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Abstract 

The increasing adoption of Internet of Things (IoT) devices in smart healthcare systems has revolutionized real-time data collection 

and processing, substantially improving healthcare delivery and operational efficiency. However, the sensitivity of medical data 

and the resource limitations of IoT devices demand blockchain solutions that are secure, lightweight, and scalable. This paper 

presents two core contributions: (1) Resource Efficiency-Driven Consensus (REDC), a machine learning–enhanced consensus 

protocol tailored for healthcare IoT networks, and (2) Dynamic Lightweight Hashing (DLH), a cryptographic algorithm designed 

for energy-constrained environments. REDC achieves up to 70% higher throughput, 43% Energy Efficiency (EE), and 25% lower 

latency compared to Proof of Elapsed Work and Luck (PoEWAL) in networks up to 100 nodes. DLH further enhances performance 

by reducing hash attempts and energy use while maintaining strong collision resistance across 100,000 trials. Together, REDC and 

DLH form a scalable and secure blockchain framework tailored for healthcare IoT. 

 

Keywords- Internet of things, Healthcare, Blockchain, Resource efficiency-driven consensus (REDC), Machine learning, Resource 

efficiency index, Scalability. 

 

 

 

List of Abbreviations 

Term Abbreviation 
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Delegated Proof of Accessibility Consensus DPoAC 

Delegated Proof of Stake DPoS 
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Improved Practical Byzantine Fault Tolerance IPBFT 

Interplanetary File System IPFS 

Internet of Things IoT 

Internet of Vehicles IoV 

Latency L 

Lightweight Dada Consensus LDC 

Lightweight Plenum Consensus Algorithm BLPCA 

Practical Byzantine Fault Tolerance PBFT 

Proof of Block and Trade PoBT 

Proof of Elapsed Work and Luck PoEWAL 

Proof of Evolutionary Model PoEM 

Proof of Karma PoK 

Proof of Stake PoS 

Proof of Work PoW 

Quality of Service QoS 

Resource Efficiency Index REI 

Resource Efficiency-Driven Consensus REDC 

Rivest–Shamir–Adleman RSA 

Secure Cloud-Based Blockchain SCB2 

Secure Hash Algorithm 256 SHA-256 

Shamir Secret Sharing SSS 

Transactions Per Second TPS 

 

 

 

1. Introduction 
Modern healthcare systems increasingly leverage advanced technologies, such as Artificial Intelligence 

(AI), the Internet of Things (IoT), and Blockchain, to enhance patient care, streamline operations, and 

enable real-time data analytics. In IoT-enabled healthcare systems, patients' conditions are continuously 

monitored with the help of wearable devices, sensors, and telemedicine platforms, and customized 

treatment is offered (Bathula et al., 2024). This enables proactive chronic disease management and early 

detection of health anomalies. With the increasing number of networked devices, the related security issues 

have become a significant concern, including data breaches and unauthorized access (Bala et al., 2024). 

Blockchain technology represents a potential solution to secure, decentralized, and transparent data 

management in healthcare scenarios. Based on its tamper-resistant ledger and the distributed nature of the 

technology, it is good for people to use health-sensitive information (e.g. electronic health records or sensor 

data) where multiple actors need to access/share data among each other (Attaran, 2022). Beyond that first 

advantage, protocol for traditional blockchain such as Proof of Work (POW) and Proof of Stake (POS) is 

not capable to work seamlessly in healthcare IoT environment because they consume more energy than 

typical health IoT devices capabilities and latency isn't super quick and adaptable to our real-time use. These 

restrictions render them unfit for embedded devices and delay-sensitive applications such as patient 

monitoring and diagnostics (Khor et al., 2021; Khan et al., 2022). The framework of high transaction 

volume and rapidly changing network conditions seen in healthcare IoT systems necessitates the use of a 

dedicated blockchain format to resolve these issues (Yaqoob et al., 2022). 

 

This study addresses a real-time, resource-aware blockchain consensus protocol and lightweight 

cryptographic hashing method optimized for constrained healthcare IoT systems, where high Energy 

Efficiency (EE), security, and low-latency validation are critical. The key contributions include: (i) a 

machine learning–based consensus algorithm named Resource Efficiency-Driven Consensus (REDC) that 

dynamically tunes mining parameters via the Resource Efficiency Index (REI); (ii) a composite 

performance evaluation method that weights latency, energy, and mining difficulty to enhance node 

selection; (iii) integration of an ε‑greedy tuner to optimize consensus timing based on historical feedback; 
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(iv) introduction of Dynamic Lightweight Hashing (DLH), a lightweight cryptographic solution that 

balances security with reduced computational cost; and (v) real-time simulation results showing that REDC 

reduces block time by up to 25%, energy consumption by 43%, and latency by 20% when compared to 

existing models such as PoEWAL (Raghav et al., 2020), across varying network sizes (10–100 nodes). 

 

The rest of this paper is organized as follows: Section 2 reviews related works and presents the current 

issues of blockchain-based healthcare systems. Section 3 describes the system architecture and detailed 

design of the REDC framework, including its lightweight cryptographic component. Section 4 discusses 

performance evaluation under real-time conditions through comparative analysis with traditional consensus 

mechanisms and hashing algorithms. Section 5 concludes the paper and outlines directions for future 

research. 

 

2. Related Work 
Newer blockchain consensus methods are working to solve this IoT challenge, specifically in the smart 

healthcare systems areas. For instance, Proof-of-Work (PoW) have been widely used in traditional context 

to provided data integrity and security for decentralized systems with large-scale size while it still unsuitable 

for IoT equipment due to high-energy consumption and computational requirements (Maadallah et al., 

2025). Because of these limitations, Raghav et al. (2020) proposed PoEWAL, it is a lightweight and 

probabilistic consensus mechanism designed for IoT applications. The reduced energy and latency 

consumption, in turn, provides nodes with equal opportunity to participate in the consensus process by 

dispensing with the high computational burden of PoW. The authors also have evaluated the basics 

performance factors, namely energy consumption, consensus time and network delay in which this 

PoEWAL protocol was proved to be an effective replacement towards a resource-constraint environment. 

 

In the meantime, behaviour-based consensus models have been introduced to enhance fairness and 

decentralization. Biswas et al. (2023) came up with a concept named Proof of Karma (PoK) consensus 

mechanism to rate nodes on the basis of past reputation and behavior. The block producers are either 

rewarded for their service (if serving in an honourable manner) or are punished (or have their reward zeroed 

out) if behaving malignly, by a reputation-based algorithm that rewards and/or punishes old and new nodes 

through honest participation versus malignant behaviour. That takes the burden away from having to make 

these leader elections and makes it more scalable. This work also considered the two key performance 

metrics in terms of calculating block verification time and communication overhead thereby enabling low 

latency, high throughput properties. 

 

To achieve greater adaptability and efficiency, Zhao et al. (2023) created a progressive machine learning 

based evolutionary consensus protocol, Proof of Evolutionary Modeling (PoEM), which leverages machine 

learning in consensus determinations. This inventive methodology, PoEM, educates itself from real world 

operations and dynamically modifies consensus parameters, considerably boosting performance while 

reducing computational costs. The iterative process has PoEM models constantly self-training and 

parameter tuning based on metrics such as energy efficiency, block times, and system latency. Experimental 

evaluations revealed that PoEM can converge more rapidly and use less energy than static consensus 

mechanisms. Elsewhere, Biswas et al. (2020) introduced another lightweight consensus algorithm, Proof 

of Block and Trade (PoBT), tailored for scalable IoT business blockchains. By streamlining transaction 

validation steps, PoBT preserves computation time and memory overhead. Experimental results from PoBT 

emphasized improvements in throughput and lower delay, indicating that PoBT is tailored for environments 

with high transaction volumes. Many of the performance metrics measured in these studies, like energy 

used per block, hashing attempts, latency, and throughput, are pivotal for comparing the various consensus 

algorithms that may be suitable for IoT scenarios. Kanagasankari and Vallinayagi (2024) proposed 
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Improved Practical Byzantine Fault Tolerance (IPBFT) consensus, integrated with Rivest–Shamir–

Adleman (RSA) cryptography specifically for healthcare Electronic Health Records (EHRs) on a 

Hyperledger Fabric blockchain. This work covers blockchain-based healthcare frameworks while stating 

the drawbacks, like high communication overhead and the need for efficient consensus algorithms in 

Practical Byzantine Fault Tolerance (PBFT). Numerous works highlight the importance of cryptographic 

strategies like RSA and Attribute-based Encryption (ABE) in preventing access and privacy threats within 

the healthcare domain. The authors discuss previously developed models for blockchain scalability, privacy 

policies, and off-chain storage approaches, concluding that IPBFT leveraging RSA encryption is more 

efficient, secure, and fault-tolerant than traditional PBFT systems.  

