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Abstract 

This study examines the analytical investigation of nonlinear wave structures governed by a Schamel-type Korteweg-de Vries (S-

KdV) equation, essential in plasma physics for modelling ion-acoustic waves. This work is motivated by the necessity to enhance 

understanding of the impact of electron trapping effects on solitary wave dynamics. We employ the Extended Direct Algebraic 

(EDA) method to derive precise wave solutions. The applied method offers a systematic approach to derive various soliton 

structures and improves our comprehension of their physical properties. In plasma physics, the S-KdV equation is utilised to 

examine dust ion acoustic waves. Furthermore, it is employed to examine shallow water waves distinguished by steepening and 

breaking. It is applied in studying the Earth's magnetosphere, the solar wind, the nonlinear plasma turbulence, and the dusty space 

plasma. Graphical and comparative analyses are presented to validate the results and demonstrate the robustness of the method. 

The obtained solutions for the S-KdV equation have Kink type, anti-kink type, and multisoliton and solitary wave structures. The 

properties of the wave structures are demonstrated through the two-dimensional, three-dimensional, and contour plots. 

Additionally, the impact of the nonlinear term as well as the dispersion term on some of the obtained solutions are discussed 

through the two dimensional plots.  

 

Keywords- Extended direct algebraic method, Schamel KdV equation, Kink wave, Anti-kink wave, Solitary waves. 

 

 

 

 

1. Introduction 
The properties of non-linear evolution equations (NLEEs) and their analytical wave solutions have gained 

prominence recently, as they provide an easy way to understand the behavior of nonlinear wave 

occurrences in physical sciences and engineering. One class of important NLEEs is Schamel equations 

and their variants (Mohanty et al., 2021; Mohanty et al., 2022). In recent years, numerous researchers 

have generated closed-form solutions for various models using various analytical techniques. These 

methods have been used for several models, including the following: Qin et al. (2024) used the bilinear 

neural network method to obtain the exact solution for the (4+1)-dimensional Boiti-Leon-Manna-

Pempinelli-like equation. Jafari et al. (2022) used the scaling method to obtain the exact solutions for the 

https://www.ijmems.in/
mailto:sanjayamohanty@soa.ac.in


Sahoo et al.: Exact Solutions of the Schamel Korteweg-de Vries Equation by… 
 

 

2084 | Vol. 10, No. 6, 2025 

modified KdV equation. Similarly, the more recently used methods are as follows: the extended 

generalized ( '/ )G G method (Mohanty et al., 2023, 2024), improved tanh method (Sagib, et al., 2024), 

auxiliary method (Kudryashov and Lavrova, 2024), Kudryashov method (Aljoudi, 2021; Mohanty, 2024), 

radial boundary element method (Hosseinzadeh and Sedaghatjoo, 2025), spectral element method 

(Tissaoui et al., 2025), and Nystrom method (Bhat et al., 2025). 

 

Out of the above-mentioned methods, the EDA method (Noor et al., 2024) is a simple and efficient 

method used to produce exact solutions for NLEEs. Here, the given nonlinear evolution equation is 

converted to an ordinary differential equation (ODE) by the help of wave transformation. After that the 

initial approximation solutions for the ODE as
0

n

i

i

a G

=

 , where ( )G G =  satisfies the differential 

equation ( )2ln( )G p q rG sG = + + , where , 0, 1, 2,ia i n=  , ( 0,1)p  , q, r, and s are constants. The 

EDA technique has been applied recently by many authors, such as Noor et al. (2024), who investigated 

the Wazwaz--Benjamin Bona--Mahony equation, deriving kink, lump-like singular, trigonometric, 

hyperbolic, periodic, shock, singular, and non-singular wave solutions. Using the modified-EDA method, 

(Bilal et al., 2024) getting the analytical solutions of the Kundu-Eckhaus equation. Hussain et al. (2024) 

examined many nonlinear pseudo-parabolic models using the EDA method and derived analytical 

solutions expressed as hyperbolic, trigonometric, rational, exponential, and polynomial functions. The 

discovered solutions define dark, bright, singular, combined dark-bright solitons, dark singular combined 

solitons, and solitary wave solutions. Using the EDA method, Manzoor et al. (2024) examined the 

stochastic dynamical equation and obtained rational, hyperbolic, and trigonometric function solutions, 

including bright and dark periodic solutions and singular periodic solutions. The predator-prey model was 

studied by Shahzad et al. (2023) using the modified EDA technique, yielding multiple kinds of results: 

shock, shock-singular, complex solitary-shock, and periodic-singular solutions. Rehman et al. (2023) used 

the EDA method to study the Zakhrov equation in ionized plasma, deriving periodic singular, dark, 

