine Fault Tolerance (BFT)
and optimization to provide high reliability of transactions and to save resource costs significantly. Kaur
and Gupta (2025) also proposed a lightweight protocol, Delegated Proof of Accessibility Consensus
(DPoAC), for loT-based blockchain networks to integrate Shamir Secret Sharing (SSS), reputation-based
PoS, and IPFS to achieve efficient and fair consensus. Both schemes have lower time cost, less energy
consumption, and high security, which confirms that lightweight and extensible consensus mechanisms are
essential for real-time and resource-limited blockchain systems.

Several existing consensus mechanisms offer improvements for general loT environments but fall short
when applied to healthcare-specific scenarios. POEWAL, though lightweight, lacks dynamic adaptation and
does not incorporate real-time energy metrics, which are essential for managing energy consumption in
battery-powered medical devices. PoK’s (Biswas et al., 2023) reputation-based mechanism assumes
consistent node behaviour, which may not be practical in healthcare environments where frequent mobility
of patients and medical staff leads to irregular node participation. PoOBT improves transaction validation
speed but fails to balance the tradeoff between energy consumption and latency, a crucial requirement for
latency-sensitive medical sensors. Although POEM introduces machine learning for adaptive tuning, it does
not optimize cryptographic operations, and its model complexity may introduce computational overhead
unsuitable for low-power healthcare IoT nodes.

This work extend these efforts to promote resource-efficient evaluation by introducing the REDC
framework, unlike PoOEM, PoBT, and REDC, which dynamically adjusts consensus parameters using a
resource-aware metric REI, tailored for constrained healthcare environments. DLH also addresses the
cryptographic overhead that these existing models overlook, offering secure but low-latency hashing
optimized for medical [oT nodes. REDC internally combines a composite performance evaluation metric -
REI- with a machine-learning-based parameter tuner to dynamically tune the miner parameters in real-time.
Moreover, REDC introduces a lightweight cryptographic element by considering DLH in addition to Secure
Hash Algorithm 256 (SHA256) (Salih and Kashmar, 2024), providing less computational burden while
maintaining efficient security. REDC counteracts the critical determinants of performance, including energy
use, block time, latency, and the energy required per hash attempt, reducing one of the significant concerns
of lToT-enabled healthcare systems on scalability, EE, and security. This holistic consideration fills the
research gaps highlighted by previous studies and lays the foundation for real-time and practical consensus
under dynamic and resource-constrained scenarios.

Despite recent advancements, blockchain consensus mechanisms such as PoW and PoS remain unsuitable
for resource-constrained healthcare IoT environments due to their high computational and energy demands
(Plattetal., 2021; Abbas et al., 2024). Existing lightweight protocols, e.g., POEWAL, PoK and PoBT cannot
jointly optimize energy consumption, latency (delay), and processing overhead simultaneously which is
essential in real-time medical systems. One problem with existing solutions is that they cannot present a
unified performance metric and often disregard the real-time network dynamics. In addition, most of them
transmit raw patient data during consensus or training, which is a big risk for the privacy (Andrew et al.,
2023), and do not provide tools to automate healthcare-specific workflows such as insurance claims and
consent management.

To address these challenges, this works presents REDC a machine learning driven Consensus mechanism

using REI for dynamic parameter tuning, and a secure light weight cryptographic algorithm called as DLH
for energy efficient blockchain operations in healthcare IoT sector. The REDC framework brings a novel
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consensus challenging mechanism that has been devised for resource-constrained healthcare IoT
ecosystems. REDC uses a dynamic REI rather than the traditional models, allowing it to select participating
nodes based on the immediate energy cost, latency, and mining complexity. And it also introduces a
lightweight machine learning based e-greedy tuner to flexibility adjust the mining time slot and explore
effectiveness gains without significant computational overheads. In addition, REDC is designed with a two-
level hashing mechanism, which uses the standard SHA-256 and proposed DLH algorithm, for improved
security efficiency. The modular design consolidates consensus, hashing, and tuning modules in a scale-out
solution from the framework to satisfy real-time, low-power, and high-security demands for healthcare loT
applications.

3. Proposed Work

This section describes a proposed blockchain for healthcare [oT systems. It combines the REDC and DLH
modules to address key challenges such as energy consumption, latency, and scalability. Each component's
design and operational aspects are described in the subsequent subsections. The innovation of this
framework lies in its dual optimization: consensus adaptation through machine learning and cryptographic
efficiency through dynamic hashing, both specifically designed for constrained healthcare systems.

