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Abstract 

Operations in manufacturing environments are turbulent. Thus, production managers must be capable of dealing with 

diverse and unexpected situations, such as either random production of imperfect items or unanticipated changes in 

customers’ orders. Therefore, a decision-support-type of model is required to facilitate production managers in achieving 

their goals. We propose a precise model that can determine the economic lot size (ELS) by incorporating issues related 

to expedited fabrication rate and product quality-assurance during production. Thereby, fabrication rate can be adjusted 

with an extra setup and the consequent unit costs. In each fabrication cycle, random non-conforming products would be 

screened and identified. Such items would either be disposed of or reworked with consequent extra cost, to obtain a 

quality-assured final product. The ELS is determined with the aid of mathematical analyses and optimization processes. 

A numerical example is presented to demonstrate the applicability of our model and to depict diverse critical system 

characteristics that support managerial decision-making. 
 

Keywords- Industrial engineering, Economic manufacturing lot size, Expeditious fabrication rate, Product quality 

assurance, Optimization 

 

 

 

1. Introduction 
Production managers, working in turbulent manufacturing environments, have to be capable of 

handling different unpredicted incidents, such as random imperfect quality items produced, or 

unanticipated changes in customers’ orders, or unforeseen capacity amended due to reliability 

issues. To address these realities, we include expedited manufacturing rate and quality assurance 

issues in economic lot-sizing problem and plan to reveal and provide critical system information to 

support their decision makings. 
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Expedited fabrication rate can be implemented, for example, via the built-in advance function from 

production equipment or through adding extra hours in a daily shift. It is an effective strategy to 

increase short-term capacity, and therefore, reduce uptime to help smooth production scheduling. 

Unsurprisingly, it has drawn broad attention from researchers in past decades. Wolisz (1984) 

explored the optimal manufacturing rate for a two-stage queuing system with finite transitional 

storage and having a single server in each stage. Formulations of system optimization criteria were 

accomplished and applied to the existing models in the literature. As a result, the maximal 

manufacturing rate for the case of exponential service time was gained in closed form. Numerical 

results illustrated variations in the specific coefficient of system parameters’ effects on the proposed 

system as compared to the actual results from the literature. Khouja and Mehrez (1994) examined 

an economic production lot-size problem, where the fabrication rate was treated as a decision 

variable, and unit production cost was a function of the manufacturing rate. In addition, defective 

rate of the process increases as fabrication rate goes up. They solved the problem with specific 

functions of unit cost and defective rate, and used a numerical example to illustrate their obtained 

results and discussed on the tradeoff between functions of product quality and unit cost increase as 

fabrication rate altered. Ouyang et al. (2005) studied a vendor-buyer integrated inventory problem 

with price-sensitive demand rate, adjustable fabrication rate, and under trade credit situation. Their 

objective was to maximize profit of the system. An algorithm was presented to simultaneously 

decide the optimal retail price, buyer's ordering quantity, and shipments per production run for such 

a vendor-buyer integrated problem. Their result showed that applying trade-credit strategy could 

be a win-win situation for both vendor and buyer; and also indicates that if the vendor’s fabrication 

rate is close to product demand rate, the profit notably increases. Njike et al. (2012) explored the 

interactions between defective items and optimal control over fabrication rate, lead time, and stock 

in a manufacturing system. Their objective was to minimize the expected system costs consisting 

of maintenance, stock holding, and backordering. They considered two maintenance states of real-

time manufacturing system which controlled by two key factors, namely fabrication and 

maintenance rates. Through observing N operational states of the system under the condition-based 

maintenance discipline and using the dynamic programming, they showed that finding the optimal 

policy becoming a piecewise deterministic optimal control problem. Finally, they provided a 

numerical illustration and conducted a sensitivity analysis using a set of data from real 

manufacturing system. Neidigh and Harrison (2013) proposed the heuristic and linear 

approximation approaches to seek the near optimal lot-size solutions for a real manufacturing firm 

located in PA, wherein learning effects in a nonlinear manufacturing process were considered. The 

average fabrication time of a part varies based on different lot sizes, and fabrication time declines 

as the lot size increases due to learning effect. The authors employed the discrete time periods to 

represent the fabrication lots so that the optimal production schedule that minimizes fabrication and 

holding costs can be derived. The author started with applying their approach to the single-product 

problem, then expanding it to the multiple product cases. From numerous sets of multi-period tests, 

the authors demonstrated that their approach was capable of offering feasible fabrication schedule 

with total costs close to that of the optimal model. Extra studies addressed diverse aspects of 

manufacturing systems with variable/flexible fabrication rate can be referred to elsewhere (Giri and 

Dohi, 2005; Glock, 2010; Sajadieh and Larsen, 2015; Bottani et al., 2017; Liu et al., 2017; 

Ahranjani and Matin, 2018; Ameen et al., 2018; Chiu et al., 2018a,b,c). 