singular, and combined dark-singular solutions, as well as dark-bright soliton solutions from 

trigonometric, rational, and hyperbolic functions. Iqbal et al. (2023) used the EDA approach to study the 

biofilm model. The solutions they found expressed solitary dark-bright solitons and took the shape of 

hyperbolic, trigonometric, and rational functions. Ding et al. (2023) used the EDA methodology to solve 

the equation of KdV-Zakharov-Kuznetsov, getting that the solutions are dark, periodic, singular, and 

kink-type waves. The Radhakrishnan-Kundu-Lakshmanan equation was solved by Mahmood et al. (2023) 

using the EDA technique, yielding hyperbolic, periodic, trigonometric, brilliant and dark solitons, 

combined bright and dark solitons, and W-shaped solutions. 

 

In this paper, we have applied the EDA method to solve the S-KdV equation (Kangalgil, 2016), which is 

defined as follows: 
1 3

2
3

0
u u u

Au Bu C
t x x

   
+ + + = 

   

                                                                                                                        (1) 

 

where, A, B and C are arbitrary coefficients and u is the electrostatic potential and the fractional power 
1

2u  is the trapped particle effect. 

 

Fractional power nonlinearity is crucial for the Schamel KdV equation to accurately forecast wave 

behaviour in plasmas with limited particle populations. Its impact on soliton dynamics highlights the 

importance of choosing appropriate models for different physical situations. 
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The S-KdV model is an updated version of the original KdV equation that describes nonlinear wave 

propagation, particularly in ion-acoustic waves in plasma. The S-KdV equation alters the conventional 

KdV equation by including a nonlinearity characteristic associated with trapping phenomena. Wave-

breaking occurrences and soliton solutions are among the distinctive wave characteristics. Like the well-

known KdV equation, the S-KdV equation gives soliton solutions that preserve their structure over 

propagation. Since the S-KdV model achieves a balance between nonlinear effects and dispersive 

properties of the medium, it can be used to simulate a wide range of physical entities. 

 

The hyperbolic function and trigonometric function solutions for the S-KdV equation were obtained by 

Kangalgil (2016) and Taha et al. (2013) using the -expansion method. Using a one-dimensional, 

collisionless, and unmagnetized plasma with positive and negative ions, trapped electrons exhibiting a 

vortex-like distribution, and stationary dust grains carrying positive and negative charges, Guo et al. 

(2016) investigated the acoustic waves of dust ions with small but finite amplitudes for the S-KdV 

equation. The Bäcklund transformations approach was applied by Kalaawy and Aldenari (2014) to the S-

KdV equation, resulting in the derivation of finite amplitude kink-type wave solutions. Tariq et al. 

(2022a) implemented the modified Kudryashov technique to solve the S-KdV equation, resulting in the 

derivation of kink-type solitary wave solutions. Lee and Sakthivel (2011) employed the sine-cosine 

approach and the extended tanh method to derive soliton-like solutions, kink solutions, and many 

solutions of the S-KdV model. Donmez and Daghan (2017) derived discontinuity and shock waves for the 

S-KdV equation using various expansion methods. Through the use of the expectational function 

technique, Lee and Saktivel (2011) obtained precise traveling wave solutions for the S-KdV model. By 

employing the extended modified auxiliary equation mapping approach and the extended FAN sub-

equation method, Tariq et al. (2022b) conducted an analytical study on the S-KdV equation, obtaining 

solutions for various types of solitons, including dark solitons, light solitons, solitary waves, periodic 

solitary waves, rational functions, and elliptic functions. Alquran (2024) obtained bidirectional solitons, 

convex-periodic waves, and cusp-like waves by applying the tanh-coth method, the Kudryashov 

expansion approach, and the rational sine-cosine method. The S-KdV problem was solved by Karakoc et 

al. (2023) using the Bernoulli Sub-ODE method and the auxiliary equation method, yielding 

trigonometric and hyperbolic solutions. 

 

Within the framework of the Schamel KdV equation, the utilization of the EDA approach offers distinct 

benefits over other contemporary investigations into generic nonlinear evolution equations (NLEEs). The 

Schamel KdV equation incorporates a fractional power nonlinearity, typically associated with the 

modeling of ion-acoustic waves in plasma containing trapped electrons. The EDA technique adeptly 

addresses fractional nonlinearities owing to its versatile solution approach, capable of integrating both 

polynomial and non-integer power components.  

 

The novelty of this paper is highlighted though the following points: 

• Schamel KdV Equation: The model includes electron trapping effects through a non-integer power 

factor, which is rarely studied in standard KdV research. 