3.1 REDC

This paper proposes a new method, REDC, which enables dynamic and energy-efficient consensus
specifically for [oT-enabled healthcare systems. In contrast to established consensus protocols that depend
on static parameters, use of computationally intensive tasks as PoW, which, by design, consumes massive
energy resources, or lightweight algorithms such as POEWAL, which still implement a static mining
parameter, REDC is capable of providing dynamic operation based and time-sensitive behaviour under
varying network conditions. This adaptability is critical in a healthcare IoT environment where devices are
usually resource-constrained, and fast data processing is essential.

3.1.1 REDC Framework

The REDC model introduces a REI to dynamically evaluate node performance according to energy, latency,
and difficulty, which supports adaptive block selection and mining. The proposed model optimizes
consensus in healthcare [oT networks by incorporating reinforcement learning (Mignon and da Rocha,
2017) and dual hashing. The following points describe the internal components and operations of the REDC
framework.

3.1.1.1 Dynamic Resource Utilization Metric

The REI metric is used to evaluate the efficiency of each node in terms of energy consumption (E), latency
(L), and characteristics of the current mining difficulty (D) because these three parameters collectively
reflect the most critical constraints in healthcare [oT networks. It aims to reward nodes that perform with
lower energy and latency, combined with the computational challenge of the network’s difficulty. This
composite metric allows the system to select well-performing and energy-efficient nodes to create blocks.
During simulation, the domains for E£;, L; and D were empirically derived, and the weights a, £, y were
varied between 0.1 and 0.7, with default values set to a = 0.4, § = 0.4, and y = 0.2, reflecting balanced

priority across energy and latency constraints. Equation (1) expresses the RE/ formulation:
B

L 4
REI; = Ei+Li+D (1
where,

= F;is the estimated energy consumption for node i.

= [, is the estimated latency for node 7.
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= D is the current mining difficulty (unitless, normalized scalar).
= ¢, f, yare tuneable weighting factors for energy, latency, and difficulty, respectively.

3.1.1.2 Node Selection

The only difference here is that, after calculating REI for each node, the algorithm chooses a node for
creating the next block based on a combination of its performance, which means REI, and its historical
performance (reward). This means that you select consistently efficient nodes, yet it is essential to let not-
so-efficient nodes get to pick. Equation (2) captures the selection mechanism:

i* =arg;ey max{REI; + R;} 2)

where,

= R, is the cumulative reward of node i.

= " isthe selected node for block generation.
= RE]; is the Efficiency score of the node i.

3.1.1.3 Average Network Performance and Dynamic Difficulty Adjustment
The mining difficulty is adjusted dynamically by the total performance of the network. The algorithm's
scaling of difficulty functions by finding the average REI for all nodes and comparing it against a target
performance. When the average performance exceeds the target, the difficulty is increased to harden
profitability to ensure security. Still, when below the target, the difficulty is decreased to help miners
accumulate coins. The average network performance is calculated using Equation (3):

1
Uavg = mZiEN RET; (3)

where,

*  Ugyg 1s the average REI across all nodes.

= |N]| is the total number of participating nodes.

= REI is an average Resource Efficiency Index across all participating nodes, guiding the dynamic
adjustment of mining difficulty based on overall network performance.

The mining difficulty is then updated using Equation (4):
D « D x (1+6(Wavg — Utarget)) 4)

where,

= D isthe current mining difficulty parameter.

= § is the tuning parameter for difficulty adjustment.
*  Utarger 1s the target performance level.

3.1.1.4 Reward Calculation and Adaptive Tuning

Once a block is produced, the algorithm calculates a reward based on the energy consumed and the latency
incurred. A lower combined cost results in a higher (less negative) reward. An e-greedy tuner then uses this
reward to adjust the mining time slot dynamically, allowing the system to adapt to changing network
conditions. The reward () is computed as shown in Equation (5):

r = —(Energy + Latency) 5)

After computing 7, the mining time slot 7 is updated based on the action selected by the tuner in Equation

(6):

2067 | Vol. 10, No. 6, 2025



Ram Arti

Jain & Kumar: Resource Efficiency-Driven Consensus (REDC): A Machine Learning-Based... Publishers
T<TXxm (6)
where,

= m is the multiplier corresponding to the action selected by the tuner (e.g., increase 1.2, decrease 0.80,
maintain 1.0).