 

In contrast to the assumption of perfect stock quality as in classic economic fabrication lot-size 

problem (Taft, 1918), in real manufacturing environments, random nonconforming products are 

often produced owing to diverse unanticipated factors. Shih (1980) studied optimal inventory 

policies with shortage situations caused by defective items. It was assumed that in the accepted lot, 
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the percentage of random defective items follows a known probability distribution. The 

mathematical analysis helped derive the optimal solutions to the studied problem, and the results 

were compared to that in traditional models using numerical examples. Boone et al. (2000) 

investigated the influence of imperfect processes on cycle length. Accordingly, a model was built 

and analyzed to offer production management guidelines on deciding correct fabrication run times 

for dealing with defective products and machine breakdown occurrences. Pillai and 

Chandrasekharan (2008) studied the fabrication system considering rework and scrap products. The 

Markovian process was employed to simulate the material flow, and the processes for rework and 

scrap items were considered as the absorbing Markov states. The authors applied their Markovian 

model to compute the required amount of raw materials correctly. Cardós et al. (2013) proposed a 

heuristic intending to lower the inventory level for repairable parts used by a real airline company, 

under the service level constraints. The authors showed that their proposed method outperformed 

the current common sales replacement policy in terms of inventory/cost reduction. To reduce the 

overall manufacturing costs, sometimes, the nonconforming items are inspected and further 

categorized as scrap and repairable items, and with an extra repairing cost to assure the latter 

meeting the desired quality level. Roy et al. (2014) examined a stochastic demand economic 

fabrication lot-size problem with the exponentially distributed time to failure, wherein the defective 

stocks are accumulated during the unstable process, and they are reworked right away. Shortages 

are backordered, both complete and partial backlogging plans were analyzed. The authors built a 

profit maximization model to decide the optimal lot-size along with the production rate. Numerous 

examples were offered to show the applicability of their results. Additional papers that investigated 

different features of imperfect manufacturing systems can be found elsewhere (Wee et al., 2007; 

Khanna et al., 2017; Mošorinski et al., 2017; Chiu et al., 2018d; Pearce et al., 2018; Souha et al., 

2018; Zhao et al., 2018; Saha et al., 2019; Taleizadeh et al., 2019). 

 

The main contribution of this work is that a precise model is developed to enable the production 

managers to take advantage of this decision support type of tool to reveal the following 

characteristics of a fabrication system with expedited rate and quality assurance: (a) the optimal 

replenishment lot size and total system cost; (b) the effect of differences in nonconforming rate x 

on cost components of the system; (c) the joint impacts of x and total scrap rate φ on total system 

cost; (d) the influence of fabrication rate increase on machine utilization and on manufacturing lot 

size; (e) variations of unit cost increase percentage effects on total system cost; and (f) changes of 

fabrication rate increase percentage effects on different system cost components. For a small 

number of studies that have investigated the aforementioned joint impact of expedited fabrication 

rate and product quality assurance issues on economic manufacturing lot size, this study aims to 

fill the gap. 

 

2. Problem Description and Modeling 
Consider a particular product with annual demand rate λ needs to be satisfied by an EMQ-based 

fabrication-inventory system incorporating an expedited fabrication rate in order to shorten the 

production cycle time. Assuming that fabrication rate per unit time can be speeded up through the 

existing advance function from the machine, or via the extension of daily running time (such as 

switching from an eight-hour shift to two or three shifts per day, or even by adding a portion of 

time (e.g., a few overtime hours per day)). Consequently, the following increasing production setup 

cost KA and unit manufacturing cost CA are associated with this nonstandard production rate PA: 

𝐾A = (1 + 𝛼2)𝐾 (1) 

𝐶A = (1 + 𝛼3)𝐶 (2) 
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𝑃A = (1 + 𝛼1)𝑃 (3) 

 

where K, C, P, and αi denote regular production setup cost, unit manufacturing cost, the standard 

manufacturing rate per year, and the linking factors between these adjustable and regular variables, 

respectively. For example, α1 = 0.5 represents the adjusted production rate is 50% higher than the 

standard one, and α3 = 0.2 means that unit fabrication cost is 120% of the regular unit cost. 