• The EDA method: Unlike previous methodologies, the EDA method adopted here gives a 

straightforward and flexible framework for obtaining accurate solutions to higher-order nonlinear 

equations. 

• Soliton Structures: The resulting solutions offer a more profound understanding of the qualitative 

behaviour of nonlinear plasma waves and include Kink type, anti-kink type, multisoliton, and solitary 

wave structures. 
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• Graphical Analysis: Multiple visualisations that show the impacts of different factors are included in 

the study to improve interpretability and physical comprehension. 

 

The article arranges as follows: methodology of the algebraic method is provided in Section 2. The 

technique is applied to the Schamel KdV equation in Section 3. Section 4 offers graphical representations 

of several solutions explored. The comparison section presents a comparison of the obtained results with 

some previous literature. These representations highlight the influence of the nonlinear and dispersion 

variables. Finally, the conclusion section presents the information regarding its conclusions. 

 

2. Methodology of the Extended Direct Algebraic Method 
In this section, the details steps of the EDA method are explained.  

Consider the NLLEs of the form 

( ), , , , , , 0x t xx xt ttS u u u u u u =                                                                                                                         (2) 

 

where, x and t are independent variables and u is dependent on x and t. Further S is function of u and its 

partial derivatives. Converting, Equation (2) into an ordinary differential equation (ODE) by using 

x kt = − , where k is a constant, let the ODE after integration be as follows: 

( , , , ) 0T u u u  =                                                                                                                                         (3) 

 

where, ( )u u = , 
du

u
d

 = , and 
2

2
''

d u
u

d
= . 

 

Now assuming the initial approximate solution for the ODE Equation (3) as 

0

n
i

i

i

u a G
=

=                                                                                                                                                   (4) 

 

where, ai, 0,1, 2, ,i n=   are constants to be determined later and n  is a positive integer. Here, the 

function ( )G G =  satisfies the following ODE: 

( )2ln( )G p q rG sG = + +                                                                                                                              (5) 

 

where, p , q , r , and s  are constants provided 0p   and 1p  . The general solutions of Equation (5) 

are listed below with different conditions. 

 

Family-I: When 
2 4 0r qs−   and 0s  , then 

( )
2 2

1

4 4

2 2 2
p

qs r qs rr
G tan

s s
 

 − −
 = − +
 
 

                                                                                                  (6) 

( )
2 2

2

4 4

2 2 2
p

qs r qs rr
G cot

s s
 

 − −
 = − −
 
 

                                                                                                (7) 
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( ) ( )

( )

2

2

3

2

2

1 2

4
4

2 2

4
4

2

p

p

qs rr
G tan qs r

s s

qs r
e e sec qs r

s

 



−
= − + −

−
 −

                                                                                         (8) 

( ) ( )

( )

2

2

4

2

2

1 2

4
4

2 2

4
4

2

p

p

qs rr
G cot qs r

s s

qs r
e e csc qs r

s

 



−
= − − −

−
 −

                                                                                            (9) 

( )
2 2

5

2 2

4 4

2 4 4

4 4

4 4

p

p

qs r qs rr
G tan

s s

qs r qs r
cot

s

 



 − −
 = − +
 
 

 − −
 −
 
 

                                                                                          (10) 

 

Family-II: When 2 4 0r qs−   and 0s  , then 

( )
2 2

6

4 4

2 2 2
p

r qs r qsr
G tanh

s s
 

 − −
 = − −
 
 

                                                                                       (11) 

( )
2 2

7

4 4

2 2 2
p

r qs r qsr
G coth

s s
 

 − −
 = − −
 
 

                                                                                     (12) 

( ) ( ) ( )
2 2

2 2

8 1 2

4 4
4 i 4

2 2 2
p p

r qs r qsr
G tanh r qs e e sech r qs

s s s
  

− −
= − − −  −                     (13) 

( ) ( ) ( )
2 2

2 2

9 1 2

4 4
4 4

2 2 2
p p

r qs r qsr
G coth r qs e e csch r qs

s s s
  

− −
= − − −  −                         (14) 

( )
2 2 2 2

10

4 4 4 4

2 4 4 4 4
p p

r qs r qs r qs r qsr
G tanh coth

s s s
  

   − − − −
   = − − −
   
   

                           (15) 

 

where the generalized hyperbolic and triangular functions are given as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2 1 2 1 2

i i i i

1 2 1 2

i i i i i i i i

1 2 1 2 1 2 1 2

2 2
, , , ,

2 2i
i , i , , ,

p p p p

p p p p

e p e p e p e p
tanh coth sech csch

e p e p e p e p e p e p e p e p

e p e p e p e p
tan cot sec csc

e p e p e p e p e p e p e p e p

   