3.1.1.5 Dual Hashing for Lightweight Cryptography

To ensure strong security with minimal computational overhead, REDC employs a dual-hashing approach.
Each node computes hash values using conventional SHA256 and a lightweight alternative, DLH. The
effective performance is then measured by selecting the hash that achieves the best result (highest number
of leading zeros), ensuring the system benefits from the most efficient cryptographic operation
available.The dual-hashing process is formally described in Equation (7):

hsha = SHA256(prevpge, |l 1)

hain = DLH256(prevyg, || ) %

Z = max {Countleadingzems(hsm), Countleadingzeros(hdlh)}

where,
= Nis the randomly generated nonce
= Zis the number of leading zeros in the best hash output

REDC constantly observes the performance of nodes in terms of energy, latency, and mining difficulty, and
calculates a dynamic REI. A reinforcement learning, the e-greedy based approach, is utilized to adaptively
optimize the mining time slot through the reward signal obtained from the historical block generation
results. This way, the system can optimize the timing without previous labelled information. Concurrently,
the DLH module also contributes to the cryptographic efficiency by dynamically producing a lightweight
hash value and comparing it with SHA-256 to choose the most efficient result. Overall, REDC guides
consensus building with the help of DLH, which guarantees both a secure and an energy-aware hashing in
healthcare-related IoT scenarios.

Algorithm 1 (REDC) shows an adaptive blockchain mining mechanism that adaptively determines the
mining difficulty and mining time through the multi-factor resource evaluation algorithm. It combines the
energy consumption, latency, and mining efficiency to be credited for block validation in a composite REI
to choose optimal nodes to validate blocks. It is implemented and uses static hash (SHA256 & DLH), -
greedy tuning (exploration-exploitation tradeoff), and real-time reward updates to facilitate fairness,
efficiency, and sustainability in decentralized rounding.

Algorithm 1: REDC
Input:
e T Global transaction pool (set of all unconfirmed transactions)

To: Initial mining time slot (starting value for mining duration per node)
T: Current mining time slot (dynamically adjusted by the e-greedy tuner)
Node pool, N

Initial mining difficulty, Do

Initial mining time slot, To

For each node ieN: estimated energy consumption E; and latency L;
Weighting factors a, f, v

Target utility level, Urgrget

Tuning parameter, &

Adaptive tuner exploration rate ¢ and action multipliers(m+,m-,1):
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Output:
e  Validated block B (appended to the blockchain)
e  Updated performance metrics (e.g., average block time, energy, latency, hash attempts)
Steps:
I Initialization:
Set T «— To,D «— Do, initialize R; = 0 for all i € N; Configure the adaptive tuner
Il While T # @, do:
a. Resource Evaluation: Compute REI; For each node, using Equation 1.//evaluate node efficiency based on energy, latency,
and difficulty
b. Node Selection: Select the node i* with highest RE; + R; as per Equation 2.// Ensure fairness and prioritize consistent
performers
c. Difficulty Adjustment: Compute average REI and update D using Equations 3 and 4./ Adjust mining difficulty based on
network performance
d. Transaction Selection: Select a subset 7" of high-priority transactions.// Prioritize high-value transactions
e. Partial Mining & Block Formation:

For duration T, each node generates nonces and computes hashes using SH4256 and DLH. Record the best result (highest

z) as per Equation 7. The best candidate forms a block B.// Dual hashing for best result
f. Broadcasting: Broadcast B to all nodes and update energy consumption.// Inform the network of validated block
g. Adaptive Tuning: Compute reward r using Equation 5; update T via the e-greedy tuner.// e-greedy tuner adjusts timing
dynamically
h. Reward Update & Transaction Management:

Update R;» = R; +1; remove T * from T // Maintain blockchain state
IIT End While
IV Output:
Return the final blockchain and aggregated performance metrics (average block
time, energy consumption, latency, and hash attempts).

3.2 DLH

Our proposed approach, DLH, introduces a highly adaptive, energy-efficient hash function for resource-
constrained [oT and embedded devices. Unlike traditional ASCON-Hash256 (Khan et al., 2024) and SHA-
256 — which employ fixed round constants and standard substitution layers—DLH dynamically tailors its
internal operations to boost nonlinearity and diffusion while minimizing energy consumption. This
adaptability is vital for environments where computational resources and power are at a premium.

3.2.1 DLH Framework

The DLH structure improves the efficiency of the hash functions using quadratic S-boxes, dynamic round
constants, and improved diffusion layers. These've been developed to offer strong cryptographic security
with low computational overhead, thus making DLH suitable for resource-limited IoT devices. The
internals and primary operations of the DLH framework are described below.

3.2.1.1 Quadratic S-Boxes

DLH applies a quadratic transformation to each state word to further enhance nonlinearity. This operation
replaces conventional linear substitutions with a squaring function, thereby increasing resistance against
differential and linear cryptanalysis. For each state word S;, the transformation is defined as shown in
Equation (8):

S{ =S; @ (Sfmod 2°%), fori = 0,1, .....,4 (8)

where,

= S; is the original 64-bit state word at position i,

» §; is the transformed (nonlinear) version of the state word,
= @ denotes bitwise XOR,
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*  S?mod 2%* epresents the squaring of the state word modulo 2°*, ensuring the result fits within 64 bits,

= [ranges from O to 4, covering all five words in the internal state.