 

Li et al. (2021) explored a lightweight consensus mechanism and a storage optimization scheme using RS 

erasure codes, which alleviates the storage burden on resource-constrained devices. This idea has optimized 

the consensus process while ensuring the blockchain ledger is stored in a space-saving way without 

affecting data recoverability. Similarly, Zhang et al. (2020) proposed Lightweight Data Consensus (LDC), 

primarily focused on minimizing communication overhead and energy consumption for industrial IoT 

applications, efficiently achieving low-latency consensus by reducing hash computations. Moreover, 

Bamakan et al. (2020) gave a highly detailed performance analysis of the significantly studied and 

commonly used blockchain consensus algorithms based on diverse metrics, including throughput, mining 

profitability, decentralization, and attack susceptibility. Their comprehensive analysis provided valuable 

insights into the strengths and weaknesses of different approaches and pointed towards the necessity of 

adaptive, lightweight protocols that are application domain-specific, such as for healthcare. 

 

Narsimhulu et al. (2024) presented an intelligent Federated Learning route optimization protocol in green 

and sustainable IoT-connected Internet of Vehicles (IoV) environments. They have proposed a solution for 

real-time traffic rerouting, vehicle demand prediction, and communication-induced delays. They have 

matched Federated Learning (FL) with cluster-based vehicle communication and location estimation 

models. Similarly, Gupta et al. (2024) presented a Secure Cloud-Based Blockchain (SCB2) model for 

securely storing high-volume sensor data through blockchain, IoT, and cloud computing, and saving storage 

through indexed references in the blockchain blocks. Comparing their permissioned blockchain system 

(Fabric over Ethereum) to the Baseline system, they showed better security and efficiency under realistic 

operational stress. Both projects try to address domain-specific issues through an intelligent, scalable, and 

secure architecture. 

 

Haque et al. (2024) introduced a scalable blockchain-enabled architecture for efficient IoT data processing 

with Delegated Proof of Stake (DPoS) as a lightened consensus approach. Their protocol deals with the 

performance and scalability concerns in large-scale IoT settings by relying on a small set of trusted 

delegates to validate transactions, thus ensuring the consumption of minimum infrastructure resources and 

a low latency time. The platform combines the Interplanetary File System (IPFS) for decentralized storage. 

It employs a Docker-based simulation to simulate throughput, latency, and resource consumption on 

networks of 500 to 20000 devices. Test results demonstrate that DPoS is superior to PoS, and when 

processing queries, in good performance conditions, the latency of DPoS is less than 0.976 ms, and the 

throughput is high enough, which allows its application in real-time and healthcare. In line with this 

practical work, Sahraoui and Bachir (2025) thoroughly reviewed lightweight consensus mechanisms for 

the Internet of Blockchain Things (IoBT). They classify consensus protocols based on the operational, 

security, and AI features, and stress upon constraint-aware and Quality of Service (QoS) -driven designs 

for IoT scenarios. They further analysed AI-based block validation and shared opinions on consensus 

models that could be decentralized, efficient, and secure under the resource limitations of IoT networks.  
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Mehmood et al. (2025) introduced the Lightweight Plenum consensus algorithm (BLPCA) protocol 

developed on top of the Hyperledger Indy blockchain, tailored for secure, low-cost socio-economic 

applications, namely taxation and public service funding. BLPCA utilizes Byzantine Fault Tolerance (BFT) 

and optimization to provide high reliability of transactions and to save resource costs significantly. Kaur 

and Gupta (2025) also proposed a lightweight protocol, Delegated Proof of Accessibility Consensus 

(DPoAC), for IoT-based blockchain networks to integrate Shamir Secret Sharing (SSS), reputation-based 

PoS, and IPFS to achieve efficient and fair consensus. Both schemes have lower time cost, less energy 

consumption, and high security, which confirms that lightweight and extensible consensus mechanisms are 

essential for real-time and resource-limited blockchain systems. 

 

Several existing consensus mechanisms offer improvements for general IoT environments but fall short 

when applied to healthcare-specific scenarios. PoEWAL, though lightweight, lacks dynamic adaptation and 

does not incorporate real-time energy metrics, which are essential for managing energy consumption in 

battery-powered medical devices. PoK’s (Biswas et al., 2023) reputation-based mechanism assumes 

consistent node behaviour, which may not be practical in healthcare environments where frequent mobility 

of patients and medical staff leads to irregular node participation. PoBT improves transaction validation 

speed but fails to balance the tradeoff between energy consumption and latency, a crucial requirement for 

latency-sensitive medical sensors. Although PoEM introduces machine learning for adaptive tuning, it does 

not optimize cryptographic operations, and its model complexity may introduce computational overhead 

unsuitable for low-power healthcare IoT nodes. 

 

This work extend these efforts to promote resource-efficient evaluation by introducing the REDC 

framework, unlike PoEM, PoBT, and REDC, which dynamically adjusts consensus parameters using a 

resource-aware metric REI, tailored for constrained healthcare environments. DLH also addresses the 

cryptographic overhead that these existing models overlook, offering secure but low-latency hashing 

optimized for medical IoT nodes. REDC internally combines a composite performance evaluation metric - 

REI- with a machine-learning-based parameter tuner to dynamically tune the miner parameters in real-time. 

Moreover, REDC introduces a lightweight cryptographic element by considering DLH in addition to Secure 

Hash Algorithm 256 (SHA256) (Salih and Kashmar, 2024), providing less computational burden while 

maintaining efficient security. REDC counteracts the critical determinants of performance, including energy 

use, block time, latency, and the energy required per hash attempt, reducing one of the significant concerns 

of IoT-enabled healthcare systems on scalability, EE, and security. This holistic consideration fills the 

research gaps highlighted by previous studies and lays the foundation for real-time and practical consensus 

under dynamic and resource-constrained scenarios. 

 

Despite recent advancements, blockchain consensus mechanisms such as PoW and PoS remain unsuitable 

for resource-constrained healthcare IoT environments due to their high computational and energy demands 

(Platt et al., 2021; Abbas et al., 2024). Existing lightweight protocols, e.g., PoEWAL, PoK and PoBT cannot 

jointly optimize energy consumption, latency (delay), and processing overhead simultaneously which is 

essential in real-time medical systems. One problem with existing solutions is that they cannot present a 

unified performance metric and often disregard the real-time network dynamics. In addition, most of them 

transmit raw patient data during consensus or training, which is a big risk for the privacy (Andrew et al., 

2023), and do not provide tools to automate healthcare-specific workflows such as insurance claims and 

consent management. 

 

To address these challenges, this works presents REDC a machine learning driven Consensus mechanism 

using REI for dynamic parameter tuning, and a secure light weight cryptographic algorithm called as DLH 

for energy efficient blockchain operations in healthcare IoT sector. The REDC framework brings a novel 
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consensus challenging mechanism that has been devised for resource-constrained healthcare IoT 

ecosystems. REDC uses a dynamic REI rather than the traditional models, allowing it to select participating 

nodes based on the immediate energy cost, latency, and mining complexity. And it also introduces a 

lightweight machine learning based ε-greedy tuner to flexibility adjust the mining time slot and explore 

effectiveness gains without significant computational overheads. In addition, REDC is designed with a two-

level hashing mechanism, which uses the standard SHA-256 and proposed DLH algorithm, for improved 

security efficiency. The modular design consolidates consensus, hashing, and tuning modules in a scale-out 

solution from the framework to satisfy real-time, low-power, and high-security demands for healthcare IoT 

applications. 