       

   

       

   

   

− −

− − − −

− −

− − − −

− +
= = = =

+ − + −

− +
= − = = =

+ − + −
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where 𝜂 is an independent variable, 𝑒1 and 𝑒2 are positive constants. The steps of the methodology are 

listed below: 

 

Step 1: It is required to evaluate the value of n  in Equation (4) with the help of the balancing method. In 

this method, it requires to compare the exponents of the highest order derivative terms with the highest 

order nonlinear terms of the converted ODE (5). The details are as follows: 

Let the initial assumed solutions have degree n i.e. deg(u( )) = n. Let, we have highest order partial 

derivative term like ( )kdeg u n k= +  and let highest order nonlinear term as ( )s

rdeg u u sn r= + . Then 

comparing the exponent of the two terms as n k sn r+ = + , we get the value of n. Where s  is real 

number and ku , k times derivative with respect to  . 

 

The positive integer ‘n’ can be determined by considering the highest order partial derivative and 

nonlinear terms appearing from the converted ordinary differential equations. If “n” is not positive integer 

(fraction or negative integer), we make the following transformation: 

a) When “ /n p q= ” 0q   is a fractional lowest term, we take the transformation /( ) ( )p qu v = . 

b) When “n” is negative integer, we take the transformation ( ) ( )nu v −= , and return the value of “n” 

again form the new equation.  

 

As per the steps of the methodology, we have to compare the highest order derivative terms with highest 

order nonlinear terms.  

 

Step 2: Then, evaluating the required derivative terms and substituting them into Equation (3), we get a 

polynomial ( )G  . Now, equating the coefficients of the same power of ( )G   equal to zero, a system of 

algebraic equations is obtained. Then it is required to solve the system of algebraic equations for the free 

variables , 0,1,2, ,ia i n=  . 

 

Step 3: Now substituting the values of , 0, 1, 2, ,ia i n=  , obtained from step 2 in the Equation (4) 

with general solutions of the Equation (5). Then further back substituting the wave transformation, we can 

obtain the required solution for Equation (2). 

 

3. Application of the Extended Direct Algebraic Method to the S-KdV Equation 
We have applied the EDA method to the S-KdV equation. Using x kt = − , in Equation (1), we get  

( )
3

1/2

3
0

du du d u
k Au Bu C

d d d  
− + + + =                                                                                                       (16) 

 

where, ( )u u = . Integrating Equation (16), it becomes 
2 2

3/2

12

2
0

3 2

Bu d u
ku Au C c

d
− + + + + =                                                                                                        (17) 

 

where, 1c  is the integration constant. Applying ( ) ( )u v =  in Equation (17), it will be  

24 2
2 3

12

2
2 2 0

3 2

Bv dv d v
kv Av C Cv c

d d 

 
− + + + + + = 

 

                                                                                    (18) 
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where, 𝑐1 is the integration constant. With the help of the balancing between the highest order derivative 

term and nonlinear term in Equation (18). 

 

We have 
2

2
2 2

d v
deg v n

d

 
= + 

 
 and 4( ) 4deg v n= , then comparing its exponents we have 2 2 4n n+ = ,  

we have n = 1. The solutions for the S-KdV equation by the help of initial assumption as follows:  

( ) 0 1v a a G = +                                                                                                                                          (19) 

 

The required derivatives with respect to   are given below: 

( )( ) ( )( )( )
2

2 2 2

1 12
ln , ln 2

dv d v
a p q rG sG a p r sG q rG sG

d d 
= + + = + + +                                          (20) 

 

Now substituting the values of Equations (19) and (20) in Equation (18), Equation (18) converts to a 

polynomial of ( )G  . Now, accumulating the same power’s co-efficient of G and compare them to zero, 

the obtained system of equations is listed below: 

 
( )( )

24 4 2 2

1 1: 1/ 2 6 ln 0G Ba Ca p s+ =                                                                                                   (21) 

( )( ) ( )( )
2 23 3 3 2 2

1 0 1 0 1 1: 2 / 3 2 4 ln 10 ln 0G Aa Ba a Ca a p s Ca p sr+ + + =                                              (22) 

( )( ) ( )( )

( )( )

2 22 2 2 2 2 2 2

1 0 1 0 1 0 1 1

22

1

: 2 3 6 ln 4 ln

8 ln 0

G ka Aa a Ba a Ca a p rs Ca p r

Ca p sq

− + + + +

+ =

                                         (23) 

( )( )

( )( ) ( )( )