3.2.1.2 Dynamic Round Constants

Traditional ASCON-Hash256 uses fixed constants during each permutation round. In DLH, the round
constant is dynamically computed using the current state. This makes the permutation less predictable and
increases resistance to cryptanalytic attacks. The dynamic round constant for round rrr is computed using
Equation (9):

RC, = (0xFO —r x 0x10 + r X 0x01) @ (Sq&0xFF) )

where,

*  RC, is the round constant for round 7,
= S, is the first 64-bit word of the state,
= & denotes bitwise AND, and

= @ represents bitwise XOR.

3.2.1.3 Optimized Diffusion Layer

The diffusion layer in DLH employs an optimized set of rotation operations. These new rotation constants
ensure a strong avalanche effect, where a slight change in the input results in a substantial output change
while reducing energy overhead. A representative diffusion update is shown in Equation (10):

S « Sy @ rotr(Sy,21) @ rotr (Sy,35) B (Sy, 44) (10)

where,

» rotr(x,n) denotes a right rotation of value x by 7 bits,
= Sy is the input word, and

= S is the updated word after diffusion.

Similar diffusion operations are applied to the other state words, using carefully selected rotation values to
maximize security while minimizing computational cost.

3.2.1.4 Lightweight Permutation Subroutine
The permutation step updates the state S using Equations (8), (9), and (10) repeatedly over 12 rounds,
ensuring security and diffusion properties. (Refer to Equations (8)-(10) above.)

Algorithm 2 (DLH) describes a simple and efficient way to create a secure hash from any input message. It
starts by setting up an internal state using a fixed starting value, then breaks the message into smaller
chunks. Fach chunk is mixed into the state using a lightweight scrambling process. Once all chunks are
processed, the algorithm keeps transforming the state and collecting parts of it until the final hash reaches
the required length. This method ensures speed and security, making it suitable for systems with limited
resources.

Algorithm 2: DLH

Input:

. Message M (an arbitrary-length byte string)
. Desired hash length L (e.g., 32 bytes)
Output:

. Hash value Hof length L

Steps:
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I Initialization:// Sets up the initial state using a predefined /" and ensures diffusion before processing begins

a) Initialize internal state S using an initialization vector (/V) and zeros.

b) Perform initial permutation on S (see Lightweight Permutation Subroutine, Equations 8-10).

II Message Absorption (Absorbing):

a) Pad message M to a multiple of 8 bytes by appending 0x01 followed by zero bytes.

b) Divide M into 8-byte blocks.

c) For each block B:

Ll XOR block B into S[0].// XOR the current block into the first word of the state

. Apply a lightweight permutation on S (Equations 7-9). //Nonlinear and dynamic round-based update of
the state

III Finalization (Squeezing):

a) Initialize an empty hash H.

b) Until H reaches length L:

a. Append the first state word S[0] to H. // Output first 64-bit word as part of hash result

b. Apply a lightweight permutation on S(Equations 8-10). // Continue state transformation to generate the
remaining output bits

c) Return the first L bytes of A. // Final hash of the desired length is returned

Receive Real-Time IoT Data
from Healthcare Devices

Add Incoming Data

Global Transaction Pool

Initialize Node States and Parameters
(Energy, Latency, Difficulty)

Compute REI for Each Node

Select Optimal Node
Using REI and Historical Reward

Dynamically Adjust Mining Difficulty

Select Transactions from Pool
for Block Formation

Apply Dual Hashing:
SHA-256 and DLH on Block

Select Best Hash Output
Based on Leading Zeros

Form and Validate New Block

Broadcast Block to Network

Update Nade Reward and
‘Tune Mining Slot (e-greedy)

Update Blockchain Ledger and

Remove Confirmed Transactions

End
(Validated Data Added Securely o Blockchain)

Figure 1. Workflow of the REDC algorithm for real-time blockchain integration in IoT-based healthcare systems.
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Figure 1 shows the overall flow of the proposed REDC algorithm. This flowchart demonstrates how the
healthcare IoT data is collected, analysed, processed, and then added securely to the blockchain. Every
aspect of the protocol—from receiving data, initializing a node, receiving dual-hashes, and adjusting the
rewards—is modularly represented.

4. Performance Evaluation

This section presents the simulation results for the proposed REDC and DLH frameworks. Our experiments
are designed to evaluate REDC’s and DLH's performance under varying network conditions, focusing on
EE, throughput, latency, and cryptographic robustness. Simulations were conducted in a controlled
environment to emulate real-time healthcare [oT networks.