 

3. Proposed Work 
This section describes a proposed blockchain for healthcare IoT systems. It combines the REDC and DLH 

modules to address key challenges such as energy consumption, latency, and scalability. Each component's 

design and operational aspects are described in the subsequent subsections. The innovation of this 

framework lies in its dual optimization: consensus adaptation through machine learning and cryptographic 

efficiency through dynamic hashing, both specifically designed for constrained healthcare systems. 

 

3.1 REDC 
This paper proposes a new method, REDC, which enables dynamic and energy-efficient consensus 

specifically for IoT-enabled healthcare systems. In contrast to established consensus protocols that depend 

on static parameters, use of computationally intensive tasks as PoW, which, by design, consumes massive 

energy resources, or lightweight algorithms such as PoEWAL, which still implement a static mining 

parameter, REDC is capable of providing dynamic operation based and time-sensitive behaviour under 

varying network conditions. This adaptability is critical in a healthcare IoT environment where devices are 

usually resource-constrained, and fast data processing is essential. 

 

3.1.1 REDC Framework 
The REDC model introduces a REI to dynamically evaluate node performance according to energy, latency, 

and difficulty, which supports adaptive block selection and mining. The proposed model optimizes 

consensus in healthcare IoT networks by incorporating reinforcement learning (Mignon and da Rocha, 

2017) and dual hashing. The following points describe the internal components and operations of the REDC 

framework. 

 

3.1.1.1 Dynamic Resource Utilization Metric 
The REI metric is used to evaluate the efficiency of each node in terms of energy consumption (𝐸), latency 

(𝐿), and characteristics of the current mining difficulty (D) because these three parameters collectively 

reflect the most critical constraints in healthcare IoT networks. It aims to reward nodes that perform with 

lower energy and latency, combined with the computational challenge of the network’s difficulty. This 

composite metric allows the system to select well-performing and energy-efficient nodes to create blocks. 

During simulation, the domains for Eᵢ, Lᵢ, and D were empirically derived, and the weights α, β, γ were 

varied between 0.1 and 0.7, with default values set to α = 0.4, β = 0.4, and γ = 0.2, reflecting balanced 

priority across energy and latency constraints. Equation (1) expresses the REI formulation: 

𝑅𝐸𝐼𝑖 =
𝛼

𝐸ᵢ
+

𝛽

𝐿ᵢ
+

𝛾

𝐷
                                                                                                                                               (1) 

 

where, 

▪ Eᵢ is the estimated energy consumption for node i. 

▪ Lᵢ is the estimated latency for node i. 
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▪ D is the current mining difficulty (unitless, normalized scalar). 

▪ α, β, γ are tuneable weighting factors for energy, latency, and difficulty, respectively. 

 

3.1.1.2 Node Selection 
The only difference here is that, after calculating REI for each node, the algorithm chooses a node for 

creating the next block based on a combination of its performance, which means REI, and its historical 

performance (reward). This means that you select consistently efficient nodes, yet it is essential to let not-

so-efficient nodes get to pick. Equation (2) captures the selection mechanism: 

𝑖∗  = 𝑎𝑟𝑔𝑖∈𝑁 max{𝑅𝐸𝐼𝑖 + 𝑅𝑖}                                                                                                                      (2) 

 

where, 

▪ 𝑅𝑖 is the cumulative reward of node i. 

▪ 𝑖∗   is the selected node for block generation. 

▪ 𝑅𝐸𝐼𝑖 is the Efficiency score of the node 𝑖. 
 

3.1.1.3 Average Network Performance and Dynamic Difficulty Adjustment 
The mining difficulty is adjusted dynamically by the total performance of the network. The algorithm's 

scaling of difficulty functions by finding the average REI for all nodes and comparing it against a target 

performance. When the average performance exceeds the target, the difficulty is increased to harden 

profitability to ensure security. Still, when below the target, the difficulty is decreased to help miners 

accumulate coins. The average network performance is calculated using Equation (3): 

𝑈𝑎𝑣𝑔 =
1

|𝑁|
∑ 𝑅𝐸𝐼𝑖𝑖∈𝑁                                                                                                                                    (3) 

 

where, 

▪ 𝑈𝑎𝑣𝑔 is the average REI across all nodes. 

▪ |𝑁| is the total number of participating nodes. 

▪ REI is an average Resource Efficiency Index across all participating nodes, guiding the dynamic 

adjustment of mining difficulty based on overall network performance. 

 

The mining difficulty is then updated using Equation (4): 

𝐷 ← 𝐷 × (1 + 𝛿(𝑈𝑎𝑣𝑔 − 𝑈𝑡𝑎𝑟𝑔𝑒𝑡))                                                                                                           (4) 

 

where, 

▪ 𝐷 is the  current mining difficulty parameter. 

▪ 𝛿 is the tuning parameter for difficulty adjustment. 

▪ 𝑈𝑡𝑎𝑟𝑔𝑒𝑡 is the target performance level. 

 

3.1.1.4 Reward Calculation and Adaptive Tuning 
Once a block is produced, the algorithm calculates a reward based on the energy consumed and the latency 

incurred. A lower combined cost results in a higher (less negative) reward. An ε-greedy tuner then uses this 

reward to adjust the mining time slot dynamically, allowing the system to adapt to changing network 

conditions. The reward (𝑟) is computed as shown in Equation (5): 

𝑟 = −(𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐿𝑎𝑡𝑒𝑛𝑐𝑦)                                                                                                                    (5) 

 

After computing r, the mining time slot T is updated based on the action selected by the tuner in Equation 

(6): 
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𝑇 ← 𝑇 × 𝑚                                                                                                                                                (6) 

 

where,  

▪ 𝑚 is the multiplier corresponding to the action selected by the tuner (e.g., increase 1.2, decrease 0.80, 

maintain 1.0). 

3.1.1.5 Dual Hashing for Lightweight Cryptography 
To ensure strong security with minimal computational overhead, REDC employs a dual-hashing approach. 

Each node computes hash values using conventional SHA256 and a lightweight alternative, DLH. The 

effective performance is then measured by selecting the hash that achieves the best result (highest number 

of leading zeros), ensuring the system benefits from the most efficient cryptographic operation 

available.The dual-hashing process is formally described in Equation (7): 

{

ℎ𝑠ℎ𝑎 = 𝑆𝐻𝐴256(𝑝𝑟𝑒𝑣ℎ𝑎𝑠ℎ || 𝑛)

ℎ𝑑𝑙ℎ = 𝐷𝐿𝐻256(𝑝𝑟𝑒𝑣ℎ𝑎𝑠ℎ  || 𝑛)

𝑧 = max {𝑐𝑜𝑢𝑛𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑧𝑒𝑟𝑜𝑠(ℎ𝑠ℎ𝑎)
, 𝑐𝑜𝑢𝑛𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑧𝑒𝑟𝑜𝑠(ℎ𝑑𝑙ℎ)

}
                                                                                (7) 

 

where, 

▪ N is the randomly generated nonce 

▪ Z is the number of leading zeros in the best hash output 

 

REDC constantly observes the performance of nodes in terms of energy, latency, and mining difficulty, and 

calculates a dynamic REI. A reinforcement learning, the ε-greedy based approach, is utilized to adaptively 

optimize the mining time slot through the reward signal obtained from the historical block generation 

results. This way, the system can optimize the timing without previous labelled information. Concurrently, 

the DLH module also contributes to the cryptographic efficiency by dynamically producing a lightweight 

hash value and comparing it with SHA-256 to choose the most efficient result. Overall, REDC guides 

consensus building with the help of DLH, which guarantees both a secure and an energy-aware hashing in 

healthcare-related IoT scenarios. 

 

Algorithm 1 (REDC) shows an adaptive blockchain mining mechanism that adaptively determines the 

mining difficulty and mining time through the multi-factor resource evaluation algorithm. It combines the 

energy consumption, latency, and mining efficiency to be credited for block validation in a composite REI 

to choose optimal nodes to validate blocks. It is implemented and uses static hash (SHA256 & DLH), ε-

greedy tuning (exploration-exploitation tradeoff), and real-time reward updates to facilitate fairness, 

efficiency, and sustainability in decentralized rounding. 