21 2 3 2

0 1 0 1 0 1 0 1

2 22

0 1 1

: 2 2 2 2 ln

4 ln 6 ln 0

G ka a Aa a Ba a Ca a p r

qCa a p s Ca p qr

− + + +

+ + =

                                                                        (24) 

( )( )

( )( )

20 2 3 4

0 0 0 0 1

2 2 2

1 1

: 2 / 3 1/ 2 2 ln

2 ln 0

G ka Aa Ba C p qra a

C p q a c

− + + +

+ + =

                                                                        (25) 

 

Solving the system of Equations (21) – (25) for the free variables 1a , A, k, 1c , the obtained solutions for 

the S-KdV equation are as follows: 

( ) ( )( )

( )
( )

2 2 4
2 2

02 22

2 2 4

1 12

4 44 16 2
, , ,

75 5 4300 75 ln

4 42
2 , 0

5 4

qs r qr s rA A A
C k a

B B qs rqs r B p

qs r qr s rsA
a c

Br qs r

− + + − +
= = − =

−−

 − + + − +
 = + =
 −
 

                             (26) 

 



Sahoo et al.: Exact Solutions of the Schamel Korteweg-de Vries Equation by… 
 

 

2090 | Vol. 10, No. 6, 2025 

where, 
24qs r , 0B  , 0r  . Using the data of Equation (26) and the family-I (6)-(10) and family-II 

(11)-(15), with x kt = −  and 
2u v= , the simplified solutions are as follows: 

 

Family-I: When 
2 4 0r qs−   and 0s  , then the solutions have the forms 

( )
( )

( )

2 2 4
2 2 4

1 22

2

2 2 2

4 4 4 42 2
, 2

5 5 44

4 4 16

2 2 2 75
p

qs r qr s r qs r qr s rA sA
u x t

B Br qs rqs r

qs r qs rr A
tan x t

s s B

 − + + − +  − + + − +  = + +
  −−  

   − −
  − + +        

                                 (27) 

( )
( )

( )

2 2 4
2 2 4

2 22

2

2 2 2

4 4 4 42 2
, 2

5 5 44

4 4 16

2 2 2 75
p

qs r qr s r qs r qr s rA sA
u x t

B Br qs rqs r

qs r qs rr A
cot x t

s s B

 − + + − +  − + + − +  = +
  −−  

   − −
  − − +      

                                  (28) 

( )
( )

( )

2 2 4
2 2 4

3 22

2 2
2

2
2 2

2

1 2

4 4 4 42 2
, 2

5 5 44

4 16
4

2 2 75

4 16
4

2 75

p

p

qs r qr s r qs r qr s rA sA
u x t

B Br qs rqs r

qs rr A
tan qs r x t

s s B

qs r A
e e sec qs r x t

s B

 − + + − +  − + + − +  = + +
  −−  

   −
− + − +      

  −
 − +     

                             (29) 

( )
( )

( )

2 2 4
2 2 4

4 22

2 2
2

2
2 2

2

1 2

4 4 4 42 2
, 2

5 5 44

4 16
4

2 2 75

4 16
4

2 75

p

p

qs r qr s r qs r qr s rA sA
u x t

B Br qs rqs r

qs rr A
cot qs r x t

s s B

qs r A
e e csc qs r x t

s B

 − + + − +  − + + − +  = + +
  −−  

   −
− − − +      

  −
 − +     

                           (30) 
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qs r qr s r qs r qr s rA sA
u x t

B Br qs rqs r

qs r qs rr A
tan x t

s s B

qs r qs r A
cot x t

s B

 − + + − +  − + + − +  = + +
  −−  

   − −
  − + +     

  − −
 − +    

                             (31) 

 

Family-II:  

When 
2 4 0r qs−   and 0s  , then the solutions have the forms 

( )
( )

( )

2 2 4
2 2 4

6 22
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2 2 2

4 4 4 42 2
, 2

5 5 44

4 4 16

2 2 2 75
p

qs r qr s r qs r qr s rA sA
u x t

B Br qs rqs r

r qs r qsr A
tanh x t

s s B

 − + + − +  − + + − +  = + +
  −−  

   − −
  − − +      

                                    (32) 
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coth x t

s s B

 − + + − +  − + + − +  = + +
  −−  

   − −
  − − +      

                                   (33) 
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tanh r qs x t

s s B

r qs A
e e sech r qs x t

s B

 − + + − +  − + + − +  = + +
  −−  

   −
− − − +      

  −
 − +     

                                       (34) 
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s s B

r qs A
e e csch r qs x t

s B

 − + + − +  − + + − +  = + +
  −−  

   −
− − − +      

  −
 − +     

                                   