4.1 Experimental Setup

In the proposed REDC-based blockchain system, the architecture is modeled as a flat, fully decentralized
IoT network consisting of free-standing nodes without predefined cluster heads or hierarchical structures.
REDC, unlike PoEWAL, is a non-hierarchical cluster-based system with various declared peers
concentrating on numerous works within the network. All the nodes sense and generate transactions, hash,
and relay blocks without too much dependence on the centralized intermediary generators. Nodes exchange
messages with radio-range-based neighbour discovery, governed by a broadcast-like mechanism that
considers transmitting power, real-time radio-induced delays, collision probability, and energy
consumption. The entire network is based on a distributed consensus protocol, and the block mining is
implemented via a partially mined slot with adaptive tuning by utilizing the e-greedy strategy based on
machine learning. The transaction is batched and locally mined, and the block with the highest hash value
is selected by broadcast voting. This architecture supports low-latency validation, scalability, and energy-
aware operation and applies to resource-constrained healthcare [oT environments with no central control.

The experimental setup used for evaluating the REDC and the proposed DLH framework was conducted
on hardware featuring an Intel® Core™ i5-1135G7 CPU operating at 2.4 GHz with four cores,
complemented by an NVIDIA GPU (SMI 550.144.03), and configured with 16 GB memory (expandable
up to 128 GB RAM). It was coupled with a high-speed 1 TB solid-state drive (SSD) for storage. Network
simulations simulated latencies between 10 and 100 milliseconds and bandwidth capabilities of 1 Gbps.
The networks used in the simulations ranged from small (10 nodes) to large (100 nodes). The network size
was capped at 100 nodes to reflect practical healthcare IoT deployments and to ensure computational
feasibility during simulations. Although REDC performs reliably up to this scale, future scalability beyond
100 nodes may introduce latency and resource overhead challenges, which will be addressed using
sharding-based parallelization in subsequent work. Node types varied from full nodes, which maintain
complete copies of the ledger and verify all transactions, to lightweight nodes, which validate transactions
without holding the entire ledger. Data manipulation and visualization for the software implementations
leveraged Python libraries NumPy, Matplotlib, Seaborn, and Web3. py for blockchain interactions; and
PySyft for federated learning processes. Key testing scenarios encompassed transaction loads of 1,000—
10,000 transactions per second (TPS), real-time integration of loT-generated data streams, and
comprehensive stress testing to evaluate consensus adaptability and DLH robustness under varying
conditions.

4.2 Evaluation Parameters

The REDC and proposed DLH framework are evaluated using comprehensive performance metrics tailored
to their key functionalities. The evaluation covers three main categories: the consensus mechanism, the
hashing algorithm, and adaptability and scalability. The formulas for various parameters of consensus and
hashing are as follows:
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4.2.1 Consensus Mechanism
The evaluation of the REDC consensus algorithm is based on several key performance metrics that reflect
its efficiency and adaptability in dynamic loT environments.

4.2.1.1 Energy Efficiency (EE)
EE measures the percentage reduction in energy consumption achieved by the adaptive REDC approach in
comparison to a static, non-adaptive baseline. It is calculated using the Equation (11)

EE(%) — Estatic_Eadaptive x 100 (11)

static

where,

*  Egtatic 18 the energy consumption of the static REDC implementation,

*  Egdaptive 18 the energy consumption under the adaptive REDC mechanism,
= EE(%) represents the percentage improvement in energy efficiency.

4.2.1.2 Throughput (in TPS)
Transactions Per Second (TPS) measures the rate at which the system successfully validates transactions,
reflecting the consensus mechanism’s capacity and responsiveness. It is calculated using Equation (12):

TPS = Tvali;iated (12)

where,
Tyalidatea being the total transactions and t the total validation time,
= tis the total time taken for validation, and
= TPS indicates the average number of transactions processed per second.

4.2.1.2 Latency (L)
Latency (L) measures the average time it takes to validate one transaction; this is an important metric from
the user perspective in terms of the reactivity of a consensus mechanism. The latency is evaluated by the
following Equation (13):

N
L(ms) = 2=24 (13)
where,
= ¢; is the validation time for the transaction i,
= N is the total number of transactions, and
» L(ms) represents the average latency in milliseconds.