 

It is also assumed that during the fabrication process, x percentage of the produced items are 

nonconforming, and its fabrication rate is dA (hence, dA = PA x). Shortages are not permitted in this 

study. Hence, PA > (λ + dA), or PA – dA – λ > 0 (see Figure 1). 

 

 

 

 

 
 

Figure 1. Level of on-hand inventories in the proposed EMQ-based system incorporating an expeditious 

production rate (in blue) as compared to that in conventional EMQ system (in black) 

 

 

 

 

All non-conforming items are examined and grouped as scrap items (i.e., a θ portion) and rework-

able items (i.e., (1 – θ) portion). In each production cycle, the rework process follows the regular 

fabrication, at a rate of P1A (where P1A = (1 + α1)P1, and P1 denotes standard rework rate). On-hand 

defective inventory status is depicted in Figure 2. 
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Figure 2. Status of on-hand imperfect items in the proposed system 

 

 

During rework, a θ1 portion fails and is scrapped. The on-hand level of scraps produced during the 

fabrication and rework times are shown in Figure 3. 

 

 

 
 

Figure 3. Status of scraps in the proposed system 

 

 

Other parameters used in the proposed EMQ-based incorporating an adjustable manufacturing rate 

include the following: 

 

Q = replenishment lot-size per cycle – the decision variable, 

H1 = level of on-hand inventories when the fabrication uptime ends, 

H = level of on-hand inventories when rework ends, 

t1A = fabrication uptime, 

t2A = the rework time, 
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t3A = production downtime, 

TA = cycle time, 

CR = unit reworking cost, 

CS = unit disposal cost, 

h = unit holding cost, 

d1A = fabrication rate of scrap items in rework process, 

h1 = holding cost per reworked item, 

φ = total scrap rate of defective items, where φ = [θ + (1 – θ)θ1], 

I(t) = on-hand stock level at time t, 

Id(t) = on-hand defective stock level at time t, 

IS(t) = on-hand scrap stock level at time t, 

t1 = fabrication uptime in conventional EMQ system, 

t2 = rework time in a conventional EMQ system, 

t3 = depletion time in a conventional EMQ system, 

T = cycle time in a conventional EMQ system, 

D = production rate of nonconforming stocks in a conventional EMQ system, 

d1 = production rate of scrap items during the rework of a conventional EMQ system, 

TC(Q) = total fabrication-inventory cost per cycle, 

E[TA] = the expected cycle time, 

E[TCU(Q)] = the annual expected total fabrication-inventory cost. 

 

 

2.1 Formulations 
According to the problem description (see Figures 1-3), we observe the following equations: 

𝑡1A =
𝑄

𝑃A
=

𝐻1
𝑃A − 𝑑A − 𝜆

 (4) 

𝑡2A =
𝑥𝑄(1 − 𝜃)

𝑃1A
 (5) 

𝑡3A =
𝐻

𝜆
   (6) 

𝑇𝐴 = 𝑡1𝐴 + 𝑡2𝐴 + 𝑡3𝐴 =
𝑄(1 − 𝜑𝑥)

𝜆
 (7) 

𝐻1 = (𝑃𝐴 − 𝑑𝐴 − 𝜆)𝑡1𝐴 = [(1 + 𝛼1)𝑃 − 𝑑𝐴 − 𝜆]𝑡1𝐴  (8) 

𝐻 = 𝐻1 + (𝑃1𝐴 − 𝑑1𝐴 − 𝜆)𝑡2𝐴 (9) 

𝑃1𝐴 = (1 + 𝛼1)𝑃1 (10) 

 

Maximal on-hand imperfect inventories during t1A are 

𝑑𝐴𝑡1𝐴 = 𝑥𝑃𝐴𝑡1𝐴 = 𝑥𝑄   (11) 

 

Also, total scrap items fabricated in t1A and t2A are 

𝜃(𝑥𝑄) + 𝜃1[(1 − 𝜃)𝑥𝑄] = [𝜃 + (1 − 𝜃)𝜃1]𝑥𝑄 = 𝜑𝑥𝑄 (12) 
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TC(Q) includes the setup and variable fabrication costs, the reworking and disposal costs, and stock 

holding costs for perfect quality, reworking, and nonconforming stocks in a cycle. So, TC(Q) is 