(35) 
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B Br qs rqs r

r qs r qsr A
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s s B

r qs r qs A
coth x t

s B

 − + + − +  − + + − +  = + +
  −−  

   − −
  − − +     

  − −
 − +    

                                     (36) 

 

4. Graphical Representation and Discussions 
In the section, the graphical representation of some of the obtained solutions for the S-KdV equation is 

illustrated through the 3-D, contour and 2-D plots. We have obtained the multisoliton wave structure, 

kink and anti-kink and solitary wave structures. Here, the solutions (27-31) have the multisoliton type 

structures with the condition 
2 4 0r qs−  , whereas the solutions (32-36) are satisfying the condition 

2 4 0r qs−   and having the multisoliton structures, kink, anti-kink and solitary wave structures. 
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Figure 1. The three-dimensional surface plot of solution | ( , ) |u x t  (27) for the S-KdV equation with A = 1, B = 1.5, 

s = 1, r = -1, p = 2, q = 1, e1 = 1, e2 = 1, which represents multisoliton wave structure. The ploted solutions are 

evaluated over the interval 10 10x−   , 10 10t−   . 

 
 

Figure 2. The contour plot of solution | ( , ) |u x t  (27) for the S-KdV equation with A = 1, B = 1.5, s = 1, r = -1, p = 

2, q = 1, e1 = 1, e2 = 1, which represents multisoliton wave structure. represents the multisoliton wave structure. The 

ploted solutions are evaluated over the interval 10 10x−   , 10 10t−   . 

 

 

 

 
 

Figure 3. The 2-D plot of solution | ( ) |u x  (27) for the S-KdV equation with A = 1, B = 1.5, s = 1, r = -1, p = 2, q = 

1, e1 = 1, e2 = 1, represents the multisoliton wave structure. The interval of the solution 10 10x−   , with 8t = − , 

0t = , 8t = . 
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Figure 4. Using the solution 3-D surface plot (32) for the S-KdV equation with A = 1, B = 1.5, s = 1, p = 2, q = 1, r 

= 2.3, e1 = 1, e2 = 2 represents the kink wave. The solutions fall within the interval 10 10x−   , 10 10t−   . 

 

 

 
 

Figure 5. Using the solution the contour plot (32) for the S-KdV equation with A = 1, B = 1.5, s = 1, p = 2, q = 1, r = 

2.3, e1 = 1, e2 = 2. The solutions lie in between 10 10x−   , 10 10t−   . 

 

 

 
 

Figure 6. 2-D plot of the solution (32) for the S-KdV equation with A = 1, B = 1.5, s = 1, r = 2.3, p = 2, q = 1, e1 = 1, 

e2 = 2. The solutions fall within the interval 10 10x−   , with 0t = , 1t = , and 2t = . 
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Figure 7. The 3-D surface plot of solution (34) for the S-KdV equation with A = 1, B = 1.5, s = 1, r = 2.5, p = 2, q = 

1, e1 = 1.5, e2 = 2. represents the solitary wave. The solutions fall within the interval 10 10x−   , 10 10t−   . 

 

 

 
 

Figure 8. Solution (34) is the contour plot for the S-KdV equation with A = 1, B = 1.5, s = 1, r = 2.5, p = 2, q = 1, e1 

= 1.5, e2 = 2. The solutions fall within the interval 10 10x−   , 10 10t−   . 

 

 

 
 

Figure 9. The two dimensional plot of solution (34) for the S-KdV equation with A = 1, B = 1.5, s = 1, r = 2.5, p = 

2, q = 1, e1 = 1.5, e2 = 2. The solutions fall within the interval 10 10x−   , with 0t = , 1t = , 2t = . 
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Figure 10. The three-dimensional surface plot of solution (36) for the S-KdV equation with A = 1, B = 1.5, s = 1, r = 

3, p = 2, q = 1, e1 = 1, e2 = 2 represents the anti-kink wave, within 10 10x−   , 10 10t−   . 

 

 

 
 

Figure 11. Solution (36) is the contour plot for the S-KdV equation with A = 1, B = 1.5, s = 1, r = 3, p = 2, q = 1, e1 

= 1, e2 = 2, within the interval 10 10x−   , 10 10t−   . 

 

 

 
 

Figure 12. The 2-D plot of solution (36) for the S-KdV equation with A = 1, B = 1.5, p = 2, q = 1, r = 3, s = 1, e1 = 

1, e2 = 2. The solutions fall within the interval 10 10x−   , with t = 0, t = 1, t = 2. 
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Figure 13. (a) is the two dimensional plot of solution (32) for the S-KdV equation for the free parameter A, with B = 

1.5, t = 0.1, p = 2, q = 1, r = 2.3, s = 1, e1 = 1, e2 = 2. (b) is the two dimensional plot of solution (32) for the S-KdV 

equation for the free parameter B, with A = 1, t = 0.5, p = 2, q = 1, r = 2.3, s = 1, e1 = 1, e2 = 2. 