4.2.2 Hashing Algorithm
The DLH algorithm evaluation focuses on the following metrics:

4.2.2.1 Entropy (H)
The entropy is how random and unpredictable the output of the hash will be, a very important factor when
evaluating cryptography. It is calculated by the definition in Equation (14) as Shannon Entropy:

H = -, p(x;)log, p(x;) (14)

where,
* p(x;) is the probability of occurrence of the i output symbol, and
= nis the number of distinct symbols in the hash output.
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4.2.2.2 Collision Resistance (CR)

Collision Resistance (CR) measures the probability that two distinct inputs produce the same hash output,
a critical property for ensuring the security and reliability of cryptographic hash functions. It is expressed
using Equation (15):

CR=P(h(x) =h()),x#y (15)

where,

* h(x) and h(y) denote the hash values of inputs x and y respectively,
= x # y indicates that the inputs are distinct, and

" P(h(x) = h(y)) represents the probability of a hash collision.

An ideal hash function exhibits a negligible collision probability, making it computationally infeasible to
find two different inputs that yield the same hash.

4.2.2.3 Avalanche Effect (AE)

The Avalanche Effect (AE) measure how much the hash output changes when making a small modification

to the input. A strong hashing algorithm will manifest drastic differences in output, even with a change of

just one bit of input. It enforces some security by avoiding patterns that might be predictable. It is computed

as in Equation (16).

AE(%) _ Bits chan'get'i in hash output
Total bits in hash output

x 100 (16)

where,

= Bits changed in hash output refers to the number of differing bits between the original and altered hash
outputs, and

= Total bits in hash output represents the full length (in bits) of the hash.

4.2.2.4 Hashing Energy Consumption (HEC)

Hashing Energy Consumption (HEC): HEC quantifies the energy saving of our proposed DLH algorithm
compared to standard hashing algorithms such as ASCON. It indicates that the amount of energy consumed
by DLH has decreased, and hence it is a decisive parameter for evaluating its suitability in resource-
constrained scenarios such as loT-based healthcare systems. It is computed by Equation (17) as:

HEC(%) = “ASCON=ZDLA 5 10 (17)

ASCON

where,
»  Esscon 1s the energy consumption of the baseline ASCON hashing algorithm, and
= Ep.y is the energy consumption of the proposed DLH algorithm.

4.2.2.5 Hash Computation Latency (HCL)

Hash Computation Latency (HCL) measures the average time required to compute the hash for a single
input. It is a critical performance metric, particularly for time-sensitive applications such as blockchain
transactions in IoT-enabled healthcare systems. Lower latency indicates a faster and more responsive
hashing process. It is calculated using the following Equation (18):

Zli‘i1 thashi
HCL(ms) = =21 (18)

where,
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"  thash, 18 the time taken to compute the hash for the i input, and
= M is the total number of hash computations.

These parameters provide robust, quantitative measures ensuring a thorough evaluation of REDC and
DLH's performance, efficiency, and adaptability within IoT-enabled healthcare blockchain systems.

4.3 Results and Discussion

REDC protocol is better than POEWAL regarding block time, latency, throughput, energy consumption, and
hash attempt. These results demonstrate the scalability of REDC and EE and appropriateness for healthcare
IoT environments with limited resources.

4.3.1 REDC Performance
The REDC protocol demonstrates superior performance across all evaluated metrics compared to POEWAL,
particularly in small-to-medium network configurations.

4.3.1.1 Block Time

The block time for POEWAL and REDC increases with network size, but REDC consistently outperforms
PoEWAL across all scales (Figure 2). For small networks (10-30 nodes), REDC achieves 20-25% faster
block times (1.02—1.26s vs. POEWAL's 1.27-1.37s). The gap narrows at larger scales (90—100 nodes), with
REDC finalizing blocks in 3.58s (vs. POEWAL's 3.75s at 100 nodes). The trend highlights REDC's superior
consensus efficiency, though scalability challenges emerge for both protocols beyond 50 nodes.

Block Time Comparison

—8— (Raghav et al., 2020)
Propesed REDG

3.0

2.5

Block Time (s)

2.0

20 40 80 80 100
Network Size (Nodes)

Figure 2. Comparison of block time between POEWAL And REDC for various network sizes.

4.3.1.2 Transaction Latency (ms)

Transaction latency rises exponentially for both protocols, but REDC exhibits lower delays (Figure 3). At
10 nodes, REDC processes transactions in 338.85ms (vs. POEWAL's 420.81ms), a 19.5% improvement. By
100 nodes, REDC's latency reaches 998ms (vs. POEWAL's 1250ms), retaining a 20.2% advantage. The
trend highlights REDC's ability to mitigate latency growth, though both protocols become impractical for
real-time applications beyond 70 nodes.
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Block Time Comparison

—8— (Raghav st al., 2020}
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Figure 3. Transaction latency comparison between POEWAL and REDC across network scale.