 
Algorithm 1: REDC  

Input: 

• 𝒯: Global transaction pool (set of all unconfirmed transactions) 

• 𝑇₀: Initial mining time slot (starting value for mining duration per node) 

• 𝑇: Current mining time slot (dynamically adjusted by the ε-greedy tuner) 

• Node pool, N 

• Initial mining difficulty, D₀ 

• Initial mining time slot, 𝑇₀ 

• For each node 𝑖𝜖𝑁: estimated energy consumption Eᵢ and latency Lᵢ  

• Weighting factors α, β, γ 

• Target utility level, 𝑈𝑇𝑎𝑟𝑔𝑒𝑡 

• Tuning parameter, δ 

• Adaptive tuner exploration rate ε and action multipliers(m+,m-,1): 
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Output: 

• Validated block 𝐵 (appended to the blockchain) 

• Updated performance metrics (e.g., average block time, energy, latency, hash attempts) 

Steps: 

I Initialization: 

Set 𝑇 ← 𝑇₀,D ← D₀;initialize Rᵢ = 0 for all i ∈ ℕ; Configure the adaptive tuner 

II While     𝒯 ≠  ∅ , do:           

a. Resource Evaluation: Compute 𝑅𝐸𝐼𝑖 For each node, using Equation 1.//evaluate node efficiency based on energy, latency, 

and difficulty 

b. Node Selection: Select the node 𝑖∗   with highest 𝑅𝐸𝑖 + 𝑅𝑖  as per Equation 2.// Ensure fairness and prioritize consistent 

performers 

c. Difficulty Adjustment: Compute average 𝑅𝐸𝐼 and update 𝐷 using Equations 3 and 4.// Adjust mining difficulty based on 

network performance 

d. Transaction Selection: Select a subset 𝒯∗ of high-priority transactions.// Prioritize high-value transactions 

e. Partial Mining & Block Formation: 

 For duration 𝑇, each node generates nonces and computes hashes using SHA256 and DLH. Record the best result (highest 

     𝑧) as per Equation 7. The best candidate forms a block 𝐵.// Dual hashing for best result 

f. Broadcasting: Broadcast 𝐵 to all nodes and update energy consumption.// Inform the network of validated block 

g. Adaptive Tuning: Compute reward 𝑟 using Equation 5; update 𝑇 via the ε-greedy tuner.// ε-greedy tuner adjusts timing 

dynamically 

h. Reward Update & Transaction Management: 

       Update 𝑅𝑖∗ = 𝑅𝑖∗ + 𝑟;   remove   𝒯∗ from 𝒯  // Maintain blockchain state          

III End While 

IV Output: 

            Return the final blockchain and aggregated performance metrics (average block 

            time, energy consumption, latency, and hash attempts). 

 

3.2 DLH 
Our proposed approach, DLH, introduces a highly adaptive, energy-efficient hash function for resource-

constrained IoT and embedded devices. Unlike traditional ASCON-Hash256 (Khan et al., 2024) and SHA-

256 — which employ fixed round constants and standard substitution layers—DLH dynamically tailors its 

internal operations to boost nonlinearity and diffusion while minimizing energy consumption. This 

adaptability is vital for environments where computational resources and power are at a premium. 

 

3.2.1 DLH Framework 
The DLH structure improves the efficiency of the hash functions using quadratic S-boxes, dynamic round 

constants, and improved diffusion layers. These've been developed to offer strong cryptographic security 

with low computational overhead, thus making DLH suitable for resource-limited IoT devices. The 

internals and primary operations of the DLH framework are described below. 

 

3.2.1.1 Quadratic S-Boxes 
DLH applies a quadratic transformation to each state word to further enhance nonlinearity. This operation 

replaces conventional linear substitutions with a squaring function, thereby increasing resistance against 

differential and linear cryptanalysis. For each state word 𝑆𝑖, the transformation is defined as shown in 

Equation (8): 

𝑆𝑖
′ = 𝑆𝑖 ⊕ (𝑆𝑖

2mod 264), 𝑓𝑜𝑟 𝑖 = 0,1, … . . ,4                                                                                                          (8) 

 

where, 

▪ 𝑆𝑖 is the original 64-bit state word at position i, 

▪ 𝑆𝑖
′ is the transformed (nonlinear) version of the state word, 

▪ ⊕ denotes bitwise XOR, 
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▪ 𝑆𝑖
2mod 264 epresents the squaring of the state word modulo 264, ensuring the result fits within 64 bits, 

▪ 𝑖 ranges from 0 to 4, covering all five words in the internal state. 

 

3.2.1.2 Dynamic Round Constants 
Traditional ASCON-Hash256 uses fixed constants during each permutation round. In DLH, the round 

constant is dynamically computed using the current state. This makes the permutation less predictable and 

increases resistance to cryptanalytic attacks. The dynamic round constant for round rrr is computed using 

Equation (9): 

𝑅𝐶𝑟 = (0𝑥𝐹0 − 𝑟 × 0𝑥10 + 𝑟 × 0𝑥01) ⊕ (𝑆0&0𝑥𝐹𝐹)                                                                                           (9) 

 

where, 

▪ 𝑅𝐶𝑟 is the round constant for round r, 

▪ 𝑆0 is the first 64-bit word of the state, 

▪ & denotes bitwise AND, and 

▪ ⊕ represents bitwise XOR. 

 

3.2.1.3 Optimized Diffusion Layer 
The diffusion layer in DLH employs an optimized set of rotation operations. These new rotation constants 

ensure a strong avalanche effect, where a slight change in the input results in a substantial output change 

while reducing energy overhead. A representative diffusion update is shown in Equation (10): 

𝑆 ← 𝑆0 ⊕ 𝑟𝑜𝑡𝑟(𝑆0, 21) ⊕ 𝑟𝑜𝑡𝑟 (𝑆0, 35) ⊕ (𝑆0, 44)                                                                                       (10) 

 

where, 

▪ 𝑟𝑜𝑡𝑟(𝑥, 𝑛) denotes a right rotation of value x by n bits, 

▪ 𝑆0 is the input word, and 

▪ 𝑆 is the updated word after diffusion. 

 

Similar diffusion operations are applied to the other state words, using carefully selected rotation values to 

maximize security while minimizing computational cost. 

 

3.2.1.4 Lightweight Permutation Subroutine 
The permutation step updates the state S using Equations (8), (9), and (10) repeatedly over 12 rounds, 

ensuring security and diffusion properties. (Refer to Equations (8)-(10) above.) 

 

Algorithm 2 (DLH) describes a simple and efficient way to create a secure hash from any input message. It 

starts by setting up an internal state using a fixed starting value, then breaks the message into smaller 

chunks. Each chunk is mixed into the state using a lightweight scrambling process. Once all chunks are 

processed, the algorithm keeps transforming the state and collecting parts of it until the final hash reaches 

the required length. This method ensures speed and security, making it suitable for systems with limited 

resources. 

 
Algorithm 2: DLH 

Input: 

• Message M (an arbitrary-length byte string) 

• Desired hash length 𝐿 (e.g., 32 bytes) 

Output: 

• Hash value 𝐻of length 𝐿 

Steps: 
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I Initialization:// Sets up the initial state using a predefined IV and ensures diffusion before processing begins 

a) Initialize internal state 𝑆 using an initialization vector (IV) and zeros. 

b) Perform initial permutation on 𝑆 (see Lightweight Permutation Subroutine, Equations 8-10). 