 

 

 
 

Figure 14. (a) is the two dimensional plot of solution (36) for the S-KdV equation for the free parameter A, with B = 

1.5, t = 0.1, p = 2, q = 1, r = 3, s = 1, e1 = 1, e2 = 2. (b) is the two dimensional plot of solution (36) for the S-KdV 

equation for the free parameter B, with A = 1, t = 0.1, p = 2, q = 1, r = 3, s = 1, e1 = 1, e2 = 2. 

 

 

The 3-D, contour, and 2-D plot of the absolute value of the solution (27), where the wave structure is 

multisoliton, are shown in Figures 1, 2, and 3. Modulus solutions of (30) and (31) also feature multi-

soliton wave structures, whereas the modulus of (28) is the double soliton and the modulus of (29) is the 

triple soliton. Moreover, the multisoliton wave structure without the solution modulus is present in 

solution (32). The 3-D, contour, and 2-D plots of the solution (32) are shown in Figures 4, 5, and 6. 

While Figure 5 displays the matching contour plots and Figure 6 is the two-dimensional plot with t = 0, t 

= 1, and t = 2, Figure 4 depicts the kink type solitary wave. Similarly, the wave structure of (35) is of the 

kink type. Figures 7, 8 and 9 display the 3-D, contour, and 2-D plots of the solution (34). Figure 7 shows 

solitary wave, whereas Figure 8 shows the corresponding contour plots, and Figure 9 is the 2-D plot with 

t = 0, t = 1, and t = 2. Figures 10, 11, and 12 display the solution (36) in 3D, as well as a contour plot and 

a 2-D plot. Figure 10 shows the anti-kinkwave, whereas Figure11 shows the corresponding contour plot. 

Figure 12 shows the 2-D plot with t = 0, t = 1, and t = 2. The 2-D plots show the effect of the parameters 

A  and B  on the obtained solutions. The effects of the parameters are evident in the kink and anti-kink 

wave solutions, as illustrated in the graphs. Referencing 13, we observe differing behaviors of the 

solutions (32) for the non-linear parameters A = 0.5, 1, 1.5 and B = 1, 1.5, 2. and. Figure 14 illustrates 2-

D plots for the anti-kink solutions.  
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Generally speaking, higher wave amplitude results from increasing the nonlinear coefficients (A, B). The 

fractional nonlinearity's contribution is amplified by increasing B, resulting in higher peaks and steeper 

wavefronts. In the Schamel KdV equation, the soliton velocity depends on amplitude. The soliton speed 

increases as and B rise. This is consistent with classical soliton theory's taller, quicker waves. The 

velocity-amplitude connection is nonlinear and non-monotonic for fractional nonlinearities. Moderate 

values of A, B, and positive C guarantee stable localized structures. Instability or wave breaking may 

result from a large or tiny B. The dispersion term smoothes the profile and stabilizes the wave against 

collapse. 

 

Localized, non-dispersive waveforms that maintain their shape while propagating at a constant velocity 

are called solitary waves. Within the Schamel KdV paradigm, these waves Arise from a balance between 

nonlinearity and dispersion and exhibit a finite amplitude and a localized structure. Unlike normal KdV 

solitons, they are transformed by electron trapping. Schamel solitary waves define ion-acoustic solitons 

encompassing imprisoned electrons, a phenomenon commonly observed in astrophysical and 

experimental plasmas (Schamel, 1973; Schamel, 1986). Trapped particles, particularly electrons, modify 

the distribution function, leading to a non-quadratic nonlinearity. 

 

The Schamel KdV equation's kink waves, which represent nonlinear transitions between different plasma 

states, are closely related to the dynamics of trapped particles in the plasma. These waves act as nonlinear 

electrostatic structures that connect two distinct potential levels; they are important in space and lab 

plasmas. Show that there are non-Maxwellian velocity distributions because of the trapping of particles in 

wave potentials, usually electrons. can characterize solitary wavefronts, collisionless shock structures, or 

electrostatic double layers in a variety of plasma environments, especially when important kinetic effects 

are not captured by the conventional KdV equation. Show how important it is to strike a balance between 

dispersion and nonlinearity (as affected by fractional exponents) to allow for the steady propagation of 

such structures. In space plasma investigations (Verheest, 2002) and laboratory plasmas where electron 

entrapment significantly alters wave dynamics, these kink-like structures are particularly crucial (EI-

Tantawy et al. (2013) from satellites in the magnetosphere or solar wind). 