4.3.1.3 Throughput (TPS)

REDC maintains a substantial throughput advantage across all network sizes (Figure 4). For 10-30 nodes,
REDC achieves 3.34-4.17 TPS (vs. POEWAL's 2.30-2.43 TPS), a 45-70% improvement. Even at 100
nodes, REDC sustains 1.32 TPS (vs. POEWAL's 0.75 TPS). The widening gap in TPS as networks grow
from 10 to 50 nodes reflects REDC's resilience to congestion, while POEWAL's throughput declines sharply
beyond 60 nodes.

Throughput (TPS) Comparison

—8— (Raghav stal., 2020)
4.0 Proposed REDC

35
30
25

20

Transactions Per Second (TPS)

20 40 80 80 100
Network Size (Nodes)

Figure 4. Throughput performance (TPS) of POEWAL and REDC over increasing network sizes.

4.3.1.4 Energy Consumption (J)

Energy consumption grows exponentially for both algorithms, but REDC demonstrates significantly lower
energy use (Figure 5). At 10 nodes, REDC consumes 0.07J (vs. POEWAL's 0.10J), improving EE by
32.45%. By 100 nodes, REDC uses 6.7J (vs. POEWAL's 7.9J), maintaining a 15% energy advantage. The
divergence in energy curves underscores REDC's optimized resource management, particularly in medium-
sized networks (40—60 nodes), where its energy savings peak at 42.9%.
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Energy Consumption Comparison
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Figure 5. Comparison of energy consumption of POEWAL and REDC across different network sizes.

4.3.1.5 Hash Attempts

PoEWAL requires 40—50% more hash attempts than REDC, as shown in the bar chart (Figure 6). For 10—
50 nodes, POEWAL stabilizes at 390,000-407,000 attempts, while REDC reduces attempts from 230,277
(10 nodes) to 231,785 (50 nodes). At 100 nodes, REDC's attempts remain stable at 237,200, whereas
PoEWAL fluctuates unpredictably (265,780). This indicates REDC's computational efficiency and
consistent validation process. Hash attempts are reported as unitless counts, representing the number of
nonce generations and hash evaluations required to meet the difficulty criteria during block mining.

Hash Attempts Comparison

m (Raghav et al., 2020)
400000

350000

wem Proposed REDC
300000
250000 ‘ ‘ ‘
0 | | | | | | | | |
20 40 60 80 100

Network Size (Nodes)

Hash Attempts
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Figure 6. Comparison of the number of hash attempts needed by POEWAL and REDC at different network sizes.

4.3.1.6 Energy Efficiency (EE)

REDC's EE improves with network size, peaking at 43.3% for 100 nodes (Figure 7). The EE metric rises
from 32.45% (10 nodes) to 43.3% (100 nodes), reflecting REDC's ability to leverage network growth for
optimized energy distribution. This upward trend contrasts with POEWAL's static architecture, which lacks
mechanisms to adapt energy use to scale.
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Energy Efficiency (EE) Trend for Proposed REDC

42

40
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Energy Efficiency (%)

3

32
20 40 60 80 100
Network Size (Nodes)

Figure 7. The EE trend in REDC is increasing with the network size.

4.3.2 DLH Performance
To evaluate the performance of the DLH algorithm, three datasets were rigorously analysed:
i. An Entropy/Collision Dataset comprising 100,000 cryptographically secure random messages (16—
1024 bytes) generated via os.urandom to assess output randomness and collision resistance.
ii. An Avalanche Dataset of 1,000 message pairs with 1-bit differences to measure sensitivity to input
changes.

iii. To benchmark efficiency, an Energy/Latency Dataset with 10,000 iterations of fixed-length messages
(16-256 bytes).

In Table 1, the results demonstrated DLH's superiority: it achieved 7.98 bits/byte entropy (vs. ASCON's
7.95), 50.3% avalanche effect (vs. 48.7%), 32% energy reduction, and 25% faster computation (0.42 ms vs.
0.56 ms for 256-byte inputs). No collisions were observed in 100,000 trials, confirming robust collision

resistance. These results highlight DLH's advancements over ASCON while aligning with cryptographic
benchmarks.

Table 1. Comparison of proposed DLH algorithm with ASCON-256.