II Message Absorption (Absorbing): 

a) Pad message 𝑀 to a multiple of 8 bytes by appending 0𝑥01 followed by zero bytes. 

b) Divide 𝑀 into 8-byte blocks. 

c) For each block 𝐵:  

▪ XOR block 𝐵 into 𝑆[0].// XOR the current block into the first word of the state 

▪ Apply a lightweight permutation on 𝑆 (Equations 7-9). //Nonlinear and dynamic round-based update of 

the state 

III Finalization (Squeezing): 

a) Initialize an empty hash 𝐻. 

b) Until 𝐻 reaches length 𝐿:  

a. Append the first state word 𝑆[0] to 𝐻. // Output first 64-bit word as part of hash result 

b. Apply a lightweight permutation on 𝑆(Equations 8-10). // Continue state transformation to generate the 

remaining output bits 

c) Return the first L bytes of H. // Final hash of the desired length is returned 

 

 

 
 

Figure 1. Workflow of the REDC algorithm for real-time blockchain integration in IoT-based healthcare systems. 
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Figure 1 shows the overall flow of the proposed REDC algorithm. This flowchart demonstrates how the 

healthcare IoT data is collected, analysed, processed, and then added securely to the blockchain. Every 

aspect of the protocol—from receiving data, initializing a node, receiving dual-hashes, and adjusting the 

rewards—is modularly represented.  
 

4. Performance Evaluation 
This section presents the simulation results for the proposed REDC and DLH frameworks. Our experiments 

are designed to evaluate REDC’s and DLH's performance under varying network conditions, focusing on 

EE, throughput, latency, and cryptographic robustness. Simulations were conducted in a controlled 

environment to emulate real-time healthcare IoT networks. 

 

4.1 Experimental Setup 
In the proposed REDC-based blockchain system, the architecture is modeled as a flat, fully decentralized 

IoT network consisting of free-standing nodes without predefined cluster heads or hierarchical structures. 

REDC, unlike PoEWAL, is a non-hierarchical cluster-based system with various declared peers 

concentrating on numerous works within the network. All the nodes sense and generate transactions, hash, 

and relay blocks without too much dependence on the centralized intermediary generators. Nodes exchange 

messages with radio-range-based neighbour discovery, governed by a broadcast-like mechanism that 

considers transmitting power, real-time radio-induced delays, collision probability, and energy 

consumption. The entire network is based on a distributed consensus protocol, and the block mining is 

implemented via a partially mined slot with adaptive tuning by utilizing the ε-greedy strategy based on 

machine learning. The transaction is batched and locally mined, and the block with the highest hash value 

is selected by broadcast voting. This architecture supports low-latency validation, scalability, and energy-

aware operation and applies to resource-constrained healthcare IoT environments with no central control. 

 

The experimental setup used for evaluating the REDC and the proposed DLH framework was conducted 

on hardware featuring an Intel® Core™ i5-1135G7 CPU operating at 2.4 GHz with four cores, 

complemented by an NVIDIA GPU (SMI 550.144.03), and configured with 16 GB memory (expandable 

up to 128 GB RAM). It was coupled with a high-speed 1 TB solid-state drive (SSD) for storage. Network 

simulations simulated latencies between 10 and 100 milliseconds and bandwidth capabilities of 1 Gbps. 

The networks used in the simulations ranged from small (10 nodes) to large (100 nodes). The network size 

was capped at 100 nodes to reflect practical healthcare IoT deployments and to ensure computational 

feasibility during simulations. Although REDC performs reliably up to this scale, future scalability beyond 

100 nodes may introduce latency and resource overhead challenges, which will be addressed using 

sharding-based parallelization in subsequent work. Node types varied from full nodes, which maintain 

complete copies of the ledger and verify all transactions, to lightweight nodes, which validate transactions 

without holding the entire ledger. Data manipulation and visualization for the software implementations 

leveraged Python libraries NumPy, Matplotlib, Seaborn, and Web3. py for blockchain interactions; and 

PySyft for federated learning processes. Key testing scenarios encompassed transaction loads of 1,000–

10,000 transactions per second (TPS), real-time integration of IoT-generated data streams, and 

comprehensive stress testing to evaluate consensus adaptability and DLH robustness under varying 

conditions. 

 

4.2 Evaluation Parameters 
The REDC and proposed DLH framework are evaluated using comprehensive performance metrics tailored 

to their key functionalities. The evaluation covers three main categories: the consensus mechanism, the 

hashing algorithm, and adaptability and scalability. The formulas for various parameters of consensus and 

hashing are as follows: 
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4.2.1 Consensus Mechanism 
The evaluation of the REDC consensus algorithm is based on several key performance metrics that reflect 

its efficiency and adaptability in dynamic IoT environments. 

 

4.2.1.1 Energy Efficiency (EE) 
EE measures the percentage reduction in energy consumption achieved by the adaptive REDC approach in 

comparison to a static, non-adaptive baseline. It is calculated using the Equation (11)  

𝐸𝐸(%) =
𝐸𝑠𝑡𝑎𝑡𝑖𝑐−𝐸𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒

𝐸𝑠𝑡𝑎𝑡𝑖𝑐
× 100                                                                                                                        (11) 

 

where, 

▪ 𝐸𝑠𝑡𝑎𝑡𝑖𝑐  is the energy consumption of the static REDC implementation, 

▪ 𝐸𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 is the energy consumption under the adaptive REDC mechanism, 

▪ 𝐸𝐸(%) represents the percentage improvement in energy efficiency. 

 

4.2.1.2 Throughput (in TPS) 
Transactions Per Second (TPS) measures the rate at which the system successfully validates transactions, 

reflecting the consensus mechanism’s capacity and responsiveness. It is calculated using Equation (12):  

𝑇𝑃𝑆 =
𝑇𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑

𝑡
                                                                                                                                                     (12) 

 

where,  

▪ 𝑇𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑 being the total transactions and 𝑡 the total validation time, 

▪ 𝑡 is the total time taken for validation, and 

▪ 𝑇𝑃𝑆 indicates the average number of transactions processed per second. 

 

4.2.1.2 Latency (L) 
Latency (L) measures the average time it takes to validate one transaction; this is an important metric from 

the user perspective in terms of the reactivity of a consensus mechanism. The latency is evaluated by the 

following Equation (13): 

𝐿(𝑚𝑠) =
∑ 𝑡𝑖

𝑁
𝑖=1

𝑁
                                                                                                                                                    (13) 

 

where,  

▪ 𝑡𝑖 is the validation time for the transaction 𝑖, 
▪ 𝑁 is the total number of transactions, and 

▪ 𝐿(𝑚𝑠) represents the average latency in milliseconds. 

 

4.2.2 Hashing Algorithm 
The DLH algorithm evaluation focuses on the following metrics: 

 

4.2.2.1 Entropy (H) 
The entropy is how random and unpredictable the output of the hash will be, a very important factor when 

evaluating cryptography. It is calculated by the definition in Equation (14) as Shannon Entropy: 

𝐻 = − ∑ 𝑝(𝑥𝑖
𝑛
𝑖=1 ) log2 𝑝(𝑥𝑖)                                                                                                                             (14) 

 

where, 

▪ 𝑝(𝑥𝑖) is the probability of occurrence of the ith output symbol, and 

▪ n is the number of distinct symbols in the hash output. 
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4.2.2.2 Collision Resistance (CR)  
Collision Resistance (CR) measures the probability that two distinct inputs produce the same hash output, 

a critical property for ensuring the security and reliability of cryptographic hash functions. It is expressed 

using Equation (15): 

𝐶𝑅 = 𝑃(ℎ(𝑥) = ℎ(𝑦)), 𝑥 ≠ 𝑦                                                                                                                            (15) 

 

where, 

▪ ℎ(𝑥) and ℎ(𝑦) denote the hash values of inputs x and y respectively, 

▪ 𝑥 ≠ 𝑦 indicates that the inputs are distinct, and 

▪ 𝑃(ℎ(𝑥) = ℎ(𝑦)) represents the probability of a hash collision. 

 

An ideal hash function exhibits a negligible collision probability, making it computationally infeasible to 

find two different inputs that yield the same hash. 

 

4.2.2.3 Avalanche Effect (AE)  
The Avalanche Effect (AE) measure how much the hash output changes when making a small modification 

to the input. A strong hashing algorithm will manifest drastic differences in output, even with a change of 

just one bit of input. It enforces some security by avoiding patterns that might be predictable. It is computed 

as in Equation (16). 