 

Comparison: 

This section provides a concise comparison between our results with the study undertaken by other 

researchers (Lee and Sakthivel, 2011; Taha et al., 2013; Kangalgil, 2016; Donmez and Daghan, 2017). 

 

❖ The obtained solutions (27) - (37) and (32) - (36) are in terms of exponential function solutions which 

are different from (Lee and Sakthivel, 2011; Taha et al., 2013; Kangalgil, 2016; Donmez and Daghan, 

2017). 

❖ Kangalgil (2016) used the extended generalized ( / )G G -expansion method to derive trigonometric, 

hyperbolic and rational solutions to the problem. Taha et al. (2013) used the ( / )G G -expansion 

method to derived trigonometric, hyperbolic and rational exact solution of the problem. Lee and 

Sakthivel (2011) used the sine-cosine method and the extended tanh method to obtain sine-cosine 

functions and tanh functions solutions of the problem. Donmez and Daghan (2017) used the 

( )/ ,1 /G G G -expansion method to obtained the trigonometric and hyperbolic solutions of the 

problem. 

❖ By selecting suitable parameter values, we use contour and 2-D charts to illustrate the dynamics of 

kinks, anti-kinks, a multi-soliton, and solitary wave profiles obtained from specific soliton solutions 

in three dimensions. It suggests that the dynamics that comprise our evolutionary traits are beneficial 

for comprehending physical phenomena (see Figures 1 to 14). 
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5. Conclusion and Future Scope 
We have successfully obtained the exact close form solutions for the S-KdV equation by applying the 

EDA method. Further, we have concluded that the EDA is an efficient, versatile, and relatively simple 

method for solving nonlinear differential equations, producing exact solutions that facilitate the analysis 

of intricate physical systems. The EDA approach is more user-friendly than the Hirota bilinear method or 

the lie symmetry method for solving nonlinear differential equations. This can elucidate wave stability, 

dispersion, and energy transmission. Every analytical approach has restrictions; it fails when the 

coefficient of the highest order term is 0. Furthermore, it cannot directly solve nonlinear equations with 

variable coefficients. 

 

The obtained solutions have properties like the kink, anti-kink, multi solitons, and solitary wave solitons, 

which are widely applied in scientific fields, such as in space plasma like black holes (Shapiro and 

Teukolsky, 1983), in astro physics objects like stars (Chabrier et al., 2006), in Earth's magnetosphere 

(Chang et al., 2022), and dusty plasma (Shukla and Mamun, 2003). We consider that the solutions 

obtained in this manuscript and the method utilized might be helpful for research in the above scientific 

fields, which would enable the researchers to comprehend the physical models. 

 

Highlights of the results: 

• The extended direct algebraic method is applied to study the exact solutions of the Schamel KdV 

equation. 

• Soliton solutions for the Schamel KdV equation are explored. 

• Kink and solitary wave solutions are obtained for the Schamel KdV equation. 

 

The extended direct algebraic technique is suitable for complicated nonlinear partial differential equations 

(PDEs) like the Schamel KdV problem with fractional power nonlinearities. To create precise traveling 

wave solutions, the PDE is transformed into an ODE and a rational ansatz is assumed using known 

functions such as hyperbolic or trigonometric functions.  

 

Extended Direct Algebraic Method: - Generalizes many procedures and accommodates more solution 

forms. It provides flexibility for assuming broader ansatzes, especially useful for the Schamel KdV's 

fractional nonlinearity. Hirota's Method: - Powerful, but potentially difficult for fractional nonlinear 

equations as the Schamel KdV. It works well for polynomial nonlinearities and may not work for non-

integer powers in the Schamel equation. tanh-Method: - The tanh-method is ideal for finding soliton-like 

solutions via hyperbolic tangent expansions. - Note that this approach is less broad than the extended 

direct algebraic method and may struggle with non-polynomial nonlinearities. Lie Symmetry Analysis: 

Finding symmetry generators in Lie symmetry method which may be theoretically complex and 

computationally demanding. 

 

Several nonlinear evolution equations, such as the Schamel and Korteweg–de Vries (KdV) family, have 

been solved using the extended direct algebraic method (EDAM). It can be applied to generalized or 

higher-dimensional versions of these equations, not just the conventional (1+1)-dimensional forms. 

Various nonlinear phenomena in multi-dimensional physical systems can be investigated with EDAM by 

correctly converting the dependent variables and using the method's systematic ansatz building. Future 

research that looks more closely at its effectiveness in more intricate frameworks, including coupled 

systems or variable-coefficient models, could expand its analytical breadth and usefulness. 
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