 

𝑇𝐶(𝑄) = 𝐾𝐴 + 𝐶𝐴𝑄 + 𝐶𝑅[𝑥𝑄(1 − 𝜃)] + 𝐶𝑆(𝜑𝑥𝑄) + ℎ1
𝑃1𝐴𝑡2𝐴
2

(𝑡2𝐴)  

+ ℎ [
(𝑥𝑃𝐴)𝑡1𝐴 +𝐻1

2
(𝑡1𝐴) +

𝐻 + 𝐻1
2

(𝑡2𝐴) +
𝐻

2
(𝑡3𝐴)] 

(13) 

 

Substitute KA, CA, PA, and P1A (i.e., Eqs. (1)-(3) and (10)) in Eq. (13)), TC(Q) becomes 

 

𝑇𝐶(𝑄) = [(1 + 𝛼2)𝐾] + [(1 + 𝛼3)𝐶]𝑄 + 𝐶𝑅[𝑥𝑄(1 − 𝜃)] + 𝐶𝑆(𝜑𝑥𝑄) 

+ℎ1
(1 + 𝛼1)𝑃1𝑡2𝐴

2
(𝑡2𝐴) + ℎ {

𝐻1 + 𝑥[(1 + 𝛼1)𝑃]𝑡1𝐴
2

(𝑡1𝐴) +
𝐻1 + 𝐻

2
(𝑡2𝐴) +

𝐻

2
(𝑡3𝐴)} 

(14) 

Apply the expected values of x to cope with the randomness of nonconforming rate in the 

fabrication process and substitute all parameters from Eqs. (4) to (12) in Eq. (14), and E[TCU(Q)] 

can be derived as follows: 

𝐸[𝑇𝐶𝑈(𝑄)] =
𝐸[𝑇𝐶(𝑄)]

𝐸[𝑇𝐴]

= λ{[(1 + 𝛼3)𝐶]𝐸0 + 𝐶𝑅(1 − 𝜃)𝐸1 + 𝐶𝑆𝜑𝐸1} +
[(1 + 𝛼2)𝐾]𝜆

𝑄
𝐸0

+
ℎ𝑄(1 − 𝜑𝐸[𝑥])

2
−
ℎ𝜆𝑄(1 − 2𝜑𝐸[𝑥])

2(1 + 𝛼1)𝑃
𝐸0

+
𝜆𝑄(1 − 𝜃)[ℎ1(1 − 𝜃) − ℎ]

2(1 + 𝛼1)𝑃1
𝐸2 +

ℎ𝜆𝑄𝜑(1 − 𝜃)

2(1 + 𝛼1)𝑃1
𝐸2 

(15) 

where 

𝐸0 =
1

1 − 𝜑𝐸[𝑥]
; 𝐸1 =

𝐸[𝑥]

1 − 𝜑𝐸[𝑥]
; 𝐸2 =

𝐸[𝑥]2

1 − 𝜑𝐸[𝑥]
 (16) 

 

 

3. Optimal Manufacturing Lot Size 
To determine the optimal lot-size, we need first to prove that E[TCU(Q)] is convex. Calculate the 

first- and second-derivatives of E[TCU(Q)] concerning Q, we obtain 

 

𝑑𝐸[𝑇𝐶𝑈(𝑄)]

𝑑𝑄
= −

[(1 + 𝛼2)𝐾]

𝑄2
𝐸0 +

ℎ(1 − 𝐸[𝑥])

2
−
ℎ(1 − 2𝐸[𝑥])

2(1 + 𝛼1)𝑃
𝐸0  

+
(1 − 𝜃)[ℎ1(1 − 𝜃) − ℎ]

2(1 + 𝛼1)𝑃1
𝐸2 +

ℎ(1 − 𝜃)

2(1 + 𝛼1)𝑃1
𝐸2  

(17) 
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𝑑2𝐸[𝑇𝐶𝑈(𝑄)]

𝑑𝑄2
=
2[(1 + 𝛼2)𝐾]

𝑄3
𝐸0 (18) 

 