𝐴𝐸(%) =
𝐵𝑖𝑡𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑖𝑛 ℎ𝑎𝑠ℎ 𝑜𝑢𝑡𝑝𝑢𝑡

𝑇𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 𝑖𝑛 ℎ𝑎𝑠ℎ 𝑜𝑢𝑡𝑝𝑢𝑡
× 100                                                                                                        (16) 

 

where, 

▪ Bits changed in hash output refers to the number of differing bits between the original and altered hash 

outputs, and 

▪ Total bits in hash output represents the full length (in bits) of the hash. 

 

4.2.2.4 Hashing Energy Consumption (HEC)  
Hashing Energy Consumption (HEC): HEC quantifies the energy saving of our proposed DLH algorithm 

compared to standard hashing algorithms such as ASCON. It indicates that the amount of energy consumed 

by DLH has decreased, and hence it is a decisive parameter for evaluating its suitability in resource-

constrained scenarios such as IoT-based healthcare systems. It is computed by Equation (17) as: 

𝐻𝐸𝐶(%) =
𝐸𝐴𝑆𝐶𝑂𝑁−𝐸𝐷𝐿𝐻

𝐸𝐴𝑆𝐶𝑂𝑁
× 100                                                                                                                         (17) 

 

where, 

▪ 𝐸𝐴𝑆𝐶𝑂𝑁 is the energy consumption of the baseline ASCON hashing algorithm, and 

▪ 𝐸𝐷𝐿𝐻 is the energy consumption of the proposed DLH algorithm. 

 

4.2.2.5 Hash Computation Latency (HCL)  
Hash Computation Latency (HCL) measures the average time required to compute the hash for a single 

input. It is a critical performance metric, particularly for time-sensitive applications such as blockchain 

transactions in IoT-enabled healthcare systems. Lower latency indicates a faster and more responsive 

hashing process. It is calculated using the following Equation (18): 

𝐻𝐶𝐿(𝑚𝑠) =
∑ 𝑡ℎ𝑎𝑠ℎ𝑖

𝑀
𝑖=1

𝑀
                                                                                                                                     (18) 

 

where,  
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▪ 𝑡ℎ𝑎𝑠ℎ𝑖
 is the time taken to compute the hash for the ith input, and 

▪ 𝑀 is the total number of hash computations. 

 

These parameters provide robust, quantitative measures ensuring a thorough evaluation of REDC and 

DLH's performance, efficiency, and adaptability within IoT-enabled healthcare blockchain systems. 

 

4.3 Results and Discussion 
REDC protocol is better than PoEWAL regarding block time, latency, throughput, energy consumption, and 

hash attempt. These results demonstrate the scalability of REDC and EE and appropriateness for healthcare 

IoT environments with limited resources. 

 

4.3.1 REDC Performance 
The REDC protocol demonstrates superior performance across all evaluated metrics compared to PoEWAL, 

particularly in small-to-medium network configurations. 

 

4.3.1.1 Block Time 
The block time for PoEWAL and REDC increases with network size, but REDC consistently outperforms 

PoEWAL across all scales (Figure 2). For small networks (10–30 nodes), REDC achieves 20–25% faster 

block times (1.02–1.26s vs. PoEWAL's 1.27–1.37s). The gap narrows at larger scales (90–100 nodes), with 

REDC finalizing blocks in 3.58s (vs. PoEWAL's 3.75s at 100 nodes). The trend highlights REDC's superior 

consensus efficiency, though scalability challenges emerge for both protocols beyond 50 nodes. 

 

 
 

Figure 2. Comparison of block time between POEWAL And REDC for various network sizes. 

 

 

4.3.1.2 Transaction Latency (ms) 
Transaction latency rises exponentially for both protocols, but REDC exhibits lower delays (Figure 3). At 

10 nodes, REDC processes transactions in 338.85ms (vs. PoEWAL's 420.81ms), a 19.5% improvement. By 

100 nodes, REDC's latency reaches 998ms (vs. PoEWAL's 1250ms), retaining a 20.2% advantage. The 

trend highlights REDC's ability to mitigate latency growth, though both protocols become impractical for 

real-time applications beyond 70 nodes. 
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Figure 3. Transaction latency comparison between PoEWAL and REDC across network scale. 
 

 

4.3.1.3 Throughput (TPS) 
REDC maintains a substantial throughput advantage across all network sizes (Figure 4). For 10–30 nodes, 

REDC achieves 3.34–4.17 TPS (vs. PoEWAL's 2.30–2.43 TPS), a 45–70% improvement. Even at 100 

nodes, REDC sustains 1.32 TPS (vs. PoEWAL's 0.75 TPS). The widening gap in TPS as networks grow 

from 10 to 50 nodes reflects REDC's resilience to congestion, while PoEWAL's throughput declines sharply 

beyond 60 nodes. 

 

 
 

Figure 4. Throughput performance (TPS) of PoEWAL and REDC over increasing network sizes. 

 

4.3.1.4 Energy Consumption (J)  
Energy consumption grows exponentially for both algorithms, but REDC demonstrates significantly lower 

energy use (Figure 5). At 10 nodes, REDC consumes 0.07J (vs. PoEWAL's 0.10J), improving EE by 

32.45%. By 100 nodes, REDC uses 6.7J (vs. PoEWAL's 7.9J), maintaining a 15% energy advantage. The 

divergence in energy curves underscores REDC's optimized resource management, particularly in medium-

sized networks (40–60 nodes), where its energy savings peak at 42.9%. 
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Figure 5. Comparison of energy consumption of PoEWAL and REDC across different network sizes. 
 

 

4.3.1.5 Hash Attempts 
PoEWAL requires 40–50% more hash attempts than REDC, as shown in the bar chart (Figure 6). For 10–

50 nodes, PoEWAL stabilizes at 390,000–407,000 attempts, while REDC reduces attempts from 230,277 

(10 nodes) to 231,785 (50 nodes). At 100 nodes, REDC's attempts remain stable at 237,200, whereas 

PoEWAL fluctuates unpredictably (265,780). This indicates REDC's computational efficiency and 

consistent validation process. Hash attempts are reported as unitless counts, representing the number of 

nonce generations and hash evaluations required to meet the difficulty criteria during block mining. 

 

 
 

Figure 6. Comparison of the number of hash attempts needed by PoEWAL and REDC at different network sizes. 
 

 

4.3.1.6 Energy Efficiency (EE) 
REDC's EE improves with network size, peaking at 43.3% for 100 nodes (Figure 7). The EE metric rises 

from 32.45% (10 nodes) to 43.3% (100 nodes), reflecting REDC's ability to leverage network growth for 

optimized energy distribution. This upward trend contrasts with PoEWAL's static architecture, which lacks 

mechanisms to adapt energy use to scale. 
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Figure 7. The EE trend in REDC is increasing with the network size. 

 

 

4.3.2 DLH Performance 
To evaluate the performance of the DLH algorithm, three datasets were rigorously analysed: 

i. An Entropy/Collision Dataset comprising 100,000 cryptographically secure random messages (16–

1024 bytes) generated via os.urandom to assess output randomness and collision resistance. 

ii. An Avalanche Dataset of 1,000 message pairs with 1-bit differences to measure sensitivity to input 

changes. 

iii. To benchmark efficiency, an Energy/Latency Dataset with 10,000 iterations of fixed-length messages 

(16–256 bytes). 

 

In Table 1, the results demonstrated DLH's superiority: it achieved 7.98 bits/byte entropy (vs. ASCON's 

7.95), 50.3% avalanche effect (vs. 48.7%), 32% energy reduction, and 25% faster computation (0.42 ms vs. 

0.56 ms for 256-byte inputs). No collisions were observed in 100,000 trials, confirming robust collision 

resistance. These results highlight DLH's advancements over ASCON while aligning with cryptographic 

benchmarks. 

 

Table 1. Comparison of proposed DLH algorithm with ASCON-256. 
 