Metric ASCON (Khan et al., 2024) | Proposed DLH | Improvement Significance
performance performance
Entropy (bits/byte) | 7.95 7.98 0.03 Near ideal randomness (NIST SP 800-22)
(Bassham et al., 2010)
Collision P=1.2x10"° P<10°® 20% lower | No collisions were observed in 100K
resistance probability trials
Avalanche effect | 48.70% 50.30% 1.60% Enhanced diffusion properties
(%)
Energy efficiency | Baseline (0%) 32% reduction | 32% energy savings | p<0.001(statistically significant)
(EE) (HEC)
Latency (256-byte) | 0.56 ms 0.42 ms 25% faster Critical for IoT real-time applications
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4.3.3 Comparison of REDC Performance with Different Hashing Algorithms

To compare REDC's performance across three hashing algorithms (SHA-256, ASCON-256, and DLH-256),
we must analyse how each algorithm impacts key metrics like energy consumption, block time, throughput
(TPS), and computational efficiency. Below is a structured comparison based on your code and prior results:

SHA-256 is a highly secure, well-known, and widely used cryptographic hash function for most mainstream
blockchain protocols. Its computation-intensive nature and output size (64 bytes) make it less friendly for
constrained [oT devices. In contrast, ASCON-256 is a NIST standard lightweight cryptographic algorithm
designed specifically for the constrained environment. It produced lower latency, low energy consumption,
and small output size (32 bytes), which are more suitable for loT-based applications. In contrast to these
conventional methods, a dynamic and adaptive hashing design is proposed in the DLH-256 algorithm.
DLH-256 is the first cipher with quadratic S-box transformations, dynamic round constants, and optimized
diffusion layers, which yield the best energy-efficient and performance-balanced option for IoT networks.
Each hashing algorithm was benchmarked in the REDC framework under a simulated healthcare IoT
environment with varying network sizes (10 to 100 nodes). The assessment focused on several performance
indicators such as energy consumption (per joule), TPS (transactions per second), average latency per
millisecond, hash attempts, and calculated EE. Related to implementation, SHA-256 was implemented as
Python's built-in hashlib. sha256. ASCON-256 was integrated using available Python libraries such as
ascon, while DLH-256 needed a custom implementation with quadratic substitution boxes and real-time
adjustable constants.

The results shown in Table 2 indicate that although SHA-256 preserves strong cryptographic properties, it
has the highest energy consumption and latency. On both these fronts, ASCON-256 excels, as it provides a
datapath with more throughput whilst having lower energy overhead. Yet, the performance of the DLH-256
algorithm surpasses both as it achieves the best energy consumption, hash attempts, and scalability, and
thus, the most suitable hashing algorithm for REDC in dynamic loT-based blockchain scenarios.

Table 2. Performance evaluation of proposed REDC with different hashing algorithms.

. SHA-256 (Salih and Kashmar, ASCON-256 (Khan et al., Improvement (DLH vs
Metric ( 202 > 02(4) DLH-256 provele A)(
Energy (J) 5.35 3.82 2.95 45% reduction
TPS 0.68 1.12 1.54 126% increase
Tx Latency (ms) 1463 980 625 57% lower
Hash Attempts 178,901 120,450 89,230 50% fewer
EE (%) 0.04 28.60 43.30 108x improvement

Despite that, the simulation results verify the performance of the REDC framework and the DLH hashing
algorithm under typical healthcare [oT conditions. This work acknowledges that realistic deployments may
face additional issues such as various device architectures, disrupted connectivity, and asynchrony between
nodes. While our simulation captures the fundamental functional principles of healthcare networks, its
validation in real-world trials will lend robustness to the framework across various scales and expand its
utility.

5. Conclusion and Future Work

This study presents the REDC approach, specifically designed for loT-based healthcare systems. Contrary
to conventional designs with static parameters, REDC uses a machine learning-inspired decision to balance
energy consumption, latency, and mining difficulty, designed as a REI. Additionally, the DLH algorithm
utilizes lightweight nonlinear permutations and dynamic round constants to minimize cryptographic
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overhead without compromising security. Together, these features enhance device efficiency, processing
speed, and data secrecy, essential requirements in medical [oTs. Compared to POEWAL and ASCON-based
systems, REDC and DLH experience a 70% throughput gain, 43% less energy, and 25% less latency,
offering a significant performance boost and power saving. REDC and DLH are efficient while the number
of nodes are up to 100, and then their effectiveness decreases until 80 nodes due to higher latency (more
than 1 second), but with less EE. This suggests scalability issues, partly because REDC relies on all nodes
for real-time updates and communications, which can be slow, laggy, or inconsistent in large networks.

Although the proposed model performs well in general across various evaluation metrics, its scalability is
currently limited to slightly more than 100 nodes. Moreover, the results have primarily been derived from
simulations. Future work includes implementing the system in real-world scenarios and enhancing
scalability through sharding. Future directions will also involve assessing the cost-benefit and institutional
integration of the complete implementation of REDC into existing hospital installations, including
hardware compatibility and operational overhead (e.g., compliance with healthcare data standards). In
addition, DLH will be further immune to post-quantum cryptographic security, providing long-term
protection for healthcare systems processing sensitive data. Such guidelines will make REDC more
practical and scalable for deployment in real healthcare IoT systems.
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