Because K, α2, Q, E0, and λ are all positive, Eq. (18) results positive. So, E[TCU(Q)] is strictly 

convex for Q different from zero. Set the first derivative of E[TCU(Q)] equal to zero; one can solve 

the optimal Q* as follows: 

 

𝑄∗ =

√
  
  
  
  
 
 2𝐾𝜆(1 + 𝛼2)

ℎ(1 − 𝜑𝐸[𝑥])2 −
ℎ𝜆(1 − 2𝜑𝐸[𝑥])
(1 + 𝛼1)𝑃

+
ℎ𝜆𝜑(1 − 𝜃)𝐸[𝑥]2

(1 + 𝛼1)𝑃1

+
𝜆(1 − 𝜃)[ℎ1(1 − 𝜃) − ℎ]𝐸[𝑥]2

(1 + 𝛼1)𝑃1

 (19) 

 

 

4. Numerical Example with Discussion 
Applicability of the obtained result along with sensitivity analyses is demonstrated through a 

numerical example using the following parameter values: 

 

λ = 4,000, 

K = $5,000, 

h = $30, 

C = $100, 

x  = uniformly distributed variable within the interval of [0, 0.2], 

P = 20,000, 

α1 = 0.5, 

α2 = 0.1 (assume α2 = 0.2(α1)), 

α3 = 0.25 (assume α3 = 0.5(α1)), 

PA = 30,000, 

KA = $5,500, 

CA = $125, 

h1  = $40, 

CR = $60, 

θ = 0.1, 

θ1 = 0.1, 

φ = 0.19 (since φ = [θ + (1 – θ)θ1]), 

CS = $20. 

 

First, by applying equation (19), the economic manufacturing lot size Q* = 1325 can be found. 

Then, by calculating equation (15), E[TCU(Q*)] = $567,114 is obtained. The result of the 

sensitivity analysis of decision variable Q effects on the expected cost function E[TCU(Q)] as 

displayed in Figure 4. 
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Figure 4. The result of the sensitivity analysis of decision variable Q effects on E[TCU(Q)] 

 

 

 

Figure 5 illustrates variations in x effects on different cost components. It specifies that as x goes 

up, all cost components concerning product quality assurances (including scrap, reworking, and 

variable fabrication costs) increases significantly. Further analytical results of the joint influences 

of x and φ on E[TCU(Q)] is exhibited in Figure 6. Unsurprisingly, as x rises, E[TCU(Q)] goes up 

accordingly; and as φ rises, E[TCU(Q)] increases notably. 

 

 

 

 

 

Figure 5. Variations of nonconforming rate x effects on different system’s cost components 
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Figure 6. Joint effects of nonconforming rate x and overall scrap rate φ on E[TCU(Q)] 

 

 

 

The expedited rate effects on the proposed system are further investigated, and various critical 

managerial decisions related information on fabrication times and machine utilization are revealed 

(see Table 1). The obtained analytical results in Table 1, can provide production managers with the 

impact of the rate increase percentage on uptime, reworking time, cycle time, utilization, and 

utilization decrease percentage. 

 

 

 
Table 1. Variations of fabrication rate increase percentage (α1) effects on uptime, rework time, cycle time, 

utilization, and utilization decrease percentage 
 

1 

% 

Uptime 

(t1A) 

Rework time 

(t2A) 
E[TA] 

Utilization 
{(t1A +t2A)/E[TA]} 

Utilization 

decreases 
percentage 

0% 0.0657 0.0236 0.3221 27.73% - 
10% 0.0596 0.0215 0.3218 25.21% -9.09% 

20% 0.0547 0.0197 0.3220 23.11% -16.67% 
30% 0.0506 0.0182 0.3227 21.33% -23.08% 

40% 0.0471 0.0170 0.3236 19.80% -28.57% 

50% 0.0442 0.0159 0.3248 18.48% -33.33% 

60% 0.0416 0.0150 0.3263 17.33% -37.50% 
70% 0.0393 0.0142 0.3278 16.31% -41.18% 

80% 0.0373 0.0134 0.3295 15.40% -44.44% 

90% 0.0355 0.0128 0.3312 14.59% -47.37% 
100% 0.0340 0.0122 0.3331 13.86% -50.00% 

110% 0.0325 0.0117 0.3350 13.20% -52.38% 

120% 0.0312 0.0112 0.3369 12.60% -54.55% 
130% 0.0300 0.0108 0.3389 12.06% -56.52% 