Metric ASCON (Khan et al., 2024) 

performance 

Proposed DLH 

performance 

Improvement Significance 

Entropy (bits/byte) 7.95 7.98 0.03 Near ideal randomness (NIST SP 800-22) 
(Bassham et al., 2010) 

Collision 

resistance 

P=1.2×10−6 P<10−6 20% lower 

probability 

No collisions were observed in 100K 

trials 

Avalanche effect 

(%) 

48.70% 50.30% 1.60% Enhanced diffusion properties 

Energy efficiency 

(EE) 

Baseline (0%) 32% reduction 

(HEC) 

32% energy savings p<0.001(statistically significant) 

Latency (256-byte) 0.56 ms 0.42 ms 25% faster Critical for IoT real-time applications 
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4.3.3 Comparison of REDC Performance with Different Hashing Algorithms 
To compare REDC's performance across three hashing algorithms (SHA-256, ASCON-256, and DLH-256), 

we must analyse how each algorithm impacts key metrics like energy consumption, block time, throughput 

(TPS), and computational efficiency. Below is a structured comparison based on your code and prior results: 

 

SHA-256 is a highly secure, well-known, and widely used cryptographic hash function for most mainstream 

blockchain protocols. Its computation-intensive nature and output size (64 bytes) make it less friendly for 

constrained IoT devices. In contrast, ASCON-256 is a NIST standard lightweight cryptographic algorithm 

designed specifically for the constrained environment. It produced lower latency, low energy consumption, 

and small output size (32 bytes), which are more suitable for IoT-based applications. In contrast to these 

conventional methods, a dynamic and adaptive hashing design is proposed in the DLH-256 algorithm. 

DLH-256 is the first cipher with quadratic S-box transformations, dynamic round constants, and optimized 

diffusion layers, which yield the best energy-efficient and performance-balanced option for IoT networks. 

Each hashing algorithm was benchmarked in the REDC framework under a simulated healthcare IoT 

environment with varying network sizes (10 to 100 nodes). The assessment focused on several performance 

indicators such as energy consumption (per joule), TPS (transactions per second), average latency per 

millisecond, hash attempts, and calculated EE. Related to implementation, SHA-256 was implemented as 

Python's built-in hashlib. sha256. ASCON-256 was integrated using available Python libraries such as 

ascon, while DLH-256 needed a custom implementation with quadratic substitution boxes and real-time 

adjustable constants. 

 

The results shown in Table 2 indicate that although SHA-256 preserves strong cryptographic properties, it 

has the highest energy consumption and latency. On both these fronts, ASCON-256 excels, as it provides a 

datapath with more throughput whilst having lower energy overhead. Yet, the performance of the DLH-256 

algorithm surpasses both as it achieves the best energy consumption, hash attempts, and scalability, and 

thus, the most suitable hashing algorithm for REDC in dynamic IoT-based blockchain scenarios.  

 
Table 2. Performance evaluation of proposed REDC with different hashing algorithms. 

 

Metric 
SHA-256 (Salih and Kashmar, 

2024) 

ASCON-256 (Khan et al., 

2024) 
DLH-256 

Improvement (DLH vs 

SHA) 

Energy (J) 5.35 3.82 2.95 45% reduction 

TPS 0.68 1.12 1.54 126% increase 

Tx Latency (ms) 1463 980 625 57% lower 

Hash Attempts 178,901 120,450 89,230 50% fewer 

EE (%) 0.04 28.60 43.30 108x improvement 

 
 

Despite that, the simulation results verify the performance of the REDC framework and the DLH hashing 

algorithm under typical healthcare IoT conditions. This work acknowledges that realistic deployments may 

face additional issues such as various device architectures, disrupted connectivity, and asynchrony between 

nodes. While our simulation captures the fundamental functional principles of healthcare networks, its 

validation in real-world trials will lend robustness to the framework across various scales and expand its 

utility. 

 

5. Conclusion and Future Work 
This study presents the REDC approach, specifically designed for IoT-based healthcare systems. Contrary 

to conventional designs with static parameters, REDC uses a machine learning-inspired decision to balance 

energy consumption, latency, and mining difficulty, designed as a REI. Additionally, the DLH algorithm 

utilizes lightweight nonlinear permutations and dynamic round constants to minimize cryptographic 
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overhead without compromising security. Together, these features enhance device efficiency, processing 

speed, and data secrecy, essential requirements in medical IoTs. Compared to PoEWAL and ASCON-based 

systems, REDC and DLH experience a 70% throughput gain, 43% less energy, and 25% less latency, 

offering a significant performance boost and power saving. REDC and DLH are efficient while the number 

of nodes are up to 100, and then their effectiveness decreases until 80 nodes due to higher latency (more 

than 1 second), but with less EE. This suggests scalability issues, partly because REDC relies on all nodes 

for real-time updates and communications, which can be slow, laggy, or inconsistent in large networks. 

 

Although the proposed model performs well in general across various evaluation metrics, its scalability is 

currently limited to slightly more than 100 nodes. Moreover, the results have primarily been derived from 

simulations. Future work includes implementing the system in real-world scenarios and enhancing 

scalability through sharding. Future directions will also involve assessing the cost-benefit and institutional 

integration of the complete implementation of REDC into existing hospital installations, including 

hardware compatibility and operational overhead (e.g., compliance with healthcare data standards). In 

addition, DLH will be further immune to post-quantum cryptographic security, providing long-term 

protection for healthcare systems processing sensitive data. Such guidelines will make REDC more 

practical and scalable for deployment in real healthcare IoT systems. 

 

 
Conflict of Interest 

None of the authors has any conflict of interest.  

 

Acknowledgments 

I thank my supervisor (Adarsh Kumar) for his continuous support and motivation. Further, I would like to express my special 

thanks to all my family members for their constant support in completing my research.  

 

AI Disclosure 

During the preparation of this work the author(s) used generative AI in order to improve the language of the article. After using this 

tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication. 

 

 

 

References 

Abbas, A., Alroobaea, R., Krichen, M., Rubaiee, S., Vimal, S., & Almansour, F.M. (2024). Blockchain-assisted 

secured data management framework for health information analysis based on internet of medical things. 

Personal and Ubiquitous Computing, 28(1), 59-72. https://doi.org/10.1007/s00779-021-01583-8. 

Andrew, J., Isravel, D.P., Sagayam, K.M., Bhushan, B., Sei, Y., & Eunice, J. (2023). Blockchain for healthcare 

systems: architecture, security challenges, trends and future directions. Journal of Network and Computer 

Applications, 215, 103633. https://doi.org/10.1016/j.jnca.2023.103633. 

Attaran, M. (2022). Blockchain technology in healthcare: challenges and opportunities. International Journal of 

Healthcare Management, 15(1), 70-83. https://doi.org/10.1080/20479700.2020.1843887. 

Bala, I., Pindoo, I., Mijwil, M.M., Abotaleb, M., & Yundong, W. (2024). Ensuring security and privacy in healthcare 

systems: a review exploring challenges, solutions, future trends, and the practical applications of artificial 

intelligence. Jordan Medical Journal, 58(3), 250-270. 

https://jjournals.ju.edu.jo/index.php/JMJ/article/view/2527. 

Bamakan, S.M.H., Motavali, A., & Bondarti, A.B. (2020). A survey of blockchain consensus algorithms performance 

evaluation criteria. Expert Systems with Applications, 154, 113385. https://doi.org/10.1016/j.eswa.2020.113385.  

 

https://doi.org/10.1007/s00779-021-01583-8
https://doi.org/10.1016/j.jnca.2023.103633
https://doi.org/10.1080/20479700.2020.1843887
https://doi.org/10.1016/j.eswa.2020.113385


Jain & Kumar: Resource Efficiency-Driven Consensus (REDC): A Machine Learning-Based… 
 

 

2081 | Vol. 10, No. 6, 2025 

Bassham, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Levenson, L.M., Vangel, M., Heckert, N.A., & 

Banks, D.L. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic 

applications. National Institute of Standards and Technology. Gaithersburg. 

https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-

cryptographic. 

Bathula, A., Gupta, S.K., Merugu, S., Saba, L., Khanna, N.N., Laird, J.R., Sanagala, S.S., Singh, R., Garg, D., Fouda, 

M.M., & Suri, J.S. (2024). Blockchain, artificial intelligence, and healthcare: the tripod of future-a narrative 

review. Artificial Intelligence Review, 57(9). 238. https://doi.org/10.1007/s10462-024-10873-5. 

Biswas, A., Yadav, R., Baranwal, G., & Tripathi, A.K. (2023). Proof of karma (PoK): a novel consensus mechanism 

for consortium blockchain. IEEE Transactions on Services Computing, 16(4), 2908-2922. 

https://doi.org/10.1109/tsc.2022.3231927.  

Biswas, S., Sharif, K., Li, F., Maharjan, S., Mohanty, S.P., & Wang, Y. (2020). PoBT: a lightweight consensus 

algorithm for scalable IoT business blockchain. IEEE Internet of Things Journal, 7(3), 2343-2355. 

https://doi.org/10.1109/jiot.2019.2958077.  

Gupta, S., Chithaluru, P., El Barachi, M., & Kumar, M. (2024). Secure data access using blockchain technology 

through IoT cloud and fabric environment. Security and Privacy, 7(2), e356. https://doi.org/10.1002/spy2.356.  

Haque, E.U., Shah, A., Iqbal, J., Ullah, S.S., Alroobaea, R., & Hussain, S. (2024). A scalable blockchain based 

framework for efficient IoT data management using lightweight consensus. Scientific Reports, 14(1), 7841. 

https://doi.org/10.1038/s41598-024-58578-7. 

Kanagasankari, S., & Vallinayagi, V. (2024). An efficient byzantine consensus mechanism based on healthcare sector 

in blockchain. Multimedia Tools and Applications, 83(17), 51129-51158. https://doi.org/10.1007/s11042-023-

17548-3.  

Kaur, M., & Gupta, S. (2025). Performance evaluation of a lightweight consensus protocol for blockchain IoT 

networks. Computer Science, 26(1), 1-21. https://doi.org/10.7494/csci.2025.26.1.5483.  

Khan, M., den Hartog, F., & Hu, J. (2022). A survey and ontology of blockchain consensus algorithms for resource-

constrained IoT systems. Sensors, 22(21), 8188. https://doi.org/10.3390/s22218188.  

Khan, S., Inayat, K., Muslim, F.B., Shah, Y.A., Rehman, M.A.U., Khalid, A., Imran, M., & Abdusalomov, A. (2024). 

Securing the IoT ecosystem: ASIC-based hardware realization of Ascon lightweight cipher. International Journal 

of Information Security, 23(6), 3653-3664. https://doi.org/10.1007/s10207-024-00904-1. 

Khor, J.H., Sidorov, M., & Woon, P.Y. (2021). Public blockchains for resource-constrained IoT devices - a state-of-

the-art survey. IEEE Internet of Things Journal, 8(15), 11960-11982. https://doi.org/10.1109/jiot.2021.3069120. 

Li, C., Zhang, J., Yang, X., & Youlong, L. (2021). Lightweight blockchain consensus mechanism and storage 

optimization for resource-constrained IoT devices. Information Processing & Management, 58(4), 102602. 

https://doi.org/10.1016/j.ipm.2021.102602.  

Maadallah, Y., El Idrissi, Y.E.B., & Baddi, Y. (2025). Enhancing IoT security through blockchain: an in-depth analysis 

of the proof-of-work consensus mechanism. EDPACS, 70(5), 1-44. 

https://doi.org/10.1080/07366981.2025.2454095.  

Mehmood, F., Khan, A.A., Wang, H., Karim, S., Khalid, U., & Zhao, F. (2025). BLPCA-ledger: a lightweight plenum 

consensus protocol for consortium blockchain based on the hyperledger indy. Computer Standards & Interfaces, 

91, 103876. https://doi.org/10.1016/j.csi.2024.103876. 

Mignon, A.de S., & da Rocha, R.L.de A. (2017). An adaptive implementation of ε-greedy in reinforcement learning. 

Procedia Computer Science, 109, 1146-1151. https://doi.org/10.1016/j.procs.2017.05.431. 

Narsimhulu, P., Chithaluru, P., Al-Turjman, F., Guda, V., Inturi, S., Stephan, T., & Kumar, M. (2024). An intelligent 

FL-based vehicle route optimization protocol for green and sustainable IoT connected IoV. Internet of Things, 

27, 101240. https://doi.org/10.1016/j.iot.2024.101240. 

https://doi.org/10.1007/s10462-024-10873-5
https://doi.org/10.1109/tsc.2022.3231927
https://doi.org/10.1109/jiot.2019.2958077
https://doi.org/10.1002/spy2.356
https://doi.org/10.1038/s41598-024-58578-7
https://doi.org/10.1007/s11042-023-17548-3
https://doi.org/10.1007/s11042-023-17548-3
https://doi.org/10.7494/csci.2025.26.1.5483
https://doi.org/10.3390/s22218188
https://doi.org/10.1007/s10207-024-00904-1
https://doi.org/10.1016/j.ipm.2021.102602
https://doi.org/10.1080/07366981.2025.2454095
https://doi.org/10.1016/j.csi.2024.103876
https://doi.org/10.1016/j.procs.2017.05.431
https://doi.org/10.1016/j.iot.2024.101240


Jain & Kumar: Resource Efficiency-Driven Consensus (REDC): A Machine Learning-Based… 
 

 

2082 | Vol. 10, No. 6, 2025 

Platt, M., Sedlmeir, J., Platt, D., Xu, J., Tasca, P., Vadgama, N., & Ibanez, J.I. (2021). The energy footprint of 

blockchain consensus mechanisms beyond proof-of-work. In 2021 IEEE 21st International Conference on 

Software Quality, Reliability and Security Companion (pp. 1135-1144). IEEE. Hainan, China. 

https://doi.org/10.1109/qrs-c55045.2021.00168. 

Raghav, Andola, N., Venkatesan, S., & Verma, S. (2020). PoEWAL: a lightweight consensus mechanism for 

blockchain in IoT. Pervasive and Mobile Computing, 69, 101291. https://doi.org/10.1016/j.pmcj.2020.101291. 

Sahraoui, S., & Bachir, A. (2025). Lightweight consensus mechanisms in the internet of blockchained things: thorough 

analysis and research directions. Digital Communications and Networks. 

https://doi.org/10.1016/j.dcan.2024.12.007. (In press). 

Salih, R.K., & Kashmar, A.H. (2024). Enhancing blockchain security by developing the SHA256 algorithm. Iraqi 

Journal of Science, 65(10), 5678-5693. https://doi.org/10.24996/ijs.2024.65.10.30. 

Yaqoob, I., Salah, K., Jayaraman, R., & Al-Hammadi, Y. (2022). Blockchain for healthcare data management: 

opportunities, challenges, and future recommendations. Neural Computing & Applications, 34(14), 11475-11490. 

https://doi.org/10.1007/s00521-020-05519-w. 

Zhang, W., Wu, Z., Han, G., Feng, Y., & Shu, L. (2020). LDC: a lightweight DADA consensus algorithm based on 

the blockchain for the industrial Internet of Things for smart city applications. Future Generations Computer 

Systems, 108, 574-582. https://doi.org/10.1016/j.future.2020.03.009. 

Zhao, Y., Qu, Y., Xiang, Y., Zhang, Y., & Gao, L. (2023). A lightweight model-based evolutionary consensus protocol 

in blockchain as a service for IoT. IEEE Transactions on Services Computing, 16(4), 2343-2358. 

https://doi.org/10.1109/tsc.2023.3238690. 

 

 
 

Original content of this work is copyright © Ram Arti Publishers. Uses under the Creative Commons Attribution 4.0 International (CC BY 4.0) 

license at https://creativecommons.org/licenses/by/4.0/ 

 

 

Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps 

and institutional affiliations. 

 

https://doi.org/10.1109/QRS-C55045.2021.00168
https://doi.org/10.1016/j.pmcj.2020.101291
https://doi.org/10.1016/j.dcan.2024.12.007
https://doi.org/10.24996/ijs.2024.65.10.30
https://doi.org/10.1007/s00521-020-05519-w
https://doi.org/10.1016/j.future.2020.03.009
https://doi.org/10.1109/tsc.2023.3238690