140% 0.0290 0.0104 0.3409 11.55% -58.33% 

150% 0.0280 0.0101 0.3429 11.09% -60.00% 

160% 0.0271 0.0097 0.3450 10.66% -61.54% 
170% 0.0262 0.0094 0.3471 10.27% -62.96% 

180% 0.0254 0.0092 0.3492 9.90% -64.29% 

190% 0.0247 0.0089 0.3513 9.56% -65.52% 
200% 0.0240 0.0086 0.3534 9.24% -66.67% 
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From Table 1, diverse critical in-depth system information can be exposed. For instance, changes 

in fabrication rate increase percentage (α1) effects on machine utilization become available for 

supporting managerial decision makings (see Figure 7). It is noted that as assumed by our example, 

when fabrication expeditious rate α1 = 0.5, machine utilization ratio drops to 18.48% (from 27.73%, 

and that is a decrease of 33.33%); and as α1 increases, utilization decreases significantly. 

 

 

 

 

Figure 7. Fabrication rate increase percentage effects on the machine utilization 

 

In addition to α1 effects on different fabrication times and utilization, joint influences of α1 and α3 

on optimal lot-size Q*, E[TCU(Q)], and E[TCU(Q)] increase percentage are also investigated to 

facilitate various critical in-depth system information for managerial decision makings. For 

example, fabrication rate increase percentage effects on the optimal manufacturing lot-size, as 

illustrated in Figure 8. It is noted that as assumed by our numerical example where α1 = 0.5, Q* = 

1325, and as α1 increases, optimal lot-size rises accordingly. 

 

 

 

Figure 8. Differences in fabrication rate increase percentage effects on manufacturing lot-size 
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Figure 9. Variations of unit cost increase percentage effects on E[TCU(Q)] 

 

 

 

 

Figure 10. Changes of fabrication rate increase percentage effects on different cost components of 

E[TCU(Q)] 

 

 

Analytical results also reveal the effect of variations in unit cost increase percentage on E[TCU(Q)] 

(see Figure 9). It indicates that as assumed by our example at α3 = 0.25 (i.e., corresponding to α1 = 

0.5), E[TCU(Q)] = $567,114 (i.e., an increase of 22.66% from $462,357 (where α1 = α3 = 0)); and 

as α3 increases, E[TCU(Q)] goes up considerably. The further analysis exposes the effects of 

changes in fabrication rate increase percentage (α1) on different cost components of E[TCU(Q)], as 

displayed in Figure 10. These costs include stock holding, reworking, scrap, setup, and variable 

fabrication costs. It shows that as assumed by our example, at α1 = 0.5, E[TCU(Q)] = $567,114. As 

α1 goes up, the variable fabrication cost increases drastically, but other cost components, such as 

stock holding, reworking, scrap, and setup costs insignificantly change. 
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4.1 Discussions and Limitation 
Upon accomplishment of the proposed study, production managers can take advantage of this 

decision support type of tool to reveal the following characteristics of a fabrication system with 

expedited rate and quality assurance: (i) the optimal lot size and total system cost; (ii) the effect of 

differences in nonconforming rate x on cost components of the system; (iii) the joint influences of 

x and total scrap rate φ on total system cost; (iv) the impact of the rate increase on machine 

utilization and on manufacturing lot size; (v) variations of unit cost increase percentage effects on 

total system cost; and (vi) changes of fabrication rate increase percentage effects on different 

system cost components. 

 

The limitations of the proposed model include: (1) the assumption of constant annual product 

demand rate, and (2) the assumption of the expedited fabrication rate can either through the existing 

advance function of the machine, or via the extension of daily running time (such as switching from 

an eight-hour shift to two or three shifts per day), hence, the latter overtime part of assumption (2) 

limits the expedited rate to PA ≤ 3P or α1 ≤ 2. 

 

5. Conclusions 
A precise model is built in this study to help determine the economic lot-size for a fabrication-

inventory system with an expedited rate and product quality assurance. Mathematical analysis and 

optimization process are utilized in this study to derive the closed-form lot size solution. A 

numerical example is offered to depict the applicability of our result and reveal diverse critical 

system characteristics (refer to Table 1 and Figures 4 to 10) to facilitate production planning related 

decision makings. For future study, incorporating a probabilistic product demand rate and/or 

combining multiple/parallel machines into the proposed model will enhance the real-life 

applicability of the model. 
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